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ABSTRACT 

The general qualitative behavior of linear, first-order density perturbations in a Friedmann-Lemaître 
cosmological model with radiation and matter has been known for some time in the various limiting 
situations. An exact quantitative calculation which traces the entire history of the density fluctuations is 
lacking because the usual approximations of a very short photon mean free path before plasma re- 
combination, and a very long mean free path after, are inadequate. We present here results of the direct 
integration of the collision equation of the photon distribution function, which enable us to treat in detail 
the complicated regime of plasma recombination. Starting from an assumed initial power spectrum well 
before recombination, we obtain a final spectrum of density perturbations after recombination. The 
calculations are carried out for several general-relativity models and one scalar-tensor model. One can 
identify two characteristic masses in the final power spectrum: one is the mass within the Hubble radius 
ct at recombination, and the other results from the linear dissipation of the perturbations prior to re- 
combination. Conceivably the first of these numbers is associated with the great rich clusters of galaxies, 
the second with the large galaxies. We compute also the expected residual irregularity in the radiation 
from the primeval fireball. If we assume that (1) the rich clusters formed from an initially adiabatic 
perturbation and (2) the fireball radiation has not been seriously perturbed after the epoch of recombina- 
tion of the primeval plasma, then with an angular resolution of 1 minute of arc the rms fluctuation in 
antenna temperature should be at least bT/T = 0.00015. 

I. INTRODUCTION 

a) Purpose 

The possible discovery of radiation from the primeval fireball opens a promising lead 
toward a theory of the origin of galaxies. This primeval radiation would serve, first, to 
fix an epoch at which nonrelativistic bound systems like galaxies can start to develop 
(Peebles 1965a), and second, to impress on the power spectrum of initial density fluctua- 
tions characteristic lengths and masses (Gamow 1948; Peebles 1965a, 1967a; Michie 
1967; Silk 1968). These characteristic features in the power spectrum hopefully result 
from all the complicated details of the evolution of the Universe after the initial power 
spectrum is arbitrarily set at some very early epoch. If one can make a reasonable argu- 
ment for a coincidence of these features with observed phenomena, it will provide an 
important encouragement and guide to the further development of the theory. A more 
direct observational test of these processes might be provided by the residual small-scale 
fluctuations in the microwave background (Peebles 1965&; Sachs and Wolfe 1967 ; Silk 
1968; Wolfe 1969; Longair and Sunyaev 1969), if we assume that this radiation has not 
been further scattered (Dautcourt 1969). 
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According to ZePdovich (1967) there are two kinds of perturbations that are of inter- 
est: initial isothermal perturbations and initially adiabatic perturbations. It has been 
suggested that the globular clusters are the remnants of an isothermal perturbation in 
the early Universe (Peebles and Dicke 1968; Peebles 1969). Our purpose here is to discuss 
in some detail the evolution of adiabatic density fluctuations in the primeval-fireball 
picture. 

An initially adiabatic perturbation evolves through four regimes : {a) When the age t 
of the Universe is much less than X/c, where X is the characteristic scale of the perturba- 
tion, a fractional perturbation bp/p to the total mass density grows with time, but the 
entropy per nucleon is conserved (hence adiabatic), {b) When X<3C ct, the perturbation 
oscillates like an acoustic wave, (c) As the Universe expands through the recombination 
phase, the photon mean free path becomes comparable to X, and the oscillating wave is 
attenuated, leaving some residual perturbation in the matter distribution, (d) When 
T < 2500° K, recombination is sufficiently complete that radiation drag on the matter 
may be neglected, and the residual perturbation may start to grow into bound systems 
like protogalaxies. 

The above general scheme for initially adiabatic perturbations was already given by 
Lifshitz (1946). The very complicated regime (c) has been considered by a number of 
people in a variety of approximations, with the general conclusion that initially adiabatic 
perturbations on a characteristic mass scale <10n-1013 95?0 

are strongly attenuated. 
This problem was first considered in approximations to first order in the photon mean 
free time tc independently by Michie (1967), Peebles (1967a), and Silk (1968). It has 
since been considered by Bardeen (1968) in the first twenty moments of the radiation 
distribution function, and by Field (1970a), who solves the problem to all orders in tc 

when the expansion of the Universe may be neglected. However, these approximation 
schemes run afoul of the enormous variation and rate of variation of the photon mean 
free path through the epoch of recombination. As a result, previous workers on this 
subject (Peebles 1967a; Michie 1967; Silk 1968; Field and Shepley 1968) could give only 
qualitative estimates of the different characteristic masses involved here. To obtain a 
more accurate description of the evolution through this complicated phase of recombina- 
tion, we have resorted to direct numerical integration of the collision equation for the 
photon distribution function. 

The more quantitative results of the present calculation are compared with the earlier 
estimates in § VII. We also discuss there the possible significance of these results. In 
§ II we derive the differential equations to be integrated. It is impractical to integrate 
the collision equation numerically in the very early Universe because the photon mean 
free path tc is so short, but here it becomes a good approximation to describe the radia- 
tion as a fluid with viscosity. This description of the radiation was used in all the previous 
work (Lifshitz 1946; Michie 1967; Silk 1968; Field and Shepley 1968), and is indeed a 
good approximation in this early epoch. The fluid description of radiation is equivalent 
to an expansion and integration of our collision equation to first order in tc. In § III we 
give the resulting equations valid to first order in tc, and we present solutions to these 
approximate equations under various limiting conditions. These results are used to start 
the numerical integration and to check numerical accuracy. In § IV we consider the 
residual perturbation to the microwave background. The numerical integrations are 
described in §§ V and VI. 

b) Assumptions and Approximations 

In the following calculations we use either conventional general-relativity theory, 
with cosmological constant A equal to zero, or the scalar-tensor theory (Brans and Dicke 
1961). We start from a homogeneous, isotropic cosmological model, in which the present 
parameters are 

tf(f1 = 1 X 1010 years , To = 2.7° K . (1) 
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We consider four cosmological models: (a) an open general-relativity model with present 
mass density po = 0.03pc, where pc is the present density in the cosmologically flat gen- 
eral-relativity model; (b) the cosmologically flat general-relativity model; (c) a closed 
general-relativity model, po = 5pê; and (d) a cosmologically flat scalar-tensor model 
with coupling constant co = 5. 

As pointed out by Sachs and Wolfe (1967), it is very convenient to assume that the 
metric for the unperturbed cosmological model satisfies the approximate formula 

ds* = df - a{ty[(d%iy + (dx*y + (dx*y]. (2) 

To justify this approximation we note that the present cosmological parameters satisfy 

Hf - ± ¿5 . (3) 

In the models we consider po > 0.03pc, so by equation (3) 

|irGpo > 
0.03c2 

RW ' 
(4) 

Therefore, at the epoch of recombination (redshift Z 

30c2 

1000) we have 

iirGpr > 
R2a, 

(5) 

We are interested in perturbations with characteristic length l = arr less than or com- 
parable to the Hubble length at recombination, 

arr < 
(87rGV3)1/2 < arR/ (30)1/2, (6) 

where the second inequality follows from equation (5). Equation (6) shows that in 
cosmological models of interest it is a reasonable approximation to neglect {r/R)2 com- 
pared with unity, as we have done in the line element (2). A similar argument applies 
to the closed model. 

