# SCANNER ABUNDANCE STUDIES. I. AN INVESTIGATION OF SUPERMETALLICITY IN LATE-TYPE EVOLVED STARS 

Hyron Spinrad and Benjamin J. Taylor<br>Astronomy Department, University of California, Berkeley<br>Received November 18, 1968; revised February 13, 1969


#### Abstract

In this paper we describe a new technique for obtaining differential abundances This technique utilizes the following information: (1) Accurate measures of line and molecular-band strengths, obtained by using a photoelectric spectrum scanner in a manner analogous to that of the Cambridge observers; (2) a self-consistent relative temperature scale based on measures of the star's continuum in the yellow, red, and infrared regions of the spectrum, also obtained with a scanner. With these data, stars may be ordered in terms of their molecular abundances; moreover, quantitative relative abundances may be derived from the measures of atomic-line strengths by using the additional information described below; (3) a simple theoretical treatment for the interpretation of the measured line strengths; (4) at least one comparison star with standard abundances in the temperature range considered.

We also describe results we have obtained to date from an application of this technique to K giants and subgiants These results include the following: 1. Evolved K stars with metal abundances greater than those of the Hyades exist in substantial numbers This conclusion is derived from the individual strong-feature data, and is confirmed by blanketing measures and by spot checks with slit spectrograms. Conclusive evidence exists that this interpretation of the data is not confused by variations in microturbulence or surface gravity, and that the abundances found are primordial, not the result of self-enrichment; moreover, there is good indication that high metallicities, not low hydrogen contents, are involved. The abundances found range as high as 4 times the solar values for $\mathrm{Ca}, \mathrm{Mg}$, and Na . The cool evolved stars in M67 and NGC 188 have generally 3 times the solar abundances of the above elements; independent data on the hotter stars in M67 indicate that this is probably true of them, also

2 The tendency for the range of abundances in K giants to cause systematic errors in MK spectral classification of these stars makes supplementary red photometry necessary.

3 At least one significant source of error exists in standard differential curve-of-growth and modelatmosphere techniques for giants cooler than about K0.

4 A tight correlation exists between $\mathrm{N}, \mathrm{Na}$, and Fe abundances for the stars studied, and is presumably of general validity. This correlation does not, however, extend in full strength to Ca and Mg

5 K giants and subgiants exist which have solar or higher abundances and orbital eccentricities up to 05 or maximum heights above the galactic plane of 1.5 kpc . The velocity-abundance correlations found previously by others for G dwarfs are not completely valid for evolved K stars and are probably not strictly valid generally 6. A relatively abrupt cutoff in the production of stars with abundances similar to or higher than those in M67 took place shortly after the epoch of formation of M67 itself. From this result and the results of other investigations, it is concluded that uniform enrichment was probably important during the formation of the halo but has played no significant role in the history of the disk.


## I. INTRODUCTION

There are currently two basic techniques available to astrophysicists for studies of differential abundances. One of these requires equivalent widths and/or line profiles measured on high-dispersion spectrograms, and yields a temperature, a surface gravity, a microturbulent velocity, and metal-to-hydrogen ratios for each of several different elements (relative to the comparison star used). The other requires "blanketed" and "blanketing-free" photoelectrically measured colors, and yields a "blanketing index" with which stars may be ordered by overall metallicity (and, in addition, a crude numerical value for the metallicity itself, if a calibration based on the first technique is available). Each technique has at least one major drawback; the first is time-consuming and is restricted to bright stars, while the second yields relatively crude information.

In this paper we describe a new technique which yields detailed abundance information at the efficiency characteristic of photoelectric work. This technique utilizes the following information:

1. Accurate measures of atomic-line and molecular-band strengths, obtained with a photoelectric spectrum scanner.
2. A self-consistent relative temperature scale based on measures of the star's continuum in the yellow, red, and infrared regions of the spectrum, also obtained with a scanner.

With these data, stars may be ordered in terms of their molecular abundances; moreover, quantitative relative abundances may be derived from the measures of line strengths by using the following additional information:
3. A simple theoretical treatment for the interpretation of the measured line strengths.
4. At least one comparison star with standard abundances in the temperature range considered.

We also present and discuss data we have obtained to date by using this method. The thrust of this investigation is directed toward cool stars of very high metallicity; we present evidence for the existence of such stars, discuss their properties, and examine their implications for our knowledge of galactic structure and history.

## II. THE OBSERVATIONAL ABUNDANCE PARAMETERS

The method used for obtaining abundance parameters from scanner observations of a given star proceeds through the following four steps.

First, intensities are obtained in specified passbands. These bands contain either strong absorption features or regions as free as possible of absorption; those of the latter kind were selected by inspection of the solar spectrum as depicted in the Utrecht Atlas (Minnaert, Mulders, and Houtgast 1940) and the tables of integrated equivalent widths as functions of wavelength given by Wildey et al. (1962). The intensities so obtained are correcte 1 for atmospheric extinction by using mean extinction coefficients supplied by Dr. L. V. Kuhi and are transformed to a standard system (to be described in § V) by using observations of standard stars. If necessary, they are also corrected for interstellar reddening by using published or estimated values of $E(B-V)$ and the Whitford reddening law (Whitford 1958).

Second, colors are derived. In order to cover the desired wavelength range, it is necessary to use several combinations of photomultiplier, filter, and grating order. A set of passbands observed by using a given combination of this sort is referred to as a program. In order to link observations made in programs covering adjacent wavelength intervals, an overlap passband (which is also a program passband) is observed in each program; the intensities in one of the programs are subsequently scaled so as to match the two values obtained at the overlap passband. The entire set of intensities is also multiplied by the normalization factor $1000 / J(5360)$, where $J(5360)$ is the intensity at $\lambda 5360$. The result is a set of colors $I(\lambda)$ related to the intensities $J(\lambda)$ as follows:

$$
\begin{equation*}
I(\lambda)=J(\lambda) \frac{1000}{J(5360)} K(\lambda) \tag{1}
\end{equation*}
$$

where $\lambda$ is wavelength and $K(\lambda)$ is the scaling factor (or product of scaling factors) derived from the overlap passband(s). (For one of the programs, of course, $K(\lambda)=1$.) We emphasize that the $I(\lambda)$ 's are modified intensity ratios and are not on a magnitude scale.

