
19
7 

O
A

pJ
. .

 .
16

1.
 .

10
3B

 

The Asteophysical Journal, 161:103-109, July 1970 
© 1970. The University of Chicago. Ail rights reserved. Printed in U.S.A. 

STABILITY OF CIRCULAR ORBITS IN STATIONARY, 

AXISYMMETRIC SPACE-TIMES* 

James M. BARDEENf 
Department of Astronomy, University of Washington, Seattle 

Received 1970 Febrmry 12 

ABSTRACT 
Stability criteria are derived for circular particle orbits in the equatorial plane of a stationary, axisym- 

metric space-time in general relativity. They are applied to show that the orbits of the particles making 
up an infinitesimally thin disk are stable as long as the angular momentum per unit mass of the particles 
increases monotonically outward from the axis of symmetry. 

I. INTRODUCTION 

The stability of circular orbits in the equatorial plane of a stationary, axisymmetric 
space-time in general relativity is of physical interest in at least two contexts. First, 
an idealized model for a highly flattened galaxy is an infinitesimally thin disk made up 
of particles (stars) traveling in circular orbits in the gravitational field due to the 
smoothed-out matter distribution of the particles themselves. Such disks have been 
studied in Newtonian theory by Toomre (1964) and Hunter (1963, 1965), among 
others; and Bardeen and Wagoner (1969) have begun an investigation of their prop- 
erties in general relativity. A necessary condition for these disks to be an approxima- 
tion to a physically realizable system is that the individual particle orbits be stable 
(see Chandrasekhar 1942 for a Newtonian analysis). Second, circular particle orbits in 
the exterior metric of a collapsed object or “black hole” in general relativity have played 
an important role in theories (Salpeter 1964; Lynden-Bell 1969) of how matter being 
accreted by the black hole can release energy. So far these theories have been based 
on the Schwarzschild metric, the exterior metric of a collapsed object with zero angular 
momentum. However, one would expect the collapsed object to possess an appreciable 
amount of angular momentum in general, in which case the appropriate metric is 
probably the stationary, axisymmetric vacuum metric of Kerr (1963).1 

In general relativity, as in Newtonian theory, perturbations to a circular orbit in- 
volving motions in the equatorial plane decouple from those involving motions per- 
pendicular to the plane. Both types of stability are considered in this paper. 

Units are chosen such that the gravitational constant G and the speed of light c are 
equal to one. The signature of the metric tensor is (—hH—b). The coordinate x° = t is 
the time coordinate for which the metric is stationary, normalized so goo = — 1 at 
spatial infinity in an asymptotically flat space-time. The coordinate x1 = <¡) is the axial 
angle around the axis of symmetry. The metric coefficients depend only on x2 and xz, 
which I take to be cylindrical coordinates p and z such that the axis of symmetry is 
p = 0 and the equatorial plane of symmetry is s = 0. Greek indices range from 0 to 3; 
Latin indices, from 2 to 3. Repeated indices imply a summation over the appropriate 
range. 

II. THE METRIC 

The geometry of space-time and the energy-momentum tensor are assumed to be 
invariant under a simultaneous change of sign of $ and t. This will be true for the 

* Supported in part by the National Science Foundation. 
t Alfred P. Sloan Foundation Fellow. 
1 See Thorne (1970) for a discussion of the physical significance of the Kerr metric. 
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gravitational field of any purely rotating perfect fluid (Carter 1969). A general form for 
the line element of a stationary, axisymmetric space-time satisfying this additional 
symmetry is 

<fo2 = _(e2, _ - 2o)p2e2ß~2v + p2e2^2vd4>2 + e2»(dp2 + dz2). (1) 

Of the four metric functions v, ß, œ, and p, only v, ß, and w are involved in a discussion 
of circular orbits. They are assumed to be continuous functions with continuous first 
derivatives in the vicinity of s = 0, except that the partial derivative with respect to z 
may be discontinuous across 2 = 0 in the limit that an infinitesimally thin surface 
density is present there. The metric functions are even functions of z. 