In the general-relativity cosmologies we use the connection between time and density 
given by Peebles (1968). For the scalar-tensor cosmology we express the scalar field 
<£o(¿) for the unperturbed model as 

^   4 -f- 2co \{t) 
00 ~ 3 + 2<o"Gr’ 

(7) 

where Gq is Newton’s constant, and \{t) has a present value of unity. The equations 
governing the rate of expansion of the model are 

/1 da _1_ dXV 
\a dt 2X dtj 

87rGo(3 “F 2co) 
3X(4 + 2co) 

(S + p)+i(l+y)^(f) , (8a) 

d\ __ SirGopt 
dt 4 + 2o) ’ 

(8b) 

where p and 8 are the mass densities of matter and radiation. Equation (8b) is the result 
of a first integration of the field equation for <£, and we have set the constant of integra- 
tion equal to zero. This corresponds to Dicke’s solution of type 1 (Dicke 1968, Fig. 4). 
Equations (8) are integrated numerically to fit the boundary values X = 1 and (da/dt)/a 
= Ho now. 
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For simplicity we assume that the matter is pure hydrogen. We describe the matter 
as an ideal fluid with zero pressure and zero heat capacity. The heat capacity of the 
radiation is in fact some eight orders of magnitude larger than that of matter. The 
matter pressure defines a characteristic Jeans mass SDî ^ 105 9K0* In the present paper 
we consider dimensions much larger than this, so the matter pressure is negligible. A 
measure of the relative importance of the off-diagonal terms in the stress tensors for the 
matter and radiation is given by the ratio of shear viscosities of matter and radiation, 

>?,/% ~ (lp/ly)(Pp/Py)Vp/C ~ 10-'*(T/Toyi* . (9) 

Here the subscript p refers to the protons, the mean free path ly for the radiation is fixed 
by Thomson scattering by the free electrons, and the mean free path lp for the protons is 
fixed by Coulomb scattering in the plasma. We conclude from equation (9) that the 
momentum transfer by the matter is negligible at all epochs of interest (T < 1010°K). 
It might be mentioned finally that for the irrotational perturbations considered here the 
polarization field keeps the electrons and protons moving together to high accuracy. 

Fig. 1.—Mean free paths for Thomson scattering and Rayleigh scattering in the flat general-rela- 
tivity model. 

The radiation will be described by a distribution function/. In the numerical computa- 
tion of / an important parameter is the mean free path for scattering the radiation. The 
most important process here is Thomson scattering by the free electrons; the next most 
important, Rayleigh scattering by atomic hydrogen. In Figure 1 we plot the mean free 
paths for these two processes. For Thomson scattering 

It = ((Me)*1 , (10) 

where ne is the electron density. We obtain an average cross-section for Rayleigh scatter- 
ing by integrating over the blackbody distribution, 

(ítr) = J'<rn(v)ivdv/ fivdv , 
and we set 

Zr = (wh^r))-1 , (11) 

where wh is the number density of hydrogen atoms. In the computation of the mean free 
path we use the approximate theory of plasma recombination in the primeval fireball as 
given by Peebles (1968), assuming zero primeval helium. 
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As shown in the figure, the ratio of mean free paths for Rayleigh and Thomson scat- 
tering reaches a minimum value of ^5 near the end of the epoch of recombination, when 
the mean free path for Thomson scattering is a factor of 10 larger than the Hubble radius. 
These results are based on the cosmologically flat model. If po were smaller, the ratio of 
Rayleigh to Thomson mean free paths would be increased (because the residual ioniza- 
tion would be higher). 

The next important process is free-free bremsstrahlung emission from the plasma. A 
direct calculation, using Kramers’ approximate formula, gives the ratio of mean free 
path to Hubble radius just prior to recombination as 

hi 
ct 

r>u 105. 

The production of molecular hydrogen is found to be less than about one part in 105, and 
these molecules have negligible effect on the radiation. 

We conclude that it is a reasonable approximation to take account of Thomson scat- 
tering only. The error in neglecting Rayleigh scattering only becomes appreciable (^20 
percent of Thomson) once the Universe is already transparent. 

To simplify the computation further, we introduce the additional approximation that 
Thomson scattering is isotropic (instead of varying as cos2 6) in the matter rest frame. 

A basic assumption in all this discussion is that the very early Universe is only slightly 
perturbed away from the thermodynamic-equilibrium, homogeneous, and isotropic state. 
This means in particular that there is not supposed to be a primeval magnetic field. The 
picture breaks down once the earliest bound systems form. If this happens after the 
initial decoupling of matter and radiation is complete, it will not affect the computation 
of the density-perturbation transfer function. It is a separate and quite uncertain prob- 
lem whether subsequent processes could scatter and smooth out the fireball radiation. 

For initial values, it seems reasonable to assume that the perturbation is confined 
almost entirely to the most rapidly growing mode (Peebles 19676). This is because it 
would be surprising to find at any epoch that the amplitude of the most rapidly growing 
mode was very much smaller than any of the others, for this would require a highly 
special perturbing influence. If we rule out this possibility at some very early epoch, it 
follows that at later epochs the most rapidly growing mode ought to be the dominant 
one. With this assumption the phase of the acoustic wave in the regime (6) mentioned 
above is fixed. 

We consider separately two cases, (1) perturbation wavelength comparable to ct at 
recombination, and (2) wavelength much less than this characteristic value. In the first 
case, the transition between the regimes {a) and (6) mentioned above is of interest be- 
cause it happens close to the recombination regime (c). In the second case, the transition 
from {a) to (6) has no interesting effect. Also, the perturbation here suffers a large num- 
ber of oscillations prior to recombination, which makes it difficult to integrate the equa- 
tions numerically and may make it unlikely that the phase predicted in the simple 
linear theory is preserved. Therefore in case (2) we simply start the integration in the 
regime (6), and we suppose here that the phase of each mode is chosen at random. 

It might be argued on general grounds that our approach to the second case is the 
most reasonable one. As we attempt to trace the history of the Universe ever further 
back in time, our extrapolation surely is becoming more and more uncertain. Here we 
abandon all attempts to trace the expansion back earlier than T ~ 10000° K, say, and 
we assume that at that epoch the adiabatic perturbation looks more or less like white 
noise. 

The primeval neutrino density perturbation follows the matter and radiation through 
regime (a), and at the end of this regime the neutrino perturbation disperses because the 
mean free path is so long. As best we can see, this extra complication has no significant 
effect, so in our case (1) we ignore neutrinos altogether. In our case (2) the neutrinos 
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simply increase slightly the rate of expansion of the unperturbed cosmological model, and 
we have included this effect. 

