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I. INTRODUCTION 

Magnetic fields in the astrophysical universe have been a subject of increasing concern 
and observational study over the past two decades. One appreciates today that magnetic 
forces—like gravitation and nuclear forces—link together such diverse phenomena as the 
interstellar medium, cosmic rays, galactic structure, solar flares, the internal rotation of 
the Sun, and supernovae. 

The weight of unanswered questions concerning magnetic fields probably still exceeds 
our accumulated knowledge of them. But observations have furnished a sufficiently 
broad base of information that theory is now able to make some general statements on 
the origin of the magnetic fields in the Universe. I propose to review for you this evening 
the present understanding of their origin. 

Wherever we look about us in the Universe, there are magnetic fields, fields of suf- 
ficient strength as to have interesting effects. Earth itself has a field of half a gauss at its 
surface, and 102 gauss in its core. The external field of Earth is basically a dipole, declin- 
ing outward for some 106 km to a value of 10“4 gauss, where the extended field of the Sun 
takes over. The presence of the geomagnetic field is essential for such ‘‘unconventional’5 

effects as the aurora, the Van Allen radiation belts, and atmospheric whistlers. 
The Sun shows a mottled magnetic face, with general fields of 1-2 gauss over most of 

the surface, and fields concentrated to densities of 10-103 gauss in places on the surface 
to form the so-called active regions (see review of Howard 1967). The weaker fields of 
the Sun are extended by the solar wind, filling the entire solar system to distances of 
30 a.u. or more. It should be borne in mind that both Earth and the Sun are opaque 
bodies, so that we can only infer from the fields at their surfaces what fields they may 
contain in their interiors. The field of Earth presumably extends out from the liquid 
metal core. The field of the Sun presumably extends out from the convective zone. 

There is some observational evidence, and every theoretical reason to expect, that 
most other stars have magnetic fields. Indeed, the fields of some stars are so strong as to 
be directly observable. So far the fields of about 102 stars—mostly class A—have been 
observed directly (Babcock 1958, 1960ö; see review by Preston 1967). To be observable, 
it is necessary that the mean field over the hemisphere facing the observer be 102 gauss 
or more and that the axis of rotation of the star point at the observer so that the lines 
are not broadened by rotation. Thus the magnetic fields of the Sun would be completely 
unobservable if we were too far away to resolve small portions of the disk. The fact that 
100 stars have observable fields attests to the commonness of strong stellar magnetic 
fields. I never cease to marvel at HD 215441 with its mean field of 34 kilogauss over the 
observable hemisphere (discovered by Babcock 19606). The stresses in such a field are 
100 times those in the densest sunspot field at the surface of the Sun. The pressure is 
4 X 107 dynes cm~2, or 40 bars, 550 pounds inch“2. We can only guess at what the peak 
fields in the star might be. 

* The Henry Norris Russell Lecture 1969 August 12, the 130th meeting of the American Astronomi- 
cal Society, State University of New York, Albany. 
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And while speaking of strong fields we should not fail to note that the pulsar phe- 
nomenon looks more and more like a rotating neutron star (Gold 1969) with a surface 
field of 1010-1012 gauss (Pacini 1968; Gunn and Ostriker 1969). Presumably so strong a 
field arises from the collapse of a star with a field of 1-102 gauss to the 10-km size of the 
neutron star. Supernova remnants such as the Crab Nebula are a related phenomenon, 
presumably with fields from the supernova and pulsar which created and maintain them. 

The interstellar spaces in our Galaxy contain magnetic fields which, on the average, 
are oriented parallel to the disk and more or less in the azimuthal direction (Hiltner 1949, 
1951, 1956; Davis and Greenstein 1951; Smith 1956; Behr 1959; Gardner and Davies 
1966; Berge and Seielstad 1967; Davis and Berge 1968). The rms fluctuations in the field 
are comparable to the field itself (Hiltner 1956; Berge and Seielstad 1967; Jokipii and 
Lerche 1969; Jokipii, Lerche, and Schommer 1969). There still exists a wide range of ob- 
servational speculation on the strength of the field in the disk of the Galaxy (van de Hulst 
1967; Verschuur 1969). The existence of a quasi-steady background of cosmic rays, 
originating from sources within the disk of the Galaxy and retained by the fields in the 
disk for some 106 years before escaping from the Galaxy, indicates that the galactic field 
has a mean strength in the neighborhood of 3-5 microgauss (Parker 1969a). This is more 
or less in agreement with the integrated field densities obtained from Faraday-rotation 
measures (Morris and Berge 1964). 

What the magnetic fields are in intergalactic space we have no idea. Strong fields, of 
10~3 gauss and more, are often associated with extragalactic radio sources because much 
of the emission appears to be synchrotron radiation, but these are special regions in 
special galaxies. It is usually assumed that in the space between the galaxies the field is 
small compared to 1 microgauss. 

Magnetic fields transfer stresses, and their time variations induce electric fields, so 
that they are responsible for much of the nonclassical activity of the outer atmospheres 
of the planets, the Sun, stars, and the Galaxy. For instance, in the absence of magnetic 
fields the Sun would be without active regions, prominences, plages, flares, and sunspots. 
The solar corona and the solar wind would be minimal, because magnetic fields are re- 
sponsible for most of the heating of the solar corona. There would be no fast particles 
from the Sun, no cosmic rays to fill the Galaxy, etc., no Van Allen belts, and no aurora. 
There would be no radiation hazard in space. Radio emission would be reduced to the 
thermal level. Altogether, the Universe would be a more orderly place, but certainly far 
less interesting than the bag of tricks in which we find ourselves. 

Now let us inquire as to why there are magnetic fields in the astronomical Universe. 
This question had its beginnings (in Western history) with Gilbert^ suggestion that 
Earth is a lodestone. The question was expanded in scope with Hale’s (1908,1913) obser- 
vation of magnetic fields in sunspots, leading to Larmor’s (1919) suggestion that the sun- 
spot fields are produced by the swirl of the gases in the Sun. Cowling (1934) took up the 
question in the thirties, producing his theorem on the impossibility of stationary dy- 
namos with axial symmetry. Alfvén, at the end of the thirties, made two notable points, 
that the magnetic lines of force are carried bodily with the fluid and that low-frequency 
disturbances propagate as waves in the field (Alfvén 1950). In 1945 Elsässer began a 
study which introduced the modern concepts of the generation of astronomical magnetic 
fields in homogeneous dynamos. 

But there is a more fundamental question that should be considered first. Extensive 
magnetic fields are possible in the Universe only because of the general abundance of free 
electric charges and the general absence of magnetic charges, or monopoles. An abun- 
dance of free magnetic monopoles would permit large currents of monopoles in the mag- 
netic fields, in the same way that the existing abundance of free electrons neutralizes 
electric fields. Free electrons and ions generally limit electric potential differences to the 
thermal energy of the background plasma. Presumably an abundance of monopoles 
would similarly limit magnetic fields. 
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The observed lack of magnetic monopoles in the terrestrial laboratory has been noted 
as a curious fact for many decades. It has been known for a century that electric and 
magnetic fields appear with complete symmetry in Maxwell’s equations, so why do not 
electric and magnetic charges appear equally in nature? One answer is that the structure 
of electrons and monopoles lies outside the range of Maxwell’s equations, so electric- 
magnetic symmetry in Maxwell’s equations does not compel a belief in the symmetry of 
electrons and monopoles. But the idea is tantalizing, and there have been determined 
efforts to find, or to place an upper limit on the abundance of, magnetic monopoles. 

The idea of electric-magnetic symmetry would suggest that the magnetic charge g is 
just equal to the electric charge e. If this is correct, it would make the identification of a 
monopole extremely difficult. On the other hand, arguments based on quantum electro- 
dynamics (Dirac 1931, 1948; Schwinger 1968) suggest that g might perhaps be 137/2 or 
137 times e? Though it has been argued that quantum electrodynamics can also give 
g = e (Cabibbo and Ferrari 1962 ; see discussion of the problem by Wentzel 1966), efforts 
to find monopoles have been based largely on the optimistic view that, if monopoles 
exist, they have a charge g = 137e. 