Third, temperature indices are derived. A red temperature index called $T$ is calculated as follows:

$$
\begin{equation*}
T=I(7000)+I(7400), \tag{2}
\end{equation*}
$$

where $I(\lambda)$ is the color at wavelength $\lambda$, derived as described above. A correction must
subsequently be made to this index because of the small blanketing effects of the red CN system on the $\lambda \lambda 7000$ and 7400 passbands; this will be discussed in § VIII. If infrared observations of the star have been made, an infrared temperature index is also computed:

$$
\begin{equation*}
T_{\mathrm{IR}}=I(8800)+I(10300)+I(10700) \tag{3}
\end{equation*}
$$

Fourth, measurements of feature strengths are obtained for each absorption feature. This is done in two steps. First, Cambridge-type indices (cf. Griffin and Redman 1960; Deeming 1960) are derived:

$$
\begin{gather*}
r=\left(I_{a}+I_{b}\right) / 2 I_{f},  \tag{4a}\\
r=I_{a} / I_{f}, \tag{4b}
\end{gather*}
$$

or
where $r$ is the index, $I_{f}$ is the color at the passband containing the feature being measured, and $I_{a}$ and $I_{b}$ are colors at continuum points flanking the feature (which were chosen with an eye to just this purpose). The passbands used to measure a given feature are always part of the same program. Second, quantities called $w$ 's are computed from the following definition:

$$
\begin{equation*}
w=1-r_{0} / r, \tag{5}
\end{equation*}
$$

where $r_{0}$ is the no-feature, no-background-blanketing value of the index, obtained either from observations of the very metal-poor stars HD 122563 and HD 165195 (Wallerstein et al. 1963) or, in the case of Ca II $\lambda 8662$, from the assumption that the continuum in the neighborhood of the line is flat. The values of $w$ for each feature and of $T$ are the star's primary abundance parameters, and are compared with those of other stars in order to assess relative abundances.

A list of the central wavelengths of the passbands used, the features (if any) contained in these bands, and the photomultiplier-filter-grating combination used for each, is given in Table 1. Table 2 lists the indices, their features and side bands, and the numbers used to identify them in the data tables (see § VI).

The physical significance of $w$ may be assessed as follows. Consider two stars, one with and one without absorption features. For the former star, let $I_{a}, I_{b}$, and $I_{f}$ be blanketingfree colors in two side bands $a$ and $b$ and a feature band $f$, respectively; let $W_{a}, W_{b}$, and $W_{f}$ be the total equivalent widths of the background absorption in these same bands; let $W$ be the equivalent width of a feature in the band $f$ being measured; and let $\Delta \lambda$ be the bandwidth used throughout. In this star, the fractions of light lost to blanketing in the side bands will be $W_{a} / \Delta \lambda$ and $W_{b} / \Delta \lambda$; if the simplifying assumption is made that there is no interaction between the feature being measured and the background blanketing, the fraction of light lost in the feature band will be $\left(W_{f}+W\right) / \Delta \lambda$. From equation (4a), therefore,

$$
\begin{equation*}
r=\frac{I_{a}\left(\Delta \lambda-W_{a}\right)+I_{b}\left(\Delta \lambda-W_{b}\right)}{2 I_{f}\left(\Delta \lambda-W_{f}-W\right)} \tag{6}
\end{equation*}
$$

In the case of the unblanketed star, we have, from equation (4a) and the definition of $r_{0}$,

$$
\begin{equation*}
r=r_{0}=\left(I_{a}^{\prime}+I_{b}^{\prime}\right) / 2 I_{f}^{\prime} \tag{7}
\end{equation*}
$$

where $I_{a}{ }^{\prime}, I_{b}{ }^{\prime}$, and $I_{f}{ }^{\prime}$ are analogous to $I_{a}, I_{b}$, and $I_{f}$, respectively. Because the temperatures of the two stars may be different, the analogous primed and unprimed $I$ 's are not necessarily equal. If, however, the temperature range considered is small enough and the side bands are sufficiently close together, $r_{0}$ will be essentially independent of temperature. In this case, we may without loss of generality choose an unblanketed star having the same temperature as the blanketed star, and

$$
\begin{equation*}
r_{0}=\left(I_{a}+I_{b}\right) / 2 I_{f} \tag{8}
\end{equation*}
$$

TABLE 1
WAVELENGTH LIST

| Central <br> Wavelength (Å) | Feature | Cell | Filter | Order |
| :---: | :---: | :---: | :---: | :---: |
| 3880 | CN $\lambda 3883$ | FW 130 | Blue | 2 |
| 4040 | Continuum | FW 130 | Blue | 2 |
| 4100 | $\mathrm{H} \delta$ | FW 130 | Blue | 2 |
| 4200 | CN $\lambda 4215$ | FW 130 | Blue | 2 |
| 4227 | Ca I | FW 130 | Blue | 2 |
| 4300 | CH $\lambda 4313$ | FW 130 | Blue | 2 |
| 4340 | $\mathrm{H}_{\gamma}$ | FW 130 | Blue | 2 |
| 4500 | Continuum | FW 130 | Blue | 2 |
| 4715 | Continuum | FW 130 | Blue | 2 |
| 4900 | Continuum | FW 130 | Blue | 2 |
|  |  | FW 130 | Yellow | 2 |
| 5000 | Continuum | FW 130 | Yellow | 2 |
| 5175 | $\mathrm{Mg} \mathrm{I}+\mathrm{MgH}$ | FW 130 | Yellow | 2 |
| 5300 | Continuum | FW 130 | Yellow | 2 |
| 5360 . . . | Continuum | FW 130 | Yellow | 2 |
|  |  | FW 130 | Yellow | 1 |
| 5864 | Continuum | FW 130 | Yellow | 1 |
| 5892 | NaI (D) | FW 130 | Yellow | 1 |
| 6110 | Continuum | FW 130 | Yellow | 1 |
| 6180 | TiO $\lambda \lambda 6148,6158$ | FW 130 | Yellow | 1 |
| 6386 | $\mathrm{CaH} \lambda 6382$ | FW 130 | Yellow | 1 |
| 6564 | $\mathrm{H} a$ | FW 130 | Yellow | 1 |
| 6620 | Continuum | FW 130 | Yellow | 1 |
| 7000 | Continuum | FW 130 | Yellow | 1 |
| 7100 | $\mathrm{TiO} \lambda 7054$ | FW 130 | Yellow | 1 |
| 7400 | Continuum | FW 130 | Yellow | 1 |
|  |  | RCA 7102 | Red | 1 |
| 7980 | Continuum | RCA 7102 | Red | 1 |
| 8190 | Na I | RCA 7102 | Red | 1 |
| 8400 | Continuum | RCA 7102 | Red | 1 |
| 8662 | Ca II | RCA 7102 | Red | , |
| 8800 | Continuum | RCA 7102 | Red | 1 |
| 8900 | $\mathrm{TiO} \lambda 8859$ | RCA 7102 | Red |  |
| 9200 | CN $(1,0)$ red | RCA 7102 | Red | 1 |
| 10300 | Continuum | RCA 7102 | Red | 1 |
| 10700 | Continuum | RCA 7102 | Red | 1 |