Throughout this paper Greek indices a, ß,, have a range from 1 to 3, and Latin 
indices from 0 to 3. Units are chosen such that the velocity of light is unity. We choose 
time-orthogonal coordinates so that the components of the metric tensor are 

¿00 = 1 , go. = 0 , gaß = -a(ty[Saß - haß(x, /)] . (12) 

In the scalar-tensor cosmology we write the scalar field as 

<l> = <M0[1 + tix, t)] , (13) 

where 0o is given by equation (7). 

II. THEORY 

a) Description of the Radiation 

Relativistic transport theory has been discussed by a number of authors (e.g., Lind- 
quist 1966). For our purposes the most convenient approach seems to be the following. 
We start with a photon-gas picture, which is the limit as w —» 0 of the motion of a gas 
of particles of mass m. It will be recalled that when w ^ 0 the equations of motion of a 
particle may be derived from the action principle 

hf&dt = 0, £ = m(gi,vV)w, v' = -jj-, (14) 

where dt = dxQ is coordinate time. It follows that the momenta canonically conjugate to 
the coordinates xa are 

= ^ =mu«- (15> 

With these momenta the geodesic equations of motion are 

^ = hik.ipw , V* = pt/p0, (16) 

where v1 is the coordinate velocity. Equations (16) remain well defined ill the limit 
fra —> 0, with 

gijpY = o . (17) 

We use equations (16) and (17) to describe the motion of the radiation. 
The radiation distribution function is defined to be the number of photons per unit 

volume in configuration and momentum space, 

dN = f{x, p)dx1dx2dx?dpidp2dpz. (18) 

Since xa and pa are canonical coordinates, we know from Liouville’s theorem that / is 
constant along the path of a particle. Since this is true whatever the choice of coordinates, 
/ must be invariant against coordinate transformations. 

b) Stress-Energy Tensor for the Radiation 

For an observer at rest in our chosen time-orthogonal coordinate system, the photon 
energy is just pQ, and the observed bolometric radiation brightness per steradian is 

J'fpozdpo = 8(¿)[1 + à{6, 0)]/47T . (19) 

Here S(¿) is the radiation density in the unperturbed cosmological model, and 8 is the 
fractional perturbation to the brightness. We represent the spatial components of the 
photon four-momentum in our coordinate frame in terms of the usual direction cosines 
ya 

pa = —poa(t)eya , ' (20) 
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where e is chosen to satisfy equation (17). In terms of these variables the components of 
the energy-momentum tensor are, to first order, 

(rr)0o = 8(1 + hr) , hr = fh<m/±ir , (21a) 

(rr)oa = — a8/a, /a = f byad£l/4ctt , (21b) 

{Tr)aß = a2&(Öaß/3 — haß/3 + rjaß) , rjaß = föyayßdü/^T . (21c) 

One can obtain these expressions by direct computation from the covariant expression 
for the energy-momentum tensor, or one can simply recognize that equations (21) follow 
by coordinate transformation from the usual special-relativistic expressions in locally 
Minkowski coordinates. 

c) Collision Equation for the Radiation 

We describe the radiation by the coordinate position and time (x®, /)> the direction 
cosines 7a, and the photon energy (all in the time-orthogonal coordinate system). 
Then the collision equation for the distribution function becomes 

dt dxa dt 
df dyg 

dya dt 
i y ¿Po 

dpo dt 
an* 

Po 
(U-f)- (22) 

Here n€ is the number density of free electrons observed in the matter rest frame, /+ is 
the distribution function for the scattered radiation, and p'o/po is the correction for 
coordinate time from proper time in the matter rest frame. To first order, 

p'o/po = 1 — vaya, (23) 

where va is the proper matter velocity relative to our coordinate frame. 
Because/ and/+ differ by terms of first order in the perturbation, we can set p'o/po = 1 

in the right-hand side of equation (22). In the third term on the left side of equation (22) 
df/dya and dya/dt both are of first order in the perturbation, so the terms may be 
dropped. In the fourth term we have from equation (12) and the equations of motion (16) 

1 dpo 1 da J j dhgß 
JoW = ~ adï + > ~W y'yß (24) 

On multiplying equation (22) by po*y integrating over p0j and using equations (16), (19), 
(20), (24), and the equation 

d£> _ 48 da 
dt a dt ’ 

(25) 

we obtain the first-order equation 

2y‘yß = ^ (f f 5 - 0 • (26) 

We assume that the scattered radiation is isotropic in the matter rest frame. Since the 
distribution function is an invariant, 

/+(A), y) = /+[ÿ/o(ÿo, 7)] = ffip'o, y')diï'/Air , (27) 

where the primes refer to the locally Minkowski matter rest frame. With equations (23) 
and (27), the first term in the parentheses on the right-hand side of equation (26) be- 
comes 

ff'dti'pozdpo/& = (1 + Ayav*)ffp'od*p'/& . (28) 
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The integral on the right side of this equation is the radiation-energy density, and this is 
given by equation (21a) to terms of first order. With this result equation (26) finally 
becomes 

dô ya dô dha0 t a a 

Tt+~adxi~ 2y‘y$ ~df = ^ + ^ «) (29) 

d) Description of the Matter 

The matter is supposed to be an ideal fluid, with mass density 

pm{Xj t) ^ p(í)W "f“ ^m(*> /)] , 

where p{t) is the unperturbed value. The stress-energy tensor is 

(Tin) ij ^ PmMmiM'mj • 

The motion of the matter is determined by the equations 

(Tfn) ij = g% , 

where in the locally Minkowski matter rest frame 

g° = 0 , ga = <rne(Tr)0a . 

(30) 

(31) 

(32) 

(33) 

Here (Tr)
0a is the radiation-energy flux in this coordinate system. The covariant gen- 

eralization of equations (33) is 

gi = aneKTrY^Umj - uJiT^UmjUmk] (34) 

Letting va = avm
a be the proper matter velocity measured by an observer at rest in the 

time-orthogonal coordinate system, and using equations (21), (32), and (34), we obtain, 
to first order, 

= <35a) 

dôm 
dt 

= i 2 
Sh 
St 

Va,a 
a 

h *= SL (35b) 

e) Plane-Wave Decomposition 

Since the spatial coordinates xa do not appear in the coefficients of the linear perturba- 
tion equations (29) and (35), we can decompose the perturbation into complex plane 
waves, for example, 

bm =* Sô(w; k) exp (ik*x) . (36) 

In writing the differential equations for a single plane-wave component we generally 
omit the index k, and we choose the coordinates such that the xz axis is along k. Then 
by symmetry hn — ¿22, and L2 = ^23 ^ hn = 0. (We ignore gravitational radiation.) 
For a single plane-wave component, equation (29) is 

^ + $ = ane(br + — b) 
at a 

* = (1 - 3m2) ^ - (1 - M2) 
dh 
dt 

Equations (21b) and (35) are 

dv v da _ <rnj& , * 
^adt~ p U dt 

M = 73 = cos Ö , 

h = 2h\i + hzz. 

