SPECTRAL CLASSIFICATION OF A-TYPE SPECTROSCOPIC BINARIES*

Helmut A. Abt
Kitt Peak National Observatory \dagger
AND
William P. Bidelman
University of Michigan Observatory
Received 1969 March 25

Abstract

MK spectral types have been determined or are quoted for ninety-eight of 101 known spectroscopic binaries with primaries in the range A2-F3. Half of these stars are metallic-line (Am) stars; most of the remainder are outside the domain (approximately A4-F1 IV, V) of the Am stars. The remaining nine normal stars in the domain have periods of either less than 2.5 or more than about 100 days. It is concluded that all stars in the range A4-F1, IV, V that are primaries of binaries with periods of approximately $2.5-100$ days have metallic-line spectra.

I. INTRODUCTION

Two intensive studies (Abt 1961, 1965) of the binary frequencies of abnormal and normal A-type stars led to the following results: (1) Among twenty-five metallic-line (Am) stars, twenty-two were found to be spectroscopic binaries, mostly with periods less than 100 days, indicating that, after allowance is made for low-mass companions and unresolved double-lined systems, probably all Am stars are members of binary systems. (2) Of fifty-five A4-F2 IV, V stars, seventeen were found to be spectroscopic binaries, all with periods greater than 100 days. It was concluded that, if the primary of a spectroscopic binary is in the color range equivalent to A4-F2 on the main sequence and with a period less than 100 days, the star has an abnormal spectrum.

However, it has been argued (Batten 1967a) that many additional binaries with known orbital elements have primaries in the range A4-F2 and that these stars are not known to be Am stars. Since most of these stars were classified before the advent of the two-dimensional MK system (Morgan, Keenan, and Kellman 1943) and the recognition of the Am stars as a class (Titus and Morgan 1940; Roman, Morgan, and Eggen 1948), it is necessary to reclassify those stars. The main purpose of the present investigation is to see whether the results as stated above, or as modified slightly, are still true after analysis of a larger body of material.

A second purpose of this investigation is to delineate the Am-star region in spectral type, luminosity, and binary period. The original selection of normal stars was by color ($+0.07 \leq B-V \leq+0.35$), but since the Am stars, particularly those of later types like $\tau \mathrm{UM}$ a, are reddened by excessive line blanketing, the color limits of the Am stars may be inappropriate for normal stars. An indirect way to determine the spectral-type limits of the Am-star region is to note where binaries of short periods and normal members start to occur; this method will be used below. Also, the original samples of stars included no W UMa systems, because such stars are not represented among the A-type stars brighter than $V=6.0$ mag.

* Contributions from the Kitt Peak National Observatory, No. 444.
\dagger Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Finally, it should be emphasized that the original selection of Am stars comprised those stars with markedly peculiar characteristics, i.e., generally for each star, at least five spectral subclasses of discrepancy between its spectral type derived from its K-line and that derived from its metallic lines. The binary characteristics are not yet known for the borderline Am stars discussed by Weaver (1952) in the Coma Cluster and other clusters, or the early A-type abnormal, or Sirius-type, stars discussed by Conti (1965).

II. SPECTRAL TYPES AND DISCUSSION

Spectra for classification were obtained for nearly all of the spectroscopic binaries in the Fifth Catalogue of the Orbital Elements of Spectroscopic Binary Stars (Moore and Neugebauer 1936) brighter than $V=7.5 \mathrm{mag}$, north of decl. -30°, and lacking MK types but having preliminary types in the range A2-F3. The Sixth Catalogue (Batten 1967b) was not available when the observing was done. The spectra were obtained with the Meinel spectrograph on the Kitt Peak 36 -inch telescope, using a dispersion of $63 \AA$ mm^{-1} and projected slit dimensions of $20 \mu \times 0.87 \mathrm{~mm}$. Although this dispersion is better for resolving double-lined spectra, it was learned that it is less satisfactory for spectral classification of A stars than a dispersion of about $125 \AA \mathrm{~mm}^{-1}$. Similar spectra of standards of spectral type (Johnson and Morgan 1953) were obtained.

