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ABSTRACT 

A variational principle for the structure of differentially rotating stars in general relativity is de- 
veloped both as an action principle from which the Einstein equations and the equation of hydrostatic 
equilibrium can be derived and as an energy-extremization principle. We show that the equilibrium con- 
figuration of the star and its gravitational field extremizes the gravitational mass of momentarily sta- 
tionary, axisymmetric configurations which satisfy the initial-value equations of general relativity and in 
which each ring of matter has a fixed number of baryons, a fixed angular momentum, and a fixed entropy 
per baryon. A simple positive-definite expression for the gravitational mass of such a momentarily sta- 
tionary configuration is obtained directly from the initial-value equations. Ways in which the different 
forms of the variational principle can be used in numerical calculations of the structure of rotating stars 
in a general relativity are discussed, as well as some analytic results relating to stability against convec- 
tion. 

I. INTRODUCTION 

The study of rotating stars in general relativity is important for understanding how 
effective supermassive-star models can be as energy sources for QSOs (Fowler 1966; 
Roxburgh 1965) and has more recently received considerable impetus from the identifica- 
tion of pulsars as rotating neutron stars (Gold 1968; Pacini 1968). In both cases the 
general-relativistic corrections may be rather large, so the post-Newtonian approxima- 
tion (Chandrasekhar 1965) does not always give an accurate description of the gravita- 
tional fields and the structure of the star. Although treating the effects of rotation as a 
small perturbation on the structure of a spherical star (Hartle 1967 ; Hartle and Thorne 
1968) is adequate in models of the observed pulsars, it is not likely to be adequate in 
studying the formation of pulsars or the structure of supermassive stars. 

In this paper, the calculation of the structure of a rapidly rotating star in the full 
theory of general relativity is formulated as a variational principle. This formulation 
may be of use in actual numerical calculations, but perhaps more important is the insight 
it gives into the general properties of equilibrium models and into the relationships be- 
tween different models without the labor involved in a detailed calculation. The non- 
linear partial differential equations for a rapidly rotating star in a strong gravitational 
field are difficult to solve numerically, even on a large computer. 

The variational principle is related to two earlier variational principles. Taub (1954) 
shows how to derive the gravitational-field equations and the equations of motion for any 
perfect-fluid configuration from an action principle. On the other hand, Hartle and Sharp 
(1967) construct a variational principle which gives the Einstein equations and the 
equation of hydrostatic equilibrium for a uniformly rotating star. The value of the varia- 
tional integral, which is extremized with the total rest mass (or baryon number) and the 
total angular momentum of the star kept constant, is equal to the total gravitational 
mass when evaluated for the equilibrium configuration. Hartle and Sharp assume that 
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72 JAMES M. BARDEEN Vol. 162 

the pressure and energy density of the perfect fluid are functions of the baryon density 
alone; in other words, that the entropy per baryon is constant throughout the star. 

Our variational principle applies to rotating perfect-fluid stars in which the entropy 
per baryon and the angular velocity vary with position inside the star. Furthermore, it 
is shown to be an energy-extremization principle in a fuller sense than Hartle and Sharp 
prove for their variational principle. What we show is that among all trial configurations 
for the rotating star which are axisymmetric, which are “momentarily stationary” in a 
sense to be defined later, which satisfy the initial-value equations on the momentarily 
stationary spacelike hypersurfáce, and in which each ring of matter has fixed values of 
the baryon number, entropy, and angular momentum, the equilibrium configuration 
extremizes the total gravitational mass. The gravitational mass is determined by the 
asymptotic behavior of the spatial metric components, which are assumed to correspond 
asymptotically to some form of the Schwarzschild metric. The word extremum is, in this 
paper, synonymous with “stationary with respect to small perturbations” and does not 
imply an actual minimum or maximum. 

After introduction of the variables used to describe the gravitational field and the 
structure of the rotating star in § II of this paper, the variational principle is stated as an 
action principle in § III. The Euler-Lagrange equations for the action principle are 
derived in § IV. In § V it is shown that as an action principle our variational principle 
can be considered a special case of Taub’s variational principle, adapted to stationary, 
axisymmetric configurations. 

The physical interpretation of the metric-tensor components is discussed in § VI as 
background for the detailed proof of the energy-extremization properties of our varia- 
tional principle in § VII. A relatively simple integral for the gravitational mass on a 
momentarily stationary hypersurface is obtained directly from the initial-value equa- 
tions in § VIII. The integrand is positive-definite, and its form sheds light on the nature 
of the energy extremization. Finally, applications of the variational principle, primarily 
based on an analytic expression for the difference in energy between neighboring 
equilibrium models, are discussed in § IX. 

The orthonormal tetrad for a “locally nonrotating” observer and the corresponding 
physical Riemann curvature tensor are given in Appendices, as well as additional formu- 
lae used in the main part of the paper. 

Throughout the paper G — c = 1, and the sign conventions follow those in Landau 
and, Lifshitz (1962). A slash denotes covariant differentiation; a comma, ordinary dif- 
ferentiation* Greek indices range from 0 to 3; Latin indices, from 2 to 3. 

For background information on perfect-fluid stars in general relativity, both rotating 
and nonrotating, the reader is referred to reviews by Thorne (1967, 1970). 

II. DESCRIPTION OF THE GRAVITATIONAL FIELD AND MATTER DISTRIBUTION 

The gravitational field generated by an axisymmetric perfect-fluid star in equilibrium 
possesses two Killing vectors = 5oa and = 5ia, such that the time coordinate 
x° = t labels the spacelike hypersurfaces which are invariant under time translations and 
x1 = 0 is the axial-angle coordinate around the axis of symmetry. The metric-tensor 
components can only depend on the two remaining spatial coordinates x2 and xz. Further- 
more, the energy-momentum tensor is invariant under a simultaneous change of sign of 
/ and 0, since each change of sign just reverses the direction of rotation of the star. This 
additional symmetry implies (Carter 1969) that the metric-tensor components #02, goa, 
gi2, and gis are identically zero. 

The line element takes the form 

ds2 = g^dt2 + 2gQidtd<t> + gndcf)2 + gkmdodcdxm . (1) 
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No. 1, 1970 ROTATING STARS IN GENERAL RELATIVITY 73 

This form of the metric is left invariant by transformation of $ and xz among themselves, 
so the three can be expressed in terms of one independent function using these two 
coordinate transformations. However, if the full complement of Einstein equations is to 
be obtained from the variational principle, the coordinate conditions must not be applied 
until after the variation is taken. 

The properties of the matter in its local rest frame are described by the energy density 
(including the rest-mass energy density) €, the pressure p, the baryon density w, the 
temperature T, and the entropy per baryon s. We assume that the composition is the 
same everywhere in the star, but this condition could be relaxed by introducing composi- 
tion variables which would be handled in the same way as the specific entropy s in the 
variational principle. Thorne (1967) discusses the properties of the more general equa- 
tion of state. For our purposes the equation of state is the equation e = e(w, s), from 
which the temperature T is 

r-Kfí). <2) 

and the pressure is 

o) 

using the first law of thermodynamics. 
The four-velocity of a fluid element, Z7a, must be a linear combination of the Killing 

vectors, so I/2 = £73 = 0 identically. The angular velocity fí = dÿ/dt of the fluid element 
measured by a distant observer in an asymptotically flat space-time is 

a = . (4) 

Since the four-velocity is a unit timelike vector, 

tfa*7a=-l, (5) 

the angular velocity ß plus the metric completely specifies C/a. In particular, 

= [-goo - 2ßgoi - ß2gn]”1/2. (6) 

The energy-momentum tensor of a perfect fluid is 

= (c -f" p)UaU^ —j- • (7) 

The angular momentum per baryon, something which is conserved in any axisymmetric, 
but not necessarily stationary, motion as a consequence of Taß/ß = 0 and the equation 
for conservation of baryons (nUa)/a = 0 is 

j = t/i = (goi + Qgn) u° . (8) fl fl 

The location of a particular ring of matter with a particular entropy and angular 
momentum is not known in terms of the coordinates ofi before the variations are carried 
out and the equilibrium configuration found, since it is not convenient to make the æ* 
comoving coordinates when the exterior metric as well as the interior metric is involved. 
The relative positions of different rings in the star are determined by the relative values 
of two Lagrangian coordinates f and rj. Fixing the number of baryons in a ring means 
fixing the number of baryons having Lagrangian coordinate £ in the range d% and rj in 

the range drj. The structure of the star is specified by the two functions £(o^) and 
which determine which ring, if any, is present at a particular ííEulerian,, coordinate 
point Xa5. The entropy per baryon and the angular momentum per baryon of each ring can 
be specified by the functions s(£, v) andy(£, rj), respectively. 
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74 JAMES M. BARDEEN Vol. 162 

