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ABSTRACT 
Procedures for the construction of spherical stellar model atmospheres are developed and applied to 

the calculation of three gray and three nongray model atmospheres for the central stars of planetary 
nebulae. The models are calculated under the classical assumptions of hydrostatic, radiative, and local 
thermodynamic equilibrium. Radiative transfer for spherical geometry and the 1/r2 dependence of 
gravity are taken into account. The transfer equation is solved by using the discrete-^1 N method of Carlson 
and Lathrop and a difference form of the diffusion-approximation equation. The atmospheres are brought 
to radiative equilibrium by using modifications to spherical geometry of the flux-correction procedure of 
Unsold for the gray case, and of the temperature-correction procedure of Lucy for the nongray case. 
Models which have luminosity constant with r to within 1.5 percent are calculated. All of the models have 
the same geometrical extension, and in each case the geometrical depth from (r) = 0.001 to (r) =1.0 
is approximately equal to the radius of curvature of the atmosphere at r = 1.0, The three nongray 
models have temperatures, at (r) = f, of 3.7 X 104 °, 4.9 X 104°, and 9.5 X 104° K. The emergent 
continuous flux of the models shows emission edges at the Balmer and Lyman limits and strong absorp- 
tion edges in the far-ultraviolet. These features are explained as being due to the rapid increase of the 
temperature with optical depth and by geometrical enhancement of the Schuster mechanism. The flux 
distribution in the visual and infrared matches rather well the continuum of the Wolf-Rayet stars 
observed by Kuhi. 

I. INTRODUCTION 

Model atmospheres for the central stars of planetary nebulae have been calculated by 
Gebbie and Seaton (1963), Böhm and Deinzer (1965, 1966), Gebbie (1967), Böhm 
(1969), and Hummer and Mihalas (1970). In all cases the classical assumptions of 
hydrostatic, radiative, and local thermodynamic equilibrium were used, as well as the 
assumption of plane-parallel stratification. The latter assumption is valid if the mean 
free path of a photon is small compared with the radius of curvature of the atmospheric 
layers and if the acceleration of gravity is nearly constant over these layers. Böhm 
(1969) and Böhm and Cassinelli (1970) have summarized arguments that some central 
stars may have extended atmospheres owing to the effects of radiation pressure. These 
stars lie near the radiative-instability limit, defined by 

Ul = ISradl 
«rTe«4 
 0- (1) 

where g is the surface gravity of the star, grad is the radiative-pressure gradient^ <r* is 
the Stefan-Boltzmann constant, and <r is the Thomson-scattering coefficient. Böhm 
(1969) calculated plane-parallel models with surface gravities approaching the insta- 
bility limit. He found hydrostatic atmospheres with a geometrical thickness down to 
(r) = 1.0, larger than 1 stellar radius if the instability limit was approached to within 
grad « 0.91g|. In such an atmosphere the effects of curvature in the atmospheric layers 
become very important. 

To gain some understanding of the effect of geometrical extension on the atmospheric 
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structure and on the energy distribution of the emergent flux, we have computed 
spherical model atmospheres, taking into account the radial variation of gravity and 
radiative transfer in spherical geometry. To isolate the effects of geometrical extension, 
we make the assumptions of hydrostatic, radiative, and local thermodynamic equilib- 
rium. The usual procedures for calculating model atmospheres require considerable 
modification before they can be applied to the calculation of spherical model atmo- 
spheres. 

The radiative transfer in spherical geometry is calculated by using discretization 
methods in which it is assumed that the atmosphere is composed of constant property 
shells. The discretization into shells is defined by a dimensionless variable f, which is 
used as the independent variable in the hydrostatic calculation. 

Radiative equilibrium is enforced by using modifications for spherical geometry of 
the temperature correction procedures of Unsold (1951) for the gray case, and of Lucy 
(1964) for the nongray case. The resulting models have a luminosity, L{r) versus r which 
deviates from a constant value by less than 1 percent in the gray case and by less than 
1.5 percent in the nongray case. 

Mihalas (1967) has reviewed methods for computing plane-parallel model atmo- 
spheres. These models are specified by the chemical composition, the effective tempera- 
ture reff, and the surface gravity g. A reasonable first approximation to the temperature 
stratification is provided by the analytic solution to the gray problem: 

r* = fTWIr + ?(r)] , (2) 

where q(r) is the well-known Hopf function. 
In an extended atmosphere, the “radius” of the star, say at rK = 1, varies greatly 

with frequency; thus the terms “surface gravity” and “effective temperature” become 
ambiguous. Furthermore, there is no general solution for the temperature stratification, 
even for the gray case, because as Chapman (1964) has stressed, in a spherical atmo- 
sphere the radiation field and therefore the radiative-equilibrium temperature depends 
explicitly on the distribution of sources of opacity with depth. We have found it neces- 
sary to iterate by using a flux-correction procedure to get even the gray structure of the 
atmosphere. We have found ho simple generalizations of the concepts of effective tem- 
perature and surface gravity for the spherical case. In place of these, we specify the 
atmospheres for computational purposes by the following quantities: (a) the mass M of 
the star; (b) the geometrical extension of the atmospheric layers, say Rmax = 4 X Rminî 
{c) the optical depth at the “top” of the atmosphere, (rmin); and (d) the optical depth 
at the “bottom” of the atmosphere, (Tmax). The luminosity of the star is roughly de- 
termined by the necessity that the outward acceleration owing to radiation-pressure 
effects nearly compensates for the inward acceleration of gravity. For our models we 
find that the ratio of radiative to gravitational accelerations is given by 

0.80 < < 0.93 . (3) 
kncGM 

The statement that (r) — rmin (« .001) at the top of the atmosphere leads to a bound- 
ary condition on the gas pressure. The requirement that (r) = rmax (« 10 or 15) at the 
lower boundary, r = Rmin, is made to ensure that the atmosphere is indeed extended in 
the sense that the mean free path is not negligibly small compared with the radius of 
curvature in the atmosphere. This requirement is satisfied by making small changes in 
the ratio of radiative to gravitational accelerations. We shall find that we have some hold 
on the temperature range in the atmosphere because the spherical-distribution B(t) is 
roughly bounded by the plane-parallel B(r) evaluated by using the flux (ergs cm~2) at 
the inner and at the outer radii of the atmospheric layers. 