The function co(p, z) is the angular velocity of the “local inertial frame”; the con- 
gruence of timelike lines with d<l>/dt = o) has an angular-velocity four-vector (vorticity) 
equal to zero and thus is locally nonrotating. The physical velocity » of a rotating ob- 
server with d<l>/dt = ß, relative to the local inertial frame, is 

» = (ß - <S)peP~2v. (2) 

The velocity four-vector is 

i/o = _ v2)-l/2 ^ Ul = ß£/° , t/2 = J/3 = 0 . (3) 

The covariant component Z7] = pe^vv/{\ — v2)112 is the angular momentum per unit 
mass of the observer. 

The only nonzero components of the energy-momentum tensor allowed by the sym- 
metries assumed are Too, Toi, 7n, and the Tab. Since the only possible energy flux is in 
the ^-direction, one can define a “comoving” reference frame such that the physical 
energy flux relative to this frame is zero. If vm is the physical velocity of the comoving 
frame with respect to the local inertial frame, and if E and Pi are the energy density 
and stress (pressure) in the ^-direction in the comoving frame, then 

^(r00 - hf^Ts) = h(E + Pi) + hTa* (4) 

and 

Pi° = (P + Pi) • (5) 
A Vm 

For a perfect fluid %Ta
a = Pi = P, the isotropic pressure in the comoving frame. 

The Einstein equations for a line element of the type (1) have been derived by van 
Stockum (1937), Hartle and Sharp (1967), Cohen and Brill (1968), and Levy (1968), 
among others. They are equivalent to the following set of equations for v, ß, and w: 

Sv = -Vß'Vv + Veo-Veo + 4*4 (E + Pi) + T<A ; (6) 
L A Vm J 

-V'(,pVß) = -Vß-Vß + 8*e^r„“ ; (7) 
P 

~2V • (p2Vw) = 4V»'* V« - 3V/3-VW - 16*^(£ + Pi) fc—. (8) 
P 1 Vm 

The differential operators A, v, and v are the flat-space Laplacian, divergence, and 
gradient in cylindrical coordinates. The metric function p is not involved in a discussion 
of the stability of circular orbits. 

III. GEODESIC EQUATIONS 

Let the tangent vector to a timelike geodesic representing the orbit of a particle, 
normalized to be a unit vector, be denoted by jp — dof/ds. Physically, pa is the momen- 
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turn per unit mass four-vector of the particle. Because of the time independence and 
axial symmetry of the metric, the energy per unit mass E = —po and the angular 
momentum per unit mass about the axis of symmetry $ = pi are constants of the mo- 
tion. From pap

a = — 1, the equations of motion for a particle confined to the equatorial 
plane are 

dt/ds = p° = e-*v(E - o>$) ; (9) 

d<t>/ds = f = üpü = $ + ue-2,{E _ ^ . (10) 

e^dp/dsY = Q(p, E, $) = e*'(E - a&Y - ^ - 1 • (H) 

The geodesic equations proper are most conveniently derived from 

dpa/ds = -h{fß),apapß ■ (12) 

The parameter s is the proper time along the geodesic. For a = 2, p2 = e2ti(dp/ds), and 
equation (12) is just the partial derivative with respect to p of equation (11), except for 
the term containing (pa)2, which is second order in the deviation from a circular orbit. 
We will consider only first order perturbations in this paper. 

The equation governing perturbations perpendicular to the plane is (12) with a = 3 
and can be written 

- -■.[«-» - «*>■+- «,«-■•*<£ - «*> 

<i3> 
+ ß’3 p2ß2ß—2v + V'*6 2M(^22 + Pz2) - 

Both p2 and pa are first order in the perturbation from a circular orbit. Furthermore, 
except in the extreme limit that matter in the equatorial plane has an infinite volume 
density, the derivative with respect to s of v can be approximated by vta^zvtaa = 
zvtzz near the equatorial plane. To first order, then, 

+ z\v,M[e-*'(E -«$)’ + + w^e-^HE - «*) 
¿tr-2ß 

P* 

~ß. 
e2v-2ß 

~7~ 
& 

i = °- 

(14) 

The motion in the 2-direction is not coupled to motion in the p-direction. 