[»), 

(37) 

(38a) 
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and 

dBm 
dt 

1dh ^ ikv 
dt a 

+i 
f = h S áfid/x 

(38b) 

(38c) 
-1 

In these equations we have dropped the index a = 3. 
In vector k in equation (36) is expressed in comoving coordinates. In the graphs dis- 

played below the unit of k is chosen such that the comoving wavelength 2ir/k is expressed 
in units of 1025 cm/T at epoch 71 (° K). Associated with I is a characteristic time-inde- 
pendent mass defined to be the mass within a sphere with diameter equal to the wave- 
length, 

cm/z.\ i /27r X 1025 cm Y m{k) = £7rpo  J . (39) 

/) Gravitational Field Equations 

In a plane-wave perturbation there are only two independent components to the per- 
turbed metric. The field equations are obtained by substituting the metric into Einstein’s 
equations or the scalar-tensor field equations, and using the matter and radiation stress- 
energy tensors (eqs. [21], [31]). For the general-relativity cosmologies we use the two 
field equations 

H TT "TT — &TrG(pÔm + 28>ôr) , (40a) dt2 a dt dt 

dh 
dt - f =-Í^G(8/+p,) 

(40b) 

Equation (40a) is the 0-0 component of the field equations, and equation (40b) is the 
0-3 component. The left-hand sides of these equations were first derived by Lifshitz 
(1946). 

For the scalar-tensor cosmology equations (40) are generalized to 

d2h , 2 da dh SttGo f3 + 2co , f n1 
+ï * * ■—Lt+v6(í- “ ^ +p(s- ~ dt2 

+ 

+ 

4(1 -{- w) dÿ d\ 
(41a) 

dt dt +2 dP ’ 

dh- 
dt 

dh 
dt 

ia 16wG0 (3 + 2o)) 
k 

— 2(1 + co) 

X (4 -f- 2ü>) 

x// d\ 

(8/ + pv) 

X dt 

2d\h 2^ da 
dt a Ht 

(41b) 

and the equation for the perturbation to the scalar field is 

dP dt \X dt a dt) ^ \X dt2 \a dt dt a2) 2X 

SttGo 

1 dh d\ 
dt dt 

(41c) 

(4 -f- 2co)X 
pd, 

The only difference between the general-relativity and scalar-tensor models is the 
gravitational field equations. Because we use the original Brans-Dicke (1961) formula- 
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tion, the description of matter and radiation (eqs. ([37] and [38]) is the same in the two 
theories. 

III. APPROXIMATE SOLUTIONS 

a) Solution to First Order in tc 

Equations (37), (38), and (40) or (41) determine the time variation of linear perturba- 
tions within the framework of our general assumptions. In principle, these equations can 
be integrated numerically from a given initial time, but this becomes impractical at very 
early epochs, when the mean free time tc = (on^1 is very short. We employ instead the 
standard iterative approximation to the collision equation in powers of to obtain, in 
the limit of small tc, approximate equations which are used at the start of the integration. 

To zeroth order in tc equation (37) says 

Ô = ôr + fyv. (42) 

On substituting this equation into the left side of equation (37) we obtain the first-order 
equation for ô which, when substituted back into the left-hand side of equation (37), 
yields the second-order equation, 

Ô = Ôr + 4:ßV — ,C[C — ^ (Ctc)   4C] , 

^ dôr t A dv t ikfXÔr , Ukph , ^ 
C =  ^ 1 ^ r- 4>. ett ett ct a 

(43) 

When this equation is integrated over /¿, the left-hand side yields br (eq. [21a]), so the 
quantity in brackets, integrated over /q has to vanish. This result with equation (38b) 
yields the first of the desired equations, 

dbr   4 dbm   4.   k^br   ik dv 
~dt~z~dr-* c’ 4Ö2 

(44) 

Next we obtain an expression for / (eq. [21b]) by multiplying equation (43) by n and 
integrating the result over ¡jl. On using this expression in equation (38a), we find the 
equation of motion for the fluid, 

_i_ 4p\ dv pv da _ t (p + öß) ~u ' ~ 3 dt a dt 
! ikbr& 
3 ~ -4s“- 

+ 
iktcZ 

a [i 
+ - (H 

a + dt{30’ TS^ -Ä*)] 

(45) 

Next we use equation (38b) to eliminate the velocity from this equation and obtain the 
second of the desired equations, 

where 

fi i Pt ^ tí i/A I ^ ^ (a i/rt 
(Í+R)df {Sm ~ *h) + "a dtJt^ ~ lh) 

Wôr Id/, k% d, , 
= ~ 4^ + adt(atcK) ~ Mdi(Sr + h3 ~ h) ’ 

R = 3p/4S . 

(46) 

(47) 

Finally, with equations (38b) and (45) we can reduce the second of equations (44) to 
the expression (valid to zeroth order in /,-) 

R f k25r 1 da /1 dh dimNl 

íTR lïà? ^adiVTt~ ~dt)\ ' 
(48) 
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b) Limiting Solutions 

We present solutions to equations (44), (46), and (40) or (41) in two limiting cases of 
interest. 

i) R — 0, tc = 0, and a/k > t 

This limit applies to the very early Universe. The solutions are 

ôm = îôroctn, n= -1, h 1 - (49) 

Different parts of these solutions have been previously obtained by Lifshitz (1946) and 
Hawking (1966). We use for initial values the most rapidly growing mode. For this 
mode, we have 

dbm 8m 5 dh ^ dbm (cc\\ _ = 5r = ^m, ¿¿=2 — . (50) 

Because in this solution the wavelength is greater than the horizon /, the reality of 
this density perturbation might be questioned. The point is that different parts of the 
Universe are evolving like independent Friedmann models, and different observers 
would find truly different variations of density with proper time. Equation (49) gives the 
fractional difference between the density histories seen by two observers separated by a 
distance greater than /. 

In the scalar-tensor cosmology we have chosen initial values such that equation (8b) 
applies, which means that in the early radiation-dominated Universe X approaches a 
constant. Also, in equation (41c) the source term for xp is negligible in this limiting case, 
so we can choose the initial values 

xp = dxp/dt — 0 , (51) 

and equations (49) and (50) still apply. 

ii) R < 1, a/k t 

This limit applies to the regime (b) mentioned in § 1. Since the perturbation wave- 
length is much less than ct, the gravitational fields in equation (46) may be neglected. 
Then the adiabatic approximation to equations (44) and (46) is 

ôm ^ [exp J'iioo — y)dt]/(1 + R)ll4t, 

7 = 
k2c2L 

6a2 (1 + R)2 [R2 + 0.8(R + 1)] , a, = ^[3(1 + R)]-«2, 
Q/ 

(52) 

where we have assumed that the damping rate 7 is much less than the frequency co of 
the wave. The damping rate has been derived by Peebles (1967^) (in a circulated pre- 
print, the value of 7 is wrong because the viscosity of the radiation fluid was neglected) 
and by Field (1970a). 

c) Joining Conditions 

In the transition from numerical integration of the first-order equations (44) and (46) 
to the numerical integration of the collision equation we need starting values for the 
velocity and the radiation distribution function. These are fixed in terms of the variables 
in the first-order integration by equations (38b) and (43). In the second of these equa- 
tions we use equation (45) to eliminate the rate of change of velocity. The resulting 
initial values are 

ta d / f, 1 ? \ 
v ^ T It ^ ~ ^ ’ 

d(ß) = 5r + 4rßv — ¿c[(l — 3m2) -jj C§5m + Â33 — h) -\—• 

(53) 
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IV. RESIDUAL PERTURBATION TO THE MICROWAVE BACKGROUND 

Following recombination of the primeval plasma, the initially adiabatic perturbation 
leaves a residual irregularity in the radiation field. This irregularity persists if the radia- 
tion is not subsequently scattered by intergalactic matter or by the matter in young 
galaxies, and it is our purpose here to give an expression for the expected effect in terms 
of observations of the microwave background. We consider here fluctuations on a small 
angular scale, of the order of Io or less. 

a) Time Dependence of the Radiation Perturbation 

At some time tf well after the period of recombination, we can assume that 

X/ = liraf/k « tf « tc(tf) , p » S . 