In following sections we discuss in detail the equations in spherical geometry of 
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hydrostatic equilibrium and of radiative transfer. Unlike the plane-parallel case, the 
equations cannot in general be expressed ih terms of optical depth as the independent 
variable because of the explicit appearance of the position variable r in the equations. 

IT. THE EQUATION OF HYDROSTATIC EQUILIBRIUM 

The hydrostatic equation is 

dP _ GMp , kppL 
dr r2 47rr2cJ (4) 

where G is the gravitational constant, P is the gas pressure, p is the density, kp is the 
flux mean opacity, and c is the speed of light. The last term is the radiative-pressure 
gradient. Factoring out the gravitational term, we obtain 

where 

dP GMp / kF A 
T, ^-(‘-^•'1 

* — gpL 
7 “ kircGM 

(5) 

(6) 

is the ratio of the radiative-pressure gradient to the acceleration of gravity for the case 
of pure electron scattering in a completely ionized gas, in which <r = <ro(= 0.306). 

Using the equation of state, 

and introducing 
P = pkT/(p)mn , 

_ GMmn _ constant _ Aç 
^ ~~ kT\r r r 

we modify equation (5) to read 

d\n P = (M(f)) / 
# roo/n V 

i 

(7) 

(8) 

(9) 

In these equations k is Boltzmann’s constant, tnn is the mass of a hydrogen atom, 
(p) is the mean molecular weight, and T\ is some reference temperature (105 ° K). This 
equation formally integrates to 

<io> 

where Po is the boundary pressure at f = f0. In the isothermal case in which <p> = 
constant and kp = <7o, the hydrostatic solution takes the simple form 

where 

so 

P = Po exp (+£ — |o) , 

* - Wr« - ™ - T ■ 

n--%, 

(11) 

(12) 

(13) 

where R is the scale height kT/{p)m^geu. Equation (13) states that in regions where 
kp and <m> are constant, equal steps in £ (or f) correspond to radial steps proportional 
to the local scale height, and (from eq. [11]) to equal steps in the logarithm of pressure. 
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This feature is desirable for the calculations of radiative transfer. In the hot atmo- 
spheres considered here, the mean opacity does not deviate far from the electron-scatter- 
ing value and the mean molecular weight is nearly constant everywhere. 

In the plane-parallel case a boundary condition on the pressure may be derived by 
assuming that the atmosphere above the first optical-depth point is isothermal with 
only electron scattering contributing to the opacity. For this case the density distribu- 
tion is p = fioe~h,H and we find that 

'Tmin — J* p<rdh = po<rH (14) 

and po is related to Po by equation (7). In the spherical case this procedure for determin- 
ing the boundary pressure encounters difficulties because p = po exp (£ — £0) remains 
finite at infinity and the optical depth integral 

^min (is) 

diverges. The solution lies in the realization that in ah actual atmosphere the hydro- 
static distribution does not hold at large distances from the star. Spherical hydro- 
static atmospheres are considered also in the theory of planetary exospheres. Chamber- 
lain (1963) considers the number-density distribution far out in a planetary atmosphere 
where collisions between the atmospheric constituents are rare. He finds that as radial 
distance from the planet increases, the density falls increasingly below what is given by 
the hydrostatic distribution because the angular distribution of particle velocity vectors 
becomes increasingly concentrated in the direction of the outward radius vector. He 
shows that for ^o^>l the lower limit on the opticál-depth integral, equation (15), 
should be changed from £ = 0 to £ =* 1 to account for the deviation from the hydro- 
static law. Adopting Chamberlain’s cutoff, we find 

where 

so 

an expression which closely resembles the plane-parallel result, equation (14). In our 
model calculations we take rmin == 0.001 as the first optical-depth point. 

III. RADIATIVE TRANSFER IN SPHERICAL ATMOSPHERES 

The transfer equation in spherical geometry may be written 

[m|;+ (1 ~ m2) ^]h(r, m) = - S,) , (19) 

Tmin = apoHoK(^o) , (16) 

K(to) = / I exp [- (£0 - £)]d£ « 1 + ^ for £0 » 1, (17) 
i i io 

Tmin ^ (TPoHq ^1 + , (18) 

where p is the cosine of the angle 6 between the beam of radiation and the outward radial 
direction; kv is the total extinction coefficient at frequency v per gram, and is the sum of 
kv, the true absorption coefficient, and <r, the scattering coefficient. The source function 
Sy is 

5. = (20) 
Ky + or 

for the nongray case and 
S= B 
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for the gray case, where Bv is the Planck function, Jv is the mean intensity (averaged 
over all directions) and B = We assume that the scattering is isotropic, co- 
herent, and independent of frequency. 

The basic problem with radiative transfer in spherical geometry is that the angular 
coordinate system changes with geometrical position, i.e., p = p(r). Thus as a photon 
travels through the atmosphere, its coordinate /z is constantly changing, even though the 
photon does not physically change direction. In the transfer equation the d/dp term 
accounts for the directional transfer. We have used two numerical schemes to solve the 
transfer equation, (a) the discrete-Sv method, and (b) a standard-difference form of the 
transfer equation under the Eddington approximation (a diffusion-approximation equa- 
tion). In the discrete-5^ method, “curvature coefficients,, are introduced into a discrete 
form of the transfer equation to account for the direction transfers. In the diffusion- 
approximation calculation only mean intensities, integrated over all angles, are involved 
and so in a sense the direction changes are integrated out of the equations. 

a) The Discrete-Sx Method 

This method is a numerical version of the discrete-ordinates method developed by 
B. G. Carlson and his collaborators for calculations of neutron transport in reactors. It 
differs from the discrete-ordinates method of Chandrasekhar (1950) in that both the 
angular variable p and the space variable r are discretized. Detailed reviews of the 
method are given by Carlson (1963) and Carlson and Lathrop (1968), where the dis- 
cretized form of the transfer equation is derived by considering conservation relations 
for a finite cell in phase space (rt, Pm) and the resultant expression is shown to reduce to 
the spherical transfer equation in the limit of small spatial and angular intervals. The 
discrete transfer equation is presented in the Appendix. It is solved in a recursive man- 
ner, one direction at a time, by starting at the outer boundary, where /(r, p„r) is known 
from the boundary condition, and then stepping in toward the inner boundary. The 
solution is completed by a similar recursive march, for each of the outward directions 
pm*, starting with boundary conditions specified at the inner boundary. The numerical 
method that carries out the solution for /(r*, pm) is essentially the same as that of 
Lathrop (1965), but as reformulated in the notation of radiative transfer by Stoddard 
(1969). 