IV. UNPERTURBED CIRCULAR ORBITS 

Equation (11) governs all orbits in the equatorial plane. The condition that dp/ds is 
momentarily zero is that 

Q(p, £, $) = 0 . (IS) 

In order that dp/ds be permanently zero, the condition for a circular orbit, the equation 

dp 
= 0 (16) 

must be satisfied simultaneously with equation (15). For a given value of p, these are 
two simultaneous equations for the energy E and angular momentum $ of the circular 
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orbit. From equations (9) and (10) the angular velocity Í2 relative to a distant observer 
is given by 

piv-2ß 
Ü = W + p2 E- t&' ^ 

The physical velocity v relative to the local inertial frame is 

_ e2v~ß $ 
V p E — ' 

On the other hand, one can express # and E in terms of v: 

$ = peP-vv/(l — v2)112 ; 

E — o)$ = e’/il - v2)112. 

(18) 

(19) 

(20) 

Equations (15) and (16) combined with (19) and (20) determine the velocity of 
rotation ^ of a circular orbit, 

(1 + pßtP - pvtP)v2 - pe^2v(po)tP)v - pv,p = 0. (21) 

The two solutions to this equation will usually give the velocity of rotation of both a 
“direct” (coz; > 0) and a “retrograde” (coz; < 0) circular orbit. In extremely relativistic 
regions one or both of these solutions may be unphysical, either because the solutions 
for v are complex or more likely because z;2 > 1 for one or both of the orbits, implying a 
velocity of rotation greater than the speed of light. In the Newtonian limit the two 
solutions are “degenerate,” differing only in sign, but the dragging of inertial frames in 
relativity breaks the degeneracy. In a region of strong gravitational fields (v<£ — 1) 
generated by a rapidly rotating body, typically only the direct circular orbit will be 
physically allowed. 

Since Q is zero for all circular orbits in the equatorial plane, its total derivative with 
respect to p must be zero. This gives the equation 

dE/dp = tid$/dp (22) 

which governs the way the energy and angular momentum of circular orbits vary with p. 

V. STABILITY IN THE EQUATORIAL PLANE 

From equation (11) it is clear that a circular orbit is stable against perturbations in 
the equatorial plane if and only if the discriminant Q(p, E, <£) is a maximum as a function 
of p at fixed E and <£ when E and <3? satisfy equations (15) and (16). If Q is a maximum, 
an infinitesimally small perturbation in E and/or $ will inevitably result in a turning 
point in the perturbed orbit when the deviation of p from that of the circular orbit is 
still small. On the other hand, if Q is a minimum, a small deviation in p will grow. 
Therefore, a circular orbit is stable against this type of perturbation if and typically 
only if 

d^P~— < o (23) 

when equations (15) and (16) are satisfied. 
A straightforward calculation gives 

IT-.?2) _i- ^2)^ i v2q _ v2 J^pp—(_ 4^ _ 
2 dp2 K ^ ' ,pp ^vp>pp v Q — o, ^ ^ v'p Q 

- 2v2(ßJ - 2/3- - ßy - 4 ^ • 
P P 

CO. 

CO 
+ V4 CO. 

CO 
(24) 
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I have used (19) and (20) to express E and $ in terms of v after taking the derivatives. 
The second derivatives in equation (24) can be eliminated by using the result of 

differentiating equation (21) with respect to p. The physical velocity v is considered a 
function of Í2 and p via equation (2). After a considerable amount of algebra the result 
can be put in the form 

p2(l - v2) d2Q 
2 dp2 

xfpdü/dp 

L Í2 — « + 
1 - T? 
V2 (25) 

where X is a symbol for the expression 

X = ^(1 + pßtP) + (1 - v2)pptP. (26) 

From this form it is immediately clear that the stability condition (23) is satisfied in a 
region of the equatorial plane where the angular velocity Ü of the circular orbits is 
uniform, if it is assumed that timelike orbits exist (v2 < 1). This establishes the stability 
of the individual orbits of the particles making up the uniformly rotating disk of 
Bardeen and Wagoner (1969) against perturbations in the equatorial plane, even in 
the limit that the redshift from the center of the disk is infinite. The same applies to the 
orbits of the particles of the uniformly counterrotating disk of Morgan and Morgan 
(1969). 