These spectra were classified independently by one of us (W. P. B.) and by Dr. W. W. Morgan. The former tended to classify the stars as being normal or abnormal to varying degrees of abnormality (possible, probable, definite, and pronounced) and provided a number of additional unpublished types based on spectra obtained at the Lick and Dominion astrophysical observatories. In general, the agreement between the two investigators is good. The greatest discrepancy occurs for the borderline Am stars; Bidelman was more likely than Morgan was to classify such stars as Am. The classification system for A stars of various luminosity classes and degrees of peculiarity is currently under investigation by Dr. Morgan, so, in a sense, this paper is premature in treating these problems. However, except for a few cases, such as 2 Sge, \imath Del, π Cas, and UY Vir, the disagreements in classification are irrelevant. The references to classifications by others are far from complete; in general, these were included only when types by Bidelman or Morgan are lacking.

The stars and their types are divided into groups as listed in Tables 1, 2, and 3. Table 1 contains stars classified as normal and being outside the spectral-type and luminosity range of the Am stars. The first part of the table lists stars as late as A2 and A3 in short-period binaries, indicating that the region of the Am stars starts at about A4. This implication is contingent upon the result given below that, within the Am region, only Am stars occur as the primaries in binaries of periods from a few days to about 100 days. The second part of the table lists normal late A-type stars of luminosity class III or brighter, some in short-period binaries, indicating that the Am region is confined to luminosity classes IV and V. In passing, it should be stated that the luminosity classification of the shell spectrum of V367 Cyg should not be used to imply that the underlying star is of high luminosity; its location in the H-R diagram is unknown. The third part of Table 1 lists normal early F-type stars in binaries, some of which are as early as F2. This indicates that the Am region terminates at about F1.

Table 2 lists binaries having Am primaries of varying degrees of abnormality and a few other peculiar stars, such as the well-known Ap star $\beta \mathrm{CrB}$, and the as yet unspecified peculiar stars 14 Aur and $26 \mathrm{Vul} ; \delta$ Del, which was not included in the Fifth Catalogue, would also be such a star. The fact that all the periods in Table 2 are less than about 100 days is not astrophysically significant, because Am stars in binaries of larger periods are known (Abt 1961); the deficiency in Table 2 simply demonstrates that previous observers neglected to analyze possible spectroscopic binaries with small velocity ranges.

Table 3 lists binaries with fairly normal spectra that are well within the Am region.

TABLE 1
Systems with Primaries Outside the Region of Am Stars

Fifth Сат. No.	Name or HD No.	HR	Period (days)	Spectral Type			Sources and Comments
				WPB	WWM	Others	
Systems Earlier than the Am Region							
10.	2421	104	3.96	Normal		A2 Vs	Cowley et al. (1969)
68....	b Per	1324	1.53	Normal	A2:	A2 V	WWM: low weight; Cowley et al. (1969)
84....	7 Cam	1568	3.88	.	.	A1 V	Slettebak (1954); Cowley et al. (1969)
157. .	a Gem A	2891	9.21	\cdots	\cdots	A1 V	Slettebak (1954); Cowley et al (1969)
190.	79763	3676	15.99	Normal	A1 V		
214.	55 UMa	4380	2.5	Normal		A2 V	Osawa (1959); Cowley et al. (1969)
223	95 Leo	4564	6.63	Normal	.	A3 V	Osawa (1959); Cowley et al. (1969)
246.	ζ UMA A	5054	20.54	- ${ }^{\text {a }}$		A2 V	Slettebak (1954); Cowley et al. (1969)
322	158261	6506	5.92	Normal	A0 V		
328	162132	6641	2.82	Prob Am	A2 V		
346	169981	6917	9.61	Normal		A2 V	Osawa (1959): A2 with A4 metallic lines; Cowley et al. (1969): A2 IV
384.	ϕ Aql	7610	3.32	Poss. Am	A1 V	.	
414.	14 Del	7974	10.88	Normal	A1 V	. .	
Systems More Luminous than the Am Region							
36	β Tri	622	31.40		A5 III	.	Johnson and Morgan (1953)
74	$\theta^{2} \mathrm{Tau}$	1412	140.75	$\cdots \cdot$	A7 III	.	Johnson and Morgan (1953)
85	ϵ Aur	1605	27.08 yr	A8e Ia			
164	3 Pup	2996	137.77	A3ep II			
394	18 Vul	7711	9.32	Normal		A3 III	Osawa (1959); Cowley et al. (1969)
413	V367 Cyg	\ldots	18.60	F2pe	A3: Ia:		Abt (1954): shell spectrum
Systems Later than the Am Region							
28.	10308	484	4.43	Normal	F5 V		WWM: approx. equal components
30.	$a \mathrm{Tri}$	544	1.74		F6 IV	. ${ }^{\text {P }}$	Johnson and Morgan (1953)
38	6 Tri B	.	2.24			F5 V	Stephenson (1960)
57	$\begin{aligned} & 22124= \\ & \text { IX Per } \end{aligned}$		1.33	Normal	F5 IV-V		
95	34335	.	343	Normal	F5 IV		WWM: approx, equal components
149	R CMa	2788	1.14	Normal	F2 IV		
161	61859	2962	31.50	F2 V:		.	
174	1 Hya	3297	1.56	Normal	F5 V		
237.	110317	4821	1.46	Normal	F4 IVn	-	WWM: Visual companion $=$ F5 III
249.	118216	5110	261	Normal	F4 IV	.	
254.	3 Boo	5182	36.04	F3 V:			
268	129132	5472	3320.00	Normal	F5 IV		
270. .	39 Boo	5538	12.82	Normal	F5 V		
277	$\epsilon \mathrm{Lib}$	5723	226.95	F5 V			
304. .	39 Her	6213	2.31	Normal	F3 V:	.	WWM: components equal