In the nongray problem, large variations of kv occur in going from the long-wavelength 
side of an absorption edge to the short-wavelength side. (The kv may increase by as 
much as a factor of 103.) Thus the spherical shells may have a large range in mono- 
chromatic optical depth, Arv. The discrete^# method is not accurate for step sizes of 
large optical depth. For this reason we do not use the full discrete-ordinate formalism at 
all depths and at all frequencies. Instead, we use diffusion-approximation results at 
large optical depth where the radiation field is nearly isotropic, and fit the discrete- 
ordinate calculation onto this so that the mean intensity Jv and the flux Hv are con- 
tinuous at the fitting point. At frequencies where kv <rea even this procedure is not 
practical, and the diffusion-approximation results are used all the way to the surface. 

b) The Diffusion-Approximation Equations 

Operating on the transfer equation with the moment operators Sfto and SDîi, where 

9Wn/ = h JT fpndp , (21) 

we obtain, after performing an integration by parts on the d/dp term, the moment 
equations 

i ^ (r2H,) = -k,p(Jr - Sr) (22) 
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+ i (3Kr - J,) = —kypHy, (23) 
ar r 

where 

Mr) = mMr, m)J ; Hv = mi[Iv(r, M)] ; Kv = Stt2[/p(r, /*)] • (24) 

Further operations on the transfer equation with ever higher moment operators 9Wn 

will yield equations containing ever higher moments. The system is brought to closure 
by using a “terminating condition.,, The moment Kv may be eliminated from equations 
(22) and (23) by representing the intensity as a first-order polynomial, 

Iv(r, p) = a0(r) + GiMm • (25) 

Applying üDîn to this expression for n = 0, 1, 2, we find 

Kv = \JV, (26) 

the well-known Eddington approximation. Using this in equation (23), we obtain 

1 dJv 

3kvp dr , (27) 

then, by combining equation (27) with equations (22) and (20) and using &„ = k„ F <r, 
we obtain 

Id/ r2 dJv\ 
r2 dr \3(fcv + a)p dr ) 

Kvp(Jv By) y (28) 

which is the diffusion approximation equation or the “transfer equation under the 
Eddington approximation.,, 

The equation is expressed in difference form and written as a tridiagonal matrix 

dkJk+i — bkJk + CkJk+i = —dk (29) 

which is solved by a Gaussian elimination scheme (Wachspress 1966). 

c) Boundary Conditions 

The general form of the boundary condition at Rmin and 2?max for the diffusion equa- 
tion is cJv + ß(dJv/dr) = y. At the top of the atmosphere we assume there is no in- 
coming radiation, 

/(Æmax, M") = 0 , (30) 

which may be expressed in terms of the moments Jv and Hv as 

HM 
_1_ 
31/2 /,(0) 

-1 dJv 

3(kv + <r)p dr 0 
(31) 

(Krook 1955). At the inner boundary, we use a condition which should be valid asymp- 
totically at large depth. We assume, as is done in the derivation of the Rosseland mean, 
that dJv/drv — dBv/dTv so that 

-1 dBv 

3(Ky o)p dr 
(32) 

If (kv + <r) is the Rosseland mean, then 

-1 dB dT 

3 + o’ ) p dT dr ’ 
(33) 
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Hv _ (kv + <t) dBv/dT 
~H “ \kv + v) dB/dT ’ 

where H is related to the total luminosity by 

IttH = 
47ri?min2 * 

271 

(34) 

(35) 

For the discrete-ordinate calculation we may use equation (30) at r = Rmax- At large 
optical depths we assume that the results of the diffusion calculation for Jv and Hv are 
accurate and we assume, following equation (25), that the linear expression / = a + &M+ 

is valid for the outward-directed radiation alone. Values for a and b may be calculated 
from 

Jv(r*) — Jv~ = aL+Wm + b'L+WmlXm , — Hv~ = dL+Wmßm + bh+WmUni2 , (36) 

where r* is the fitting point and corresponds to an optical depth t„ — 10. Jv(r*) and 
Hv{r*) are the diffusion-approximation results at r*; and 

J v =2 I v(t y flfn ) Wm j Hv 2 I vÍX 1 l^m ) 'Wmßm (37) 

are moment sums over the inward-directed intensities, which are known from the in- 
ward-directed discrete-Sjv recursive marches. 

Thus the diffusion calculations are used to extrapolate the lower boundary condition 
from Rmin to r*. 

d) Source-Function Iteration 

When scattering is involved, the solution to the transfer equation by the discrete-^ 
method requires iteration because the source function (20) involves which is an 
integral over /„(r, /¿), but /„ is not known until the solution is in progress. Fortunately, 
the computation time required to find/„(r) for a given source function is short (<0.3 sec 
on a CDC 6400), but a convergence-acceleration scheme is necessary nonetheless. A 
number of such schemes exist. Here we use a procedure proposed by Gelbard and Hage- 
man (1969). If Rn(r) is the change in Jv(r) in going from the wth to the {n + l)th itera- 
tion, the Gelbard and Hageman procedure prescribes that the source function for the 
next iteration will be computed with 

/n+l = Jn + Rn + , (38) 

where the last term represents a diffusion-approximation calculation which uses <rRn as 
a source term. Even if we use equation (38), the convergence of the iterations is mono- 
tonie: successive calculations are everywhere closer to the true solution; but if /w < 
/true everywhere, then Jn+l < /true everywhere. It is desirable to use an overestimate of 

the correction so that Jn+l lies on the opposite side of /true than did /n, for then the true 
solution is bracketed. To achieve this overshoot we use the fact that in successive itera- 
tions the monochromatic flux Hv{r) also converges monotonically toward a final value. 
Thus the convergence-acceleration procedure is as follows : 

Jn+l = Jn+Rn + ^{aRn} + Afc{Atf} , (39) 

where 
Ämax 

AÄ{Atf} =3/* kp(AHv)
ndr (40) 

r 
and , v 

(AHv)
n = HS+1 - H”. , (41) 
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Equations (38) and (39) are used on alternate iterations, starting with the third, until 
overshoot occurs. Then only equation (38) is used until 

|/n+l _ Jn I 

< °-5 x 10“ <42) 

at all optical depths. The scheme was tested on a gray-atmosphere calculation for which 
a good run of J(r) was known from the Unsold flux-correction procedure which will be 
discussed in § IV. The results agree to within 1 percent at all depths. 