The point I want to make here is that attempts at direct detection of monopoles show 
that monopoles are rare, if they exist at all, but the upper limit on the abundance of 
monopoles placed by experiment does not rule out important dissipation and distortion 
of astrophysical fields by magnetic monopoles. It is customary to ignore magnetic mono- 
poles completely in theoretical discussions of astrophysical magnetic fields. Lacking any 
evidence for their existence, it is the only reasonable course. But we should be aware 
that experiments do not yet force this hypothesis upon us. The problem is of such im- 
portance that a brief elaboration is in order. 

If free monopoles exist in the tenuous gases in space, they would be accelerated to 
very high energies by the magnetic fields. For instance, if g = £, a typical sunspot field 
of 108 gauss over 109 cm would accelerate a monopole to 3 X 1014 eV, the geomagnetic 
field to 5 X 1010 eV, and the galactic field (say, 10“6 gauss over 5 kpc) to 1018 eV. This, 
together with the possibility that monopoles may be created by very high-energy particle 
interactions, has led investigators to search for monopoles among cosmic rays and among 
the collision products of cosmic rays. One may look for monopoles either in massive solid 
objects that have been exposed to monopoles and/or cosmic rays (Goto, Kolm, and 
Ford 1963; Fleischer, Jacobs, Schwarz, and Price 1969) or directly in the secondary 
cosmic-ray particles in the terrestrial atmosphere (Carithers, Stefanski, and Adair 1966). 
If g > 137¿/2, and if present theoretical estimates of the attachment of monopoles to 
matter are correct, then the experiments indicate an upper limit of 10-13 monopoles 
(cm2 sec)""1 incident on the ground. This implies a density of 3 X 10~24 cm”"8 in space, or 
one per 1028 nucleons. Studies of meteoritic material suggest even fewer monopoles, an 
upper limit of IQ-16 monopoles (cm2 sec)”1. Or, to state the results in a different way, 
examination of about 1 kg of meteoritic material failed to detect any monopoles. If this 
means that there were no monopoles in the 1 kg, the relative abundance is less than one 
monopole per 1027 nucleons. 

More recently it has been established (Fleischer, Price, and Woods 1969; Fleischer, 
Hart, Jacobs, Price, Schwarz, and Aumento 1969) that the flux of monopoles with 
g > 400¿ penetrating into terrestrial rocks is less than 10”19 (cm2 sterad sec)”1 (based on 
the absence of monopole tracks in samples of mica and obsidian) and the flux of mono- 
poles with g > 137e penetrating into the deep oceans is less than 4 X 10“18 cm”2 sec 
based on unsuccessful attempts to extract monopoles from manganese nodules. These 
limits appear to rule out the possibility, suggested by Porter (1960), that the very high- 

1 If g does not have a value 137e, etc., then there arise ambiguities in the phase differences of wave 
functions around closed paths, and a Hamiltonian formulation of quantum mechanics is not possible. 
Note that the requirement that g = 137e is sufficient to provide a bound state of an electron in the field 
of a monopole, i.e., the de Broglie wavelength is equal to 2ir times the cyclotron radius. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

O
A

pJ
. .

 .
16

0.
 .

38
3P

 

386 E. N. PARKER Vol. 160 

energy cosmic rays, above 1017 eV, may be monopoles. The experiments failed to find any 
monopoles in about 8 kg of manganese nodules, and, if this means that none were present, 
it places an upper limit of about one per 1028 nucleons in the nodules. But the experi- 
menters have been careful to point out that their failure to find monopoles means either 
that monopoles are exceedingly rare or that their charge g is small (~e) or that they at- 
tach more firmly than calculations have indicated, etc. So caution must be exercised in 
applying the tentative limits on monopole abundance. 

It is interesting, then, to inquire what abundance of free magnetic monopoles would 
neutralize or dissipate the existing magnetic fields. If it is assumed that a magnetic field 
does not extend to infinity, the distortion of the usual solenoidal magnetic field By 
(VBt = 0) by a longitudinal field Bl produced by monopoles is related to the mono- 
pole number density n by 

V*Bl = 4irng . 

Thus, a field Bt over a scale L can be grossly distorted (Bl ^ Bt) by a net monopole 
density 

Bt 
n = 1 F • 4irgZ, 

For g = 137e, this requires one monopole per 103 cm8 to produce a longitudinal field of 
the same strength and scale as the geomagnetic field. Within the solid body of Earth, 
this amounts to about one monopole per 1027 nucleons. Gross distortion of the general 
solar field would require one monopole per 106 cm3, or one per 1026 nucleons in the con- 
vective zone. Distortion of the galactic field would require one per 1021 cm3 or lO21 

nucleons. 
The solenoidal or transverse component BT of a magnetic field, produced by an 

electric current density j = cV Y, Bt/^tt is dissipated by magnetic current J = gnu, 
where u is the drift velocity of the monopoles.2 The rate of dissipation of field energy 
per unit volume is 

d&/dt = J’B, 

so that the characteristic dissipation time r# is 

TD ^ B2/Srrngu* B . 

As already noted, free monopoles are accelerated to high energies in the fields in tenuous 
gases, so it is not unreasonable to suppose that | u| ^ c. If the particles have been 
accelerated by the local field, then u is more or less parallel to B and td ^ B/Swnc. If 
this dissipation time is less than the growth time rG of the field, then the dissipation 
inhibits or prevents the growth of the field. Thus, the existence of fields in tenuous gases 
suggests that the number density n of monopoles is bounded by 

n < B/8wgCTQ. 

The growth time of a large-scale field on the Sun is at least as large as 106 sec, so with B~\ 
gauss we have n < 10“11 cm-3 in the solar corona, or less than one monopole per 1019 

nucleons. In interstellar space where r<? ^ 108 years and B ^ 10~6 gaiiss, we must have 
n < 10"26 cm-3 or less than one per 1026 nucleons. If instead we compare the monopole 
dissipation time with the dissipation time of the interstellar field by ambipolar diffusion, 
say Î010 years, then one monopole per 1028 nucleons would significantly alter the rate of 
dissipation. 

2 Maxwell’s equations are then written 4*7 + dE/dt = cvX B and + dB/dt = — cV X E, of 
course, so that the energy equation is (d/dt)(E? + B2)/Sir = —j'E — 7*5 + y (cE X B/4t). Since 
yB is not zero, one may not employ the vector potential to represent the magnetic field (Dirac 1931; 
Wentzel 1966). 
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Altogether, then, we conclude that unless magnetic monopoles (with g = 137e) are 
much less abundant than about one per 1027 nucleons in the solid body of Earth, one per 
1026-1028 nucleons in interstellar space, and one per 1025 nucleons in the solar convective 
zone, they may introduce serious distortion and/or dissipation of the magnetic fields 
observed there. If g = e, these limits are 1025, 1024-1026, and 1023, respectively. Experi- 
ments aimed at direct detection of monopoles as yet give no limit on the abundance of 
monopoles if g is as small3 as e, and give only g < 1027-1028 nucleons in meteorites and 
deep-ocean nodules if g > 137/2. Hence the experiments do not exclude the possibility 
that magnetic monopoles play a role in distorting and dissipating the fields which we 
observe in space, and whose origin and behavior we are endeavoring to understand with 
the assumption that monopoles are absent. 

I call this problem to your attention because I think it is an important gap in the 
present fabric of astrophysical knowledge and deserves further theoretical and experi- 
mental inquiry. 

It is amusing to note that in keeping with the spirit of present speculation on sectors of 
antimatter in the Universe—the speculations are motivated by a philosophical convic- 
tion of particle-antiparticle symmetry—we should postulate that portions of the Uni- 
verse are dominated by magnetic monopoles and free of electric charges in order to pre- 
serve the basic electric-magnetic symmetry of Maxwell’s equations. In such a Universe 
each electric effect of our own world would have its complementary magnetic effect and 
vice versa. Magnetic fields there would be shorted out as effectively as electric fields are 
here. If we suppose that g = e, we point out that stars made of such magnetic material 
are indistinguishable, at a distance, from ordinary stars. And if one objects that the 
quantum-mechanical arguments require instead that g = 137e, in which case magnetic 
material would appear very strange indeed, we need only reply that without a doubt 
there is at this very moment a magnetic theoretician in that magnetic corner of the 
Universe arguing that electric monopoles, if they exist, must have e = 137g, so that a 
hypothetical universe composed of electrical particles (electrons and protons) would be 
clearly distinguishable from real magnetic particles. 

But speculations of this general type, while amusing, do not appear fruitful. 