III. THE ACTION PRINCIPLE 

In this section the variational principle is formulated as an action principle, without 
trying to relate the value of the action to the total gravitational mass or energy. The 
integral 

h = 21r//[- - 270](-¿>1/2¿*W , (9) 

in which R is the scalar curvature constructed from the metric (1) and is considered a 
functional of the metric-tensor components gaß{%k) specifying the gravitational field and 
the geometry and of the functions %(xk) and 7){xk) specifying the locations of the rings of 
matter. The entropy per baryon is a known function s(£, 97), and the functions N(%, rj) 
andy(£, rj) fixing the number of baryons 

dA = N(i;, rj)d^drj (10) 
and the angular momentum 

dJ = i(£, r))N(l;, rj)d^dr! (11) 

in each ring of the star are known. The baryon density n and the angular velocity Í2 are 
determined for particular functions £, rj, and gaß(%k) by the constraints (10) and (11). 
The number of baryons in the coordinate range dx2dxz is 

iA - , (12) 

and 0 is related toy(£, 17) by equation (8). The Jacobian of the transformation from 
Lagrangian to Eulerian coordinates in equation (12) is required to be nonsingular to 
maintain the relative arrangement of the rings of matter. Then the statement of the ac- 
tion principle is that the functions gaßixP), £(#*), and r)(xk) which “extremize” the func- 
tional Ii (about which /1 is stationary) are the functions which characterize the equilibri- 
um configuration of the rotating star, and vice versa. There is no guarantee that a solu- 
tion exists for a particular choice of the constraints. 

In practice, it is awkward to solve the constraints explicitly for n and Q. The baryon 
density n is involved in equation (8) for £2 in a complicated nonlinear way. Therefore, it 
is useful to introduce an alternative form of the variational principle which replaces the 
explicit constraints by Lagrange multipliers. Since the baryon number and angular 
momentum are specified separately for each ring, there are separate Lagrange multipliers 
for each ring (for each pair of values of £ and 77). The Lagrange multiplier for the baryon 
number is $ = $(£, 17); and the Lagrange multiplier for the angular momentum is 
A = A(£, 77). The new form of the variational principle is that the functional 

h = h - f$dA - fkdJ 

= Ji - rftnU'i-gyiHxHtf (13) 

- 27r/yA(£,77)(€ + p)UiU«{-gyHx2dx* 

is stationary under independent first-order variations in the functions gaßi^), £(^), 
77(&^), w(^), and ^(a;*) if and only if these functions describe an equilibrium configura- 
tion which is a solution to the Einstein equations. 

iv. the euler-lagrange equations 

The proof of the variational principle as an action principle consists in showing that 
the Euler-Lagrange equations obtained by requiring the action to be stationary under 
arbitrary, independent variations of the appropriate functions are the Einstein equations 
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No. 1, 1970 ROTATING STARS IN GENERAL RELATIVITY 75 

and the equations of hydrostatic equilibrium for a rotating perfect-fluid star in general 
relativity. The second of the two equivalent forms of the variational principle stated in 
the last section is easiest to work with. The arbitrary, independent variations of the gaß, 
£, 7], n, and 0 are carried out at constant Eulerian coordinate values æ*. Since the La- 
grange multipliers are constant during the variation for a given ring of matter, their 
values at a particular x* vary if the functions ^(xk) and r}(o^) are varied. 

The variations with respect to ti(xk) and n(xk) are considered first, since these allow 
us to evaluate the Lagrange multipliers $ and A. Note that 

ÔS- = Ut(ur- (i4) 

The variation of /2 with respect to ti(xk) gives 

8h = 2Tff{-(e + p)(U°Y{2UiUo + f0i] - A(e + + gn] 

-$nUi(U°)2}ÔQ(xk)( - g)m dxHx*. 

The variation in 72 is zero for arbitrary 5Q{xk) if and only if 

2(e + pWtUom2 + 2A(€ + p)(UiU0)2 + (« + pKgoi + Hn)(U0Y 

+ $nUi(U°y = 0 . 

(15) 

(16) 

In varying the function n(xk), the independent functions £ and 17, and therefore the 
specific entropy s(£, 77), are kept constant. Equation (3) can then be used to write the 
Euler-Lagrange equation as 

^±1 (U0U° + AU1U0) + ('ÿ') [(f70f70 + AU1U0) + 1] + i>t/° = 0 . (17) 
n \on/8 

Equations (16) and (17) are very similar to equations obtained in the proof of the 
Hartle-Sharp variational principle. The only physically acceptable solution for $ and 
A is 

A = £2 (18) 
and 

$ = . (19) 
n 

The Lagrange multiplier A(£, 77) is the angular velocity of the ring in the equilibrium 
configuration as seen by a distant observer. The quantity (e+ p)/n is the energy re- 
quired to add one baryon to the ring at constant pressure and constant specific entropy, 
evaluated by a local comoving observer. The Lagrange multiplier $>, the “injection 
energy,” is this energy evaluated at infinity, since (Z70)-1 is the ratio of energy at infinity 
to energy in the comoving frame for a freely falling particle with zero angular momentum 
(see Thorne 1967). 

When $ is constant over the star, equation (19) is the integral of the equation of 
hydrostatic equilibrium found by Hartle and Sharp (1967). In our more general case the 
equations of hydrostatic equilibrium are obtained by requiring /2 to be stationary with 
respect to variations in the functions £(#*) and 7¡{xk). The immediate result is 

[( W + Ai/.tf*) (J^ + {UnXP + hUiU' + 1) (f)J I 

+ !|(e + ¿)C^0 + f¡WÍ/0 = 0> 
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76 JAMES M* BARDEEN Vol. 162 

plus a similar equation from the variation with respect to rj. By use of equations (18), (2), 
(4), and (5), these simplify to 

and 

orj orj n orj 

(20) 

(21) 

The derivatives with respect to £ and r; can obviously be replaced by derivatives with 
respect to the æ*. 

A more recognizable form of the equations of hydrostatic equilibrium 7*% = 0 is 
obtained by substituting 

^ (€ + p) dU° 
U° &xk 

into equations (20) and (21). The result is 

(22) 

(23) 

However, the form (20), (21) is very useful in applying the variational principle and will 
be analyzed in more detail in § IX. 

The variation of the gaß(%k) in h yields the Einstein equations. Standard results 
(Landau and Lifshitz 1962) are that 

and that within a divergence 

!*(-s)1/2] 

Also, 

The variation with respect to goo gives 

1 

= + ïgaßR](-g)1,2 

6U0 ou =WaU^U°. 

(24) 

(25) 

(26) 

lÓTT 
[£00 _ Ig00£] _ (e + p)(umUoU° + 1] - ¿r[(‘ + P)UoU° + p] 

- A(e + />)C/ii/0[(t/°)2 + èg00] - + (U0)2] = 0 

This simplifies to 
£oo _ ig00£ = 87r[(a + ÿ)i/°t/0 + 

= SirT00. 

Similarly, the variations with respect to goi and gu yield 

i?01 - = 8ir(e + p)t70Ul = StT01 

£ix _ igii£ = 8fl.[(e + p)[/i[/i + pgn] = 8tTu and 

(27) 

(28) 

(29) 

(30) 

when the Lagrange multipliers A and are eliminated through equations (18) and (19). 
The remaining Einstein equations come from the variations with respect to the gki: 
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No. 1, 1970 ROTATING STARS IN GENERAL RELATIVITY 77 

_ ^H[(e + p)UoU* + ^ + A(e + p^uo + $„170] = o ; (31) 

80 Rk' - %gklR = &irpgkl = 8irTkl. (32) 

Nothing is lost by setting the gok and gw equal to zero before taking the variation, 
since the Ricci tensor components Rok and Rw are identically zero as a result of the sym- 
metries. There are only six nontrivial Einstein equations for a stationary, axisymmetric 
rotating-star metric. 

What is now established is that the functional /2 is stationary under arbitrary inde- 
pendent variations of the gaß, £, y, n, and 0, for given $(£, rj) and A(£, 77), if and only if 
the Einstein equations are satisfied by the metric tensor and the covariant divergence of 
the energy-momentum tensor is zero for a stationary, axisymmetric, rotating perfect- 
fluid distribution. Because of the role of the $ and the A as Lagrange multipliers, this 
implies that the functional /1 is stationary under arbitrary independent variations of the 
gaß, £, and y, when the constraints (10) and (11) for given baryon-number and angular- 
momentum distributions N(%, y) andy(£, 77) are used to calculate the variations in n and 
fí, if and only if the same equations are satisfied. 