e) Comparison with Other Work 

Most of the astronomical literature on the solution of the spherical radiative-transfer 
equation has been concerned with the gray case in which kp is inversely related to radius 
{kp = l/rw). In such a case the transfer equation may again be expressed with optical 
depth as the independent variable (see, e.g., Chandrasekhar 1950; Kosirev 1934). 
Chapman (1964, 1966) has obtained a near-radiative-equilibrium solution for the case 
n = 3. For this value of n he finds that the solution for J is given approximately by 

/(r) = !r2tf(4r2 + 3.077t) . (43) 

Our results and Chapman’s agree to within 5 percent. The radiative transfer for this 
comparison was calculated by using the discrete-S# method, and the ^boundaries” of 
the atmosphere were placed at r = 20 and at r = 0.05, with r{r) = 0.5r~2. The Ed- 
dington-approximation result was used as the initial guess to the source-function stratifi- 
cation, and the Unsold flux-correction procedure described in § IV was used to achieve 
radiative equilibrium. Flux constancy to <0.1 percent was achieved in six iterations. 
The calculations were made by using a three-point double-Gauss angular quadrature 
(for a total of six directions, i.e., an S% representation) and using 60, 90, and 120 radial 
steps. (The results of these cases were nearly identical.) 

Recently Schmid-Burgk (1970) has developed an accurate numerical scheme for 
solving the \/rn problem. The results of the discretization scheme used here agree to 
within a few percent with those of Schmid-Burgk. 

IV. RADIATIVE EQUILIBRIUM: THE TEMPERATURE CORRECTION PROCEDURES 

For a spherical atmosphere in radiative equilibrium, the total radiative luminosity 
flowing through the atmosphere is independent of depth, or 

r2 SHydv — = #° = constant. (44) 
o v*7rr 

This expression follows from equation (22) if one uses equation (20) and the usual form 
of the radiative-equilibrium condition, 

CO oo 
KvBvdv = f KvJpdv . 

0 0 

In addition to the 1/r2 dependence of flux, Chapman (1966) notes that, very far out in 
the atmosphere, the radiation field is concentrated in the radial direction; and thus 

J ~ K. (45) 

The model atmospheres calculated here are moderately compact, and a satisfactory 
flux-correction procedure may be derived by using the moment equations under the 
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Eddington approximation K — \J. But it is of interest to note that a very similar cor- 
rection procedure could be derived with the closure condition K = J. 

After the radiative-transfer calculation is completed, the departure from constancy 
of r2Ä may be calculated: 

AH°(r) = r2H(r) - . (46) 

The temperature distribution is then corrected. For the gray case, the correction to the 
source function B(r) is 

AB(r) = -[ 
rAH»(Rm„) 

+ 3S kP^dr ] + J{r) - B(r) (47) 

The derivation of this equation is a straightforward modification of Unsold's (1951) 
flux-correction procedure, except that the spherical-moment equations (22) and (23) are 
used instead of the planar-moment equations. Also, instead of using the Eddington ex- 
pression H = we here use H = J a.t the surface, following equation (45). 

For the nongray correction, we use a similar modification of the Lucy (1964) pro- 
cedure: 

AB(r) = - 
kj rAZPÇRr 

Kn L Rr 
+ 3>"“4,A^*] + gyW-BW] 

= ABi + AB2, (48) 

where AB2 is the second bracketed term and kj, kp, and kF are mean absorption co- 
efficients : 

Kp = \ fKvJvdv ; = 4 J*K*Bvdv ; kp = jr f (kv + (r)Hvdv . (49) 
JO ±> 0 tl 0 

Equation (48) is derived under the assumption that the mean opacities kj, kp, and kF do 
not change from one iteration to the next as significantly as J, B, and ZZ. We found it 
best to use just a fraction («0.5) of the AB2 part of the correction if AB2/B >0.1, 
following the suggestion of Lucy (1964). 

After six iterations, Unsold's method achieved a flux constancy good to 1 percent, 
while Lucy's method achieved a flux constancy of 1.5 percent in nine iterations or less. 

V. COMPUTATIONAL PROCEDURES 

The calculation of extended model atmospheres differs from the planar case primarily 
because the models are specified not by TBu and g but rather by the parameters given 
in §1. The hydrostatic-structure calculation proceeds as follows: For given values of 
jRmin and Z?max, extreme values of f are calculated via equation (8). N equal steps in f 
define the discretization into spherical shells (rt). The equation of hydrostatic equilib- 
rium may be integrated if T(r), the boundary Po, and 7* are specified. We use the 
Runge-Kutta method for the first four depth steps of the numerical integration and 
Hamming's (1962) method for the remaining steps. We approximate the radiative ac- 
celeration by using the Rosseland mean opacity instead of the flux mean kF. 

After the calculation of the hydrostatic structure, the mean and monochromatic opti- 
cal depths are calculated, e.g., from 

<r(f))= ; (50) 
^0 * 
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and we could proceed to carry out the radiative-transí er calculations and the tempera- 
ture corrections. Before this is done, a test is made on the total mean optical depth 
r tota i for the following reasons: There are two characteristic lengths in the spherical 
radiative-transfer problem, the radius of curvature of the atmospheric layers and the 
photon mean free path. This is in contrast to the planar case in which the geometrical 
coordinate plays no role in the transfer problem. So in our problem both the geometrical 
and optical properties must be specified in some way. We choose to specify the total 
geometrical thickness and the total mean optical depth of the atmospheric layers, 
Tmax- It is possible to satisfy the requirement that notai = rmax at the base of the atmo- 
sphere by adjusting the parameter 7*, the ratio of radiative to gravitational acceleration 
in the atmosphere. If a single value of 7* is used through a sequence of model iterations, 
the Tto tai tends to drift far from its initial value, and thus the radiative properties of the 
atmosphere change grossly. The requirement that notai = Tmax is enforced by using 
three different values of 7* to calculate the hydrostatic structure, and notai is evaluated 
each time to form a set of (7*, notai). A Legendre interpolation is performed to find a 
7* that yields notai = Tmax, and the hydrostatic calculation is repeated once more before 
carrying out the radiative-transfer calculations, as discussed previously. 