TABLE 1-Continued

Fifth Cat No	Name or HD No	HR	$\begin{aligned} & \text { Period } \\ & \text { (days) } \end{aligned}$	Spectral Type			Sources and Comments
				WPB	WWM	Others	
Systems Later than the Am Region-Continued							
308.	152830	6290	11.86	Normal	F4 III		WWM: $\lambda 4226$ weak?
321.	157950	6493	26.27			F3 V	Slettebak (1955)
368.	178619	7267	4.81	Normal	F5 IV:		WWM: mean of approx. equal components
380	185912	7484	764	Normal	F6 IV-Vn		
427	205539	8257	12.21	Normal	F2 IV, V		WPB: rather weak lined
433.	206874		375	Normal	F2 IVn		
434	${ }_{\kappa} \mathrm{Peg}$	8315	597		.	F5 IV	Slettebak (1955)
439	207826		2.73	F3 IV-V			
480	224355	9059	12.16	Normal	F5 IVn	.	

These fall into two groups of periods. One group, represented here by only β Ari, has periods greater than about 100 days (in fact, this star determined the breakpoint as being about 100 days rather than 75 or 150 days). Further examples, such as the fourteen new binaries discovered by Abt (1965), were found subsequent to the publication of the Fifth Catalogue.

The second group in Table 3 comprises normal binaries of very short period ($<2 \stackrel{d}{4}$); they are contact or semidetached systems. Their spectra may not be completely normal; hence the discrepancies between the various classifications. That these short-period binaries have normal, rather than metallic-line, spectra has a straightforward explanation if one attributes metallic-line spectra to slow rotation and normal spectra to rapid rotation. Synchronism between orbital and rotational periods will probably occur in all systems with periods less than about a week, but whereas synchronism will cause a low rotational velocity ($V=15 \mathrm{~km} \mathrm{sec}^{-1}$) for a 7 -day binary, it will cause a relatively high rotational velocity ($90 \mathrm{~km} \mathrm{sec}^{-1}$) for a 1 -day binary. In fact, three out of the five systems having periods less than $2{ }^{\frac{d}{0}} 0$ and listed in the second part of Table 3 have been classified as having nebulous lines, while two of the three systems with periods in the range $2^{\text {d }} 0-2{ }^{\text {d }} 4$ were classified as having sharp lines at moderate dispersion. Consideration of their velocity amplitudes and periods shows that this difference is not due to systematically different orbital inclinations with respect to the lines of sight.

It is interesting that not all A4-F1 binaries on the main sequence and with periods less than 2.5 have normal spectra. Table 2 lists five such systems having Am primaries, some of which (HR 4646, δ Cap) are rather extreme examples. Why does the 1-day binary δ Cap have an Am primary while the 1-day binary 35 Psc has a normal primary? We can only guess at present that perhaps a low rotational velocity is a necessary but not sufficient condition to produce an Am star; perhaps the length of time during which the star has had the low rotation will determine whether the abundance peculiarities have had time to develop or decay. Nevertheless, rotational velocities for both normal and Am stars in binaries with periods less than $2 \cdot 5$ would be of interest.