II. BASIC EQUATIONS 

Magnetic fields in our monopole-free Universe appear in association with electric cur- 
rents. Under the usual circumstance that the particle motions are slow compared with 
the speed of light, the current density j and the magnetic field are related by 

47r/ = cV X B (1) 

(Alfvén 1950; Elsässer 1954), where |7*| is in esu and | B\ is in gauss. Except for the 
special case of the small currents produced by the thermal effects and/or inertial effects 
(Biermann 1950), the current is driven by the time derivative of the magnetic field via 
the induced electric fields E, 

V X E = - (2) 

The magnetic field is related to the motion i;(<$Cc) of the gases in the Universe by noting 
that essentially everywhere in the Universe (except in such odd places as cold planetary 
atmospheres) there are so many free low-energy electrons that the electric fields E' in 
the gas (on a scale larger than the Debye length, typically 10 m or less) are very weak, 
sufficient only to drive the weak currents required by equation (1). If we choose to work 

3 The quantum interferometer is the only device to date sufficiently sensitive to detect such monopoles 
(Vant Hull 1968). I am indebted to R. L. Fleischer for pointing out this work. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

O
A

pJ
. .

 .
16

0.
 .

38
3P

 

388 E. N. PARKER Vol. 160 

with a coordinate system relative to which the gas has a velocity v, then a Lorentz 
transformation tells us that the field E in the coordinate system is 

E = E' - vX B/c (3) 

with terms of 0(v2/c2) neglected. The magnetic fields in the two frames are equal, to 
0{v2/c2), and need not be distinguished, B = Br. Since the free electric charges neutralize 

equations (2) and (3) together give 

dB/dt = VX(v X B) . (4) 

If the gas offers some resistance to the passage of the electric current produced by B 
(eq. [1]), then E' is not precisely zero and an additional term appears in equation (4) to 
represent the dissipation of the magnetic field. In the simple case that the current is re-; 
lated to E' by the scalar form of Ohm’s law, j = <rE', the dissipation takes the form of a 
diffusion term,4 

dB/dt = VX(vX B)+ VV2B , (5) 

where rj = c2/47r<r. In gases which are only partially ionized and/or of low density the 
dissipation term may be rather more complicated (see discussion in Spitzer 1956; Cow- 
ling 1957a). Equations (4) and (5) will be sufficient for the purposes of this exposition. 

As Alfvén (1950) first pointed out, the magnetic lines of force are transported bodily 
by the fluid velocity v (eq. [4]) permitting graphic representation of the changing field. 
Only if there is significant dissipation do the lines slip relative to the fluid or reconnect 
among themselves (see examples in Parker and Krook 1956). In fields with scaleX the 
ratio of the dissipation term rjV2B to the term V X (v X 5) is equal to the reciprocal of 
the magnetic Reynolds number 9Îm = vL/rj. In the astrophysical universe rj is typically 
105 cm2 sec-1 or less and the magnetic Reynolds number 106 or more, so for considering 
the gross behavior of magnetic fields equation (4) suffices in most cases. Thus the mag- 
netic lines of force, which are the instantaneous solutions of 

dx _ dy _ dz 
BX By Bz 

(6) 

move with the fluid and, because of their graphic representation of the field B, occupy 
the center of our attention. 

The stresses in the magnetic field B, or Bi, are described by the Maxwell stress tensor 

Mii~ 5,7 8x+ 4ir • (7) 

The first term represents an isotropic pressure R2/87r, and the second term a tension 
BiBj/^T along the lines of force. We will not be concerned directly with dynamical prob- 
lems here, but it must be borne in mind that in circumstances where the magnetic- 
energy density B2/%tt is comparable to the kinetic-energy density \pv2 of the gas, the 
Maxwell stresses Mu are comparable to the Reynolds stresses 

ffiij ~ pViVj, (8) 

and the magnetic field significantly affects the fluid motion. 

III. THE ROLE OF PRIMORDIAL FIELDS 

When we come to consider the origin of the magnetic fields presently existing in the 
universe, there are a number of considerations that must be weighted before we can 

4 More precisely, V X (17V X B), which reduces to if v£ = 0 and 77 is independent of position. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

O
A

pJ
. .

 .
16

0.
 .

38
3P

 

No. 2, 1970 ORIGIN OF MAGNETIC FIELDS 389 

form an opinion. The science of astronomy gives us no more than a snapshot of the mag- 
netic fields, which have lives of 108 years or more. There are a number of ideas that are 
consistent with the snapshot and that can be evaluated only upon careful consideration 
of all their implications. 

Consider the role of primordial fields—the initial magnetic conditions in the Universe. 
Cowling (1945,1953) has pointed out that the size and electrical conductivity of astro- 
nomical bodies is so large that primordial fields entrapped in the bodies would not decay 
significantly in the life of the Universe. Putting i; = 0 in equation (5) leads to a dif- 
fusion equation, indicating a relaxation time L2/Av) for magnetic fields of dimensions L. 
The decay time for a field permeating the Sun is 1010 years, and about 1010-1012 years for 
a field in the disk of the Galaxy (including ambipolar diffusion). On this simple basis one 
might argue that the present fields are simply the primordial fields perhaps considerably 
distorted by V X (t> X Æ), but generally preserved by the large value of L2/rç. 

To pursue this further, the formation of galaxies from primordial gases, as well as the 
formation of individual stars from interstellar gas within galaxies, is largely a process of 
condensation and compression, which would have the effect of enormously increasing the 
strength of fields entrapped in the gas. Thus, suppose, for instance, that the gas of which 
the Galaxy is composed was once part of the intergalactic medium, which today may 
have a density of 10”6±1 atom cm~8. The mean density in the Galaxy is some 105 times 
greater, so that if the uncondensed intergalactic material has a magnetic field of Iff”9 

gauss and a density of Iff"5 atom cm-3 today, we expect the material in the Galaxy, where 
the mean density is 1 atom cm“3 or more, to have a field of more than Iff“8 gauss in inter- 
stellar space. This is comparable to the observed interstellar fields. Note further that 
Iff“6 gauss in interstellar space where the density is 1 atom cm“3 suggests more than Iff6 

gauss upon condensation into a star, leaving plenty of room for losses and still account- 
ing easily for the observed stellar fields. 

Now there is no objection at the present time to intergalactic fields of Iff“9 gauss. The 
energy density is, and has always been, negligible compared with the radiation density. 
Isotropic expansion of a volume of gas of radius R reduces the magnetic field in the gas 
in proportion to 1/Æ2, with the result that a magnetic-energy density declines with the 
expanding Universe in direct proportion to the primordial radiation density. It is be- 
lieved that the so-called 3° K blackbody radiation represents the primordial radiation 
field. The 3° K radiation-energy density is 10“12 erg cm“3, which is equivalent to the 
energy density of a field of 5 X iff“6 gauss. Thus an extragalactic field of, say, Iff-9 gauss 
has an energy density of 4 X Iff"20 erg cm“3, which is negligible compared with the radia- 
tion density today, and hence negligible at all times in the past. 

It is very tempting, therefore, to theorize that the present magnetic fields of the 
Galaxy and of the stars are simply a concentration in the dense objects of a primordial 
magnetic field. In the Galaxy such an explanation is adequate (in view of present igno- 
rance of both galactic and intergalactic fields), and for stars such an explanation is rather 
more than adequate. But, unfortunately, closer examination of the problem demonstrates 
that there are other and more powerful effects of work which render the question of 
primordial fields almost completely irrelevant. 

The magnetic field of our own planet is a good place to start the discussion. It has a 
weak field of half a gauss at its surface, easily accounted for by the compression of 
interstellar fields. But it turns out that Earth is so small that the decay time of the geo- 
magnetic field is only about 4 X 104 years (Elsässer 19506,1956a). Any primordial fields 
would have long since disappeared. What is more, it is now known from fossil magnetism 
that the geomagnetic field is more or less steady in time except that it suddenly reverses 
at irregular intervals of Iff8 years (Runcorn 1955; Wilson 1966,1967; Cox and Dalrymple 
1967). Something is going on in the Earth today that is responsible for today’s geo- 
magnetic field. The characteristic generation time is apparently Iff4 years or less, so that 
the field today is independent of what occurred more than Iff4 years ago. 
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The field of the Sun is another example of active magnetic generation today, wiping 
out all traces of earlier fields in periods of only 102 years. Within about 35° of the poles 
the magnetic field of the Sun resembles a magnetic dipole, with a strength of 1-2 gauss 
directed in at the north pole and out at the south pole, just like Earth (Babcock and 
Babcock 1955; Babcock 1959; Babcock 1963). But prior to 1958 the polar fields had the 
opposite sense. And it is expected that the present polar fields will reverse by the end of 
1970 (in association with the present sunspot maximum [Waldmeier I960]) to take up 
the earlier orientation in association with the 22-year sunspot cycle. 