VI. RESULTS 

Three sets of models have been calculated: three gray models and three nongray 
models. The temperature stratifications computed for the gray models were used as a 
first approximation in the nongray calculation. Parameters specifying the models are 
presented in Table 1. The chemical composition of the atmospheres was taken to be 
that used by Böhm and Deinzer (1965) (see Table 2 of that paper). The absorption co- 
efficients were calculated by a subroutine of Böhm and Deinzer (1965) as modified by 
Böhm (1969). These calculations include the following contributions: bound-free transi- 
tions from the ground state of H, He, C m, C iv, N m, N iv, N v, O m, O iv, O v, 
O vi, Ne in, Ne iv, Ne v; bound-free transitions from low-lying levels of H, He 1, and 
He ii; free-free transitions of H, He 1, and He 11; and Thomson electron scattering. The 
frequencies used in the three sets of models are given in Table 2, with ionization-edge 
groupings as indicated. 

In Tables 3-8 we present the hydrostatic run of temperature, pressure, density, and 
Rosseland mean opacity versus Rosseland mean optical depth for the models calculated. 
We have found no density inversions in any of these hydrostatic models. Such inversions 
would lead to an instability as discussed by Wentzel (1970). 

TABLE 1 

Summary of Model Parameters 

Parameter 
Gray 

Model 1 
N ongray 
Model 1 

Gray 
Model 2 

Nongray 
Model 2 

Gray 
Model 3 

Nongray 
Model 3 

M/Mq  
Æmm(10U Cm) 
Æmax(10n Cm) 
Tmax  
"Tmin  

L/Lq X 10”4 . •. 
r(2/3)(°K)  
No. of frequencies, 
No. of shells  

0.6 
0.90 
3.879 

10 
0.001 
0.8187 
2.067 

34712 
24 
60 

0.6 
0.90 
3.879 

10 
0.001 
0.8045 
2.032 

37496 
24 
60 

0.6 
0.45 
1.939 

10 
0.001 
0.8637 
2.181 

53558 
24 
60 

0.6 
0.45 
1.939 

10 
0.001 
0.8584 
2.168 

48864 
24 
60 

1.0 
0.25 
1.078 

15 
0.001 
0.9247 
3.872 

82180 
33 
90 

1.0 
0.25 
1.078 

15 
0.001 
0.9290 
3.889 

94681 
33 
90 
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TABLE 2 

Frequencies Used for the Six Models Computed 

visec-1) Ionization Edge i'(sec-1) Ionization Edge 

Gray Model 1 and Nongray Model 1 Gray Model 2 and Nongray Model 2 (coni'd) 

0.3654X1015.. 
0.5937X1015.. 
0.8220X1015\ 
0.8221X1015/- 
0.9871X1015.. 
1.1520X1015\ 
1.1530X1015/- 
2.2205X1015.. 
3.2880X1015\ 
3.2890X1016/- 
4.6160X1016.. 
5.9440X1016) 
5.9450X1015/* 
8.7025X1015.. 
1.1460X1016\' 
1.1470X1016/* 
1.2310X1016.. 
1.3152X1016\ 
1.3153X1016/- 
1.5933 X1016.. 
1.8714X1016\ 
1.8729X1016/’ 
2.9364X1016.. 
4.0000X1016.. 

H I, w=3 

H I, w = 2 

He I 235 

H I, n= 1, and He II, w = 2 

He I, VS 

N HI, C III 

He II, w=l 

O IV, N IV 

Gray Model 2 and Nongray Model 2 

Ö.3654X1015.. 
Û.5937X1015.. 
0.8220X1015\ 
0.8221X1015/- 
1.14Í5X1016.. 
1.4610X1015\ 
1.4620X1016/- 
2.3745X1015.. 
3.2880X1015\ 
3.2890X1016/- 
4.6165X1015.. 
5.9440X1015\ 
5.9450X1016/- 
8.6530X1015.. 
1.1460X1016! 
1.1470X1016/' 
1.2310X1016.. 

Ki,n=3 

H l,n = 2 

He II, n=3 

H I, n=l, and He II, » = 2 

He I, VS 

N III, C III 

1.3152X1016\ 
1.3153X1016/  
1.5941X1016  
1.8714X1016\ 
1.8729X1016/  
2.9393 X1016  
4.0000X1016  

He II, n=l 

O IV, N IV 

Gray Model 3 and Nongray Model 3 

0.3654X1015. 
0.5937X1016. 
0.8220X1016\ 
0.8221X1015/ 
1.1415X1016. 
1.4610X1016\ 
1.4620X1016/ 
2.3745X1015. 
3.2880X1016\ 
3.2890X1016/ 
4.6165X1016. 
5.9440X1016\ 
5.9450X1015/ 
8.7025X1015. 
1.1460X1016\ 
1.1470X1016/ 
1.2311X1016. 
1.3152X1018) 
1.3153X1016/ 
1.5934X1016. 
1.8714X1016\ 
1.8729X1016/ 
2.1118X1016. 
2.3507X1016\ 
2.3665X1016/ 
2.5617X1016. 
2.7534X1016\ 
2.7536X1016/ 
2.9058X1016.. 
3.0581X1016) 
3.0583 X1016/ 
3.5292X1016.. 
4.0000X1016.. 

Hi, «=3 

H I, w = 2 

He II, n=3 

H I, n= 1, and He II, n = 2 

He I, VS 

N HI, C III 

He II, w = 1 

O IV, N IV 

Ne IV, N V 

O V 

Ne V 
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TABLE 3 

Gray Model 1: 7X2/3) = 34712 

tr R (cm) T (° K) P (dyn cm-2) p (g cm'3) (kr) (cm2 g~i) 

   3.879(+ll) 
1.269(—3)  3.676 
4.489  3.493 
1.307(—2)  3.328 
3.222  3.178 
1.251(—1)  2.914 
2.001 
4.554. 
6.870. 
9.986. 

2.798 
2.499 
2.259 
2.002 

2.014(4-0)  1.558 
3.071 
4.063. 
5.006 
6.065. 
7.212. 
8.419. 
9.985. 