The fact that coordinate conditions on the can be used to express the gkm in terms 
of one independent function plays a role in the variational principle, along with the fact 
that the equations Tka/a = 0 are a direct consequence of the Einstein equations and the 
Bianchi indentities and in this sense are redundant. Treating the gki as independent 
functions in the variational principle yields all six Einstein equations, and one has a 
complete set of equations without requiring that the action be stationary under varia- 
tions of the functions £ and 77. However, if the coordinate conditions are applied before 
taking the variation, so the gu are not independent, the three Euler-Lagrange equations 
(32) reduce to one equation which is a linear combination of the three. Now the varia- 
tions with respect to £ and 77 are needed to give the two 2V/a = 0 equations which, to- 
gether with the four modified Einstein equations, form a complete set (see Hartle and 
Sharp 1967). 

One could make the coordinate .choice æ2 = £, æ3 = 77 in the interior of the star (in 
which case the variations of £ and 77 would be suppressed) and keep all six metric com- 
ponents as independent. This does not greatly increase the complexity of the calculations 
in the interior, where there are six independent functions anyway, but it complicates the 
problem of joining the interior solution to the exterior solution. Also, interpretation of 
the geometry is difficult unless the metric has a simple form. Coordinate conditions on 
the form of the metric are probably best applied from the beginning in both interior and 
exterior in an actual numerical calculation. 

V. RELATIONSHIP TO OTHER ACTION PRINCIPLES 

As an action principle our variational principle is a straightforward generalization of 
the Hartle-Sharp variational principle, also considered as an action principle. Hartle and 
Sharp (1967) constrain only the total baryon number and total angular momentum of 
the star, instead of the baryon number and angular momentum of each ring, so their 
Lagrange multipliers are constants over the whole star. 

Our variational principle is also related to a variational principle of Taub (1954). 
Taub’s principle derives the Einstein equations, the equations of motion Taß/ß = 0, and 
the constancy of entropy along the fluid-element world lines for any perfect fluid con- 
figuration, not necessarily time independent or axisymmetric, from variations of the 
functional 

h = f[f^R + * - nTs + nog'.tU'U^i-gYH'x . (33) 
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78 JAMES M. BARDEEN Vol. 162 

This functional is required to be stationary with respect to arbitrary, independent varia- 
tions of the metric-tensor components gaß, of the trajectories of the fluid elements as 
specified by the dependence of their coordinate positions xa in the space-time as func- 
tions of proper time, and of the temperature T along the world line of each fluid element. 
The constraint that the rest mass (or baryon number) of each fluid element be conserved 
is applied explicitly and determines the variation in the baryon density n in terms of the 
variations in the other quantities. The Lagrange multiplier a is determined for each 
fluid element by requiring that the four-velocity Ua be a unit timelike vector in the final 
solution. 

The details of Taub’s principle are quite different from ours. For instance, Taub’s 
variations are carried out along the fluid-element world lines, as opposed to our Eulerian 
variations at constant #*. We explicitly normalize the four-velocity, instead of introduc- 
ing a Lagrange multiplier. Perhaps most important, we determine the solution more or 
less uniquely by the symmetry conditions and by specifying the rest mass and angular 
momentum of each fluid element, whereas there is nothing in Taub’s principle to pick out 
a particular solution. 

Still, as an action principle our variational principle can be considered a special case of 
Taub’s. To show this, we first specialize Taub’s principle to stationary, axisymmetric 
configurations. Then the integral over æ1 = 0 can be done. The principle is further modi- 
fied by dropping the variation of the temperature and the term —nTs in (33), since these 
are only included to derive the time independence of the entropy, which is true auto- 
matically for a stationary, axisymmetric rotating star. Also, the last term in equation 
(33) can be eliminated by explicitly normalizing the four-velocity to a unit vector. 

The variation of the functions ¿(^) and in our principle is the Eulerian version of 
the variation of particle paths in Taub’s principle as far as the location of the trajectory 
in the (#2, x3)-plane is concerned. The variation of particle paths would also involve varia- 
tions in the motion in the ^-direction, but to specify a particular solution we will fix fí = 
d<l>/dt for each fluid element. This is formally equivalent to applying the angular- 
momentum constraint through the Lagrange multiplier A in our principle, since A = 0 
after the variation of the angular velocity has been carried out. Therefore, if in our 
principle A(£, rj) is specified, ß set equal to A, and baryon number conserved by explicit 
constraint, the variational integral becomes 

h = *ff[- To0- A(e + gY'^dx? 

(34) 

The modified version of the two variational principles are now identical except for the 
technical point of Eulerian versus Lagrangian variations. 

As Hartle and Sharp emphasize, the additional interpretation of their and our varia- 
tional principles as energy-extremization principles makes them much more useful in 
actual physical applications to rotating stars than the pure action principle of Taub. 

VI. PHYSICAL INTERPRETATION OF THE GEOMETRY 

Most discussions of the physical effects of rotation on the properties of space-time 
when the gravitational fields are strong have been based on the properties of slowly 
rotating configurations, with the effects of rotation treated as perturbing spherically 
symmetric space-time (see Hartle 1967; Brill and Cohen 1966; Hartle and Thorne 1968; 
Thorne 1970). Until recently (Bardeen and Wagoner 1969) there have been no solutions 
to the Einstein equations for a perfect-fluid configuration in an asymptotically flat 
space-time, either analytic or numerical, involving fast rotation in arbitrarily strong 
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gravitational fields and encompassing both the sources of the gravitational field and 
the vacuum exterior metric. In such cases an analysis based on static observers, ob- 
servers at rest as seen from infinity, is not appropriate because there is no local prop- 
erty of the space-time which singles out these observers and because such observers 
may not even exist in certain regions of the space-time. In this section the components 
of the metric tensor are interpreted physically in ways which remain valid no matter how 
rapid the rotation and how strong the gravitational fields, as long as the space-time is 
stationary and axisymmetric. 

This physical interpretation is facilitated by writing 

ds2 = — e2vdt2 + e^(d<i> - o>dt)2 + e2^(dx2)2 + e2>**(dx?)2. (35) 

One degree of freedom in the choice of coordinates has been used to set g2s = 0. The 
remaining degree of freedom is left unspecified for the present. 

The signs chosen for the exponentials are the signs that must hold if the metric is to be 
stationary, that is, if the t — constant hypersurfaces are to be spacelike and if the metric 
is to have the correct signature. On the other hand, 

goo = —e2v + oPe2* (36) 
can have either sign. 

In a region of space-time where g0o > 0, the “time axis,” the line ($, x2, x3) = con- 
stant, is not a timelike direction. In other words, no local observer with fí = d<¡>/dt = 0 
and ZJ2 = Uz = 0, an observer who would be stationary as seen from infinity in an 
asymptotically flat space-time, can exist in such a region. 

A set of local observers identifiable uniquely by local measurements in a stationary, 
axisymmetric space-time is what might be called the “locally nonrotating” observers. An 
observer with C/2 = £/3 = 0 and an angular velocity ti = dfy/dt as measured by a distant 
stationary observer can measure his absolute velocity of rotation locally (extending local 
to all values of at the same x2 and x3) by the following gedankenexperiment. Imagine 
that mirrors have been set up on the circle x2 = x3 = constant containing the observer, 
so he can send a light signal around this circle in either the forward {d<$> > 0) or back- 
ward {d$ < 0) direction. In terms of the line element (35) and the angular velocity ß of 
the observer, the proper time the light signal takes to make the circuit in the forward 
direction is 

where 
» = (ß — . 

(37) 

(38) 

The proper time it takes when sent in the backward direction is 

/I _ flj\ 1/2 
A52 = . (39) 

Just as in special relativity, a measure of the proper distance around the circle which is 
independent of the velocity of rotation of the observer is (with c = 1) the geometric 
mean of the two proper times (37) and (39). This identifies e* as the proper circumferential 
radius of the circle around the axis of symmetry. Also, comparing equations (37) and 
(39) with the corresponding special-relativistic formulae, we identify v as the local 
velocity of rotation of the observer. The locally nonrotating observer then has = 0, or 
O = d<¡)/dt = cü, and is the only observer at each (x2, x3) for which ASi = AS2» It is this 
observer whose world line is perpendicular to the t = constant spacelike hypersurfaces. 
The congruence of world lines with Ul = wl/0, Z72 = Z73 = 0 has an angular velocity 
four-vector (Synge 1960, p. 172) which is identically zero everywhere. The function 
o>(x2, x3), which is the angular velocity as seen from infinity of the locally nonrotating 
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observer, is sometimes called the angular velocity of the local inertial frame (see Hartle 
1967), and is the angular velocity of any particle or photon which has zero angular 
momentum. 