A third useful form of the stability criterion is obtained by differentiating expression 
(19) for the angular momentum of a circular orbit. The result is 

+ (27) 

Comparison with equation (25) gives 

= 
2p v 

pd$/ dp 
X (28) 

A reasonable (centrally concentrated) mass distribution with positive energy density 
and pressure will generate a gravitational field through equations (6) and (7) with 
V'P > 0 and ß,p > 0 everywhere, so it is reasonable to expect that X > 0. Certainly 
this is true for a thin-disk model of the type considered by Bardeen and Wagoner. 
Therefore, one can conclude with a fair degree of generality that the circular particle 
orbits will be stable against perturbations in the equatorial plane in a region where the 
magnitude of the angular momentum of the particle orbits increases outward from the 
axis of symmetry and will be unstable in a region of the equatorial plane where it 
decreases outward. A firm conclusion is that any extremum in the angular momentum 
as a function of p corresponds to a change in the stability of circular orbits. Equation 
(22) shows that an extremum in 4> implies an extremum in the energy E. The inverse 
statement, that an extremum in E implies an extremum in 3>, will typically, but not 
necessarily, be true. It is conceivable that Í2 = 0 for some circular orbit in a highly 
relativistic metric. 

VI. STABILITY PERPENDICULAR TO THE EQUATORIAL PLANE 

Equation (14) governing perturbations perpendicular to the equatorial plane has 
the form of a simple harmonic oscillator. The stability criterion can be written 

w = »,„(1 + »*) + V2 - ß,Itv
2 > 0 , (29) 

0) 
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The second derivatives with respect to z can be expressed in terms of derivatives with 
respect to p and the energy-momentum tensor by using equations (6)-(8). Note that 
all first derivatives with respect to z are zero on the equatorial plane, since the energy- 
momentum tensor is included explicitly without any surface-density terms. The revised 
form of the stability discriminant becomes 

Pw = wv[(£ + Pi) + T°a] + 2 x'2 
(i - »2) 

LÍ2 — o) ]• 

(30) 

The quantity X is still defined by expression (26), and the velocity vr is the velocity of 
the matter element relative to a freely falling observer following the circular orbit 
whose stability is in question, 

Vr 
Vm V 

\ — VVm' 
(31) 

Note that zv2 < 1 if z>2 < 1 and vm
2 < 1. 

Outside the matter distribution the circular orbits are stable against perturbations 
both in and perpendicular to the equatorial plane if and only if 

X (1 - ^ < _ pdti/dp x < 1 - V2 

2 v2 Q — « v2 (32) 

Inside the matter distribution the stability criterion for perturbations perpendicular 
to the plane can be stated simply if the matter distribution is concentrated in a thin 
disk. If the terms from the energy-momentum tensor in equation (30) dominate those 
containing radial derivatives of the potentials, the orbits are stable if E + Pi > 0 
and if E + Pi + Ta

a > 0. The condition is essentially that the gravitational force of 
the matter on itself be attractive, the same as the condition imposed in the singularity 
theorems of Hawking and Ellis (1968) and others. For the zero-pressure disks of Bardeen 
and Wagoner (1969) the condition for stability is just that the energy density be greater 
than zero. 

VII. CONCLUSION 

Which of the different forms for the stability criteria are most convenient to apply 
to the circular orbits in a given metric will depend on thé particular case, on whether 
the metric is known analytically or just numerically, for instance. The circular orbits of 
the particles making up a “zero pressure” disk in general relativity will be stable if 
and only if the angular momentum per unit mass increases monotonically outward in 
the disk, regardless of how strong the gravitational fields generated by the disk are. 
Equilibrium models of a uniformly rotating disk exist in which the magnitude of the 
relativistic analogue of the Newtonian gravitational potential, v, is arbitrarily large in 
the vicinity of the disk (y—> — <»). The stability of the individual particle orbits 
says nothing about stability of a disk against collective motions in which the gravitational 
field is affected by the perturbations. Even in the Newtonian limit such a disk is un- 
stable against fragmentation (Toomre 1963; Hunter 1963). 

The properties of circular orbits in the equatorial plane of the Kerr metric will be 
treated in detail in a separate paper. Some aspects have been considered by Felice 
(1968), and Carter (1968) has obtained equations for general particle orbits in the Kerr 
metric. 
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