1.349 
1.231 
1.150 
1.079 
1.017 
9.615(4-10) 
9.000 

2.189(4-4) 
2.262 
2.338 
2.423 
2.520 
2.754 
2.881 
3.219 
3.498 
3.855 
4.830 
5.626 
6.251 
6.773 
7.299 
7.817 
8.320 
8.972 

2.777(—1) 
9.392 
2.892(4-0) 
7.790 
1.771(4-1) 
5.275 . 
7.108 
9.725 
1.243(4-2) 
1.919 
6.228 
1.361(4-3) 
2.241 
3.169 
4.249 
5.433 
6.717 
8.552 

1.102(—13) 
3.609 
1.075(—T2) 
2.794 
6.104 
1.651(—11) 
2.106 
2.487 
2.891 
4.040 
1.046(—10) 
1.961 
2.907 
3.793 
4.721 
5.635 
6.547 
7.729 

0.2707 
0.2739 
0.2804 
0.2910 
0.3048 
0.3348 
0.3489 
0.3657 
0.3601 
0.3558 
0.3513 
0.3498 
0.3504 
0.3519 
0.3541 
0.3559 
0.3570 
0.3562 

Note.—Numbers in parentheses indicate powers of 10. 

TABLE 4 

Nongray Model 1: r(2/3) = 37496 

TR R (cm) T(° K) P (dyn cm-2) p (g cm"3) (kr) (cm2 g"i) 

9.885(—4). 
2.595(—3). 
5.308  
9.813  
2.882(—2). 
4.668..... 
7.267  
1.082(—1). 
3.381  
6.490  
1.011(+0). 
2.066  
3.046  
4.097  
5.970  
7.890  
1.000(4-1) 

3.879(4-11) 
3.676 
3.494 
3.328 
3.178 
2.914 
2.798 
2.691 
2.592 
2.258 
2.002 
1.797 
1.461 
1.299 
1.189 
1.063 
9.749(4-10) 
9.000 

2.714(4-4) 
2.806 
2.891 
2.927 
2.970 
3.054 
3.097 
3.143 
3.191 
3.433 
3.733 
4.055 
4.881 
5.551 
6.195 
7.195 
8.067 
8.866 

3.745(—1) 
7.312 
1.386(4-0) 
2.570 
4.684 
1.408(4-1) 
2.268 
3.435 
4.863 
1.135(4-2) 
1.868 
2.923 
7.835 
1.499(4-3) 
2.502 
4.614 
6.896 
9.576 

1.123(—13) 
2.119 
3.897 
7.149 
1.286(—12) 
3.762 
5.991 
8.949 
1.247(—11) 
2.696 
4.064 
5.846 
1.301(—10) 
2.189 
3.273 
5.197 
6.930 
8.755 

0.3047 
0.3056 
0.3066 
0.3077 
0.3096 
0.3176 
0.3241 
0.3318 
0.3398 
0.3602 
0.3629 
0.3621 
0.3585 
0.3562 
0.3556 
0.3579 
0.3607 
0.3618 

Note.—Numbers in parentheses indicate powers of 10. 
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TABLE 5 

Gray Model 2: 7\2/3) = 53558 

TR R (cm) T (° K) P (dyn cm-2) p (g cm-3) {kr) (cm2 g_1) 

3) 1.043( 
2.910.. .. 
6.351.. .. 
1.231(—2) 
5.902.. .. 

1 
1 
1 
1 
1 
1 

1.261(—1)  1 
1 
1 
1 
9 
7 
7 
6 
5 
5 
4 

2.263 
4.392  
7.289  
1.098(+0).. 
2.048  
2.964.. .... 
3.923  
4.931.. .... 
6.032  
8.104  
1.002(+1)  4 

939(4-11) 
838 
746 
664 
589 
399 
296 
207 
094 
001 
221(4-10) 
967 
156 
495 
946 
482 
874 
500 

3.117(4-4) 
3.215 
3.315 
3.417 
3.523 
3.882 
4.159 
4.460 
4.943 
5.459 
5.999 
7.099 
7.966 
8.771 
9.546 
1.033(4-5) 
1.166 
1.281 

8.406(—1) 
1.838(4-0) 
3.866 
7.765 
1.476(4-1) 
6.760 
1.358(4-2) 
2.325 
4.455 
7.711 
1.234(4-3) 
2.496 
3.694 
5.134 
7.170 
1.018(4-4) 
1.826 
2.865 

2.187(—13) 
4.636 
9.457 
1.843(—12) 
3.397 
1.412(—11) 
2.647 
4.226 
7.306 
1.145(—10) 
1.667 
2.849 
3.259 
4.746 
6.089 
7.991 
1.270(—9) 
1.812 

0.3068 
0.3075 
0.3087 
0.3106 
0.3133 
0.3244 
0.3304 
0.3337 
0.3357 
0.3366 
0.3378 
0.3418 
0.3438 
0.3434 
0.3418 
0.3402 
0.3377 
0.3352 

Note.—Numbers in parentheses indicate powers of 10. 

TABLE 6 

Nongray Model 2: T(2/3) = 48865 

TR R (cm) T (° K) P (dyn cm“2) p (g cm-3) (kr) (cm2 g“1) 

1.062(—3) 
2.908  
6.246  
1.204(—2) 
6.120..... 
9.463.. . . 
2.539(—1) 
4.756  
7.407  
1.052(4-0). 
2.009  
3.043  
4.003  
5.065.. . . 
6.012  
7.952  
1.000(4-1) 

1.939(4-11) 
1.838 
1.746 
1.664 
1.588 
1.399 
1.345 
1.207 
1.094 
1.001 
9.221(4-10) 
7.791 
6.876 
6.264 
5.751 
5.398 
4.874 
4.500 

3.543(4-4) 
3.590 
3.662 
3.734 
3.804 
4.012 
4.071 
4.305 
4.614 
4.993 
5.450 
6.840 
8.141 
9.012 
9.815 
1.046(4-5) 
1.165 
1.274 

9.976(—1) 
2.064(4-0) 
4.185 
8.251 
1.570(4-1) 
7.779 
1.147(4-2) 
2.455 
3.955 
6.028 
9.185 
2.277(4-3) 
3.978 
5.831 
8.447 
1.138(4-4) 
1.931 
3.055 

2.282 (—13) 
4.661 
9.262 
1.791(—12) 
3.347 
1.572(—11) 
2.284 
4.624 
6.950 
9.786 
1.366(—10) 
2.698 
3.961 
5.244 
6.977 
8.821 
1.344(—9) 
1.943 

0.3066 
0.3070 
0.3078 
0.3090 
0.3111 
0.3236 
0.3294 
0.3411 
0.3438 
0.3431 
0.3418 
0.3419 
0.3439 
0.3436 
0.3425 
0.3415 
0.3395 
0.3379 

Note.—Numbers in parentheses indicate powers of 10. 
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TABLE 7 

Gray Model 3: r(2/3) = 82180 

TR R (cm) T (° K) P (dyn cm-2) p (g em“3) (kr) (cm2 g-i) 

1.652(—3) 
3.198  
8.971  

1 
1 
9 
9 

1.394(—2)  8 
8 
7 
7 
6 
5 
5 
4 
3 
3 
3 
2 

3.049  
5.945  
1.041(—1) 
3.728  
6.819  
1.040(-f0) 
1.980  
2.992  
4.058  
5.953..... 
8.001  
1.029(+i)  2 
1.267, 
1.495. 