The ratio of frequency observed at infinity to emitted frequency in the locally non- 
rotating frame is equal to ev for photons of zero angular momentum. Therefore (e~v — 1) 
is identified as the gravitational redshift, and v can be considered the general-relativistic 
gravitational potential. 

Photons of zero angular momentum emitted in a frame with rotational velocity 
v 0 will be Doppler-shifted. The ratio of observed to emitted frequency is (Z70)""1 = 
ev(\ — fl2)1/2, where £/° is the time component of the velocity four-vector of the observer 
with rotational velocity v. The frequency shift is a combination of gravitational redshift 
and transverse Doppler shift, since zero angular momentum implies emission in a direc- 
tion perpendicular to the «^-direction in the locally nonrotating frame. 

The physical simplicity of the locally nonrotating frame is echoed by the mathematical 
simplicity of the Riemann and Ricci tensor components measured by the locally non- 
rotating observer when expressed in terms of the metric functions in equation (35). The 
orthonormal tetrad for the locally nonrotating observer’s frame of reference is defined in 
Appendix A, and the Riemann tensor components projected onto this tetrad are given 
in Appendix B. 

VII. ENERGY EXTREMIZATION 

The Euler-Lagrange equations from the variational integral I\ (eq. [9]) are unaffected 
by adding a pure divergence to the integrand. Therefore, the value of the action 7i can 
be altered more or less at will. Hartle and Sharp (1967) show how to alter the action so 
that when evaluated for the final equilibrium configuration it is equal to the total gravita- 
tional mass, or energy, of the equilibrium configuration. Here we go further and show 
that by proper choice of the divergence the action can be made equal to the gravitational 
mass of all trial, nonequilibrium configurations which are momentarily stationary and 
satisfy the initial-value equations of general relativity. Furthermore, the action is modi- 
fied to contain at most first derivatives of the metric functions such that the integral (9) 
converges for all trial configurations in an asymptotically flat space-time. 

Because of the importance of the asymptotic behavior of the metric functions at 
spatial infinity, we will take x2 and xz to be spherical coordinates at infinity with x2 = r 
and xz = 6. If functions a(r, 6), ¡x{r, 6), and y(r, 6) are defined by 

e* = r sin 6 ea , ^ = rey , (40) 

then asymptotically flat boundary conditions give r, a, ju, y ^ r“1 and co ^ r~3 as r <». 
The one remaining degree of freedom in the choice of coordinate system can be used to 
set y = a, as appropriate for the study of perturbations of slowly rotating stars (Hartle 
1967), or to set 7 = ju, which gives simpler equations for rapidly rotating stars (Hartle 
and Sharp 1967; Bardeen and Wagoner 1969). 

The functions v, co, a, p, and (7) will now be the independent functions describing the 
gravitational field in the variational principle, instead of the metric-tensor components 
gaß themselves. The Euler-Lagrange equations obtained by varying these functions will 
then be certain combinations of the Einstein equations. 

The concept of a momentarily stationary configuration enters in the following way. 
The variational integral is considered as an integral over the spacelike hypersurface t = 0. 
This hypersurface is embedded in an axisymmetric, but not necessarily time-independent, 
space-time. Momentarily “stationary” implies that the space-time is symmetric under 
simultaneous change of sign of the time coordinate t and the axial angle <£. The four- 
velocity components U2 and Uz of the fluid must then be zero on the t = 0 hypersurface. 
In Appendix D we show that coordinates can always be chosen such that dX[ first time 
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derivatives of the metric-tensor components are zero at ¿ = 0 and such that on the 
momentarily stationary hypersurface the line element has the form (35) as further 
specified by equations (40). The rest of the discussion assumes that this choice has been 
made. 

If the metric-tensor components in the (nonstationary) space-time are to obey the 
Einstein equations, certain consistency conditions must be satisfied on the t = 0 hyper- 
surface. These are the initial-value equations (Bruhat 1962). The nontrivial initial-value 
equations here are 

Ro° - ÍK = SttTo0 (41) 
and 

Rf = SttTi0 . (42) 

These equations contain at most first time derivatives of the metric, which means that on 
the momentarily stationary hypersurface they are completely equivalent to the cor- 
responding equations for the equilibrium configuration. They are discussed in detail in 
§ vin. 

The total energy or gravitational mass of a momentarily stationary configuration 
satisfying the initial-value equations can be calculated if the spatial metric on the t = 0 
hypersurface is asymptotically Schwarzschild. Physically this condition means that 
gravitational waves are not present in this hypersurface at arbitrarily large distances 
from the star, and mathematically it means that to order r~l in an expansion of the 
potentials in powers of 1/V at infinity the spatial metric components correspond to some 
form of the Schwarzschild metric. Independent of the particular choice of the radial 
coordinate in the Schwarzschild metric, the gravitational mass on the asymptotically 
time-symmetric hypersurface can be evaluated from (Hernandez and Misner 1966) 

M = lim {r[l — (re'O.re“'*] = r[l — (rßa) ,re
_/i]} . (43) 

r—> oo 

The asymptotic behavior of v has no direct bearing on the gravitational mass on an only 
momentarily stationary hypersurface (see Harrison et al. 1965). The function co has an 
asymptotic behavior (Papapetrou 1948) 

lim (r3co) = 2J , (44) 
r—> oo 

where J is the total angular momentum, if the initial-value equation (42) is satisfied. 
The scalar curvature constructed from the metric (1) is not the scalar curvature 

evaluated on a momentarily stationary hypersurface in a nonstationary space-time, 
since the latter contains second time derivatives which will not be zero. Let R be the 
scalar curvature of the nonstationary space-time and let Æ* be R minus the second time 
derivatives, evaluated on the momentarily stationary hypersurface. Then R* has the 
same form as the scalar curvature for the equilibrium configuration and is what is called 
R in the variational integrals h and /2. 

Since adding a puré divergence to the integrand of a variational integral does not 
affect the Euler-Lagrange equations, a variational integral equivalent to h is 

I'i = 2Tff[-LG - To°(-gyi2]drdd, (45) 

where the “Lagrangian density^ of the gravitational field Lq is 

StLg = hR'i-g)112 + W\k . (46) 

The integration is over the momentarily stationary hypersurface. In terms of the func- 
tions vy o), a, /x, and 7, the expression (C3) for R* gives 
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|J?*(-g)1/2 = r2 sin 0 + «'.r(a,r + T.r)] 

+ i e_2'l'[a,í/i,# + i'.íía,« + ju,*)] + |r2 sin2öe2a-2- ^e~2'‘«,r«,r + 

+ ^ e~2l‘(2v,r + a,r + y,r) + 4 e-2" + e_2'l'(i',* + m,*) [ ^ r* r* ) 

(47) 

- [éT^r2 sin ^ - [e”7(sin Ö ev+a+/i),0],0. 

Expressions are now chosen for Wr and Wd so that (1) LG contains at most first deriva- 
tives of the metric functions; (2) the integral T\ converges for any choice of the metric 
functions so long as they have the appropriate asymptotic behavior as r —> <», and (3) 
the value of I'i is equal to the total gravitational mass of the momentarily stationary 
configuration when the initial-value equations (41) and (42) are satisfied and the spatial 
metric is asymptotically Schwarzschild. One satisfactory choice is 

Wr = e~ß(r2 sin $ ev+a+t)tr — 2r sin 0 ev+a , (48) 

We = *r?(sin 0 ev+a+#i)f0 — 2 cos 0 ev+a + cos 0 . (49) 

The result for LG is 

SttLg = r2 sin 0 ev+a+y+li^e^2li[afry,r + *v(a,r + T.r)] 

+ ^2 e~2yla^,e + vÁ** + P,e)] + i^2 sin2 0 e®“" Çe^2fiù)tro))r + 

! (SO) 
+ “ [^ 2M(2^,r + a,r + T.r) — 2^“M y(v,r + a,r)] Y 

+ [e~2y(v,e + M.e) ~ 2e-ti-y(v,e + a,e) + e~2fi(v,e + a,e + y,e — /m)]| , 

which by inspection satisfies the first two conditions since a, t, M ^ f“1 and co^r~z 

as r 00. The form of LG simplifies considerably if the remaining coordinate condition is 
applied to make y = p and becomes equivalent to a form given by Hartle and Sharp 
(1967). 