TABLE 2
Indices

| Number | Feature | Feature <br> Band ( $\lambda$ ) | Side Band(s) <br> ( $\lambda$ ) | ro |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CN | 3880 | 4040 | 162 |
| 2 | CN | 4200 | 4040, 4500 | 094 |
| 3 | CaI | 4227 | 4040, 4500 | 094 |
| 4 | CH | 4300 | 4040, 4500 | 095 |
| 5 | Mg | 5175 | 5000, 5300 | 086 |
| 6 | D | 5892 | 5864 | 100 |
| 7 | TiO | 6180 | 6110 | 103 |
| 8 | TiO | 7100 | 7000, 7400 | 081 |
| 9 | Ca II | 8662 | 8400, 8800 | 101 |
| 10 | CN | 9200 | 8800, 10300 | 088 |

Substituting equations (6) and (8) into equation (5), we obtain

$$
\begin{equation*}
w=1-\frac{\left(I_{a}+I_{b}\right)\left(\Delta \lambda-W_{f}-W\right)}{I_{a}\left(\Delta \lambda-W_{a}\right)+I_{b}\left(\Delta \lambda-W_{b}\right)} . \tag{9}
\end{equation*}
$$

If $W_{a}=W_{b}=W_{f}=0$, equation (9) reduces to

$$
\begin{equation*}
w=W / \Delta \lambda, \tag{10}
\end{equation*}
$$

and equation (5) becomes identical with equation (3) of Price (1966a). In this case, $w$ is the "blocking fraction" of the feature being measured. In the more general case, w is a "quasi-blocking fraction," still increasing monotonically with the equivalent width of the strong feature, but with both scale and zero-point differences from a hypothetical "background-free" $w .^{1}$

The indices measured fall into three groups, according to the kinds and sizes of errors introduced by background blanketing. One includes all the indices measured longward of $\lambda 5360$; here background effects are negligible (see Price's Table 1, for example, for confirmation of this for the D-lines), and $w$ is a genuine blocking fraction. A second includes the four blue indices, for which blanketing effects are unavoidable. As an example of the size of the errors to be expected, consider the index for $\lambda 4227$ of Ca I in the Sun; here, taking $W_{a}(\lambda 4040) \approx 4.2 \AA, W_{b}(\lambda 4500) \approx 1.3 \AA$, and $W_{f} \approx 3.6 \AA$ (from Moore, Minnaert, and Houtgast 1966) and $I(4040) \approx \frac{2}{3} I(4500)$ (as judged from scanner observations of G2 V stars), we have

$$
\begin{equation*}
w \approx 1.2 W / \Delta \lambda+0.09 \tag{11}
\end{equation*}
$$

from equation (9) (assuming $\Delta \lambda=15 \AA$ ). For the range of $W / \Delta \lambda$ of interest, $w$ will be too large by about a factor of 2 , and ratios of $w$ 's (which will be used in determinations of relative abundances) will be too small because of the sign of the constant. (Neglecting the increase of the background blanketing itself as $W$ increases does not fundamentally alter this result.) The third group consists solely of the Mg I $b$-triplet index, for which $I_{a} \approx I_{b}$ (as judged from scanner observations of K stars) and $W_{f} \approx \frac{1}{2}\left(W_{a}+W_{b}\right)$ (as judged from Wildey et al.); in this special case, equation (8) reduces to

$$
\begin{equation*}
w \approx W /\left(\Delta \lambda-W_{f}\right) . \tag{12}
\end{equation*}
$$

Since $W_{f}$ is of order 1-2 $\AA$, $w$ will be too large by $7-15$ percent (for $\Delta \lambda=15 \AA$ ). Ratios of $w$ 's, however, will be considerably less in error. Let us assume that $W_{f}$ is composed equally of lines on the curve of growth in the linear portion (changing linearly with abundance) and the flat portion (insensitive to abundance changes). Then, for two stars differing in overall abundance by a factor of 2 , we might have typically $W_{f, 1}=1.5 \AA$, $W_{f, 2}=2.2 \AA$, and

$$
\begin{equation*}
\frac{w_{2}}{w_{1}} \approx \frac{W_{2}}{W_{1}} \frac{\Delta \lambda-W_{f, 1}}{\Delta \lambda-W_{f, 2}} \approx \frac{13.5}{12.8} \frac{W_{2}}{W_{1}} \approx 1.05 \frac{W_{2}}{W_{1}} . \tag{13}
\end{equation*}
$$

The nature of the errors of the latter two groups will be utilized in the discussion in § XVI.

## III. THE DAMPING-LINE THEORY

The accuracy to which we measure equivalent widths does not warrant a detailed theoretical treatment of the results. We therefore derive relative abundance for our stars from the appropriate simple relations between abundance, equivalent width, and surface grav-
${ }^{1}$ This discussion supplants the assumption previously made (Taylor 1967, 1968) that $w=W / \Delta \lambda$ in all cases.
ity given by Deutsch (1966). Deutsch's equations indicate that equivalent width varies as the square root or the cube root of the abundance and (to first order) is not a function of surface gravity in K giants if the metal abundances vary in lockstep (i.e., in direct proportion) ; the derivation of these results is discussed (and given explicitly for the case of $\lambda 4227$ of Ca I) by Deutsch. In order to test this assertion and to investigate the consequences of removing the lockstep restriction, Dr. Stephen Strom has kindly computed for us a series of model atmospheres in which the equivalent widths of the lines measured by us are calculated by numerical integration through the atmosphere. These confirm Deutsch's relations for the lockstep case (which is the one most frequently encountered) and provide similar relations as needed for cases of independent variation in abundance. With respect to surface-gravity sensitivity, they indicate that variation in surface gravity becomes important for damping lines in K stars only for $\log g>3$ (luminosity classes IV and V).

## IV. OBSERVATIONS AND REDUCTIONS

All observations were secured with the Wampler photoelectric spectrum scanner at the prime foci of the Crossley and 120 -inch telescopes at Lick Observatory. A detailed description of this scanner has been given elsewhere (Wampler 1966). Two photomulti-pliers-an FW 130 (S20 surface) and an RCA 7102 (S1 surface)-were used, the former for $\lambda \lambda 3880-7400$, the latter for $\lambda \lambda 7400-10700$. An exit slot of 1 mm , corresponding to $15 \AA$ in the second order, was used throughout. For all but the faintest stars, a dwell time was selected which would yield at least 2000 pulses ("counts") per dwell at almost all wavelengths; an observation then consisted (with occasional exceptions) of at least three dwells at each of the wavelengths observed with the photomultiplier being used that night. If inspection of the scanner output revealed that the number of counts per dwell at a given wavelength was fluctuating more than usual, the number of dwells per wavelength was increased. For the faintest stars, a compromise dwell time and a number of dwells per wavelength sufficient to obtain total counts of about $6-10 \times 10^{3}$ were used. Since until recently the scanner was exclusively a single-channel instrument, sky readings were obtained separately, when necessary, by offsetting the telescope; the number of dwells per wavelength used was roughly 1 for each 7-8 percent of sky contribution. The times needed to carry out a complete observation at the 120 -inch (exclusive of telescope-setting time) ranged from about 8 minutes for stars with $V \leq 8.0 \mathrm{mag}$ to 45-50 minutes for stars with $V \approx 13.0 \mathrm{mag}$; the Crossley was used almost exclusively for stars with $V \leq 6.5 \mathrm{mag}$, for which $10-12$ minutes per observation were required. Most stars were observed at 1.3 air masses or less; the only exceptions were some southern stars (which were almost always observed with $\pm \frac{1}{2}$ hour of the meridian) and a few stars near the north celestial pole, notably those in NGC 188. Care was taken to avoid observing through the haze layer which is often present over the Santa Clara Valley to the west. Several standard stars were observed each night; three such observations were regarded as an irreducible minimum, and five to seven were almost always secured.