In this limit the gravitational field equations (40b) or (41b, c) reduce to 

dhzz __ dh 
dt dt ’ 

and equation (37) becomes 
dô , ik/ÀÔ % dh 
Tt^~cT - t* Tr 

To solve this equation we introduce the substitution 

  - 2iap dh .2a d f dh\ 
k dt ¥ dt \ dt) ’ 

(54) 

(55) 

(56) 

(57) 

With this change of functions equation (56) becomes 

dl . ikfl r 
ii + ^rs = 0’ 

(58) 

where we have dropped terms of order (Kf/tf)3- We have kept the equation valid to this 
order because the residual perturbation to 5m and tdh/dt is much larger than the residual 
perturbation to 5. 

By equations (57) and (58) the fractional perturbation to the radiation brightness at 
time ¿i is _ 

5(/i) = 6/ exp (—ikur) , 

- 2ia/ii dhf 2af d / dh\ U dt (59) 
bf = 8/ + nriü--w7t\awí’ 

T = t/^)- 

In principle we should correct ô(/i) for the peculiar motion of our chosen time-orthogonal 
coordinate system. However, this generates only a slowly varying term (proportional 
to /z) in the brightness, so we ignore it. 

b) Observed Temperature Fluctuation 

Equation (59) is based on the assumption that curvature may be neglected. In the 
late stages of expansion, at time t > h, spatial curvature becomes important. To obtain 
the fractional perturbation to the radiation brightness at the present time we trace 
back along the path of a light ray to the epoch h. At this epoch we set up a Cartesian 
coordinate system with (#, y)-axes perpendicular to the light ray. If we observe along a 
direction fixed by the two orthogonal angles (^i, ^2) relative to the chosen light ray, the 
observed brightness is 

à(to, ti, fa) = 2S(Ä; ¿i) exp (ik'x) , (60) 
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where we are now summing over Fourier components (eq. [36]), k, and we have dis- 
tinguished the individual amplitudes by k. We imagine that the observation scans only 
a small part of the sky, so that \[/i, ^2 are small angles, and x has Cartesian components 
(r^i, r^2, r), where r is the coordinate distance given by 

V ■ 1 r dt 
r = it sin — J -j-r 

R Z a(t) 

h 
r= f 

dt 
a(t) 

(closed) , 

(flat) , (61) 

p • k 1 r dt 
r = R smh =¡ J -j-r 

R X a{t) 
(open) , 

for the different cosmological models (Landau and Lifshitz 1962). R is the coordinate 
radius of curvature (eq. [3]). 

The brightness pattern (60) should be folded against the gain of the antenna. We 
assume that the gain is a Gaussian with resolving power independent of wavelength, 
so that the observed brightness is 

Wl, ^'2) = — ^'l, $2 — ^'2)#l#2 , 

(62) 
F(h, 'Pi) = 

1 
exp [-{W + W)/UV] ■ 

2t(A'P)2 

Now we use equation (60) for S in equation (62), and we find 

S'0(^1, \pi) = 25(ft) exp [—ir(kxii + ky\pi — kz) — i(kx
2 + ky2)r2A\p2} . (63) 

If the individual Fourier components are assumed to have randomly chosen phases, the 
observed mean square fractional deviation of the brightness from the mean is 

( IÄ'o 12) = 215*/12 exp [- (kx
2 + ¿„VA*2 • (64) 

As usual, we replace the sum by an integral, 

<|«,o|2) = fG{k,Ai)dk, 

(65) 

G(k, A\p) = jz-tï f dnV\lkf\* exp [-¿2(1 - mVA*2] , 
{¿TT) _i 

where the Fourier wave is fixed to be periodic in the large volume V. The normalization 
of equation (65) is fixed by the assumed amplitude of the residual perturbation to the 
matter distribution (§ VI). 

In all this computation we have been able to concentrate on the radiation brightness 
integrated over frequency. This reduction of variables makes the numerical integration 
feasible, but it means that we lose detailed information of the spectrum of the residual 
irregularities in the background radiation. We can note, however, that as we follow the 
path of a photon back in time we end up at a spot in the primeval plasma near local 
thermal equilibrium. Because the photon mean free path is approximately independent 
of wavelength, the background looks like a mixture of blackbody spectra with weight 
independent of wavelength. Thus the rms fluctuation in antenna temperature is related 
to the rms fluctuation in brightness by the equation 

f «KI«'o|V2. (66) 
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V. RESULTS OF THE INTEGRATION: SHORT-WAVELENGTH LIMIT 

In this section we consider that part of the perturbation with wavelength at recom- 
bination In this limit the perturbation to the gravitational field is unimportant, so 
we can drop h and h^z from the collision equation (37). 

In accordance with the philosophy expressed in § la, we start the integration in the 
regime (¿0, where the perturbation acts like an acoustic wave, and we assume that the 
phase of each acoustic mode is chosen at random. Then for each mode the quantity of 
interest is the amplitude 

b8 = [Ôm(iy + 5w(2)2]1/2 (67) 

where ôw(l) and ôm(2) differ in phase by 90°. 
In the numerical integration the initial values are fixed by the adiabatic solution (52), 

and the initial amplitude is chosen so that 8S is unity in the very early Universe. Because 

Fig. 2 Fig 3 

Fig. 2.—Time variation of the amplitude 8S (eq. [67]) of the perturbation to the matter density in the 
cosmologically flat general-relativity model. The parameter is the characteristic mass (eq. [39]) in units 
of io“ mQ. 

Fig. 3.—Transfer function for an open general-relativity model po = 0.03pc, the cosmologically flat 
general-relativity model (GR), and the flat scalar-tensor model (ST). The amplitude is normalized to 
unity when T < 106 ° K; the independent variable is the mass (eq. [39]) in units of solar masses. 

this is a linear calculation, one is of course free to adjust the shape of the initial power 
spectrum and to adjust thereby the final result. The first-order equations (44) and (46) 
are integrated ahead in time until it becomes feasible to switch over to the direct integra- 
tion of equations (37) and (38). We find by trial that the results are insensitive to the 
switching time. At recófiibination (T ~ 2500° K) the radiation drag force rather 
abruptly becomes unimportant. Thereafter the perturbation to the mass density varies as 

Ôm = Ata + B/t, (68) 

where a = f in the general-relativity models (Lifshitz 1946), and a = (4 + 2co)/(4 + 
3a>) in the scalar-tensor rfiodel (Nariai 1969). This solution is used to carry the perturba- 
tion to the epoch T = 2000° K. 

