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ABSTRACT 

The application of the method of maximum likelihood (ML) to the determination of the slope of the 
number-flux-density distribution of radio sources is discussed. It is shown that the ML estimate of the 
slope, which uses the maximum available information, may be obtained by a simple calculation from the 
individual flux densities. The efficiency and bias of other methods are compared with the ML method by 
means of numerical calculations on simulated data. 

The error of using integral counts is stressed and an example is given from the literature to demonstrate 
that incorrect conclusions may be drawn through the use of statistically invalid procedures. The need to 
test the adequacy of the power-law model is stressed. 

I. INTRODUCTION 

Radio-source counts have been extensively investigated as a possible tool for cosmo- 
logical investigations. The most important parameter to be determined is the exponent 
of the number-flux-density distribution. Clearly, when one is estimating the exponent 
from experimental data, it is necessary to have an objective estimate of that exponent 
and its standard error so that any comparison with theory will be valid and meaningful. 

There are many methods currently in use for estimating the exponent from radio- 
source counts. It is the maximum-likelihood (ML) method alone, however, that makes 
full use of the data.1 The purpose of the present paper is to examine the application of 
the ML method to radio-source counts, and to compare it with other currently used 
methods. 

II. THE MAXIMUM-LIKELIHOOD METHOD 

We shall assume here that the measurements of flux density are error free—a common, 
though not always justifiable, assumption. The more complex problem of treating data 
which are subject to measurement error will be dealt with in a later paper. 

We shall start with the assumption that the flux-density distribution may be ap- 
proximated by the expression 

N(S) = kS~* (1) 

over a given range of flux densities, So < S < Sm, where N(S) is the number of sources 
with flux density greater than S. Since this assumption is not necessarily justified, we 
shall draw attention in § III to the need for a “goodness of fit,, test to check its validity. 

The likelihood L as a function of a is defined as the probability, given a, of obtain- 
ing the observed set of results. The ML estimate a of a is that value of a for which L is 
a maximum. 

Before deriving the general results for ungrouped data, we will consider first the more 
familiar form for grouped data. Consider a total of M sources in the flux-density in- 

* School of Physics, University of Sydney, Sydney, N.S.W., Australia. 
f Center for Radiophysics and Space Research, Cornell University, Ithaca, New York. 
1 For a full discussion of the properties of the ML method, see, for example, Kendall and Stuart (1961), 

chapters 17 and 18. 

405 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

O
A

pJ
. .

 .
16

2.
 .

4 
O 5

C 

406 D. F. CRAWFORD, D. L. JAUNCEY, AND H. S. MURDOCH Vol. 162 

terval So-Sm, grouped into m ranges of flux density Si-iSi, with i ranging from 1 to m. 
If pi is the probability that any source will occur in the ith interval, then L is given 
by the multinomial distribution 

m m 

, (2) 

where ni is the number of sources in the ith range and 

m 
'Em = M. 
i=\ 

It is usually more convenient to maximize the logarithm of L. Since the factorial term 
is independent of a for a given set of observations, the ML method reduces to maximiz- 
ing the expression 

m 
g = In pi (3) 

Z = 1 

as a function of a. Jauncey (1967) has previously used this method, and it may readily 
be shown that maximizing equation (3) is equivalent to maximizing his expression (6).2 

From equation (1) it follows that 

Pi = (4) 

Although we have defined the integral distribution in equation (1), it is clear from equa- 
tion (4) that the method operates on the differential distribution, i.e., the number ni of 
sources in each range of flux density. The are thus independent. On the other hand, 
the integral counts Ni are not independent, and any estimation method which assumes 
that the Ni are independent is statistically incorrect. 

We now proceed to show that grouping the data is unnecessary. Expressing all flux 
densities relative to So, we write Si for the ratio Si/So and b for its maximum value Sm/So. 
Equation (4) may then be written 

Pi = (5) 

From equation (3) it is clear that it is only those flux-density ranges which actually 
contain sources that contribute to 2. We may, if we wish, reduce the flux-density in- 
tervals to the point where we have M intervals each containing one source, with the 
remaining intervals devoid of sources. In the limit equation (5) becomes 

dpi = 
aSi-^Usi 

i - r* * 
(6) 

If terms independent of a are neglected, equation (3) becomes 

8 = Af In a - aS,- In - ilf In (1 - b~'). (7) 

Equating d%/da to zero to obtain a, we have 

. M v . Afin 6 0 = --Sf
1n,,-F—j- (8) 

2 Due to a typographical error, pointed out by Dr. L. Golden, a factor Mi has been omitted from 
Jauncey’s (1967) paper. His equation (6) should read 

log k'ZiMi + 2,-Afi log [/¿-'ds] . 
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Where no upper limit is set to the flux density (i.e., b infinite), we have the extremely 
simple analytic solution 

--= (9) 
et M 

The inverse of a is simply the mean of the natural logarithms of the normalized flux 
densities. For finite b equation (9) may be used as an initial solution to obtain the solu- 
tion to equation (8) by iteration, For any reasonable range b, this process converges 
rapidly. 