After the raw data, consisting of numbers of counts and identifying wavelengths printed on paper tape, had been transferred to punched cards, they were put through two reduction programs. Originally the first of these programs (generously supplied to us by Dr. Kuhi) averaged dwells and computed percentage standard deviations at each wavelength and corrected the observations for extinction, by the use of the standard coefficients mentioned in § II, while the second (written by B. J. T.) transformed observations to the standard stystem, reduced the intensities to colors, averaged different observations and computed percentage standard deviations, corrected for reddening (again as mentioned in § II), and computed second-level quantities ( $T$ 's, $r$ 's, w's). Later a second two-program set (written by B. J. T.) was used; in this pair, transformation to the standard system was effected by the first program. The only one of these steps need-
ing special comment is that of transformation: coefficients for this step were computed by averaging ratios of intensities, a process equivalent to averaging magnitude differences if the range averaged over is sufficiently small. All reductions were carried out on the IBM 7094 computer of the University of California at Berkeley.

## V. THE STANDARD SYSTEM

The standard system used in this investigation was set up from observations of twelve stars on selected 120 -inch nights. Because the system was set up after the observational program had been begun, the stars were selected chiefly because they had been observed on previous nights, although position in the sky and (in three cases) membership in the absolute system of Oke (1964) also played a factor. Only nights free of wavelengthdependent differences in response (as revealed by inspection of the reduced observations) were used. The intensities obtained were averaged in a straightforward manner (ignoring the wavelength-independent differences in scale factor between nights) except at $\lambda 4900$

TABLE 3
Nights Used to Set Up Standard System

| Date | Cell | Stars Observed |
| :---: | :---: | :---: |
| Jan. 24/25, 1966 | RCA 7102 | $\epsilon \mathrm{CrB}, 109$ Vir, $\tau$ Boo |
| May 17/18, 1966 | RCA 7102 | $\tau$ Boo, $\omega$ Ser, HR 6806, 61 Cyg A, 61 Cyg B, 55 Peg |
| June 11/12, 1966 | RCA 7102 | $\epsilon$ CrB, 109 Vir, $\tau$ Boo, $\omega$ Ser |
| June 12/13, 1966 | FW 130 | $\epsilon \mathrm{CrB}, 58$ Aql, 109 Vir, $\tau$ Boo |
| July 18/19, 1966 | FW 130 | $\epsilon \mathrm{CrB}, 58 \mathrm{Aql}, \tau$ Boo, 55 Peg |
| July 19/20, 1966 | FW 130 | $\epsilon$ CrB, 58 Aql, 109 Vir, $\tau$ Boo, $\omega$ Ser, $\theta$ Psc, HR 6806, $\delta$ Psc, 61 Cyg A, $61 \mathrm{Cyg} \mathrm{B}, 55 \mathrm{Peg}$ |
| July 20/21, 1966 | FW 130 | 58 Aql, 29 Psc, 109 Vir, $\omega$ Ser, $\theta$ Psc, HR 6806, $\delta$ Psc, 61 Cyg A, 61 Cyg B, 55 Peg |
| July 21/22, 1966 | RCA 7102 | $\epsilon$ CrB, 58 Aql, 29 Psc, 109 Vir, $\omega$ Ser, $\theta$ Psc, HR 6806, $\delta$ Psc, 61 Cyg A, 61 Cyg B, 55 Peg |
| August 22/23, 1966 | RCA 7102 | $\epsilon \mathrm{CrB}, 58 \mathrm{Aql}$, 29 Psc, $\theta$ Psc, HR 6806, $\delta$ Psc, 61 Cyg A, 61 Cyg B, 55 Peg |

(yellow filter), where the response of the filter used is slightly temperature dependent; this was removed by forcing $I(4900)$ to be equal to $I(5000)$ in the K5 III standard, $\delta$ Psc, for each of the nights used, and by scaling all other observations accordingly. Other standards were subsequently set up as needed from observations tied into this system. Judging from transformation coefficients, no closure error as large as 1 percent exists, and our system is consistent to the same accuracy with the Hayes revision of the Oke system (Hayes 1967), with the possible exception of the common standard star 29 Psc.

Table 3 lists the nights used to set up the original twelve-star standard system and the stars observed during each. The system itself is given in Table 4 as an instrumental intensity system in number of counts per second; since only colors are relevant to this investigation, the formation of this intensity system will be discussed elsewhere.

It is our opinion that other observers who wish to reproduce our observations will be constrained to use $15 \AA$ resolution shortward of $\lambda 5360$ and $30 \AA$ resolution longward of this limit, and to observe these standard stars on a regular basis.

## VI. PHOTOELECTRIC PRECISION AND DATA TABLES

Tables 5 and 6 give the colors (§ II, step 2) for each of the stars observed (except at $\lambda 5360$, for which $I$ always equals 1000 ), while Tables 7 and 8 list the computed $w$ 's ( $\S$ II, step 4), identified by the numbers given in Table 2. In essentially all cases, each value listed is the average of two or more observations. The average precision of the colors is