Toward the solar equator the fields are migratory and, at the visible surface, much 
more irregular. The sunspots evidently arise from toroidal bands of field beneath the 
photosphere with opposite signs north and south of the equator. The toroidal bands 
migrate from latitudes of about 45° to the equator in each 11-year half of the sunspot 
cycle, with successive bands of opposite sign. Some process obviously builds up the fields 
and destroys and reverses them every 11 years. 

It is evident from these two examples that the maintenance of magnetic fields in 
planets and stars, if not in interstellar space, is an active process from which all traces of 
primordial fields have long since vanished. The term V X (v X B) in equation (5) plays 
the dominant role and cannot be neglected. It is these active processes for the rapid 
creation and destruction of magnetic fields that are of central interest for understanding 
the observed fields. 

IV. GENERATION OF FIELDS BY FLUID MOTIONS 

If we conclude that the magnetic fields in the Universe today result from contempo- 
rary generation of fields, then we must inquire into the effect of the induction term on the 
right-hand side of equation (5). 

First of all, consider the magnetic-field structure of the Sun and of the Galaxy. It ap- 
pears that the largest scales of the fields are determined directly by the large-scale fluid 
motions in which the field is generated and have little to do with the small scales on which 
the generation of field takes place. Thus the extension of the magnetic lines of force of the 
general solar field outward through the solar system is a direct result of the solar wind. 
The solar field extends as far as the wind blows, presumably 30-1000 a.u. The interstellar 
magnetic field, i.e., the galactic field, is stretched out in the azimuthal direction around 
the galactic disk by the nonuniform rotation of the Galaxy, so that its scale is evidently 
very much in excess of 1 kpc, even though the small-scale structure across the disk is 
100 pc or less (see summary and analysis of the observations in Jokipii and Lerche 1969). 
Our primary concern here is with the generation of the magnetic lines of force, and only 
incidentally with the simple stretching of the lines of force to the large scales on which 
we observe them. 

a) Turbulent-Velocity Fields 

Much of the fluid motion in interstellar space, the solar photosphere and convection 
zone, etc., appears to be chaotic, or turbulent. So consider that problem first. Historically 
there are two basic points of view on the effect of turbulent fluid motions on a magnetic 
field. Alfvén (1947; Biermann and Schlüter 1951; Biermann 1953; Chandrasekhar 1955) 
suggested that the close coupling of the magnetic field and the velocity field leads to 
equipartition of energy between the two systems in the final state of dynamical equi- 
librium. Write the equation of motion as 

d / d /BjBj 
dXiV SwJ ^ dXjK 47T 

(9) 

and write equation (4) as 

dBj 
dt 

vßi) 
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for an incompressible, inviscid, and infinitely conducting fluid. One might expect that 
two stress fields—the Reynolds and Maxwell stresses—so closely and symmetrically 
coupled, as indicated by equation (10) and by the last term on the right-hand side of 
equation (9), would share the energy equally between them after some significant period 
of interaction. On this basis one expects equipartition of energy between the chaotic 
fluid motions and the chaotic magnetic field which they create: 

<£2/87r>^ (11) 

To put the idea in its most seductive form, we note, after Elsässer (19506), that the 
equations can be symmetrized by introducing the variables 

Ui = + Bi/(47rp)1/2, Vi = - Bi/^irp)^ , 

whereupon equations (9) and (10) can be written 

The equations treat Ui and and hence Vi and Biy with complete symmetry, except 
for the pressure term on the right-hand side in which B2/%tt appears directly, but p ap- 
pears in place of %pv2. We can, if we choose, make the initial conditions and the boundary 
conditions symmetric in Ui and FV So it is not unreasonable to expect equipartition of 
energy between Ui and Vi, and between the Reynolds and Maxwell stress systems of 
Vi and Bi. 

On the other hand, there is an equally plausible point of view based on the fact that 
the equation for the vorticity w* in a hydrodynamic fluid can be written 

dcot- 
~dt 

_d_ 
dxj 

(ViCOj — VjOOi) , (12) 

in precise analogy to equation (10) (Batchelor 1950; Chandrasekhar 1950, 1951). The 
magnetic lines of force are carried with the fluid exactly as are the vortex lines. Hence 
one might expect that a magnetic field is transformed by a given velocity field in exactly 
the same way as the vorticity. We know from studies of hydrodynamic turbulence that 
the vorticity is large only in the small eddies, from which one would expect that the 
magnetic field builds up only in the small eddies (provided, of course, that the conductiv- 
ity of the fluid is sufficiently high that the small eddies are able to carry the field with 
them). On this basis, then, one expects equipartition of energy only in the small eddies, 
leading, in place of equation (11), to 

(B2/Sw ) ^ |p (V2 )sman eddies <£ |p (v2 ) . (13) 

Both ideas have been restated in a variety of contexts by various authors. Equiparti- 
tion is a popular point of view in the astronomical literature, particularly when one is 
dealing with little-known circumstances. The field-vorticity analogy has been developed 
from several different physical models (Moffat 1961; Parker 1963; Pao 1963; Saffman 
1964). 

Unfortunately, observations have been too limited to settle the question of which, if 
either, point of view is the correct one. Turbulent magnetic fields must be resolved to be 
measured, so that the best information available is from the Sun, where fields of 1-3500 
gauss are observed on scales of 103 km and larger in the photosphere. The kinetic-energy 
density in the photosphere is 102-103 ergs cm-3 corresponding to the energy density of 
fields of the order of 102 gauss. This would appear to support neither theoretical view. 
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Recently Kraichnan and Nagarajan (1967) have examined the complete hydromag- 
netic equations in detail, and showed that the dynamical interaction of the Fourier 
transforms of Vi and Bi involve a variety of terms whose relative values depend upon the 
relative phases of the various interacting Fourier components. They identify which terms 
must be retained and which suppressed to arrive at the field-velocity analogy, and like- 
wise for the field-vorticity analogy. They conclude that the problem is too subtle to be 
settled by the heuristic arguments that have been employed so far, and a formal calcula- 
tion is the only resolution of the dilemma. They point out, too, the difficulty of an ade- 
quate formal calculation. 

There is another approach, of interest for a very restricted aspect of the problem, 
which employs the theory of random functions (Parker 1969a). If the magnetic field is 
weak and if one imagines a turbulent-velocity field with a correlation time very short 
compared with the dimensions of its eddies divided by the velocity of the eddies, then the 
velocity and magnetic fields are uncorrelated random functions, and it is possible to show 
that equation (10) leads to a growth of the Fourier components of the field at all wave- 
numbers. Stopping the turbulence leads to decay of the field at large wavenumbers, with 
the small wavenumbers surviving. Hence, alternate periods of turbulence and quiet 
would appear under these hypothetical conditions, to build up fields on a large scale 
(small wavenumbers). We have suggested the possibility (Parker 1969&) that the mag- 
netic lines of force of which the galactic field is composed have been generated in this 
way, and have then been stretched out and compressed to the present orientation and 
strength by the nonuniform rotation of the Galaxy. But there must be something more 
than a physical analogy between the turbulence in interstellar space and the ^hypo- 
thetical turbulence with a short correlation time before we can say that turbulence is, in 
fact, the origin of the present galactic field. 

Altogether, then, it seems that the question of two decades’ standing, as to the genera- 
tion of magnetic field by random turbulence, is still unanswered. Nor do we know the 
origin of the galactic fields. Our fondest theories are still only ideas without a solid 
foundation. 

V. GENERATION OF FIELDS BY ORDERED FLUID MOTIONS 

If we have failed so far to understand the magnetic effects of disordered turbulent 
motions, there remains the question of the magnetic effects of suitably ordered motions, 
the so-called hydromagnetic dynamo. The vague notion of the generation of magnetic 
fields by ordered fluid motions goes back to Larmor’s suggestion that the swirling pattern 
in the photosphere around a sunspot represents the fluid motions which generate thè field 
of the spot (Larmor 1919). Cowling (1934, 1945, 1957a, b, 1965a, b, 1968), Elsässer 
(1955), Backus and Chandrasekhar (1956), Lortz (1968), and Jayanthan (1968) looked 
into the question of the generation of magnetic fields by the motions in a homogeneous 
body of conducting fluid and demonstrated the fundamental theorem that fluid motions 
with axial symmetry cannot maintain a steady magnetic field. 