Finally, we should mention three composite systems for which MK types are still not available, namely, τ Per (Fifth Catalogue No. 48), 58 Per (No. 75), and HD 144208-9 (No. 289). Since all three systems have periods greater than 100 days, it is irrelevant for the above argument whether the primaries fall within or outside the Am region and are Am or normal stars.

TABLE 2
Systems with Am or Peculiar Primaries

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fifte Cat. No.} \& \multirow[b]{2}{*}{NAME OR HD No.} \& \multirow[b]{2}{*}{HR} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Period } \\
\& \text { (days) }
\end{aligned}
\]} \& \multicolumn{3}{|c|}{Spectral Type} \& \multirow[b]{2}{*}{Sources and Comments} \\
\hline \& \& \& \& WPB \& WWM \& Others \& \\
\hline 8 \& 1826 \& \& 3.28 \& Prob Am \& \& \& \\
\hline 16 \& YZ Cas \& 192 \& 4.47 \& Prob Am \& \& A2 IV \& Cowley et al. (1969) \\
\hline 44 \& 16769 \& 791 \& 2.54 \& Def. Am \& . \& A4m \& Appenzeller (1967); Cowley et al. (1969) A5 III \\
\hline 53 \& 20210 \& 976 \& 5.54 \& Def Am \& \(\ldots\) \& Am \& \[
\begin{aligned}
\& \text { Osawa (1959): } K / \\
\& H / M=\text { A2/A8/F2; } \\
\& \text { Cowley et al. }(1969): \\
\& \text { A1m }
\end{aligned}
\] \\
\hline 56 \& IW Per \& 1078 \& 0.92 \& Prob. Am \& \& A3 V \& \[
\begin{aligned}
\& \text { Osawa (1959): } M= \\
\& \text { A6; Cowley et al. } \\
\& \text { (1969): A5m }
\end{aligned}
\] \\
\hline 72 \& 63 Tau \& 1376 \& 8.42 \& Pron Am \& \& Am \& Roman et al. (1948): \(K / H / M=\mathrm{A} 1 / \mathrm{F} 0 /\) F5; Cowley et al. (1969): A1m \\
\hline 73 \& 28204 \& 1401 \& 4.20 \& Pron Am \& \& A8m \& Cowley et al. (1969) \\
\hline 76 \& 88 Tau \& 1458 \& 357 \& . \& \& Am \& \begin{tabular}{l}
Slettebak (1949):
\[
K / H / M=\mathrm{A} 3 / \mathrm{A} 7 /
\] \\
A8; Cowley et al.
(1969):A5m
\end{tabular} \\
\hline 80 \& 30453 \& 1528 \& 7.05 \& Pron Am \& \(\cdots\) \& A4m \& Appenzeller (1967); Cowley et al. (1969): A8m \\
\hline 92 \& 14 Aur \& 1706 \& 3.79 \& Poss. Am \& F0 IVp? \& \(\ldots\) \& WWM: like \(\delta\) Del?; Cowley et al. (1969): \(\delta\) Del \\
\hline 122 \& 2 Mon \& 2108 \& 9.36 \& Am \& \(\cdots\) \& \& \begin{tabular}{l}
Bidelman (1951): \\
\(K / M=\mathrm{A} 5 / \mathrm{F} 0 \mathrm{III}\); Cowley et al. (1969): A6m
\end{tabular} \\
\hline 124 \& \(\mu\) Ori A \& 2124 \& 445 \& Prob. Am \& . \& Am \& Slettebak (1954): \(K / M=\mathrm{A} 3 / \mathrm{A} 7\); Cowley et al. (1969): A2m (mild) \\
\hline \& 40 Aur \& 2143 \& 28.28 \& Def. Am \& . \& A4m \& Cowley et al. (1969) \\
\hline 132 \& RR Lyn \& 2291 \& 9.94 \& Def. Am \& \& Am \& \[
\begin{gathered}
\text { Roman }(1949): H / M \\
=\mathrm{A} 7 / \mathrm{F} 0 ; \text { Cowley } \\
\text { et al. }(1969): \mathrm{A} 3 \mathrm{~m}
\end{gathered}
\] \\
\hline 135 \& WW Aur \& 2372 \& 2.53 \& Def. Am \& . \& \[
\begin{aligned}
\& \mathrm{A} 3 \mathrm{~m}+ \\
\& \mathrm{A} 3 \mathrm{~m}
\end{aligned}
\] \& Cowley et al. (1969) \\
\hline 156 \& \(a\) Gem B \& 2890 \& 2.93 \& \(\cdots\) \& \(\ldots\) \& Am \& Roman et al. (1948): \(K / H / M=\mathrm{A} 1 / \mathrm{A} 5 /\) A5; Cowley et al. (1969): A1m \\
\hline 175 \& 71973 \& 3352 \& 4.28 \& Pron Am \& \& A2m \& Cowley et al. (1969) \\
\hline 179.. \& 73619 \& . \& 12.91 \& Pron. Am \& . \({ }^{\text {a }}\) \& .. \& Bidelman (1956):
\[
K / M=\mathrm{A} 4 / \mathrm{F} 2 \mathrm{III}
\] \\
\hline 207 \& 93075 \& \& 181 \& Prob. Am \& A9 IVs \& \& WWM: \(\lambda 4226\) weak? \\
\hline 210 \& 64 Leo \& 4322 \& 40.45 \& Prob. Am \& .. \& A5 V \& \[
\begin{aligned}
\& \text { Osawa (1959); Cowley } \\
\& \text { et al. (1969): A5m }
\end{aligned}
\] \\
\hline 221 \& 102660 \& 4535 \& 2.78 \& Pron. Am \& - \& Am \& Osawa (1959): K/ \(H / M=\mathrm{A} 2 / \mathrm{A} 7 /\) F3; Cowley et al. (1969): A3m \\
\hline 229 \& 106112 \& 4646