4
票
18













TABLE 5
PROGRAM STAR COLORS

| WAV | NGTH | 3880 | 4040 | 4100 | 4200 | 4227 | 4300 | 4340 | 4500 | 4715 | 4900 | 5000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS | 3 | 287 | 925 | 1010 | 980 | 1050 | 780 | 1280 | 1460 | 1290 | 1030 | 1060 |
| BS | 45 | 88 | 282 | 362 | 405 | 263 | 425 | 690 | 901 | 921 | 785 | 709 |
| BS | 165 | 140 | 535 | 640 | 617 | 641 | 641 | 1060 | 1220 | 1150 | 942 | 946 |
| BS | 224 | 93 | 340 | 414 | 437 | 358 | 449 | 769 | 1000 | 1000 | 844 | 844 |
| BS | 258 | 296 | 951 | 1060 | 1020 | 2080 | 842 | 1390 | 1540 | 1340 | 1040 | 1070 |
| BS | 271 | 384 | 1110 | 1160 | 1130 | 1270 | 979 | 1410 | 1550 | 1350 | 1060 | 1090 |
| BS | 337 | 82 | 286 | 358 | 394 | 305 | 418 | 680 | 911 | 968 | 823 | 777 |
| BS | 464 | 136 | 542 | 622 | 592 | 643 | 593 | 995 | 1170 | 1080 | 921 | 941 |
| BS | 489 | 128 | 482 | 561 | 567 | 554 | 571 | 933 | 1150 | 1110 | 918 | 935 |
| BS | 495 | 257 | 873 | 951 | 916 | 1060 | 858 | 1330 | 1450 | 1250 | 1030 | 1020 |
| BS | 617 | 221 | 765 | 866 | 829 | 909 | 721 | 1180 | 1370 | 1260 | 1010 | 1040 |
| BS | 882 | 171 | 630 | 703 | 697 | 732 | 630 | 1070 | 1260 | 1160 | 960 | 992 |
| BS | 911 | 78 | 247 | 310 | 351 | 242 | 370 | 609 | 801 | 867 | 757 | 708 |
| BS | 941 | 311 | 1020 | 1070 | 1010 | 1170 | 901 | 1370 | 1510 | 1300 | 1050 | 1080 |
| BS | 947 | 232 | 824 | 897 | 823 | 964 | 765 | 1230 | 1370 | 1250 | 1020 | 1030 |
| BS | 951 | 280 | 936 | 1010 | 952 | 1080 | 843 | 1330 | 1470 | 1280 | 1030 | 1060 |
| BS | 1015 | 179 | 610 | 671 | 657 | 706 | 652 | 1050 | 1210 | 1120 | 934 | 969 |
| BS | 1052 | 123 | 478 | 557 | 563 | 568 | 568 | 925 | 1110 | 1110 | 922 | 948 |
| BS | 1136 | 389 | 1100 | 1200 | 1210 | 1210 | 900 | 1440 | 1650 | 1370 | 1080 | 1110 |
| BS | 1457 | 86 | 305 | 387 | 409 | 318 | 438 | 719 | 943 | 961 | 820 | 807 |
| BS | 1551 | 128 | 466 | 540 | 547 | 563 | 536 | 880 | 1080 | 1070 | 899 | 945 |
| BS | 1726 | 186 | 650 | 713 | 733 | 710 | 657 | 1080 | 1300 | 1210 | 968 | 981 |
| BS | 1773 | 105 | 404 | 472 | 459 | 447 | 501 | 881 | 1040 | 1030 | 868 | 876 |
| BS | 1805 | 108 | 445 | 506 | 480 | 516 | 532 | 930 | 1110 | 1070 | 918 | 916 |
| BS | 1907 | 426 | 1150 | 1240 | 1260 | 1270 | 926 | 1400 | 1590 | 1390 | 1080 | 1140 |
| BS | 2012 | 232 | 829 | 891 | 824 | 948 | 752 | 1230 | 1400 | 1270 | 1020 | 1040 |
| BS | 2219 | 312 | 1020 | 1090 | 1050 | 1130 | 841 | 1310 | 1500 | 1320 | 1060 | 1100 |
| BS | 2429 | 277 | 928 | 966 | 938 | 1020 | 803 | 1360 | 1510 | 1340 | 1040 | 1050 |
| BS | 2478 | 208 | 765 | 838 | 791 | 873 | 747 | 1180 | 1330 | 1210 | 992 | 1020 |
| BS | 2600 | 204 | 749 | 796 | 789 | 820 | 677 | 1090 | 1300 | 1230 | 1000 | 998 |
| BS | 2649 | 118 | 450 | 530 | 518 | 525 | 532 | 906 | 1120 | 1080 | 904 | 930 |
| B S | 2697 | 148 | 576 | 640 | 609 | 687 | 633 | 1050 | 1200 | 1110 | 940 | 943 |
| BS | 2805 | 184 | 672 | 716 | 661 | 801 | 646 | 1070 | 1230 | 1170 | 974 | 979 |