The initial-value equation (41) is the one used to evaluate /'1. Since the left-hand side 
of equation (41) contains no second time derivatives, the second time derivatives in Rq° 
must be precisely the same as those in If R*<P is defined to bei?o0 computed from the 
stationary metric (1) or (35), equation (41) can be rewritten as 

£7 - i£* = 8*77 (51) 

on the momentarily stationary hypersurface. Equation (51) gives 

/'i = \ff[-R\K-gY12 - wk,k]drie. (52) 

The expression for ÆV is obtained from Appendix C. It is 

7£*o°(—g)1/2 = k2 sin 0 £,rhrfr-/i(—+ hr2 sin2 0 e2a“2,#a>cofr)] r 
(53) 

+ [sin 0 + ir2 sin 0 e2®“2^^)]^ = Zk
tk . 
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Since the integrand in equation (52) has the form of a simple divergence, the volume 
integral can be converted to a surface integral to obtain 

I\ = l f dB[-Zr - W%=œ . (54) 
0 

From equations (53) and (48) 

— Zr — JFr = r sin 0 ev+a^2 — ^ ^"^(rV+^.r — |r3 sin2 0 . (55) 

In the limit r—> <x>, r~3 and asymptotically Schwarzschild implies that a = 7 to 
order r_1. Thus equation (43) can be used in equation (55) to give 

-Zr - Wr-+2M sind (56) 
as r —» 00, and 

T 
I\ = %Mf sin 6dd = M , (57) 

0 

the total gravitational mass of the momentarily stationary configuration. 
While the initial-value equation (42) has not been used explicitly in deriving equation 

(57), it must be satisfied if the momentarily stationary configuration is to be physically 
realizable. 

Combining the results of this section with those of §§ III and IV, we have finally 
proved that the equilibrium configuration of a rotating star extremizes the total energy 
or gravitational mass of momentarily stationary configurations which satisfy the initial- 
value equations, keeping the baryon number or rest mass, the angular momentum, and 
the specific entropy of each ring of matter in the star fixed. Since the action I\ is sta- 
tionary with respect to arbitrary variations of the metric functions and the matter 
functions £ and rj about the equilibrium configuration, it is still stationary when the 
additional constraints of the initial-value equations are imposed. However, the action 
/'i is not minimized by the equilibrium configuration, so it is not necessarily true that 
only the equilibrium configuration extremizes the total energy. The functions v ana w, 
in particular, cannot be completely determined by extremizing the total energy, since 
they áre affected by coordinate transformations which do not alter the form of the metric 
in the vicinity of the momentarily stationary hypersurface (see Appendix D). 

In spherically symmetric, momentarily static configurations co is identically zero and 
the total energy is completely independent of v. The extent to which the energy de- 
pends on v when a> ^ 0 is discussed further in § VIII. 

The equilibrium configuration may or may not locally minimize the energy. If the 
equilibrium configuration is unstable to axisymmetric, adiabatic perturbations, there 
will be some nearby momentarily stationary configurations of lower energy than the 
equilibrium configuration. No proof of the connection between stability and the nature 
of the energy extremum has been carried out for rotating stars in general relativity as it 
has been for spherically symmetric stars (see Harrison et al. 1965). Any such proof must 
deal with the gravitational radiation emitted by the perturbed configuration, though 
this may well not be important if the change of stability occurs through a zero-frequency 
mode. The stability of rotating stars in Newtonian theory is analyzed in detail by Lyn- 
den-Bell and Ostriker (1967). See also the review by Lebovitz (1967). 

VIII. the initial-value equations 

Harrison et al. (1965) established an energy-extremization principle for spherically 
symmetric stars which is based on an expression for the gravitational mass on a momen- 
tarily static (time-symmetric) spacelike hypersurface obtained directly from the initial- 
value equation. When the mass is extremized with the number of baryons in each spheri- 
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cal shell explicitly kept constant, the “TOY” equation of hydrostatic equilibrium is 
obtained as an Euler-Lagrange equation. The metric function v does not appear in this 
expression for the total energy and thus is left undetermined, in contrast to its appearance 
in the action /'i with Lq given by equation (50). 

In this section we show that an expression for the total energy of a momentarily 
stationary rotating star can also be obtained from the initial-value equations. This ex- 
pression for the energy is positive definite, giving an explicit proof that the energy of a 
momentarily stationary rotating star is positive no matter what axisymmetric gravita- 
tional waves are present on the hypersurface. We have not been able to obtain Euler- 
Lagrange equations from this expression because of the difficulty of solving the initial- 
value equations. 

The initial-value equations (C7) and (C9) of Appendix C are rewritten in terms of the 
two spatial metric functions X and ß defined by 

e* = r sin 6 = - e**» = e*~ß . (58) 
T 

The coordinate condition y = pis implicit in equation (58). The functions X and ß are 
chosen so that no second derivatives of ß appear in the initial-value equation (C7). The 
new form of the equations is 

V2X = + ß)*V(\ + ß) - |r2 sin2 6 Vw 

2 
(59) 

 t V (r sin 6)*Vß — 47re2X”2^ 

and 

V • [r2 sin2 0 e3X+3^“,'Vw] = — lóxe3^^ sin 0 ^+ß ^ • (60) 

The differential operators V, V*, and V2 are the flat-space gradient, divergence, and 
Laplacian, respectively, in the spherical r, 0 coordinates. 

At spatial infinity the coordinate conditions are such that the metric approaches the 
Schwarzschild metric as written in isotropic coordinates. Since a = X to order 1/r, 
ß~ 1/r2 as r-* oo. The expression (43) for the total gravitational mass M on the 
momentarily stationary hypersurface gives 

X ~ M/r (61) 
as r —> oo. 

Local flatness and regularity of the metric at the axis of symmetry require that ß go to 
zero, with 

ß~r2 sin2 0 , (62) 

as r sin 0 —» 0. Otherwise, the ratio of circumference to radius of an infinitesimal circle 
around the axis of symmetry would not be 27t. 

From equation (59) and the asymptotic behavior (61), the gravitational mass of a 
momentarily stationary configuration can be written 

M = ffr* sin ^ + |V(X + /3)-V(X + ß) 

(63) 
-f- _^r2 sin2 0 Vco + iV[ln (r sin 0)]* Vß | . 

In this integral over the whole spacelike hypersurface the functions X and œ are under- 
stood to be solutions of equations (59) and (60), respectively. The only restrictions on 
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the function ß are the boundary conditions mentioned above, and the matter distribution 
is only required to be bounded. 

The integral (63) can be simplified by integrating the last term by parts, 

J*f v[ln (r sin 6)] • Vßr2 sin ddrdd = — J'J'ßy2[hi (r sin 6)]r2 sin ddrdd . (64) 

The boundary terms vanish from the conditions on ß at infinity and on the axis of sym- 
metry. Since 

V2[ln (r sin 0)] =: 0 , (65) 

the integral (64) vanishes. The expression for M reduces to 

M = yyv2 sin ddrdd^ 27re2X“2^ + JV(X + ß) • V(X + ß) 

(66) 

+ ^Lr2 sin2 0 e2X+2/3“2vVco* Vco| , 

which is positive definite as long as the energy density of the matter in the locally non- 
rotating frame is nonnegative. Since M includes the energy of any gravitational waves 
present, this is a direct proof that the presence of gravitational waves on a momentarily 
stationary hypersurface cannot affect the sign of the energy. Brill and Deser (1968) have 
shown the positive-definiteness of gravitational-wave energy more generally, but by 
indirect arguments. Brill (1959) showed earlier that axisymmetric configurations which 
are time-symmetric have positive energy. 

A variational principle based directly on extremizing the integral (66) for the gravita- 
tional mass on a momentarily stationary hypersurface, analogous to the variational 
principle of Harrison et al. in the spherically symmetric case, cannot hope to determine 
completely the functions v and a? for the stationary equilibrium configuration. There is a 
certain amount of freedom in the choice of scale of the time coordinate as a function of 
position on the hypersurface. In Appendix D we show that the most general coordinate 
transformation which leaves the form of the metric and the Einstein equations on the 
¿ = 0 hypersurface unchanged has the result of altering the metric functions v and a> to 
vf and a)' with 

o/ = feF^do¡, v’ = v + F(a>) . (67) 
o 

The other metric functions are invariant under the transformation. The function F(co) is 
arbitrary, except for the condition F(0) = 0 which keeps the metric asymptotically flat. 
Any coordinate transformation which does not affect the asymptotic behavior of the 
spatial metric cannot change the gravitational mass, and consistent with this the 
transformation (67) leaves invariant the combination e~vVu which appears in equation 
(66) and in equation (59) for X. 

An attempt to use equation (66) as the basis for a variational principle would proceed 
as follows. Vary the functions ß, v, £, and ri contained either explicitly or implicitly in 
equation (66). Determine the variations in X and w induced by the primary variations by 
solving the initial-value equations (59) and (60). The matter constraints of fixed angular 
momentum, baryon number, and entropy for each ring determine the variations in €, p, 
and the rotational velocity v. The functions ß, X, vy e, and p determined by extremizing 
the gravitational mass M should be those of the equilibrium configuration. The functions 
v and a> should be those of the globally stationary equilibrium configuration within a 
transformation of the type (67), but the transformation function F(co) cannot be de- 
termined by the variational principle. 