.078(4-11) 

.004 

.704(4-10) 

.101 

.827 

.325 

.878 

.476 

.343 

.614 

.035 

.174 

.699 

.399 

.078 

.867 

.708 

.588 

.500 

4.828(4-4) 
5.032 
5.135 
5.349 
5.462 
5.702 
5.967 
6.256 
7.346 
8.258 
9.158 
1.108(4-5) 
1.272 
1.415 
1.625 
1.809 
1.982 
2.138 
2.277 

2.496(4-0) 
7.285 
1.209(4-1) 
3.115 
4.811 
1.049(4-2) 
2.007 
3.363 
9.612 
1.615(4-3) 
2.601 
6.766 
1.381(4-4) 
2.406 
4.892 
8.413 
1.323(4-5) 
1.908 
2.536 

4.191(—13) 
1.174(—12) 
1.909 
4.772 
7.143 
1.492(—11) 
2.728 
4.358 
1.061(—10) 
1.586 
2.303 
4.952 
8.807 
1.378(—9) 
2.441 
3.771 
5.412 
7.237 
9.034 

0.3069 
0.3075 
0.3079 
0.3093 
0.3102 
0.3125 
0.3152 
0.3181 
0.3242 
0.3248 
0.3243 
0.3229 
0.3217 
0.3207 
0.3194 
0.3184 
0.3175 
0.3170 
0.3164 

Note.—Numbers in parentheses indicate powers of 10. 

TABLE 8 

Non gray Model 3: r(2/3) = 95090 

TR R (cm) T (° K) P (dyn cm“2) p (g cm-3) (kr) (cm2 g-i) 

1.290(-3) 
3.555   
7.494  
1.042(—2) 
2.555   
7.242  
1.143(—1) 
3.934  
7.131  
1.027(4-0) 
2.017  
3.048  
4.002.. ... 
6.058  
7.960.. ... 
9.994  
1.249(4-1) 
1.500  

1.078(4-11) 
1.004 
9.393(4-10) 
8.827 
8.569 
7.877 
7.112 
6.783 
5.837 
5.308 
4.949 
4.234 
3.795 
3.522 
3.144 
2.924 
2.758 
2.611 
2.500 

7.123(4-4) 
7.236 
7.352 
7.471 
7.533 
7.728 
8.025 
8.198 
8.964 
9.604 
1.014(4-5) 
1.159 
1.287 
1.391 
1.586 
1.742 
1.891 
2.060 
2.217 

3.472(4-0) 
7.157 
1.451(4-1) 
2.884 
4.031 
1.048(4-2) 
3.193 
5.095 
1.630(4-3) 
2.775 
3.922 
8.299 
1.454(4-4) 
2.201 
4.372 
7.052 
1.059(4-5) 
1.585 
2.210 

3.952(—13) 
8.018 
1.600(—12) 
3.130 
4.337 
1.099(—11) 
3.224 
5.037 
1.473(—10) 
2.342 
3.134 
5.804 
9.163 
1.283(—9) 
2.235 
3.282 
4.589 
6.237 
8.080 

0.3062 
0.3063 
0.3065 
0.3068 
0.3072 
0.3084 
0.3115 
0.3135 
0.3195 
0.3214 
0.3220 
0.3220 
0.3214 
0.3208 
0.3197 
0.3188 
0.3180 
0.3171 
0.3163 

Note.—Numbers in parentheses indicate powers of 10. 
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EXTENDED MODEL ATMOSPHERES 279 

a) Temperature Stratifications 

Figure 1 shows a typical temperature stratification for the spherical models. Plotted 
is £(= <j*T*/tt) versus mean optical depth. Also shown are the plane-parallel distribu- 
tions 

B = 4 

B = i 
47r2Rmax2 

(r + f ) , 

(r + f) 

(51) 

(52) 

Note that the spherical temperature stratifications are almost completely enveloped by 
the two plane-parallel stratifications. There is a much larger range in temperature down 
to optical depth unity in a spherical atmosphere than in a plane-parallel one, as one 
might expect. For example, for gray model 2, the temperature goes from 3.2 X 104 ° to 
6 X 104 ° K in this optical depth range.^Setting Ten = T(t = f ) and using equation (2), 
we find the corresponding temperatures for the gray planar atmosphere to be 4.25 X 
104 ° to 5.2 X 104 ° K. This wide range of temperatures in extended atmospheres may be 
important in explaining the appearance of ions with very different ionization potentials 
that are seen in the spectra of some central stars (Smith and Aller 1969). 

For all three models, the temperature at small optical depths is larger for the nongray 
models than for the gray models. This is contrary to the usual case in plane-parallel 
calculations. However, Unno (1963) notes that even in plane-parallel calculations the 
nongray surface temperature may in some cases be larger than the gray surface tempera- 
ture if the absorption kv is distributed with frequency such that the atmosphere is more 
transparent on the red side than on the violet side of the maximum of the Planck func- 
tion. 

For the spherical models calculated here, the increase in the surface temperature in 
the nongray case is due in part to the very steep gray temperature gradient dB/dr near 
the surface (Fig. 1), and in part to the large contribution of electron scattering to the 

Fig. 1.—B (r) ? stratification for gray model 2 and nongray model 2. The two curves which envelop 
the spherical solutions are plane-parallel stratifications, equations (51) and (52). Insert, region near the 
surface with the scale of the ordinate expanded by a factor of 5. 
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opacity. As is well known (Kourganoff 1952), the mean intensity tends to be larger than 
Bv toward violet frequencies because of the rapid increase of Bv with depth. This excess 
of Jv over Bv is exaggerated if coherent scattering is an important source of opacity, 
for then the radiation field Jv near the surface has a large contribution from photons 
which have traveled, in random-walk fashion, from large depths, where Bv is weighted 
heavily toward short wavelengths. 