| BS | 2821 | 309 | 1010 | 1060 | 1020 | 1130 | 842 | 1330 | 1500 | 1320 | 1060 | 1080 |
| BS | 2985 | 400 | 1200 | 1230 | 1180 | 1290 | 992 | 1470 | 1640 | 1410 | 1110 | 1120 |
| BS | 2990 | 315 | 1020 | 1080 | 1030 | 1120 | 849 | 1370 | 1520 | 1340 | 1060 | 1080 |
| BS | 3145 | 175 | 640 | 731 | 726 | 733 | 665 | 1070 | 1270 | 1180 | 988 | 1010 |
| BS | 3149 | 219 | 771 | 847 | 809 | 883 | 732 | 1190 | 1360 | 1230 | 997 | 1020 |
| BS | 3249 | 96 | 367 | 446 | 451 | 418 | 498 | 794 | 1000 | 1020 | 862 | 884 |
| BS | 3366 | 154 | 587 | 681 | 655 | 682 | 641 | 1090 | 1260 | 1150 | 955 | 973 |
| BS | 3369 | 301 | 1010 | 1060 | 990 | 1140 | 893 | 1380 | 1500 | 1330 | 1050 | 1050 |
| BS | 3905 | 152 | 604 | 664 | 629 | 701 | 637 | 1110 | 1240 | 1140 | 955 | 949 |
| BS | 3994 | 295 | 1010 | 1020 | 965 | 1110 | 815 | 1370 | 1500 | 1310 | 1040 | 1060 |
| BS | 4171 | 411 | 1160 | 1210 | 1180 | 1270 | 956 | 1430 | 1560 | 1360 | 1060 | 1110 |
| BS | 4301 | 308 | 896 | 918 | 917 | 1040 | 859 | 1210 | 1390 | 1250 | 1010 | 1050 |
| BS | 4517 | 111 | 331 | 404 | 449 | 347 | 470 | 716 | 914 | 943 | 810 | 788 |
| BS | 4737 | 211 | 738 | 822 | 764 | 899 | 753 | 1210 | 1330 | 1200 | 978 | 1010 |
| B S | 4932 | 377 | 1070 | 1150 | 1080 | 1250 | 982 | 1390 | 1500 | 1300 | 1020 | 1070 |
| BS | 5154 | 84 | 252 | 328 | 369 | 262 | 399 | 615 | 810 | 864 | 746 | 717 |
| BS | 5159 | 232 | 723 | 828 | 754 | 859 | 699 | 1150 | 1290 | 1150 | 947 | 989 |
| BS | 5200 | 89 | 313 | 393 | 410 | 335 | 445 | 730 | 943 | 951 | 805 | 827 |
| BS | 5201 | 110 | 394 | 487 | 495 | 482 | 505 | 829 | 1030 | 1020 | 863 | 914 |
| BS | 5227 | 191 | 671 | 747 | 739 | 747 | 662 | 1110 | 1290 | 1170 | 951 | 983 |
| BS | 5247 | 105 | 390 | 463 | 471 | 463 | 496 | 818 | 1000 | 1020 | 858 | 897 |
| BS | 5370 | 154 | 591 | 683 | 643 | 723 | 653 | 1070 | 1230 | 1100 | 925 | 961 |
| BS | 5429 | 138 | 517 | 625 | 592 | 620 | 590 | 977 | 1160 | 1090 | 915 | 960 |
| BS | 5480 | 376 | 1000 | 1080 | 1020 | 1180 | 920 | 1310 | 1450 | 1290 | 1020 | 1070 |
| BS | 5502 | 333 | 1040 | 1120 | 1060 | 1200 | 958 | 1350 | 1480 | 1280 | 1030 | 1100 |
| BS | 5582 | 153 | 558 | 624 | 572 | 664 | 605 | 1060 | 1170 | 1090 | 911 | 937 |
| BS | 5600 | 93 | 329 | 428 | 432 | 386 | 474 | 780 | 978 | 984 | 823 | 862 |
| BS | 5601 | 299 | 899 | 1020 | 971 | 1040 | 817 | 1260 | 1410 | 1270 | 994 | 1060 |
| BS | 5602 | 383 | 1090 | 1160 | 1110 | 1260 | 953 | 1370 | 1510 | 1320 | 1040 | 1100 |
| BS | 5616 | 162 | 578 | 685 | 649 | 711 | 615 | 1020 | 1190 | 1120 | 928 | 992 |
| B S | 5681 | 392 | 1090 | 1200 | 1170 | 1250 | 949 | 1370 | 1520 | 1320 | 1040 | 1110 |
| BS | 5739 | 77 | 252 | 320 | 352 | 262 | 397 | 622 | 826 | 883 | 763 | 747 |
| BS | 5777 | 307 | 941 | 1050 | 1010 | 1080 | 862 | 1320 | 1480 | 1280 | 1020 | 1060 |
| BS | 5826 | 78 | 277 | 358 | 365 | 291 | 423 | 696 | 884 | 915 | 787 | 800 |