7750 \& 1.27 \& Def. Am \& A2m \& Am \& Roman et al. (1948): $K / H / M=\mathrm{A} 5 / \mathrm{F} 2 /$ F5; Cowley et al. (1969): A5m

\hline 234 \& 108642 \& 4750 \& 11.78 \& Def. Am \& A2m F0 \& . \& WWM: $K / M=\mathrm{A} 2 /$ F0, standard Am star

\hline
\end{tabular}

TABLE 2-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fifti Cat. No} \& \multirow[b]{2}{*}{Name or HD No.} \& \multirow[b]{2}{*}{HR} \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Perrod } \\
\& \text { (days) }
\end{aligned}
\]} \& \multicolumn{3}{|c|}{Spectral Type} \& \multirow[b]{2}{*}{Sources and Comments} \\
\hline \& \& \& \& WPB \& WWM \& Others \& \\
\hline 235 \& 24 Com B \& 4791 \& 7.34 \& Def. Am \& A5m F2 \& \(\cdots\) \& WWM: \(K / M=\mathrm{A} 5 /\) F2, standard Am star \\
\hline 238... \& 110326 \& \& 2.70 \& Pron. Am \& \(\ldots\) \& Am \& \[
\begin{aligned}
\& \text { Slettebak et al. (1961): } \\
\& K / H / M=\mathrm{A} 3 / \\
\& \mathrm{A} 8 \mathrm{~V} / \mathrm{F} 0
\end{aligned}
\] \\
\hline 239 \& \(32 \mathrm{~d}^{2} \mathrm{Vir}\) \& 4847 \& 38.32 \& Def. Am \& \(\ldots\) \& Am \& Roman et al. (1948): \(K / H / M=\mathrm{A} 6 / \mathrm{F} 2 /\) F6 IV; Cowley et al. (1969): A8m \\
\hline 264. \& 125335 \& \({ }^{\circ}\) \& 7.37 \& Am \& \(\ldots\) \& . \({ }^{\text {a }}\) \& \[
\begin{aligned}
\& \text { Bidelman (1951): } \\
\& K / M=\text { A5/F2 III }
\end{aligned}
\] \\
\hline 265 \& \(\lambda\) Vir \& 5359 \& (1.93) \& Prob Am \& . \& Am \& \begin{tabular}{l}
Slettebak (1949): \\
\(K / H / M=\mathrm{A} 3 / \mathrm{A} 8 /\) \\
A7; Cowley et al. \\
(1969): A2m
\end{tabular} \\
\hline 276.. . \& 136403 \& 5702 \& 3.58 \& Prob. Am \& \(\cdots\) \& Am \& Osawa (1959): K/ \(H / M=\mathrm{A} 3 / \mathrm{A} 7 / \mathrm{F} 0 ;\) Cowley et al. (1969): A2m \\
\hline 279. \& \(\beta \mathrm{CrB}\) \& 5747 \& 10.50 yr \& Fp \& \& \& \\
\hline 280 \& 138213 \& 5752 \& 105.8 \& Pron. Am \& \& A5m \& Cowley et al. (1969) \\
\hline 282 \& TW Dra \& \& 2.81 \& Normal \& A8m F2s? \& \& WWM: \(\lambda 4226\) weak \\
\hline 292. \& 144426 \& 5992 \& 8.86 \& Prob. Am \& \& A3m: \& Cowley et al. (1969) \\
\hline 300 \& 149420 \& \& 3.39 \& Prob. Am \& A9 IVsp \& \& WWM: \(\lambda 4226\) weak \\
\hline 327. \& 161321 \& 6611 \& 3.89 \& Def. Am \& \& A3m \& Cowley et al. (1969) \\
\hline 340... \& 108 Her \& 6876 \& 5.51 \& Def. Am \& . \& A6 V \& \[
\begin{aligned}
\& \text { Osawa (1959); } \\
\& \text { Cowley et al. (1969): } \\
\& \text { A5m }
\end{aligned}
\] \\
\hline 350. \& 171653 \& 6979 \& 14.34 \& Def. Am \& \& A8m: \& Cowley et al. (1969) \\
\hline \(352 \ldots\) \& L Lyr A