The next important step was taken by Elsässer (1945,1946,1947,1950a, 1956a, b). 
Confining his attention to the field of Earth as the one example most clearly defined by 
observation at that time, he pointed out first that none of the effects of ferromagnetism, 
magnetostriction, thermoelectricity, etc., to which the geomagnetic field was commonly 
attributed at that time, were tenable in light of modem knowledge of the properties of 
matter. And therefore the only possible explanation of the field lay in the convective mo- 
tions in the liquid core of our planet. It was known from seismic studies that Earth has á 
liquid-metal core with a radius of half of the radius of Earth. The slow variation of the 
small-scale inhomogeneities in the geomagnetic field over the past couple of centuries 
indicates that the core is convecting, with velocities of the order of 10-2 cm sec"1. There 
is some seismic information that there may be a small solid core in the center of the 
liquid core, but the question is not important here. The electrical conductivity of the 
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liquid-metal core is of the order of 1016 sec“1 (esu) (about the same as ionized hydrogen 
at 106 °K), so that the resistive diffusivity of the core is ^ = â/kircr = 105 cm2 sec-1. 
The relaxation time for a field extending over the radius a of the core is a2/rj ^ 1012 

sec = 3 X 104 years. But the convective velocities v in the core traverse the radius a 
in a time a/v^¿ 1010 sec or 3 X 102 years, so that they should carry the field with them 
to a large degree (the magnetic Reynolds number = av/ri = {a2/r¡){v/a) ^3 X 102). 
Thus there was a good impedance match between the liquid motion and the field, and the 
idea that the motions are responsible for the field was not implausible. 

Elsässer then pointed out that, in view of the rapid rotation of Earth, the Coriolis 
forces on the convective motions in the core should produce a nonuniform rotation of the 
core, with the outer equatorial regions rotating more slowly than the inner regions near 
the axis. The expectation is reinforced by the observed slow westward drift, of a few 
millimeters per second, of the identifiable inhomogeneities in the field. A nonuniform 
rotation shears the dipole field in the core and draws out the lines of force into an 
azimuthal field. With the regions farther from the axis rotating more slowly {du/da < 0, 

Fig. 1.—Sketch of the toroidal field B# in the core of Earth produced from the poloidal field Bp by 
the nonuniform rotation. 

where æ is the distance from the axis), the toroidal field is eastward in the northern 
hemisphere and westward in the southern hemisphere, as sketched in Fig. 1. The shear 
does not affect the axisymmetric part of the dipole field. The strong Coriolis forces sug- 
gest that the forces driving the nonuniform rotation are strong and the toroidal field is 
strong, perhaps as much as 50-400 gauss (Bullard 1949a), with the magnetic stresses 
balancing the Coriolis forces. This is to be compared with the dipole field of about 5 
gauss in the core. The mathematics describing the generation of the toroidal field from 
the poloidal (dipole) field follows immediately from equation (5) as 

<i4> 

for the simple case of axial symmetry, and v<f> is a function only of the distance from the 
axis of rotation. The quantity dv^/dzs — v^/a is the nonuniform part of the rotational 
velocity. Presumably B# grows to the point where the Maxwell stresses and 
B^Bq/^tt slow down the nonuniform rotation enough to strike a balance between shear 
and diffusion. 

The next question concerns the regeneration of the poloidal, or dipole, field from the 
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toroidal field. Without some way to regenerate the poloidal field the whole magnetic 
system decays in a time a2/^ regardless of the generation of the toroidal field. We know 
from Cowling’s theorem that the regeneration cannot involve axial symmetry, so Elsässer 
pointed out that the general radial convection throughout the core must be the link 
which produces the poloidal field. There are some ten to twenty identifiable inhomo- 
geneities in the geomagnetic field at the surface of Earth, suggesting a comparable num- 
ber of convective cells in the core. Elsässer developed the mathematics for treating the 
interaction of the convection with the field by expanding both the magnetic field and the 
velocity field in the magnetic modes of a conducting sphere. A thorough exploration of 
the regeneration question was carried out for stationary conditions within this mathe- 
matical framework (Bullard 1949a, 6, 1955; Bullard and Gellman 1954; Takeuchi and 
Elsässer 1954; Takeuchi and Shimazu 1954; Elsässer and Takeuchi 1955; Rikitake 1958, 
1966). The expansion in terms of the modes of a sphere proved nonconvergent when 
applied to the simplest examples of fluid motion for the regeneration of the poloidal field. 

Fig. 2.—Sketch of the meridional loops of flux produced by the interaction of rising cyclonic convec- 
tive cells with the toroidal field B#. Note that the projections of the loops on the meridional planes have 
the same sense as the dipole field (from which is produced by the nonuniform rotation). - 

Some individuals (see, for instance, Bullard 1950) began to wonder at the time if the 
failure (nonconvergence) of the mathematics to find a means for steady regeneration of 
the poloidal field was not a consequence of some yet undiscovered ^generalized Cow- 
ling’s theorem” which forbade stationary dynamos whether with axial symmetry or not. 
The conjecture was wrong, as shown later, but profitable nonetheless, because it sug- 
gested to me that the solution to the problems must lie in the nonstationary dynamo. 
The dipole field of Earth is quasi-stationary at the surface of Earth, but its generation 
in the core need not be if it is remembered that the 1000-year diffusion time of the core 
field gives considerable smoothing of any rapid fluctuation that must be present. 

The convection in the core of Earth gives every appearance, from the meager two 
centuries of magnetic data that are available, of being nonsteady. Presumably the indir 
vidual convective cells grow and die, perhaps much like the convective cells in the ter- 
restrial atmosphere. The rapid rotation of Earth and the strong Coriolis forces suggest 
that the convective cells in the core of Earth must be cyclonic, much like their at- 
mospheric counterparts. If one then inquires what the effect is of a localized cyclonic 
convective cell, it follows at once that it raises and rotates the lines of force of the 
toroidal field to form loops of magnetic flux with a nonvanishing projection on the 
meridional plane, as sketched in Figure 2. A large number of cyclonic convective cells 
leads to a large number of loops, which upon coalescence, in periods of a few thousand 
years, give a large poloidal loop of flux. If thé loop has the same sense as the poloidal 
field, it reinforces the poloidal field; if it has the opposite sense, it reduces the poloidal 
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field. If we suppose that there are rising convective cells in the liquid core of Earth, the 
Coriolis force on the converging flow at the bottom of each cell causes the cell to rotate 
more rapidly than the rest of the core. The resulting loop of magnetic flux proves to be 
regenerative (see Fig. 2). A number of mathematical examples were worked out to illus- 
trate the general process of the formation of loops by cyclonic convective cells (Parker 
19556). So it follows that cyclonic convective cells can regenerate the poloidal field, giving 
a complete dynamo in two stages, poloidal and toroidal fields, each regenerated from the 
other. In both stages the Coriolis force is responsible for the proper ordering of the mo- 
tion. Sufficient conditions for a regenerative dynamo are (a) convection and (b) rotation. 
The convection is the source of energy. The rotation produces the nonuniform rotation 
and the cyclonic motions. 