For the cosmologically flat general-relativity model the amplitude b8 is plotted as a 
function of time in Figure 2. Each curve belongs to a fixed comoving propagation vector 
k, and the parameter labeling the curves is the characteristic mass defined by equation 
(39). The sharp upturn of the curves at the right-hand side of the figure results from the 
residual matter velocity. 

The amplitude b8 at the final epoch T = 2000° K is shown as a function of mass (eq. 
[39]) in Figure 3 for three cosmological models. These curves may be called the transfer 
functions for initially adiabatic perturbations with randomly distributed phase. The 
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transfer function is larger in the scalar-tensor model because the model expands faster, so 
the decoupling of matter and radiation is more sharp. The transfer function for the open 
model is smaller because near recombination the photon mean free path is longer, so the 
dissipation is greater. 

We discuss the possible significance of these results after we deal with the part of the 
perturbation with longer wavelength. 

VI. RESULTS OF THE INTEGRATION: LONG WAVELENGTH 

The numerical integration starts at the epoch T = 108 ° K, where the Universe is 
radiation dominated, R < 10-3 (eq. [47]). The initial values are fixed to the most rapidly 
growing mode (eqs. [50] and [51]). The first-order equations (44) and (46) are numerically 
integrated to the epoch T = 10000° K, at which point we can, for the long wavelengths 
considered here, switch over to numerical integration of equations (37) and (38) along 
with the gravitational field equations. These equations are integrated to T — 200° K. 

We have several checks on the numerical accuracy of this scheme. The initial time 
variation is checked against the solution (50). When the integration reaches the regime 
(6), we can check against the solution (52). We verify that the equations to first order in 
tc are a good approximation by shifting the transition to integration of the collision 
equation from the epoch 10000° to_7000° K. We verify that, in cases where the curvature 
may be neglected, the quantity |ô*/|2 (eqs. [59] and [65]) reaches a constant value by 
evaluating it at times earlier than 200° K. 

a) Initial Conditions 

Our assumptions fix the perturbation up to an initial amplitude for each wavelength. 
We choose for the initial power spectrum a sort of “cosmological white noise” spectrum 
indicated by the following argument. 

The importance of a density perturbation in the early Universe is measured not only 
by the fractional density contrast hp/p but also by the effect of the density contrast on 
the geometry—for any given bp/p in the most rapidly growing mode one can always 
make the extent of the perturbation so large that it seriously affects the geometry, and 
even closes space back in on itself. A measure of the perturbation to the geometry due to 
a density perturbation with characteristic coordinate size r is the number 

6 = r/Rc, (69) 

where Æc is a coordinate measure of the local radius of curvature of space, and where in 
the radiation-dominated Universe the most rapidly growing mode for a density perturba- 
tion is (Peebles 19675) y v x J bt = bp/p = IP/aitfR? - (70) 

We choose the initial power spectrum of density irregularities such that € is independent 
of the scale of length on which we examine the geometry. That is, we write the variance 
of the density as 

where 
(P(¿) = Vk*\btk\

2/2w* (72) 

is the contribution to the variance per logarithmic increment of the wavenumber k. 
This variance (?(k) generates via equation (70) space curvature to the geometry ob- 
served on the coordinate length scale hr1. Using equations (69) and (70), we write 
the initial power spectrum as 

<S>i(k) = F^|5íh|2/27t2 = ^Uek/aiY . (73) 

Now we choose the shape of the initial power spectrum | |2 such that the characteristic 
number e in equation (73) is independent of k. Also, we will be considering amplitudes 
such that e <<C 1, so that the perturbation to the geometry is in a sense small. 

(b?) = V\btk\* ^ f(9{k)dk/k , (71) 
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This choice of initial power spectrum, |5ífc¿|
2 ex k, has two interesting and perhaps 

attractive features. First, the initial perturbation contains no built-in characteristic 
lengths. The perturbation to the geometry looks the same on each scale of size. This 
would not have been the case if we had started with conventional white noise, | ôtki |2 

constant, because this does violence to the geometry at long wavelengths unless a long- 
wavelength cutoff is introduced. If the power spectrum varied as k2, say, then we would 
have had the same problem at short wavelengths. 

The second feature is that, with the initial value (73) in regime (a), in regime (b) the 
irregularity in the matter distribution is independent of length. To see this, note that 

MASS (Mo) 
I018 |017 4xl016 Zxio16 

Fig. 4.—The residual mass-fluctuation spectrum (Pm(Æ)1/2 (eq. [72]) in the open general-relativity 
model, po == 0.03pc (pc — 1.8 X 10-29 g cm-3). The curve has been normalized to unity at maximum. 

8tk grows in proportion to t until the proper wavelength X(/) = 2ira(t)/k becomes com- 
parable to t. Because a(t) <x /1/2

) we see that 1|2 grows by a total factor oc kr4, which 
cancels the factor k4 in the right-hand side of equation (73), to make (P(&) (eqs. [71] and 
[72]) independent of k. 

The initial condition (73) determines the perturbation up to one normalizing factor 
(e) which is fixed in the manner described below. We emphasize again that our numerical 
integration determines the transfer function in the framework of our assumptions, and 
it is quite a separate consideration that motivates the choice of starting values that seems 
reasonable to us. If different starting values seem more appropriate, they can of course 
be introduced by scaling the graphs presented below. 

b) Mass Density Fluctuation 

In Figures 4-7 we plot the mass-density-fluctuation spectrum well after recombina- 
tion, as given by the function (Pw(&)1/2, where 

(S>m{k) = V¥\8m,k\2/2ir2, (74) 

for the four cases of interest: the open, flat, and closed general-relativity models (cf. 
Figs. 4-7) and the flat scalar-tensor model. This is the contribution to the variance of the 
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mass density per logarithmic increment of In the figures the normalization is arbitrarily 
fixed to peak value unity. 

c) Residual Irregularity in the Microwave Background 

In Figure 8 we plot G(&, A^) (eq. [65]) for the cosmologically fiat general-relativity 
model. The area under the curve for fixed gives the variance of the brightness of the 
observed background when the resolving power is A^. Notice that G(&, A^) is appreciable 
only near the first peak of (9m{k). As A^ decreases, the curve moves to the right because 
one is sensitive to shorter wavelength (larger wavenumber). The shift is not large, how- 
ever, because the residual radiation perturbation at shorter wavelength is so very small. 
We conclude from Figure 8 that the experimental search for small-scale irregularities in 
the microwave background provides a test for the first big peak in Figure 5 (if the radia- 
tion has not suffered further scattering). The same conclusion holds for the other three 
cosmological models. 

k (co-moving) 

Fïô. 5.—Same as Fig. 4 for the cosmologically flat general-relativity model, po = Pc The normalization 
is fixed tô peak value unity. 