The simple form of equation (9) is not surprising since the substitution In Si = ti con- 
verts the power-law distribution (1) into an exponential distribution exp ( —a¿¿). There 
is thus a close analogy to the statistics of radioactive decay, with 1/a corresponding 
to the mean lifetime r. 

The asymptotic variance of a for large M is given by 

[var(a)] = _Æ\ « _ (lk\ 
\do?/ \ do?/ a=a 

(10) 

For 1, a condition which usually holds, we obtain from equations (8) and (10) a 
good approximation, 

a a2(ln 6)21 1/2 

ba J (ID 

For & = 10 and a = 1.5, the standard deviation is about 30 percent higher than for 
b = », for the same number of sources. 

For ¿ = oo, the exact sampling distribution of a given a for finite M is readily ob- 
tained from that given by Annis, Cheston, and Primakoff (1953) for the corresponding 
exponential distribution, as 

/(a) = m (?) (12) 

This is the well-known gamma distribution which is closely related to the x2 distribu- 
tion. For large M it can be closely approximated by a Gaussian distribution with a 
standard deviation of 

_ Mol a /1o\ 
ffa~ (M - \)(M - 2)112 ~ VM ' U ; 

This is the same approximation to the standard deviation, for large M, as Refsdal’s 
equation (13) (Refsdal 1969). 

An estimate is unbiased if its expectation value is equal to the true value of the 
parameter being estimated. From equations (6) and (9) it follows that, for infinite 
range, the expected value of a“1 is a“1. Although this shows that or1 is an unbiased 
estimate of a-1, a is not an unbiased estimate of a. From the sampling distribution (12) 
it follows that for infinite range, an unbiased estimate of ais (M — l)a/M. 

It follows from the form of equation (7) that a is a sufficient* statistic for a and is, 
therefore, a minimum-variance estimate. This sufficiency implies that a contains all 
the information about the true exponent a that is available from the data. 

in. “goodness of fit” tests 

The ML method outlined above allows full use to be made of the data in obtaining 
an estimate a of the exponent a, given that the distribution is of the form (1). It is, 
however, still necessary to test whether the form of equation (1) is an adequate repre- 
sentation of the data. To do this, some type of “goodness of fit” test must be used. 

3 For a formal definition of sufficiency see, for example, Kendall and Stuart (1961), § 17.31. 
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For grouped data the x2 test has found wide acceptance, but the grouping carries 
with it a loss in efficiency. The result of the test is also dependent on the actual group- 
ing intervals chosen. Other tests exist which can be applied to ungrouped data. These 
tests make use of the fact that any continuous distribution may be transformed into a 
distribution which is uniform over the range (0, 1). For the assumed distribution (1) 
the required transformation is n 1   o.-a 

(U) 

The various tests examine the observed for departure from the expected uniform dis- 
tribution. 

Of the wide variety of possible tests the Smirnov test and the Kolmogorov test have 
achieved wide acceptance (Kendall and Stuart 1961). Both of these tests are easily used 
with digital computers. 

IV. COMPARISON WITH OTHER METHODS 

In order to compare the relative efficiencies of various methods of estimation we have 
used a Monte Carlo technique to produce simulated data from a power-law distribution 
over a given range of flux densities. With M = ISO, b = 1000, and a = 1.800, 400 sets 

TABLE 1 

Method (a) ((a)—a)/(so of (a)) <r ^mlA2 

(1) (2) (3) (4) (5) 

ML.. 
GML 
LS... 
x2- • • 
Mx2- 
LSI.. 
Rx... 
R2... 

1.801 
1.809 
1.810 
1.816 
1.795 
1.817 
1.704 
1.798 

+ 
+ 
+ 

0.1 
1.2 
1.2 

+ 2.2 
- 0.6 
+ 1.8 
-10.5 
- 0.2 

0.142 
0.151 
0.154 
0.149 
0.164 
0.184 
0.183 
0.161 

1.00 
0.88 
0.84 
0.91 
0.75 
0.59 
0.60 
0.77 

of data were produced. Similar calculations were done for a = 1.500 and 2.000 and 
also for various values of b and M, with results essentially the same as for the above. 

For each set of data the slope a was estimated by each of the methods mentioned 
below. Except for ML and R2, each set of ISO simulated sources was divided into ten 
groups with equal expected numbers. The group size was chosen to give a negligible 
probability of obtaining fewer than five sources in any one group. Different forms of 
grouping would produce slightly different results in each case. This is one of the dis- 
advantages of grouping the data. 