1288

| 5175 | 5300 | 5864 | 5892 | 6110 | 6180 | 6386 | 6564 | 6620 | 7000 | 7100 | 7400 | REMARK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 985 | 1030 | 954 | 904 | 966 | 936 | 822 | 657 | 638 | 320 | 258 | 98 |  |
| 572 | 967 | 905 | 773 | 1210 | 859 | 1070 | 912 | 877 | 555 | 333 | 201 |  |
| 799 | 978 | 1020 | 885 | 1060 | 1010 | 900 | 722 | 720 | 365 | 291 | 113 |  |
| 679 | 962 | 1040 | 919 | 1160 | 1040 | 1020 | 844 | 824 | 453 | 335 | 149 |  |
| 913 | 1030 | 946 | 876 | 959 | 931 | 803 | 630 | 626 | 313 | 249 | 92 |  |
| 1080 | 1040 | 919 | 883 | 931 | 902 | 784 | 610 | 606 | 300 | 242 | 90 |  |
| 641 | 940 | 979 | 854 | 1200 | 965 | 1070 | 887 | 872 | 517 | 349 | 177 |  |
| 813 | 992 | 1000 | 909 | 1030 | 991 | 892 | 714 | 703 | 359 | 283 | 112 |  |
| 810 | 994 | 1030 | 939 | 1080 | 1040 | 950 | 775 | 759 | 400 | 314 | 126 |  |
| 918 | 1030 | 950 | 856 | 965 | 921 | 794 | 635 | 628 | 308 | 244 | 91 |  |
| 965 | 1010 | 978 | 937 | 1010 | 980 | 862 | 690 | 680 | 349 | 280 | 108 |  |
| 899 | 1010 | 1000 | 934 | 1040 | 1000 | 888 | 717 | 702 | 357 | 285 | 112 |  |
| 589 | 946 | 940 | 800 | 1240 | 887 | 1080 | 911 | 898 | 579 | 346 | 209 |  |
| 1050 | 1050 | 939 | 893 | 939 | 899 | 780 | 618 | 605 | 298 | 238 | 90 |  |
| 1010 | 1030 | 954 | 908 | 975 | 936 | 817 | 654 | 639 | 322 | 255 | 98 |  |
| 1020 | 1030 | 943 | 897 | 963 | 922 | 810 | 633 | 623 | 317 | 246 | 95 |  |
| 855 | 999 | 1010 | 915 | 1050 | 1010 | 900 | 719 | 707 | 361 | 287 | 111 |  |
| 809 | 984 | 1040 | 964 | 1110 | 1060 | 966 | 781 | 764 | 402 | 317 | 126 |  |
| 970 | 1050 | 938 | 878 | 933 | 907 | 787 | 614 | 607 | 303 | 241 | 91 | R |
| 647 | 951 | 1020 | 891 | 1180 | 1000 | 1040 | 872 | 857 | 490 | 344 | 169 |  |
| 848 | 992 | 1060 | 975 | 1120 | 1080 | 988 | 796 | 790 | 421 | 332 | 133 |  |
| 819 | 1010 | 1010 | 946 | 1060 | 1020 | 922 | 736 | 723 | 377 | 296 | 116 | $R$ |
| 730 | 952 | 1020 | 864 | 1090 | 1030 | 935 | 759 | 753 | 390 | 298 | 124 | R |
| 777 | 972 | 1000 | 889 | 1060 | 1010 | 901 | 730 | 718 | 367 | 284 | 116 | R |
| 1060 | 1060 | 934 | 912 | 944 | 915 | 801 | 633 | 623 | 316 | 253 | 96 | R |
| 1010 | 1030 | 959 | 912 | 981 | 948 | 833 | 661 | 650 | 329 | 259 | 100 |  |
| 1070 | 1050 | 947 | 919 | 953 | 919 | 811 | 640 | 634 | 319 | 254 | 97 | R |
| 920 | 1040 | 959 | 874 | 965 | 933 | 812 | 643 | 632 | 311 | 247 | 94 |  |
| 962 | 1010 | 979 | 913 | 1000 | 968 | 860 | 679 | 671 | 342 | 270 | 103 | $R$ |
| 918 | 1020 | 991 | 948 | 1030 | 995 | 889 | 705 | 694 | 362 | 287 | 112 |  |
| 809 | 974 | 1030 | 934 | 1080 | 1040 | 944 | 761 | 750 | 386 | 306 | 123 |  |
| 871 | 982 | 987 | 894 | 1030 | 985 | 876 | 702 | 682 | 348 | 270 | 106 |  |
| 993 | 1010 | 974 | 910 | 1010 | 971 | 845 | 673 | 665 | 335 | 264 | 104 |  |
| 1050 | 1040 | 941 | 905 | 954 | 919 | 800 | 633 | 619 | 312 | 249 | 94 |  |
| 1110 | 1060 | 922 | 882 | 927 | 894 | 777 | 601 | 601 | 300 | 236 | 89 |  |
| 1050 | 1040 | 927 | 888 | 931 | 901 | 784 | 627 | 614 | 307 | 246 | 94 |  |
| 889 | 1010 | 1010 | 965 | 1070 | 1010 | 924 | 735 | 724 | 380 | 299 | 116 |  |
| 940 | 1020 | 961 | 901 | 990 | 952 | 836 | 665 | 653 | 331 | 261 | 101 |  |
| 756 | 957 | 1050 | 941 | 1140 | 1070 | 1010 | 824 | 808 | 430 | 335 | 139 |  |
| 845 | 1010 | 994 | 909 | 1040 | 1000 | 888 | 714 | 700 | 355 | 281 | 110 |  |
| 1040 | 1010 | 938 | 896 | 947 | 912 | 801 | 623 | 615 | 307 | 245 | 93 |  |
| 819 | 997 | 978 | 863 | 1010 | 974 | 850 | 684 | 670 | 334 | 265 | 104 |  |
| 1020 | 1030 | 928 | 870 | 933 | 897 | 771 | 611 | 600 | 290 | 233 | 87 | R |
| 1090 | 1040 | 914 | 879 | 921 | 886 | 775 | 607 | 590 | 289 | 233 | 87 |  |
| 1040 | 1030 | 967 | 913 | 996 | 957 | 848 | 665 | 665 | 335 | 270 | 103 | $R$ |
| 625 | 967 | 992 | 888 | 1210 | 956 | 1080 | 905 | 885 | 534 | 357 | 183 |  |
| 934 | 1020 | 978 | 891 | 996 | 956 | 849 | 669 | 661 | 329 | 264 | 100 |  |
| 1080 | 1020 | 936 | 893 | 942 | 909 | 793 | 613 | 619 | 304 | 245 | 91 | R |
| 591 | 945 | 959 | 827 | 1270 | 912 | 1120 | 947 | 935 | 595 | 362 | 212 |  |
| 896 | 989 | 987 | 916 | 998 | 969 | 852 | 679 | 674 | 332 | 272 | 101 |  |
| 664 | 957 | 1050 | 909 | 1210 | 1040 | 1060 | 881 | 870 | 486 | 351 | 164 |  |
| 768 | 971 | 1060 | 977 | 1140 | 1080 | 1010 | 822 | 809 | 427 | 337 | 136 |  |
| 804 | 1010 | 995 | 921 | 1030 | 1000 | 890 | 709 | 697 | 352 | 282 | 109 |  |
| 761 | 970 | 1060 | 961 | 1140 | 1080 | 1010 | 824 | 810 | 427 | 337 | 136 |  |
| 824 | 994 | 1010 | 919 | 1040 | 997 | 894 | 716 | 705 | 355 | 282 | 109 |  |
| 839 | 998 | 1040 | 964 | 1080 | 1050 | 947 | 765 | 752 | 385 | 311 | 123 |  |
| 1090 | 1030 | 952 | 909 | 965 | 929 | 816 | 638 | 635 | 312 | 254 | 94 | R |
| 1070 | 1040 | 944 | 903 | 956 | 911 | 808 | 627 | 6.23 | 311 | 250 | 93 |  |
| -807 | 989 | 1000 | 865 | 1050 | 1010 | 893 | 711 | 707 | 350 | 279 | 109 |  |
| 710 | 953 | 1070 | 941 | 1190 | 1080 | 1050 | 860 | 852 | 461 | 351 | 150 |  |
| 1020 | 1030 | 988 | 932 | 1010 | 973 | 860 | 680 | 670 | 336 | 273 | 103 |  |
| 1130 | 1050 | 930 | 899 | 942 | 903 | 790 | 607 | 608 | 305 | 244 | 91 |  |
| 896 | 1010 | 1030 | 972 | 1070 | 1040 | 936 | 757 | 741 | 382 | 309 | 121 |  |
| 1090 | 1050 | 957 | 921 | 961 | 929 | 816 | 635 | 633 | 321 | 258 | 97 | R |
| 624 | 936 | 992 | 852 | 1250 | 975 | 1110 | 919 | 916 | 545 | 360 | 187 |  |
| 939 | 1030 | 957 | 904 | 977 | 940 | 833 | 655 | 647 | 322 | 261 | 97 |  |
| 662 | 929 | 1030 | 853 | 1190 | 1040 | 1050 | 866 | 863 | 475 | 344 | 158 |  |