The net effect of the steep gray temperature gradient and the coherent scattering 
by electrons is that in the initial nongray calculation Jv tends to be much larger than 
Bv at short wavelengths. This in turn affects the nongray temperature stratification, as 
may be seen by considering the radiative-equilibrium condition 

CO oo 
KvJvdv = fKyBvdv. (53) 

0 0 

For this to be satisfied, Bv increases and the nongray surface temperature is made larger 
than the gray surface temperature. 

b) The Emergent-Flux Distributions 

Figures 2-4 show the emergent-flux distributions for the nongray stratifications. The 

Fig. 2.—Emergent flux versus frequency for nongray model 1. Dashed line, blackbody distribution 
for the temperature at r = f ; r(f) = 37496. 
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No. 2, 1971 EXTENDED MODEL ATMOSPHERES 281 

Fig. 3.—Emergent flux versus frequency for nongray model 2. Shown for comparison is the black- 
body distribution for r(§) = 48865 

flux distributions show strong absorption edges in the far-ultraviolet and emission edges 
in the visual and near-ultraviolet. These features may be understood on the basis of 
geometrical effects and the Schuster mechanism. 

The abrupt increase in kv as we pass through an ionization edge in going from longer 
to shorter wavelengths usually leads to an absorption edge, a decrease in F„(0) ; one 
looks deeper into the atmosphere on the long-wavelength side of the edge than on the 
shortward side and thus sees down to a depth where Bv is larger. For a spherical model 
this is counterbalanced to some extent by the fact that the observed flux is proportional 
to tR2, where R is the radius of the observed disk, say at (t„) tangential = 1. The observed 
disk is larger for larger kv. Gebbie and Thomas (1968) refer to this phenomenon as “geo- 
metrically induced emission.,, The very large absorption edges in the ultraviolet regions 
of our models show that the rapid decrease in Bv more than makes up for this geometrical 
effect. The increase in the area of the observed disk increases as R2, but the decrease in 
BV(R) in the ultraviolet is more rapid than 1/R2. 

At wavelengths considerably longer than the wavelength corresponding to the maxi- 
mum of the Planck function, Bv does not decrease as rapidly with radius, so geometrically 
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Fig. 4.—Emergent flux versus frequency for nongray model 3. Shown for comparison is the black- 
body distribution for r(f) = 95090. 

induced emission may be important there. It is also important to note that this is the 
same frequency region at which the Schuster mechanism is important, so the emission 
edges found here might be described as being due to a geometrically enhanced Schiister 
mechanism* The Schuster mechanism has been discussed by Gebbie (1967), who found 
an emission edge at the Lyman limit in her plane-parallel models of central stars; by 
Gebbie and Thomas (1968); and by Böhm (1968). The operation of this mechanism 
depends on the fact that in an atmosphere in which scattering is important the source 
function is given by equation (20). The source function Sv may increase across an ab- 
sorption edge, jumping from a value near /„ to a larger value near Bv. (It is toward 
the red region of the spectrum that Jv is smaller than Bv.) If this jump in Sv occurs 
in a large part of the atmosphere, an emission edge may show up in the emergent flux 
^(0). 

All three models show emission edges at the Baimer and Lyman limits. For models 1, 
2, and 3 the emission of the Balmer edge is 0.13, 0.08, and 0.03 mag, respectively. Liller 
(1970) informs us that he observed the Balmer edge in emission by about a tenth of a 
magnitude in a central star and in a B3 la supergiant, but this was while he was using 
Vega as a standard and using the old calibration of Oke (1964). The more recent calibra- 
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Fig. 5.—Comparison of the energy distribution of nongray model 2 {solid line) with the continuous 
energy distribution of the Wolf-Rayet star HD 191765 (WN6) {solid dots). The discontinuity is the Bal- 
mer edge which appears in emission for the spherical models calculated here. Dashed line, blackbody dis- 
tribution for T = 48865° K. 

tions of Vega by Hayes (1970) and Oke and Schild (1970) have decreased the absolute 
energy distribution just shortward of A3647 by 0.09 mag, enough to null the emission 
edge detected by Liller. 

The strong absorption edges in the far-ultraviolet agree at least qualitatively with 
the results of plane-parallel models. It is interesting to note, however, that nongray 
model 3 (Fig. 4) shows an excess of ultraviolet radiation just beyond the Ne iv edge. 
Williams (1968) notes that just such an excess is required to explain the Ne v emission 
lines which are observed in those planetarv nebulae which have central stars with 
Teff ~ 9 X 104 ° K. 

The energy-flux distributions from the spherical models are rather “flat,” compared 
with the plane-parallel results (cited in the Introduction) which more closely mimic the 
blackbody distribution. Kuhi (I960) found that the emergent continuum of Wolf-Rayet 
stars also deviates rather strongly from a blackbody distribution. Since Wolf-Rayet 
stars are generally thought to have extended atmospheres, it is perhaps of some interest 
to compare the calculated Fv(fy with KuhPs observations, though we should note that 
the models calculated in this paper were not intended to be for Wolf-Rayet stars. Fig- 
ure 5 shows the emergent flux in the visual and infrared as calculated from the stratifica- 
tion of model 2, along with observational data on HD 191765 (WN5). The distributions 
match reasonably well. The model has the excess radiation in the infrared required to fit 
the Wolf-Rayet continuum. This radiation originates in the cool outer layers of the 
atmosphere. Note also the emission at the Balmer edge. This edge does not appear in 
Kuhi’s observations, but such an edge would perhaps be smoothed out by the strong 
expansion motions known to exist in Wolf-Rayet atmospheres. 
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APPENDIX 

THE DISCRETE-^ EQUATIONS 

In the notation of radiative transfer the discrete-S# representation of the transfer equation is 

Ai+xli+i Á {Ii, i Ot-m+ll'iJl/2-^?n—1/2 i l r l* O 

^ Vi— +  + kPi = kPs, 

where for the net of points (r¿, jum) and for any function /(r¿, )uw) we let 

, fi = f(ri> Mrn) , /m+l/2 = /(n-+l/2, Mm+l/2) , 
and where 

Vi — ^ (fi-t-i3 /'i3) y Ai — AttA y Rmin — /*1 ^ ^2 ^ ^ ^L+l — -^max • 

The ßm(m = 1, . . . , Jtf) are direction cosines. The curvature coefficients a are defined recur- 
sively as 

OJm+l/2 Oim—i/2 / a a \ n 
  = —ßm(Ai+i — Ai) , ai/2 = Û'm+1/2 = 0 . 

Wm 
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