In order to treat the situation mathematically we took advantage of the fact, pointed 
out by Elsässer, that the toroidal field in the core is considerably stronger than the 
poloidal field. Hence the principal interaction of the cyclonic convective motions is with 
the toroidal field. Their interaction with the poloidal field produces weaker loops of flux 
which coalesce to generate a higher toroidal mode, with a rapid decay time. Hence, apart 
from a small effect on the dominant toroidal field, the cyclonic convective motions serve 
only to regenerate the poloidal field from the toroidal field. We introduced one further ap- 
proximation in order to simplify the mathematics, and that was to assume that each 
individual cyclonic cell was vigorous but short lived, so that it was sufficient to use equa- 
tion (4), rather than equation (5), during the life of the cell. Following the short life of 
the cell, the coalescence of its field with the general poloidal field is described by the 
diffusion equation 

(15) 

If it is assumed that the individual cells are small compared with the dimensions of the 
core, but numerous, i.e., many cells appear in the core in the decay time a2/r¡ of the gen- 
eral field, then the generation and diffusion can be combined to give a mean production 
of poloidal field. If we write the poloidal field Bp in terms of the azimuthal vector poten- 
tial Â# and integrate equation (5) once, we obtain 

(J?- ,,v2)= ^ x » 

where e* is a unit vector in the azimuthal direction and where (i; X B)^ is the rate of 
generation of by the cyclonic convective motions. If now we smooth out the contribu- 
tions from individual convective cells by averaging over periods of time and volumes 
which are small compared with a2/rj and a, respectively, but large enough for the oc- 
currence of many individual cells, and if we assume that the mean rate of occurrence of 
the cells is independent of azimuth (longitude) in the core, then A# is independent of 
<£, and 

where N is the number of cyclonic cells appearing per second per unit volume and A A 4 is 
the contribution of each cell. For a given convective cell velocity u, the contribution of 
each cell is proportional to the toroidal field with which the cell interacts, and the 
proportionality constant depends upon the form and duration of u, computed from 
equation (4) during the life of the cell (see mathematical examples in Parker 19556). Thus 
one writes 

(16) 
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where F is a measure of the mean rate and strength of the cyclonic motions. F may be 
a function of position, and it may also be a function of we wish to take account öf 
the reaction of the field on the convective motions (as in Leighton’s [1969] recent model 
of the solar dynamo). 

Together, equations (14) and (16) constitute a complete set of equations, the dynamo 
equations (Parker 19556). The conditions appropriate for the core of Earth are <r ^ 0, 
^ oo outside the core, so that vanishes on the surface (and everywhere outside the 

core), and V X Bp — 0 outside the core, so that the radial component of V X Bp van- 
ishes at the surface of the core. 

We worked out a particularly simple stationary solution, in which F was chosen so 
that YB^ was a constant within the core, to see what external poloidal field results. 
Elsässer’s representation of the field in terms of the modes of a conducting sphere is par- 
ticularly convenient5 for treating the mean field and gives rapid convergence because of 
the rapid decay of the higher modes (at a rate proportional to the square of the order of 
the mode). Thus the poloidal field outside the core is dominated by the lowest mode, the 
dipole, in agreement with observation. Inside the core the field is, of course, complicated 
by the inhomogeneities of the individual convective cells. But in diffusing out through 
the core to the outside, the poloidal field is smoothed in both space and time to give a 
more or less steady dipole at the surface of Earth, r ^ 2a. The interested reader is re- 
ferred to the review articles by Elsässer (1956a, b) and Cowling (1957a). 

VI. DISCUSSION 

It seemed at this point that we had the explanation for the existence of the dipole 
field of Earth. The convection of the core is not unexpected and is strongly suggested by 
the past two centuries of magnetic observations. The Coriolis forces were established by 
Foucault in 1851. Together the two effects are sufficient. But if the explanation is correct, 
then it is only the beginning of the inquiry into the origin of magnetic fields in the astro- 
physical Universe. And if the explanation is correct, then it needs much more detailed 
investigation-—for instance, a straightforward explanation for the abrupt reversal of the 
geomagnetic field at irregular intervals of the order of 106 years (Runcorn 1955 ;? Çox 
and Doell 1964; Doell and Cox 1965; Doell, Dalrymple, and Cox 1966; Wilson 1966, 
1967; Cox and Dalrymple 1967) as determined from fossil magnetism. A formal example 
of the motions in a convecting rotating sphere of liquid heated from within is needed to 
show that the convective cells in the core of Earth really have the cyclonic rotation that 
our simple arguments ascribe to them. What is the source of heat that drives the convec- 
tion? Can we give more complete solutions to the dynamo equations (14) and (16), to 
illustrate the dynamo more effectively than the single example of YB^ = constant? Can 
we construct a better approximation than YB^ for the effect of the cyclonic convective 
cells? In fact, can we be sure that our heuristic derivation of the dynamo equation (16), 
in which the formation of meridional loops of flux was demonstrated by formal calcula- 
tion of the fields of various idealized convective cells and represented by the mean rate 
or production YB^ does not overlook some subtle consideration which vitiates our 
plausible result? That is, equation (16) is not a formal rigorous mathematical proof of 
the existence of a dynamo. Is a formal proof tractable? The physical ideas on which the 
dynamo equations were originally based are perfectly sound, but the active human mind 
can always find questions to worry about—which is often the source of further progress 
and broader Understanding. 

Finally, we must not overlook the question of what other fluid motions, besides non- 
uniform rotation and cyclonic convective motions, will generate fields. This is a general 

6 The expansion becomes inconvenient if we attempt to handle the fields of the individual cyclonic 
convective cells, which, because of their small size, involve high modes. It is for this reason that the 
earlier attempts to handle the complete solution of equation (5) by expanding in the modes were not 
sufficiently convergent. 
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question in physics. We cannot say that we really understand the origin of fields in 
astronomical bodies, hidden as they are'in the opaque interiors of the bodies, unless we 
have some idea of the other possibilities and their limitations. 

There has been considerable progress in all of these directions in the fourteen years 
since the cyclonic convective dynamo was first proposed. We do not have time to go into 
great detail, but the basic points are of general interest. 

Backus (1958) worked out a rigorous proof of the existence of a homogeneous hydro- 
magnetic dynamo. He treated a situation in which idealized velocity fields are switched 
on for a brief period of time and then switched off for a longer period during which the 
field relaxes in the manner described by the diffusion equation (15) much as in the treat- 
ment of the cyclonic convective cells leading to the dynamo equation (16). But Backus 
was able to construct and carry through an expansion of the field rigorously, obtaining 
rapid convergence of the expansion from the fact that the higher modes decay much 
more rapidly. Thus Backus established by formal calculation the existence of a non- 
stationary dynamo. 

At about the same time Herzenberg (1958) showed by formal solution of equation (5) 
that two small conducting spheres, steadily rotating about axes lying in a plaife but 
inclined with respect to each other and surrounded by conducting material at rest, will 
regenerate a magnetic field which at some distance is predominantly dipole in character. 
Herzenberg’s formal expansion of the fields was made to converge rapidly by separating 
the two small spheres by a distance equal to several of their radii so that the lowest 
mode of each dominated at the position of the other. Thus Herzenberg established by 
formal calculation the existence of a stationary dynamo. 

Between Backus’s rigorous mathematical proof of the existence of a regenerative 
dynamo based on intermittent fluid motions and Herzenberg’s rigorous proof of the exist- 
ence of a stationary dynamo, Cowling’s theorem on the nonexistence of a stationary 
dynamo with axial symmetry was circumscribed : Dynamos do not have axial symmetry, 
but there is certainly a variety of circumstances which can regenerate a field. And there 
is no reason to suspect anything wrong with the cyclonic convective dynamo proposed 
for Earth. 

More recently Braginskii (1964a, 6,1965) has derived the dynamo equation equivalent 
to equation (16) for the case in which the nonuniform rotation is strong, with magnetic 
Reynolds number (the toroidal field is again the dominant field), but the convective 
motions are weak 0($Km1/2) and slowly varying in time, though not necessarily of small 
scale. This is in contrast to the sudden, small-scale convective motions considered in the 
derivation of equation (16). Thus in Braginskii’s model of slow convection, the distortion 
of the toroidal field by the convective motions goes on simultaneously with the diffusion 
of the distortions to form the poloidal field. As one would expect, the mathematics be- 
comes very complicated, but Braginskii was able to carry it through to the remarkable 
result that, in terms of an effective potential ^4e = ^4^ + wB^ in place of ^4^ [where w 
is a small number OORm“1)], the resulting equation reduces to the form (16). The 
toroidal and poloidal fields become mixed in the dynamo equation (16), then, because 
of the slow convection, but the form of the equation is unaltered. It is most interesting 
to see that such different physical circumstances lead again to the form (16). 

Braginskii goes on to work out a number of solutions of the dynamo equation to illus- 
trate the generation of the geomagnetic field in the core of the planet (see review of 
Braginskii’s work by Roberts 1967). 

Other authors have attacked the dynamo problem by direct solution of equation (5) 
for a given velocity field v, without the intermediate step of averaging and smoothing 
the fields generated by the convective motions as done by Parker and Braginskii. Their 
work is valuable in that it gives a broader background in which to view the special 
Coriolis-convective dynamo that we propose for Earth (and the Sun). For instance, 
Lortz (1968) has demonstrated a dynamo involving helical motions. Roberts (1968, 
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1969) has den^nstoted two dynamos consisting of steady periodic motions in an infinite 
space which are able to regenerate magnetic fields. He considers two cases, in which the 
X-, y-, $nd 2-components of the velocity are proportional to sin (ky + Iz), sin 2lz, sin 2ky. 
íhe mathematics involves solving an enormous sequence of difference equations, so 
Roberts resorted to numerical methods. 