This conjectured variational principle is not likely to be of much use for determining 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7O

A
pJ

. 
. .

16
2 

. .
 .

71
B

 

86 JAMES M. BARDEEN Vol. 162 

v unless the configuration is both rapidly rotating and highly relativistic, since v appears 
in such a minimal way in equation (66). Therefore, it may be more practical to determine 
v directly from the equation 

Rm0) = Mr(„)(0) + ^‘»(a)] = 4ir[(e + p) + 2p] , (68) 

where it is assumed that the combination of second time derivatives in R(oxo) is zero, so 
R(0)(0) is given by equation (CIO). It is the second time derivative of the determinant of 
the spatial metric which appears inifyoxo), so the constraint (68) would not seem to limit 
the gravitational-wave degree of freedom in the trial configurations in an important way. 
The gravitational waves intrinsically involve only the atransverse, traceless” part of the 
spatial metric, which does not appear in the determinant (see Arnowitt, Deser, and Mis- 
ner 1961). 

In the Newtonian limit it is possible to construct a variational principle directly from 
equation (66), the variational principle of Lynden-Bell and Ostriker that has been used 
to calculate the structure of Newtonian white-dwarf models (Ostriker et al. 1966). The 
function X in equation (66) is related to the Newtonian gravitational potential <£ by 
\ = — <1^ while ß is second order in c~2 and can be set equal to zero. The Newtonian 
energy E is M minus the rest-mass energy Mo. If po is the rest-mass density, so that 
e = po(l + u) where U is the internal energy per gram, then 

Mo = 27r//V
x-0 (1 '2 sin 6drdd ■ (69) 

The expression for E obtained from equations (66) and (69) is 

E = 2irff[po(u + iv2 + $) + ¿ V4-V$] -f2 sin 6drd6 . (70) 

The Newtonian version of the initial-value equation (59), 

V2<$ = 4tpo , (71) 

gives the usual Newtonian expression for £, 

E = 2irffpo{u + + h$)r2 sin BdrdB , (72) 

when used in equation (70). The proof of the variational principle of Lynden-Bell and 
Ostriker is based on this form for E and the explicit solution of the initial-value equation 
(71), 

$ = -f i Po(-r,\T dV . (73) 
I r — r I 

IX. APPLICATIONS OF THE VARIATIONAL PRINCIPLE 

The variational principle developed in this paper may in the future be used to calcu- 
late the structure of rotating stars in general relativity. In doing so, a basic strategic 
decision is whether to treat the variational principle as* an action principle or as an 
energy-extremization principle. If the full complement of the metric functions is to be ob- 
tained from the variational principle, the action-principle formulation is the one to use. 
The action I\ or, if the rest-mass and angular-momentum constraints are not applied 
explicitly, the action 1*2 which is the result of using equation (50) for La in J2, can be 
made stationary under independent variations of the full set of four metric functions left 
after coordinate conditions have been applied. Unless there is some special reason to 
choose particular angular velocities for the rings of matter, the physically most appropri- 
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ate form of the action principle is the one which fixes the rest mass and angular momen- 
tum of each ring, for reasons made clear by Ostriker et al. (1966) in the Newtonian con- 
text. 

If the constraints are applied through the Lagrange multipliers A and <i> in equation 
(13), care must be taken that these are consistent with hydrostatic equilibrium. For 
instance, if the specific entropy is independent of position in the star, the equations of 
hydrostatic equilibrium (20), (21) can be satisfied only if the surfaces of constant “in- 
jection energy” $, constant angular velocity fl = A, and constant angular momentum 
per baryon^ coincide. This is the relativistic analogue of rotation in cylindrical shells in 
the Newtonian case. Boyer (1966) has obtained related results regarding surfaces of 
constant pressure. 

The alternative to the action principle is to solve the initial-value equations for the 
functions X and co, equation (68) for vy and then find the matter configuration and the 
function ß which extremize the total gravitational mass. As far as just calculating the 
equilibrium configuration is concerned, it would be simpler to go ahead and directly 
integrate all four Einstein equations and the equation of hydrostatic equilibrium. How- 
ever, in extremizing the total energy one can learn something about the stability of the 
equilibrium configuration. Also, for a given matter configuration (given functions £ and rj 
and given rest-mass, angular-momentum, and entropy distributions), extremizing the 
total energy with respect to the function ß should produce a local minimum, which would 
be the momentarily stationary matter configuration without any gravitational waves 
present. It may be of physical interest to explore how gravitational waves affect the 
geometry in the presence of rotating matter. 

Since the total gravitational mass has a definite value for a given matter configuration 
and given functions ß and v, the form of the integral used to calculate the gravitational 
mass is not important to the extremization process. Either I'i as given by equations (45) 
and (50) or the integral (66) may be used to evaluate the gravitational mass of a trial 
configuration, as long as the functions X, co, and (v) are obtained from the initial-value 
equations (and eq. [68]). The simplest integral is (66) ; so this is likely to be the best to use. 

Even if not used to calculate the structure of the star directly, the action form of the 
variational principle gives relationships between neighboring equilibrium models which 
are important checks on the accuracy of numerical calculations. Equations (18) and (19) 
define A(^) and $(xk) for an equilibrium model. The equilibrium configuration is per- 
turbed by adding a small number of baryons bdA to the ring of matter at oft containing 
dA baryons and by changing the angular momentum of the ring dJ by an amount bdJ. 
Then from the fact that the functional 1'% defined above is stationary to first order in 
variations of an equilibrium configuration and I'i = M for both the old and the new 
equilibrium configurations, the change in M between the two equilibrium configura- 
tions is 

AAf = f${xk)bdA + fA(oft)bdJ , (74) 

summing over the changes in all the rings. The identification of rings between the old and 
new configurations must be such that the specific entropy is constant in the perturbation, 
but is otherwise arbitrary within the general constraint that the change in oft be small. 

The condition that the specific entropy be constant in the perturbation for each ring 
can be relaxed by modifying the variational integral to include a Lagrange multiplier for 
the entropy contained in the ring. If this Lagrange multiplier is denoted by r(£, rç), the 
new variational integral is 

h = I\ - /A(£, ri)dJ - /MKf, ridA - frO;, V)dS 

= I'i - 27r/A(c + p)U1U°(-gyi2dx2doft - It f^nU°(—g)ll2dx2doft (75) 

- ItJ'tsh U°(—g) ll2dx2doft , 
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where dS denotes the total entropy in a ring and s denotes the specific entropy. The 
Lagrange multiplier for the baryon number, >3', is different from before because now the 
baryon density n and the temperature T are the independent thermodynamic variables 
and are varied independently in the variational principle. The variations of n are carried 
out at constant T instead of constant s. 

Examination of the Euler-Lagrange equations obtained by varying ß, w, and T shows 
that as before A can be identified as the angular velocity ß of the ring in the equilibrium 
configuration; that 

* = (Hr - Ts)^1 > (76) 

the thermodynamic potential for adding baryons at constant temperature and constant 
pressure, redshifted to infinity; and that 

r = T{U»)-1 (77) 

in the equilibrium configuration. The equations of structure, etc., obtained by requiring 
that /4 be stationary under independent variations of the ga/9, £, and r¡ are, of course, the 
same as before. The equation of hydrostatic equilibrium takes on the form 

dß . . dSk . dr n 
(78) 

with ^ and r evaluated by equations (76) and (77). 
A formula for the difference in energy between two neighboring equilibrium con- 

figurations analogous to equation (74) can be obtained from equation (75). Since I\ = M 
and Í4 is stationary with respect to changes ôdA in the baryon number, ôdJ in the angular 
momentum, and 8dS in the entropy of a ring containing dA baryons, etc., the change in 
AT is 

AM = fmdJ + fVÔdA + frôdS. (79) 

The total entropy dS in a ring is the specific entropy s times the baryon number dA, so 
an alternative form of equation (79) is 

AM = fÜôdJ + f$ôdA + frÔsdA , (80) 

where we have used the fact that ^ + rs = $. Now there are no constraints on the iden- 
tification of corresponding rings in two neighboring equilibrium models, so the rings 
defined by the same coordinate range dx2dx* can be compared regardless of the (infinitesi- 
mally different) entropy distributions in the stars. 

Exact formulae like equation (80) are very helpful in checking the accuracy of difficult 
numerical computations. The version of this result obtained by Hartle and Sharp (1967) 
for uniformly rotating, isentropic stars has been used to check numerical calculations of 
uniformly rotating disks (Bardeen and Wagoner 1969). Hartle (1970) calculates the 
rotational energy of a differentially rotating star from the change in gravitational mass 
with angular momentum implied by equation (74) or (80). 