In Figure 9 we plot the mean square fluctuation in the total brightness of the micro- 
wave background (eq. [65]; see also Table 1). In these curves the normalization has been 
fixed so that (Pm(&) (Figs. 4-7) reaches the peak value unity at redshift 1 + Zm = 10. 
The time variation of the matter-density power spectrum is computed in the linear ap- 
proximation, and our normalization means that at about redshift Zm matter starts to 
fragment into separate and distinct bound systems with mass comparable to the mass 
function (eq. [39]) evaluated where (9m{k) is approaching unity. The observational limit 
shown on the figure is the upper limit estimated by Conklin and Bracewell after allowing 
for system noise. The results of the computation with this choice of Zm are comparable to 
but smaller than this observational limit. 

The above choice of Zm may be too large. If Zm were moved to a later epoch, it would 
reduce the required initial amplitude of the perturbation, hence reduce the mean square 
variation of the background. In Table 1 we list the factors by which the mean square 
variation of brightness must be multiplied when Zm is reduced to smaller values (more 
recent epochs). 
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Fig. 6.—Same as Fig. 4 for the closed general-relativity model, po = 5pc. 
Fig. 7.—Same as Fig. 4 for the flat scalar-tensor model (po = 1.24pc). 

Fig. 8.—The function G(k, A\p) determining the residual perturbation to the radiation as a function of 
angular resolution A\f/ (eq. [65]). Unit of A\p in the graph is minutes of arc. This curve applies to the 
cosmologically flat general-relativity model. 

Fig. 9.—The mean square fluctuation of the observed bolometric brightness (eq. [65]) in the more dense 
cosmological models. The arrow is upper limit of Conklin and Bracewell (1967). The normalization is 
fixed so that (Pm(k) reaches peak value unity at epoch 1 + Zm = 10. 
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We have shown no values for the expected fluctuations in the background in the open 
general-relativity model for angular resolution Aÿ > 9'. This is because the fluctuations 
are sensitive to very long wavelengths in this case, and our approximation of neglecting 
curvature no longer gives correct results. 

VII. DISCUSSION 

a) Comparison with Previous Results 

It is of interest to compare the results of our numerical integration with the previous 
analytic estimates based on the assumption of a short photon mean free path for photons. 
Michie (1967) found that in a low-density model (p0 = 1 X 10“30 g cm-3), perturbations 
with characteristic mass < 1011 SOÎ© are strongly damped before recombination, while a 
moderate amount of growth is achieved for > 1012 ÜDÎq- Silk (1968) estimated that 
perturbations are damped up to a mass of about 5 X 1011 9Jlö in a low-density model 
(po = 1 X 10~30 g cm-3) and about 7 X 1010 SDÎq in the hat model. We can define a 
characteristic mass for damping at the point where the transfer function falls to one-third 

TABLE 1 

Residual Perturbation 105 X (|ô'o|2)* to the Microwave Background 

Open Flat Closed Flat 
General- General- General- Scalar- 

Relativity Relativity Relativity Tensor 
Model Model Model Model 

0  73.0 9.0 4.40 1.55 
3  16.0 7.8 4.00 1.09 
6  7.4 5.4 3.20 0.44 
9  4.1 3.5 2.45 0.22 

12  2.3 1.80 0.13 
15  1.6 1.30 0.084 

1+Zm=5t  0.61 0.25 0.23 0.20 
1+Zm=2  0.41 0.040 0.026 0.023 

* Equation (65). 
t Angular resolution in minutes of arc if 1+Zm = 10, where the peak value of (Pm atZm is unity. 
X Correction factor to ôo2 when Zm is reduced to the indicated values. 

its maximum value. This characteristic mass is 1014 9JÎ0 h
1 the open model and 1012 9K0 

in the flat model (Fig. 3). Both are significantly larger than the corresponding analytic 
estimates. This is to be expected because the analytic approximation is inadequate at 
recombination. 

Field and Shepley (1968) found that when the characteristic mass of a perturbation is 
greater than 9 X 1Ö15 ÜDÎq in a flat general-relativity model, the amplitude grows con- 
tinuously. This critical mass corresponds approximately to the first peak in Figure 5. 
Our value for the mass at this peak is 9ÏÎ ^ 5 X 1016 $Dí0- These two characteristic 
masses are attributable to the same physical effect—the inability of pressure forces to 
stabilize the perturbation. 

Residual perturbations to the microwave background have been computed by Longair 
and Sunyaev (1969). We find that the largest contribution to the residual perturbation 
comes from the first peak in the transfer function. For a mass ÜDÎ ^ 5 X 1016 9W0 (corre- 
sponding to the first peak in the flat general-relativity model), Longair and Sunyaev find 
angular scale ^20', and fractional perturbation bT/T ^ 2 X 10~3 to the microwave- 
background temperature. Our result (Fig. 9) yields characteristic angular scale (width at 
half-maximum) ^7', and bT/T ^ 1.7 X 10“3 at this angular resolution, in agreement 
with Longair and Sunyaev. 
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b) Possible Significance 

It is well to bear in mind that in this calculation the initial density fluctuations are 
invoked in an ad hoc manner because we do not have a believable theory of how they 
may have originated. Also, it is entirely possible that we have left out some relevant 
force, possibly that provided by a primeval magnetic field. Our calculation thus is at best 
exploratory; but we have remarked that one might consider the results of the exploration 
encouraging if, for example, the characteristic numbers one derives correspond to known 
phenomena. 

In the more dense cosmological models we tentatively identify two characteristic 
masses associated with the evolution of an initially adiabatic perturbation. The larger 
characteristic mass is on the order of the mass within the Hubble radius ct at recombina- 
tion. One can understand this as follows: When the wavelength is very large, pressure 
gradients are negligible and the perturbation grows at a rate independent of wavelength. 
Because we started with an approximation to ordinary white noise (eq. [73]), the density 
variance increases with increasing wavenumber. This is a property of white noise, not of 
the Universe. The function (Pm(&) stops increasing with increasing k when the perturba- 
tion wavelength becomes comparable to ct at recombination because the radiation pres- 
sure can slow or reverse the curve leading to the oscillating behavior shown in 
Figures 4-7. In the open cosmological model (Fig. 4) the first peak is not very prominent, 
and it is hard to see how one could attach any special meaning to it. On the other hand, 
in the more dense models the first peak is a prominent feature. 

The first characteristic feature might be identified with the great rich clusters of 
galaxies. Indeed, in the closed general-relativity model and in the flat scalar-tensor model 
the mass at the peak amounts to ^5 X 1015 SDí©? moderately dose to some estimates of 
the mass of the Coma cluster, X 1015 9K0- Unhappily the mass at the peak and even 
the existence of the peak as a prominent feature depend on the cosmological model. For 
example, in the flat general-relativity model the mass has shifted to ^5 X 1016 ÜDÎ©- 
Thus until the cosmological parameters are better established we can only claim the 
possibility that the theory can produce a prominent feature with mass which can be 
comparable to the mass of a great cluster of galaxies. 