Roberts finds regeneration if the motions are sufficiently strong (0Îm sufficiently 
large). That is, the regeneration may be inefficient, but is generally present. Indeed, he 
suggests that motions without some regenerative dynamo action are uncommon ! (See 
remarks in Roberts 1967.) It wfll be most interesting to see how far this general state- 
ment can be extended. It is the opposite view to the earlier dark premonitions that there 
was a “supe* Cowling’s theorem” that homogeneous dynamos are impossible. 

Childress (1967a, b, c) has developed a formal mathematical method for solving thé 
hydremagnetic equation (5). He divides the fields into small- and large-scale components 
and carries out a formal expansion in terms of the ratio e of their scales. He does not 
make a corresponding decomposition of the velocity field, but considers only a single 
velocity of small scale and of large magnitude 0(e~1/2). Systematic expansion of the 
hydromagnetic equation is then possible, and Childress gives a complete mathematical 
development of the equations. He produces some stationary solutions as examples, for 
the special case that the vorticity is parallel to the velocity, but no direct application 
to Ea.rth or the Sun was attempted. 

Altogether it would appear that there is a large variety of both stationary and non- 
stationary motions, which regenerate magnetic fields, and the mathematical approaches 
that have been developed in the past few years have opened the way to exploring this 
vast question. 

With the current interest in dynamos we have worked out a formal derivation of the 
dynamo equation (16) from equation (5) recently, putting the physical arguments on 
which the equation was originally based (Parker 1955Z>) into formal mathematical terms 
(Parker 1970). We obtain just equation (16) in the limit of large nonuniform rotation. 
F is again calculable from the small-scale sudden convective motions when they are 
specified. When the nonuniform rotation is not large, there are additional small source 
terms on the right-hand side, but the additional modes which they produce are not of 
physical interest so far as we can see at the present time. 

VII. SOLAR AND STELLAR MAGNETIC FIELDS 

Now consider the generation of magnetic fields in stars. Essentially all stars, so far 
as we are aware, have rotation. If, therefore, a star has internal convective motions, it 
follows: that there is dynamo activity. There should be nonuniform rotation and cyclonic 
convective cells, which are sufficient to form a dynamo. But there is a greater variety of 
possibilities than in the incompressible convecting core of Earth. 

Consider first the nonuniform rotation. In the core of Earth we believe that the non- 
uniform rotation is purely a matter of Coriolis forces (conservation of angular momen- 
tum) in the convection, with the result that the angular velocity u (considered a positive 
quantity) decreases outward, dut/da < 0. The same may occur in a star. But there is 
the additional possibility that du/dw > 0, as is suggested by the rapid rotation of 
solar equatorial regions. The question of whether the rotation increases or decreases out- 
ward is presently debated for the Sun. Some observational evidence (Maunder 1907; 
Adams 1908; Minnaert 1946; Livingston 1969) on the forward tilt of sunspot fields, the 
rate of rotation of the chromosphere, and the differential rotation of the solar photo- 
sphere suggest that dw/dus > 0. On the other hand, Dicke (1964) and Haurwitz (1968) 
argue that the deep interior of the Sun still maintains much of the initial rapid rotation 
of the Sun, while the outer layers have been decelerated to their present slow rate of 
rotation by the solar wind (Brandt 1966, 1967; Weber and Davis 1967), in which case 
da/dm < Ö. More recently Leighton (1969a) has pointed out that if the cyclonic convec- 
tive motions are to be identified with the emergence and tilt of bipolar magnetic regions, 
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then the magnetic behavior of the Sun requires dœ/dm < 0. The question of the sign of 
dm/dm is clearly open at the present time, and of fundamental importance. 

Next consider the sense of rotation of the convective motions. The convective zone of 
the Sun occupies the outer 106 km, with the most rapid convection just beneath the sur- 
face. The convection is driven by heat from the interior of the Sun. Babcock (1961) and 
Leighton (1969a) suggest that the buoyancy of the magnetic fields themselves (Parker 
1955a) may be the dominant factor in the vertical cyclonic displacement of the toroidal 
field. In either case, we expect the central region of a convective cell to move upward, 
with the return flow spread more broadly around the region outside. Thus we expect the 
fluid motion to converge at the bottom of the cell to form the vertical flow, and to dis- 
perse at the top. On this basis alone we would expect the upward-moving fluid to rotate 
faster than the Sun as a whole (as in Fig. 1 for Earth), so that in the northern hemisphere 
the cyclonic rotation is counterclockwise, as viewed from above. But there is an addi- 
tional effect which complicates the picture. We must remember that the scale height 
of the gas density in the Sun is only a few hundred kilometers, and any upward motion 
over distances of a scale height or more is basically a diverging flow because of the rapid 
expansion of the upward-moving gas. In this case the cyclonic rotation is produced 
mainly by the diverging flow, so that the rotation relative to the surroundings is opposite 
to that of the Sun (Steenbeck, Krause, and Radler 1966). The cyclonic motion is clock- 
wise in the northern hemisphere. It is interesting to note that this is the sense of rotation 
of bipolar regions in the Sun. We might guess that it is the sense of rotation of upwellings 
of gas and field in all stars. 

Now consider the possibilities for a dynamo. If dm/dm <0 and the cyclonic convective 
cells are of small enough vertical scale to have a sense of rotation the same as the star 
(as in Fig. 1), then there is the possibility that the star has a stationary field, presum- 
ably a dipole as does the Earth. Or if dm/dm > 0 and the cyclonic convective cells are 
of large enough vertical scale to have the opposite sense of rotation, the star may have 
a stationary field. In either case the field would be roughly aligned with the axis of rota- 
tion of the star, just as the field of Earth is within about 11° of the axis of rotation. On 
the other hand, the opposite combination of dm/dm < 0 with large-scale vertical con- 
vection rotating opposite to the star, or dm/dm > 0 with small-scale vertical convection 
rotating in the same direction as the star, is degenerative rather than regenerative, and 
there is no possibility for a general stationary magnetic field. So we wonder what other 
solutions there might be to the dynamo equations besides the stationary dipole field. 
To treat the simplest case, note that the convection in the Sun and in many other stars 
is confined to a relatively thin layer of the photosphere, rather than throughout a sphere, 
or thick spherical shell, as in the core of Earth. The curvature of a thin shell is unimpor- 
tant, suggesting that we consider a rectangular, rather than spherical, geometry in which 
z represents the vertical direction and y the direction of the shear velocity (nonuniform 
rotàtion). Then equations (14) and (16) reduce to 

where the poloidal field is represented by 

Bx 
dAy 

Bz — + 
dAy 
dx ’ 

and the toroidal field is By. The fields are independent of y, as they were independent of 4> 
in the spherical geometry. In the simplest case we suppose that T and dV/dz are con- 
stants. Then if we write 

By = Ci exp (//r + ikxx + ikzz) , 

Ay = Ci exp (t/r + ikx% + ikzz) > 
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the dispersion relation follows as 

E. N. PARKER Vol. 160 

[\ + viw + ¿2
2)]2 - ikxY ^ = 0 (17) 

so that 
1 / dV\lt2 

-T= -v(k* + k*) ±(hkxT^) (1+i) . (18) 

For given values of kx and kz there is a regenerative and a degenerative mode, depending 
upon the ±. If 

I dV\1!2 

|pxr^| > vi(kx + kz), 

then the generation of field exceeds the dissipation and the amplitude of the regenerative 
mode grows exponentially with time. Note that there is a regenerative mode for either 
sign of TdV/dz, unlike the stationary dynamo in spherical geometry. The regenerative 
mode propagates in the negative æ-direction if YdV/dz > 0, and in the positive x-directiôn 
if Ydv/dz < 0. The velocity of propagation is proportional to [(F/2 kx)dV/dz}112. We 
have referred to the process as a migratory dynamo and to the fields as dynamo waves 
(Parker 19556, 1957). We suggested at that time that the magnetic fields 6f the Sun are 
dynamo waves. The toroidal field By is the field from which the sunspots are formed. The 
poloidal field is a little harder to identify, being weaker and more disordered by local 
disturbances. Babcock (1961) and Leighton (1969a) both suggest that the poloidal field 
is to be identified with the fields of bipolar magnetic regions and sunspots, in which the 
leading region is invariably closer to the equator than the following region, thereby giv- 
ing a poloidal (north-south) component to the field. The solar fields tend to migrate 
toward the equator. This follows from the dynamo equations if we suppose, after Leigh- 
ton, that the cyclonic rotation is that represented by the north-south tilt of the bipolar 
regions (a clockwise rotation in the northern hemisphere) together with du/dw < 0. 
Thus, \i du/das > 0, (see discussion above) we could not understand the migration of 
the solar fields without giving up the identification of the poloidal field with bipolar 
magnetic regions. The implication that du/das < 0 has important consequences for ideas 
on the evolution of the Sun over its lifetime and on the present state of rotation of the 
deep interior (Dicke 1964; see also the counterarguments of Goldreich and Schubert 
1969). The actual fitting of solutions of the dynamo equations into a fixed and finite 
geometry is a more difficult problem than the unbounded problem employed here to 
illustrate the dynamo waves. It is necessary to solve the quartic dispersion relation for 
kx for a given r. 