The criterion for the stability against convection in a rotating star is, like the overall 
dynamical stability of the star, intrinsically second order in the deviation from hydro- 
static equilibrium. Some partial information about the stability to convection can be 
obtained from the first-order variational principle by considering nonlocal changes in the 
structure of equilibrium configurations which might come about through the action of 
convection. If the nonlocal change results in a lower gravitational mass for the new con- 
figuration, then energy is available to drive convection and it is reasonable to conjecture 
that the original configuration is convectively unstable. The nonlocal changes must be 
asmooth,, ones in which the angular momentum and entropy of the fluid elements are 
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not changed; otherwise, the detailed processes for the adjustment of the angular mo- 
mentum and entropy will affect the change in energy of the star. 

Consider a star in which there are two rings of matter, 1 and 2, which have the same 
angular momentum per baryon = j2 = io and specific entropy Si = $2 = $o. Transfer 
of matter between these two rings can occur via a convective element which conserves 
angular momentum and entropy. The change in energy of the star when an amount bA 
of baryons is transferred from ring 1 to ring 2 is, from equation (74), 

AM = (02 - í2i)¿oM + ($2 - &JÔA . (81) 

This expression can be simplified by using the equation of hydrostatic equilibrium in the 
form of equation (20) and (21). When integrated over a path from ring 1 to ring 2 in the 
star, equations (20) and (21) give 

2 2 
fjda + $2 - $! - f(T/U°)ds = 0 . (82) 
1 1 

This is used to eliminate $2 — $1 from equation (81), so 

2 2 
AM = [(Qa - í2i)jo - fjdÜ + f{T/U°)ds^8A 

2 2 
= [ ftidj + f{T/U»)ds\àA . 

(83) 

The sign of equation (83) can be estimated as follows. If T/W decreases monotonically 
going from 1 to 2 and if s increases to a maximum before decreasing back to ¿0 along the 
path, then f^(T/W)ds > 0. If the path is along a surface of constant,/, then the other 
integral doesn’t contribute. The change in gravitational mass AM > 0 if the matter is 
transferred from 1 to 2, but AM < 0 if matter is transferred from 2 to 1. 

The actual flow of matter will be in the direction for which AM < 0, and it will be able 
to continue until all the matter from the part of the path of constant 7 along which s de- 
creases is transferred to the part along which s increases, at least if T/W continues to 
decrease monotonically from 1 to 2 in the modified equilibrium configurations. What this 
argument suggests, then, is that if the specific entropy decreases along a surface of 
constant 7 in the direction in which T/U° \s decreasing (the direction of heat flow, pre- 
sumably outward from the equatorial plane of the star), there is an instability to 
convective motions until the specific entropy monotonically increases in this direction. 
If s increases as T/U* decreases, the star should be stable to this type of axisymmetric, 
adiabatic convection. This criterion is identical with the Schwarzschild criterion for 
convective instability. 

On the other hand, along a surface of constant specific entropy a similar argument 
shows that if in going from 1 to 2 7 has a maximum and the angular velocity Í2 decreases 
monotonically, as one would expect in the direction outward from the axis of symmetry, 
then AM < 0 for mass transfer from 2 to 1, suggesting instability to convection if the 
angular momentum per baryon decreases outward from the axis of symmetry along a 
surface of constant s, which is similar to Rayleigh’s criterion for instability of rota- 
tional motions in Newtonian theory. 

The complex effects of angular-momentum conservation on convective motions make 
it doubtful that these simple injection-energy arguments of the type developed by 
Thorne (1967) for spherically symmetric stars can be extended to more general types of 
convective motions in rotating stars. A more complete treatment of convective insta- 
bility could be based on a relativistic adaptation of the local analysis of Goldreich and 
Schubert (1967) in Newtonian theory. 
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APPENDIX A 

An orthonormal tetrad is a set of four mutually orthogonal unit vectors at a point in space- 
time, one timelike and one spacelike, which give the directions of the four axes of a locally 
Minkowskian coordinate system (see Synge 1960, p. 8). The tetrad vectors can be used to 
express tensors in an arbitrary coordinate system in terms of physical quantities measured in 
this local reference frame. Indices in parentheses will be used to denote components in the local 
reference frame, and are raised and lowered by the Minkowski metric. The tetrad vectors for 
the locally nonrotating reference frame discussed in § VI are, giving both contravariant and 
covariant components in terms of the metric functions defined by equation (35), 

X(o>: A(o)° = e~v, X(O)1 — we“1', X(o)o = —ev, X(o)i = 0 ; (Al) 

X(i): X(i)° = 0 , X(i)1 = e“* , X(i)o = —co^ , X(i)i = e* ; (A2) 

X(2)• X(2)2 = f X(2)2 = e*2 ; (A3) 

X(3)í X(3)8 = , X(3)3 = eM3. (A4) 

The rule for calculating the physical components of a tensor Taß is 

and conversëly 
T(<r) (r) , 

Taß ^ X^aX^T*^) (T) . 

(AS) 

(A6) 

The physical components in a frame moving with rotational velocity v with respect to the locally 
nonrotating frame can be found by applying a Lorentz transformation to the physical com- 
ponents of the tensor in the locally nonrotating frame. 

APPENDIX B 

The physical components of the Riemann tensor in the locally nonrotating frame take on a 
relatively simple form when expressed in terms of the metric functions defined by equation (35). 
Direct calculation gives 

-R(0)(1)(0)(1) = + v,sif',se~2l‘>) + i(“,2“,2e-2'‘2 + w.sw.ae-2''»)*!2*-2’’, 

R(fi)(2) (0) (2) = é~l‘>~’'[ë~l‘*(e’') 2],2 + 6~2ß,V ,»1*2,3 fe-2'‘!WI2«,2e2*-21’ , 

-K<o)(3)(0)<3) = e->‘«--[<r'‘»(e')i3],3 + e-2ß*p,m,2 - , 

Ä(1)(2)(1)(2) = - Je-2'*wl2w,2e2^-21', 

■R(1)(3)(1)(3) = — e_'‘»_'i'[e_'‘»(^),3],3 — e-2^,21*3,2 — ie-^cojuje2*-2’', 

Ä(2)(3)(2H3) = — e-"-'‘.{[e-'‘2(e^),2],2 + [e_'‘<e''2),3].3} , 

R(o)(2)(o)(3) = e~ß2~,‘*[e~‘'(e''),23 — v,2ß2,z — v,2113,2 — fw,2w,3e2^~2’’] , 

-R(1)(2)(1)(3) = — ß~ß2~M3[e~*(^) ,23 — Ÿ,2M2,3 ~ ^,»1*3,2 + jCO^CO^e2''-2’'] , 
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Æ<0)(2)(1)(2) = + è<^2/i3C*^3M2,3^-,' , 

■Æ(0)(3)(1)(3) = è^"2^“M3[^",'“M3w,3],3 + %e~2li*a)t2fiz,2e't'~v , 

jR(0)(2)(1)(3) = |^"‘,,-M2_M3[w,23 + 2o)f2^,3 + ^,3^,2 ~ W,2^,3 2^2,3 “ U.ZßZj] y 

^(0)(1)(2)(3) = y+-v~tt*-tl*[ù>,2(4' — ^),3 — W,3(^ — 0,2] - 

The remaining nonzero components are equivalent to these through the symmetries of the 
Riemann tensor. Note that R(0) (i) (2) (3) is invariant under Lorentz transformations in the ^-direc- 
tion and therefore is an invariant measure of the “twisting” of space-time due to the dragging 
of inertial frames. If V is the gradient operator in the locally nonrotating frame >nd vq is the 
velocity of the stationary frame with respect to the locally nonrotating frame, flo = — 
then 

i£(0)(l)(2)(3) = è(Vw X VZ>o)(l) . 

APPENDIX C 

The Einstein equations for a metric of the type (35) have been written down by a number of 
authors (see Hartle 1967), and the Ricci tensor in the locally nonrotating frame has been given 
by Cohen and Brill (1968). The physical components of the Ricci tensor are easily calculated 
from 

R(a) (ß) = R(y\a) (7) 03) J (Cl) 

so, we will give only those forms used in the body of the paper. 
The scalar curvature 

R = Rwm (C2) 
is 

+ 2{e“2M#,2jU3,2 + 2(^,2 + M3,2)] + e“2M#,3M2,3 + + M2,3)]} (C3) 

+ + ct)t3(of3e-2M*]e2't'~2p . 

The coordinate component 

Ro° = “^(OKO) “I" ^^VR(Q){1) 

18 Ro° = e-v-^-^-^{-[ev+^~^v^,2 - [^+M2"M3^,3],3 

+i[e^"^3-M2Cocof2],2 + . 