This possible interpretation has some attractive features. The rich clusters may be a 
remarkably uniform class of objects, which may call for a special mode of formation 
(Abell 1962). On the other hand, the mass within the Hubble radius at recombination 
surely is an interesting parameter of the cosmological model, and one would like to hope 
that the value of this number has some special significance for the nature of the Universe. 
The interesting point is that this number may be close to the typical mass of a great 
cluster of galaxies (Alpher, Herman, and Gamow 1967; Field 19706). 

The second characteristic mass comes from the rather sharp onset of linear dissipation 
with decreasing wavelength (again in the more dense models). In the linear approxima- 
tion the power (?m(k) is an oscillating function of k (depending on the number of waves 
up to the epoch of recombination). With the chosen initial values this curve is about 
constant from peak to peak at longer wavelengths (Fig. 5). If nonlinear effects do not 
disturb the phase of the perturbation (Peebles 1970), then each curve in Figure 3 repre- 
sents the envelope of the rapidly oscillating function (Pm(&)1/2 at shorter wavelength. It 
is apparent from Figure 3 that in the more dense models there is a sharp cutoff at large 
wavenumber (short wavelength) associated with linear dissipation. Again, the character- 
istic mass at the cutoff depends on the cosmological model, so again we can only claim 
the possibility of an interesting coincidence of numbers: if the cosmological model is 
sufficiently dense, the characteristic mass defined by linear dissipation agrees with the 
mass of a big galaxy, ^lO11 

In view of the enormous range of known masses of galaxies one might question whether 
it is reasonable to attach a single characteristic mass to the phenomenon. Although one 
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of us (P. J. E. P.) has in the past argued for the negative view, we are indebted to G. Abell 
for bringing the following suggestive point to our attention. In a rich cluster of galaxies 
the integrated galaxy luminosity function shows rather an abrupt change of slope at a 
characteristic absolute magnitude M* (Abell 1962; Rood 1969). This means that the 
differential luminosity function has a local peak or plateau in the neighborhood of If *. 
The brightest cluster member typically is a factor of 10 brighter than M*. There are 
many more galaxies dimmer than M* than there are galaxies brighter than M*, but 
according to AbelPs luminosity function the integrated luminosity of all the galaxies 
brighter than M* is about equal to the total luminosity of all the dimmer members. If 
the mass-to-light ratio is about constant, the same remark applies to the integrated 
mass. The suggestion is then that when one counts on the basis of mass one may find 
that galaxies “typically” are large, with absolute magnitudes comparable to M*. 

The simple linear theory used here is not adequate to describe the fragmentation of 
the material into distinct bound systems. For this reason the mass estimates given here 
are only very rough approximations, and give no account of the expected dispersion of 
masses. Also, we can fix the time of fragmentation only in order of magnitude, as the 
epoch where the density contrast computed in the linear theory becomes comparable to 
unity. 

If Figure 5 were taken literally, we would conclude that at about one single epoch, 
matter fragments into bound systems with masses ranging from ^lO11 SDí© to ^5 X 1016 

$0io- That is, as the larger system starts to form out as a distinct cloud, it is itself frag- 
menting into smaller systems. This is not a capture hypothesis. Rather, it is supposed 
that galaxies and groups and clusters of galaxies form because there are initial irregu- 
larities on these scales. In this theory the order of formation is adjustable. It might be 
that protoclusters form first, and that galaxies fragment out during the initial collapse of 
the protocluster. With small adjustment of the initial power spectrum one can reverse 
this order without affecting the suggested interpretation of the two possibly characteris- 
tic masses. 

For any choice of initial values it would be impossible to make small galaxies by the 
linear evolution of initially adiabatic perturbations (Peebles 1970). This is not neces- 
sarily a problem, however, for it is conceivable that a massive protogalaxy tends to frag- 
ment instead of collapsing to single system. There are also the initially isothermal per- 
turbations. One interesting possibility is that the early Universe contains only adiabatic 
perturbations, but that the initial amplitude is large enough to cause nonlinear motions 
of matter and radiation prior to recombination. The result would be strong attenuation 
via shock waves. This attenuation must serve to smooth the radiation, but it could de- 
posit the matter in an irregular fashion, producing an isothermal perturbation (Peebles 
197°). 

Finally, we discuss the expected irregularity of the microwave background on the 
assumption that this radiation has not been appreciably smoothed or perturbed by events 
after recombination. It will be recalled that this irregularity in the background is associ- 
ated almost entirely with the first peak in the residual irregularity in matter density 
(Figs. 4-7). If this peak were identified with the great clusters of galaxies, we would have 
to fix the redshift at formation as Zm > 1. Then in the flat general-relativity cosmology 
the mean square fluctuation of antenna temperature at the beamwidth used by Conklin 
and Bracewell (1967) could be as small as 0.04 times the Conklin-Bracewell limit (Fig. 9 
and Table 1). In the closed general-relativity model, which gives a somewhat more rea- 
sonable cluster mass, the mean square fluctuation could be 0.02 times this limit. In the 
flat scalar-tensor model the minimum mean square fluctuation would be reduced to 
0.001 times this limit. If the angular resolution could be reduced to 1 minute of arc, the 
expected mean square fluctuation in antenna temperature would be increased by a factor 
of about 3 in the more dense general-relativity models and by a factor of about 10 in the 
scalar-tensor model. 
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If the observational accuracy could be improved by these factors, it would test the 
idea that the great clusters originated as initially adiabatic perturbations, although one 
must always bear in mind that the irregularities in the radiation background may have 
been smoothed or increased by subsequent processes (Dautcourt 1969; Longair and 
Sunyaev 1969). 

In the open model the Conklin-Bracewell limit does seriously restrict the possible 
amplitude of adiabatic perturbations unless the radiation has been subsequently 
smoothed. On the other hand, in the computed spectrum of the density perturbations 
(Fig. 4) the first peak, which produces most of the irregularity, comes at a very large 
mass, ^lO18 9Wo* That is, it is already apparent that in this model our initial-value as- 
sumption (eq. [73]) is inadequate. This spectrum must be modified to reduce the power 
at very long wavelengths, for otherwise we would have produced bound systems on a 
mass scale much too big. If the first few peaks are thus de-emphasized, the residual 
perturbation to the microwave background is accordingly reduced. We conclude that in 
the open model we can find no ready interpretation of the observational limit on the 
irregularity in the microwave background because we cannot attach a possible observa- 
tional interpretation to the first peak in the density-fluctuation curve (Fig. 5). 

We have benefited from discussions with a number of people, including G. O. Abell, 
R. H. Dicke, E. Fackerell, G. B. Field, and K. S. Thorne. This work was done in part 
while one of us (P. J. E. P.) enjoyed the hospitality of W. A. Fowler at the California 
Institute of Technology. We would like to thank the referee for pointing out an error 
with reference to equation (64). 
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