174343 \& 7056 \& 4.30

3.76 \& Def. Am \& $\mathrm{F} 0 \mathrm{mF5}$ \& Am \& | Roman et al. (1948): |
| :--- |
| $K / H / M=\mathrm{A} 4 / \mathrm{A} 7 /$ |
| F0; Cowley et al. |
| (1969): A4m |

\hline 355. . \& 174343 \& | \cdots |
| :---: |
| |
| |
| |
| 89 | \& 3.76 \& Def. Am \& F0m F5n \& \cdots \& WWM: late-type broad-lined Am star? Very strong metallic lines and $\lambda 4077$

\hline $377 \ldots$ \& 2 Sge \& 7369 \& 7.39

11.09 \& Prob. Am \& \cdots \& A2 III? \& Osawa (1959): $M=$ A3; Cowley et al. (1969): A1m: (metals marginally enhanced)

\hline 407... \& 26 Vul \& 7874 \& 11.09 \& Prob. Am \& A6 IVsp? \& A V \& WWM: lines much stronger than in any standard, definitely peculiar

\hline 409.... \& ι Del \& 7883 \& 11.04 \& Prob. Am \& \ldots \& A2 V \& Osawa (1959): $M=$ A4; Cowley et al. (1969): A2 V

\hline 424.. \& 204188 \& 8210 \& 21.72 \& Def. Am \& \ldots \& A8m: \& Cowley et al. (1969)

\hline 431.. . \& 206546 \& 8293 \& 6.37 \& Pron. Am \& \ldots \& A3m \& Cowley et al. (1969):
broad lines

\hline 436... \& δ Cap \& 8322 \& 1.02
7.83 \& Def. Am \& . \& Am \& Slettebak (1949): K/ $H / M=A 6 / F 2 /$ F5 IV; Cowley et al. (1969): $\delta \mathrm{Del}$

\hline 445. \& 32 Aqr \& 8410 \& 7.83 \& . \& \ldots \& Am \& | Roman et al. (1948): $K / H / M=\mathrm{A} 3 / \mathrm{A} 7 /$ |
| :--- |
| F0; Cowley et al. (1969): A5m, metals pronounced |

\hline 469.... \& 9 And \& 8864 \& 3.22 \& Def. Am \& ... \& A7m: \& Cowley et al. (1969)