The methods used were the following: 
ML.—Ungrouped maximum likelihood in which equation (8) is used. 
GML.—Grouped maximum likelihood in which equations (3) and (5) are used. 
LS.—Least squares, i.e., maximizing — wt)

2. 
X2.—Maximizing 'L^Mpi — ntf/Mph 
Mx2-—Modified chi squared, i.e., maximizing — n^/n^. 
LSI.—^Least-squares regression of the logarithm of the integral numbers versus the 

logarithm of the flux density. 
R1#—RefsdaFs method which uses his equation (11) which incorporates his weights 

based on his equation (12). 
R2.—RefsdaFs method with the same data arranged into three groups with expected 

differential numbers 90, 45, and 15, respectively. This grouping is similar to that used 
by Refsdal in applying his method. 

The results of the simulation are presented in Table 1, in which the method is listed 
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in column (1), and the mean value (a) of the estimate in column (2). Column (3) con- 
tains the difference (a) — a divided by each observed standard deviation of (a). Col- 
umn (4) gives the observed standard deviation a of the estimate about the true value 
a, and column (5) gives the ratio of the ungrouped ML variance to the variance, a2, 
of each method. The ML method in column (2) has been corrected for the known 
(M — 1)/M bias. The observed variance is 0.0201 ± 0.0018 compared with an expected 
value of 0.0216. 

The results given in column (3) give an indication of any possible bias. The only 
clearly significant bias is for RefsdaPs method with ten groups (Ri). When his method 
is used with coarse grouping (R2) as in his paper, there is no significant bias. 

The sufficiency of the ML estimate ensures that it is a minimum-variance estimate 
and hence the most efficient. The variance ratio presented in column (5) is a measure 
of the relative efficiency of the various methods. The loss of efficiency is about 10 percent 
for grouped ML and x2, but is somewhat larger for the other methods. 

When one is fitting to experimental data in grouped form, it is necessary to consider 
the statistical weight of each group. Murdoch (1958) has shown that, in a situation 
somewhat similar to source counts (the fitting of the slope of the density distribution 
of cosmic-ray showers), quite wrong conclusions can be drawn about the form of the 
distribution when an unweighted least-squares fit is carried out. 

Jauncey (1967) has shown that the usual fitting procedures are not valid when ap- 
plied to integral counts because of the lack of independence of the individual data 
points. The error in the exponent deduced from integral fitting will always be too small, 
and any differences in exponent will therefore be overemphasized. To illustrate this we 
have applied the usual formula for the standard deviation of the slope of a straight line 
regression equation for our Monte Carlo results for the LSI method. This yielded an 
average standard deviation of 0.043 compared with the observed value of 0.184. 

A recent example from the literature is the claim, based on integral counts, of a 
significant difference between the slopes for radio sources with high and low brightness 
temperatures (Fomalont 1968). Application of equation (13) shows that his quoted 
standard errors are considerably less than the theoretical minimum value. Furthermore, 
in comparing two experimental distributions, the appropriate method is to compare the 
differential data directly instead of comparing exponents. Grouped data can be arranged 
in a simple 2 X w contingency table and a x2 test applied (Kendall and Stuart § 33.28). 
Applying this test to FomalonUs data leads to a x2 oí 5.4 for five degrees of freedom. 
For identical distributions the probability of getting this value of x2 or greater is 0.37. 
We conclude from this test that Fomalont’s data show no significant difference between 
the high- and low-brightness source distributions. 

It should be pointed out that, while Refsdal’s method operates on integral numbers, 
he has shown that it is not subject to Jauncey’s criticism mentioned above. We find 
that Refsdal’s exact expression (Refsdal 1969, eq. [13]) for the standard deviation is a 
good estimate of the observed standard deviation about the mean. For Ri the observed 
standard deviation (taken about a mean of 1.704) is 0.156 compared with the theoreti- 
cal value of 0.152. For R2 the observed standard deviation is 0.161 compared with the 
theoretical value of 0.155. 

V. CONCLUSIONS 

We can say the following in favor of maximum-likelihood estimation of the slope from 
the number-flux-density distribution of radio-source counts: 

1. It is the most efficient method. 
2. It is exceedingly simple to apply. 
3. For any reasonable number of sources, the sampling distribution is a good approxi- 

mation to a Gaussian. 
4. An unbiased estimate of the slope may be obtained. 
5. The use of ungrouped data gives a unique answer for a given set of data. 
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It is necessary to test the assumed form of the distribution* Adequate “goodness of 
fit” tests for ungrouped data are available. 
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