Leighton (1969a) has recently undertaken an extensive exploration of the migratory 
dynamo of the Sun. He sets up the dynamo equations for a thin spherical shell, represent- 
ing the solar photosphere and the region of active convection beneath. He assumes that 
the upwelling of the toroidal field is principally the result of magnetic buoyancy, so that 
F is a function of To keep the calculations tractable he supposes that Y is zero for 
B<f> below a certain value Bc and has a finite fixed value for B^ > Bc. He introduces the 
idea that the principal loss to the toroidal field is through magnetic buoyancy, so that the 
toroidal field eventually floats up through the photosphere and is lost to the solar 
dynamo. The implications of this important idea need to be examined both theoretically 
and observationally. Another important point which he introduces (Leighton 1964) is 
the diffusion of the vertical field by the random walk of the supergranule motions. His 
observational estimates for the dispersal of the field by a random walk suggest an effec- 
tive diffusion time Td of 20 years, equivalent to a diffusivity rj ^Rq

2/Td ^ 1013 cm2 

sec”1, or some 106 times larger than resistive diffusivity c2/4Tcr. (The other dissipation 
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terms, of the form B^/T, in Leighton’s equations are arbitrarily introduced to damp out 
the effects of the initial conditions, and thereby save computer time; they have little 
effect on the final long-term operation of the dynamo [Leighton 1969¿>].) 

These two dissipation mechanisms are of fundamental importance, because without 
them there is no migratory solution of the dynamo equation inside fixed boundaries: 
If there were nothing but resistive diffusivity, then r? ^ 0 and there is only one value of 
kx which satisfies equation (17) or (18) for a given r; one value of kx is not enough to fit 
the four boundary conditions. 

Leighton solves the dynamo equation numerically for a variety of forms and strengths 
of the nonuniform rotation, critical field Bc, and rate of sunspot tilt. Not only does he 
succeed in duplicating Spörer’s and Maunder’s butterfly diagram for the distribution 
and migration of sunspots, but at the same time the polar fields appear in about the right 
strength, reversing at about the peak of the sunspot cycle in agreement with observa- 
tion. No less interesting is the variety of different dynamo behavior that turns up for 
other less realistic values of the parameters, such as a mode which begins with B<t> an 
odd function of latitude, as is normally observed, slowly evolving into an even function. 
The radial field changes from dipole to quadrupole. This solution is particularly inter- 
esting in view of the strong asymmetries that exist between the northern and southern 
hemispheres of the Sun during some sunspot periods. And further it suggests the large 
number of possibilities that exist for the Sun in other epochs and for other stars with the 
complex field variations. I strongly recommend a careful reading of Leighton’s numerical 
results to the astronomer interested in stellar fields. The outstanding question is the 
actual sign of du/dxa beneath the surface of the Sun. 

Altogether, it is my impression that we may now understand the physical origin of the 
magnetic fields of both Earth and the Sun, the latter subject to clarification of the sign 
of do)/dm by independent means. The geomagnetic field is a stationary dynamo, and the 
solar field is a migratory dynamo. Both arise from the combined effects of Coriolis 
forces and convection. Both are actively generated at the present time, and the field 
today is essentially independent of what magnetic fields were present 104 years ago in 
Earth and 102 years ago in the Sun. There lies ahead of us the task of working out the 
more detailed questions, such as the effective diffusivity, the upwelling and cyclonic rota- 
tion of the toroidal field in the Sun, the occasional reversal of the geomagnetic field, etc. 
And there is a lot of work yet to be done in generalizing the dynamo equation (16), and 
in exploring the whole range of fluid motions that can regenerate a magnetic field regard- 
less of applicability to stars and planets. I think we can tackle these questions with con- 
fidence in the correctness of our basic picture of the origin of the fields, and it remains 
for us to muster enough energy and imagination to see how the questions still outstand- 
ing are to be fitted onto the basic picture. 

So far as the fields of other stars are concerned, I think that we can proceed only 
a posteriori. When enough observational information becomes available to give a unique 
observational model for the field of a star, then, to the degree that the model is complete, 
we can hope to work out what combination of dm/dm and cyclonic convective motions 
would give such a field. We cannot hope to identify the convective motions with detailed 
phenomena (bipolar sunspots and magnetic regions) as we can on the Sun. One question 
that arises immediately concerns the difference between stationary and migratory stellar 
dynamos. For instance, how are we to distinguish a migratory dynamo with a period of 
100 years from a quasi-stationary dynamo? It is evident that enough observational in- 
formation to give a clear and unique picture of the magnetic field and internal dynamo 
and of any star but the Sun will be an enormous undertaking, requiring ingenuity, vigor, 
and patience. The assumptions that one might make, in setting up a dynamo to duplicate 
a particular stellar field, will involve the magnitude and sign of the product of dm/dm 
and the sense of cyclonic rotation, questions which are not unrelated to the past evolu- 
tion and present state of the interior of the star. It is interesting to note that if magnetic 
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buoyancy (Parker 1955a) is primarily responsible for the cyclonic convective motion 
in the solar dynamo, as suggested by Babcock (1961) and Leighton (1969a), then there 
is the possibility that strong nonuniform rotation alone is a, sufficient condition for dynamo 
activity, without a naturally occurring convective zone. The nonuniform rotation gener- 
ates a toroidal field from whatever poloidal field is present. The toroidal field then ^boot- 
straps” itself to form a weak poloidal field. The convective zone of the Sun may be of 
only secondary importance, enhancing rj but not driving the system. The basic source 
of energy is the nonuniform rotation. The common occurrence of strong fields in A stars 
would seem to support this general idea. 

The fields of other planets in the solar system are of prime interest today. So far we 
know that Mars, Venus, and the Moon have little, if any, field generated in their in- 
teriors, presumably because they do not have convecting liquid cores (Mars and the 
Moon), or because their rate of rotation is so slow (Venus). Jupiter promises to be muich 
more interesting, its radio emission suggesting a strong dipole field of 10 gauss or more 
at the surface of the planet. Such a field is not unexpected in view of the rapid rotation 
of the planet and the possibility of a conducting fluid core (see, for instance, Smoluchow- 
ski 1967). 

Finally, in closing, let me remark that the origin of the galactic field, which we dis- 
cussed only very briefly in § IV, is quite a different question from the origin of the fields 
of planets and stars. Whatever the origin of the magnetic flux that makes up the galactic 
field, its present orientation in the azimuthal direction is the result of the nontmiform 
rotation of the Galaxy, and its present strength is controlled by several factors, involv- 
ing the hydrostatic balance between cosmic-ray pressure and the gravitational accelera- 
tion perpendicular to the disk of the Galaxy (Parker 1969a). There is no obsèrvatiônal 
evidence for ordered motions of the gas in the disk of the Galaxy which might make up 
a suitable dynamo to generate the magnetic flux. We have speculated that the flux was 
generated by random turbulence (Parker 19696), based on investigation of an idealized 
form of turbulence. But the formal theory for the magnetic field in real turbulence is 
not worked out yet. So for the present it is my opinion that we do not really know the 
origin of the galactic field. Observations are only beginning to grope their way toward 
unambiguous measurements of its strength and dynamical properties. 
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