\hline
\end{tabular}

TABLE 3
Systems with Normal Primaries in the Am Region

Fifth Cat. No.	Name or HD No.	HR	$\begin{gathered} \text { Period } \\ \text { (days) } \end{gathered}$	Spectral Type			Sources and Comments
				WPB	WWM	Others	
Systems with Long Periods							
32	β Ari	553	107.00		A5 V	A5m:	Johnson and Morgan (1953); Cowley et al. (1969)
Systems with Short Periods							
5	35 Psc	50	0.84	Normal	A9 V	.	WWM: combined spectrum
14...	π Cas	184	1.96	Prob. Am	A5 Vn	\ldots	
193.	S Ant	3798	0.65	Normal	A9 Vn		
242	UY Vir		1.99	Prob Am	A9 V	A7 V	Roman (1956)
325..	ξ Ser	6561	2.29	Poss Am		F0 IV	Buscombe (1962); Cowley et al (1969) F0 IV
337.	168092	6849	2.05	Normal	F0 IV: s	.	WWM: equal components, both sharp lined
- $\cdot \cdots \cdot$	204038	${ }^{\bullet}$	0.79	F0n III-IV	F0 Vn	\cdots	WWM: like γ Her (A9 III); Fitzgerald (1964)
454	213534	8584	2.34	Poss. Am	A9 IV?s	A8 V	Cowley et al. (1969)

We can now restate the results, in part, on binaries among A-type stars, namely, all stars in the approximate spectral range A4-F1 on the main sequence and that are primaries in binaries with periods between approximately 2.5 and 100 days have metallicline or peculiar spectra.

We have been careful to state that these results on binaries refer to the primary stars, so we immediately wonder about the secondaries. Are the secondaries also Am stars and are their spectral peculiarities similar to those of the primaries? The first author and his colleagues are currently studying numerous double-lined systems to help answer these questions. What are the spectral characteristics if the primary is in the A4-F1 region but the secondary is of later type, or the secondary is in that region and the primary is earlier? What are the spectral characteristics of a binary with the period between 2.5 and 100 days and having one component in the A4-F1 range on the main sequence but the other component a giant? Such questions still need answers.

We thank Dr. W. W. Morgan for his generosity and experienced judgment in classifying many spectra for us, and we thank Drs. A. P. and C. R. Cowley and C. and M. Jaschek for supplying a copy of their extensive classification study of A stars in advance of publication.

REFERENCES

Abt, H. A. 1954, Pub. A.S.P., 66, 171.
-. 1961, Ap. J. Suppl., No. 52, 6, 37.
——. 1965 , ibid., No. 102, 11, 429.
Appenzeller, I. 1967, Pub. A.S.P., 79, 102.
Batten, A. H. 1967 a, Ann. Rev. Ästr. and Ap., 5, 25.
$\xrightarrow{\longrightarrow} 1967 b$, Pub. Dom. Ap., Obs., 13, 119.

Bidelman, W. P. 1951, Ap.J., 113, 304.
. 1956, Pub. A.S.P., 68, 318.
Buscombe, W. 1962, Mount Stromlo Obs. Mimeograms, No. 4.
Conti, P. S. 1965, Ap.J., 142, 1594.
Cowley, A., Cowley, C., Jaschek, M., and Jaschek, C. 1969, A.J., 74, 375.
Fitzgerald, P. 1964, Pub. David Dunlap Obs., 2, 417.
Johnson, H. L., and Morgan, W. W. 1953, Ap. J., 117, 313.
Moore, J. H., and Neugebauer, F. J. 1936, Lick Obs. Bull., 18, 1.
Morgan, W. W., Keenan, P. C., and Kellman, E. 1943, An Atlas of Stellar Spectra (Chicago: University of Chicago Press).
Osawa, K. 1959, Ap. J., 130, 159.
Roman, N. G. 1949, Ap.J., 110, 205.
——. 1956, ibid., 123, 246.
Roman, N. G., Morgan, W. W., and Eggen, O. J. 1948, Ap. J., 107, 107.
Slettebak, A. 1949, Ap.J., 109, 547.
. 1954, ibid., 119, 146.
. 1955, ibid., 121, 653.
Slettebak, A., Bahner, K., and Stock, J. 1961, Ap. J., 134, 195.
Stephenson, C. B. 1960, A.J., 65, 60.
Titus, J., and Morgan, W. W. 1940, Ap. J., 92, 256.
Weaver, H. F. 1952, Ap.J., 116, 612.