The initial-value equation 

R(0)(0) + è-R ^ 2^(1) (2) (1) (2) + R(l)(3)(l)(3) + R(2)(3)(2)(3) = 8^(0) (0) 

can be written 
— 6-^2-M3{[eM3-M2(^)f2] 2 + [^2-M3(e^)t3],3} 

— e“M2_M3{[e“^2(eM3) 2]>2 + [e"M3(6M2)f3],3} (C7) 

€ -P Í>V2 

— i[cO,2W,2e_2/i2 + ü^W,^“2^2*”2’' = StT ^ , 

while the other initial-value equation 

R(o)(d = SttT (o (i) (C8) 

(C4) 

(C5) 
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is 

8.%±4î 

An expression for the physical component R(o)(o) used in § VIII is 

R(om = e'v^-^{[ev+^-^pt2],2 + [ev+*+fl>-fi*v,z\tz} 

— 2m2 + W,3W,3e 2^3]e2^ 2v # 

(C9) 

(CIO) 

APPENDIX D 

In the body of the paper we have not gone to great lengths to write expressions in an ex- 
plicitly coordinate invariant form. For those more interested in the formal structure of the varia- 
tional principle than ease of application, we show how to remedy this. In particular, we analyze 
in detail the coordinate freedom associated with a momentarily stationary hypersurface. 

The action form of the variational principle involves an integral over a trial stationary, axi- 
symmetric configuration. The space-time geometry is, like the equilibrium configuration, char- 
acterized by two Killing vector fields, f (¿)a and f (*)“. The vectors are defined unambiguously in 
an asymptotically flat space-time by requiring that £(t)

a be a timelike unit vector at spatial 
infinity and that be spacelike everywhere, with a magnitude equal to the circumferential 
radius of a circle around the axis of symmetry at spatial infinity. Furthermore, there are in- 
variant spacelike hypersurfaces which have as a unit normal na at each point the timelike unit 
vector which is a linear combination of f(0)a and Ç(t)a orthogonal to (see Carter 1969; 
Thorne 1970). The action /x, as defined by equation (9), can be written in an invariant way as 
an integral over an invariant hypersurface, 

/i = /[- ¿. (di) 

The hypersurface element dSß is a timelike vector equal to nßdS, where dS is the proper three- 
volume element in the hypersurface. If the coordinates are chosen as in equation (1), equation 
(DlJ reduces to equation (9). 

In the energy-extremization interpretation of the variational principle the integral (45) de- 
fining I'x is interpreted as an integral over an only momentarily stationary hypersurface in an 
axisymmetric space-time obeying the Einstein equations instead of an integral over an invariant 
hypersurface in a stationary space-time which does not necessarily obey the Einstein equations. 
The definition of a momentarily stationary hypersurface can be made mathematically precise in 
a way independent of coordinates. Following Wheeler (1964), a spacelike hypersurface ¿ = 0 is 
characterized by its intrinsic geometry as represented by the spatial metric tensor gaß (now 
Greek indices will range from 1 to 3), and by its extrinsic geometry as represented by the 
extrinsic curvature three-tensor Kaß. In terms of the lapse function 

N = (-g00)-1'2 (D2) 
and the shift function 

Na - goa , (D3) 

a spacelike three-vector in the hypersurface, the extrinsic curvature tensor is 

Kaß = 2^ [Na/ß + Nß/a — gaß.o]- (D4) 

A slash now denotes a covariant derivative in the three-space. The three-space is axisymmetric, 
so there is a Killing vector f 

In the absence of rotation a momentarily static, or time-symmetric, hypersurface is defined 
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by Kaß, = 0. In the presence of rotation the tensor Kaß is not zero, but a momentarily stationary 
hypersurface can be defined in an invariant way from the conditions 

£(<t>)a£(4>)ßKaß = 0 (D5) 
and 

= 0 , (D6) 

where Pa<r is a tensor which projects perpendicular to the Killing vector f («¿)a, 

p™ = r - f(*)arw)Vrwiw • P?) 

The conditions (D5) and (D6) imply through the initial-value equations that the energy flux 
in the momentarily stationary hypersurface is entirely in the direction of f (<¿)a. 

To see how conditions (D5) and (D6) reduce to the conditions on the four-dimensional metric 
tensor used to define the momentarily stationary hypersurface in § VII, let xl be the axial angle 
coordinate </> for which f (<¿)a = ôia. The metric-tensor components on the hypersurface are then 
functions only of the ¿ = 2, 3. By coordinate transformation of the type 

0' = « + F(x2
y a

3) , xk' = xk'(x\ x?) , (D8) 

we make the gi* = 0 on the / = 0 hypersurface. If the coordinates in the vicinity of the t = 0 
hypersurface are chosen so 

Na = —ù)(x2
y (D9) 

in equation (D4), the condition (D5) becomes 

and equation (D6) is 

- -¿H Sn.o = 0 , 

2N gkm,° ~ ^ * 

(DIO) 

(Dll) 

The only nonzero components of Kaß are the 

Kim = — 2]^ + gim,o) . (D12) 

The alternative definition of momentarily stationary is that the space-time in the vicinity of 
the t = 0 hypersurface is symmetric under simultaneous change of sign of 4> and t. We now show 
that this is equivalent to the above. The general transformation of coordinates in the space-time 
which leaves the spatial coordinates at ¿ = 0 unchanged, preserves the explicit axial symmetry, 
and preserves equations (D9)-(D11) can be written as a Taylor expansion in t. To order /2, 

^ = U + |W2 , ^ = 0 + /i¿ + , %kr = + vfkt2 • (D13) 

The /o, /i, /z, /s, Äo, and hi are functions of the xk. 
The new and old metric-tensor components are related to first order in t by 

goo = goo(fo + ht)2 + 2goi(f0 + ht)(fi + ht) + gii(fi + ht)2 , 0^4) 

goi = goi(fo + ht) + gn(fi + ht) , (D15) 

gu = gn , (D16) 

go* = fogok + fif Ik + gkmfmt + (goo'/o + goifl)fo,kt + (golfo + gllfl)fl,kt , (D17) 

gik = gn + goifo,kt + gnfi'kt, (D18) 
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gkm = gkm . (D19) 

The metric functions v and co defined by e~v — (—g00)1/2 and co = — goi/gn transform accord- 
ing to 

e-' = eV(/o + ht) , (D20) 

a.' = (« + A + ht)/{f, + ÄoO . (D21) 

It is always possible to choose ha and hi to make goo and goi (or v and w) have zero first time 
derivatives as required by the symmetry under (¿, 0)—> —0). 

Both go* and gi* are zero at ¿ == 0. While their first time derivatives are not required to be 
zero by the symmetry, equations (D17) and (D18) give 

g0k,0 = f02g0kt0' +/lgU,0 + gkmfm + gOo'fofo,k + gOlfofl,h (D22) 
and 

gifc.o = foglk.o + gn[/i,fc — <*>'fo,k\ . (D23) 

(Note that Kaß is invariant under the transformation (D13), as it must be as a tensor on the 
t = 0 hypersurface.) The four functions/o,/i,/2,/3 can always be chosen to make the gojfe.o and 
the gi*:,o equal to zero. Now all first time derivatives of the metric-tensor components are zero, 
and the initial-value equations, which can be written in terms of the extrinsic curvature tensor 
(D12) and the intrinsic scalar curvature 3R, have the same form on the momentarily stationary 
t = 0 hypersurface as they do for the globally stationary equilibrium configuration. 

There is still some coordinate freedom left. The gi^.o remain zero as long as /o and/i satisfy 

fi.k = u'/o t, (D24) 

and the fk can be chosen to keep the gok,o equal to zero. Therefore, a change of scale of the time 
coordinate which gives 

v' = v + F(œ) , (D25) 

co' = jf'eFMdu) (D26) 
0 

leaves the form of the initial-value equations unchanged on the t = 0 hypersurface. The function 
F(co) must be zero when co = 0 if the space-time is to remain asymptotically flat, but is otherwise 
arbitrary. Since the surfaces of constant v and constant co will not coincide in general, even for 
the globally stationary equilibrium configuration, v is not completely arbitrary as a result of this 
coordinate freedom. This is a qualitative difference from the momentarily static case, where 
co = co' = 0 and equation (D24) can be satisfied by an arbitrary /o (Harrison et al. 1965). The 
surfaces of constant co and constant v will coincide to first order in the angular velocity of a 
slowly rotating star. 

The transformation (D25), (D26) leaves invariant the combination e^co,* appearing in the 
initial-value equations (59) and (60), which is consistent with the invariance of the spatial 
metric under the transformation. 
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