| \#AVEL | ENGTH | 3880 | 4040 | 4100 | 4200 | 4227 | 4300 | 4340 | 4500 | 4715 | 4900 | 5000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS | 5854 | 174 | 652 | 744 | 687 | 819 | 716 | 1150 | 1280 | 1150 | 942 | 972 |
| BS | 5888 | 317 | 986 | 1070 | 1020 | 1130 | 858 | 1300 | 1460 | 1280 | 1020 | 1080 |
| BS | 5889 | 649 | 1420 | 1430 | 1520 | 1530 | 1170 | 1560 | 1690 | 1450 | 1100 | 1180 |
| 85 | 5901 | 302 | 930 | 1060 | 1010 | 1080 | 871 | 1340 | 1460 | 1280 | 1010 | 1060 |
| BS | 5940 | 209 | 714 | 807 | 774 | 829 | 717 | 1170 | 1320 | 1190 | 964 | 998 |
| BS | 5947 | 169 | 626 | 724 | 684 | 762 | 665 | 1050 | 1220 | 1140 | 940 | 998 |
| BS | 5966 | 357 | 1040 | 1130 | 1070 | 1180 | 874 | 1330 | 1500 | 1310 | 1030 | 1080 |
| BS | 6014 | 329 | 939 | 1090 | 1080 | 1060 | 856 | 1330 | 1530 | 1310 | 1030 | 1070 |
| BS | 6018 | 295 | 937 | 1060 | 1010 | 1110 | 858 | 1330 | 1480 | 1310 | 1020 | 1070 |
| BS | 6103 | 328 | 1010 | 1080 | 1020 | 1170 | 903 | 1360 | 1490 | 1280 | 1010 | 1080 |
| BS | 6220 | 404 | 1160 | 1240 | 1200 | 1350 | 1040 | 1430 | 1570 | 1360 | 1060 | 1130 |
| BS | 6623 | 585 | 1450 | 1470 | 1560 | 1630 | 1240 | 1580 | 1790 | 1430 | 1110 | 1160 |
| BS | 6770 | 371 | 1090 | 1150 | 1110 | 1240 | 963 | 1380 | 1540 | 1330 | 1050 | 1100 |
| BS | 6791 | 424 | 1140 | 1200 | 1190 | 1320 | 1170 | 1470 | 1560 | 1340 | 1040 | 1090 |
| BS | 6817 | 375 | 1070 | 1170 | 1140 | 1190 | 929 | 1410 | 1580 | 1340 | 1050 | 1090 |
| BS | 6869 | 378 | 1080 | 1200 | 1190 | 1270 | 983 | 1400 | 1560 | 1340 | 1050 | 1110 |
| BS | 6872 | 196 | 692 | 771 | 722 | 830 | 692 | 1140 | 1280 | 1160 | 963 | 998 |
| BS | 7149 | 274 | 866 | 932 | 875 | 991 | 730 | 1240 | 1420 | 1240 | 996 | 1050 |
| BS | 7176 | 263 | 871 | 930 | 858 | 1010 | 804 | 1290 | 1440 | 1270 | 1010 | 1040 |
| BS | 7373 | 596 | 1480 | 1460 | 1550 | 1570 | 1130 | 1590 | 1820 | 1470 | 1100 | 1150 |
| BS | 7405 | 107 | 363 | 425 | 465 | 351 | 474 | 772 | 1030 | 1020 | 841 | 785 |
| BS | 7429 | 188 | 662 | 759 | 741 | 777 | 693 | 1130 | 1290 | 1160 | 950 | 989 |
| BS | 7430 | 320 | 878 | 912 | 898 | 1030 | 784 | 1180 | 1350 | 1210 | 954 | 1020 |
| BS | 7576 | 136 | 531 | 595 | 570 | 616 | 610 | 1060 | 1190 | 1110 | 929 | 917 |
| BS | 7602 | 482 | 1230 | 1360 | 1380 | 1390 | 991 | 1480 | 1670 | 1410 | 1080 | 1120 |
| BS | 7670 | 619 | 1490 | 1520 | 1610 | 1600 | 1180 | 1620 | 1850 | 1500 | 1120 | 1160 |
| BS | 7806 | 126 | 465 | 575 | 568 | 567 | 589 | 949 | 1150 | 1090 | 899 | 937 |
| BS | 7831 | 213 | 731 | 809 | 749 | 879 | 706 | 1180 | 1340 | 1200 | 992 | 1010 |
| BS | 7949 | 283 | 918 | 1030 | 982 | 1090 | 849 | 1270 | 1430 | 1260 | 1020 | 1070 |
| BS | 7957 | 420 | 1190 | 1270 | 1280 | 1290 | 929 | 1460 | 1660 | 1430 | 1080 | 1130 |
| BS | 8082 | 323 | 978 | 1070 | 1010 | 1090 | 841 | 1320 | 1480 | 1320 | 1020 | 1090 |
| BS | 8255 | 252 | 844 | 912 | 858 | 993 | 753 | 1240 | 1400 | 1240 | 1000 | 1040 |
| BS | 8317 | 233 | 803 | 872 | 816 | 936 | 752 | 1250 | 1390 | 1250 | 1000 | 1020 |
| BS | 8448 | 496 | 1160 | 1290 | 1280 | 1340 | 1040 | 1440 | 1610 | 1360 | 1060 | 1090 |
| BS | 8551 | 317 | 924 | 1050 | 1030 | 1070 | 817 | 1290 | 1470 | 1310 | 1040 | 1080 |
| BS | 8841 | 266 | 846 | 918 | 883 | 950 | 714 | 1200 | 1410 | 1240 | 991 | 1030 |
| BS | 8857 | 250 | 857 | 946 | 899 | 1000 | 810 | 1300 | 1450 | 1290 | 1020 | 1040 |
| BS | 8924 | 212 | 769 | 835 | 806 | 866 | 749 | 1280 | 1420 | 1240 | 997 | 997 |
| BS | 8974 | 272 | 914 | 1010 | 974 | 1030 | 820 | 1330 | 1500 | 1310 | 1030 | 1050 |
| HD | 29038 | 162 | 617 | 695 | 680 | 711 | 659 | 1100 | 1270 | 1130 | 947 | 948 |
| HD | 122563 | 843 | 1310 | 1330 | 1470 | 1450 | 1300 | 1420 | 1460 | 1330 | 996 | 1160 |
| HD | 165195 | 522 | 953 | 1040 | 1130 | 1170 | 1050 | 1200 | 1300 | 1220 | 952 | 1100 |
| 85 | 1346 | 345 | 1050 | 1110 | 1050 | 1240 | 960 | 1400 | 1530 | 1340 | 1060 | 1080 |
| BS | 1373 | 331 | 1040 | 1110 | 1040 | 1230 | 934 | 1400 | 1530 | 1340 | 1060 | 1080 |
| BS | 1409 | 310 | 1000 | 1070 | 1000 | 1190 | 912 | 1390 | 1520 | 1340 | 1050 | 1070 |
| 85 | 1411 | 398 | 1130 | 1180 | 1140 | 1280 | 991 | 1460 | 1610 | 1390 | 1070 | 1100 |
| M13 | 59 | 134 | 374 | 443 | 472 | 559 | 515 | 697 | 889 | 964 | 828 | 949 |
| FAG | 84 | 262 | 935 | 1000 | 934 | 1050 | 823 | 1320 | 1470 | 1300 | 1050 | 1050 |
| FAG | 105 | 183 | 659 | 741 | 723 | 762 | 674 | 1140 | 1320 | 1200 | 980 | 983 |
| FAG | 108 | 134 | 505 | 572 | 583 | 567 | 568 | 970 | 1160 | 1110 | 919 | 949 |
| FAG | 141 | 264 | 948 | 1010 | 947 | 1070 | 821 | 1360 | 1520 | 1330 | 1060 | 1070 |
| FAG | 151 | 286 | 979 | 1030 | 975 | 1070 | 866 | 1380 | 1530 | 1360 | 1060 | 1090 |
| FAG | 170 | 136 | 526 | 623 | 610 | 640 | 607 | 1000 | 1200 | 1140 | 937 | 971 |
| FAG | 193 | 392 | 1150 | 1230 | 1180 | 1250 | 984 | 1480 | 1670 | 1400 | 1090 | 1120 |
| FAG | 224 | 246 | 863 | 928 | 865 | 985 | 838 | 1320 | 1440 | 1290 | 1020 | 1040 |
| MUR | 1465 | 88 | 309 | 392 | 405 | 333 | 445 | 750 | 954 | 975 | 816 | 827 |
| I | 1 | 370 | 979 | 964 | 999 | 1060 | 836 | 1240 | 1440 | 1290 | 1010 | 1070 |
| I | 69 | 201 | 660 | 701 | 693 | 755 | 613 | 1130 | 1320 | 1220 | 963 | 1010 |
| I | $105^{-}$ | 255 | 846 | 870 | 834 | 959 | 736 | 1250 | 1420 | 1280 | 1030 | 1050 |
| II | 75 | 203 | 691 | 767 | 791 | 764 | 677 | 1100 | 1310 | 1220 | 986 | 991 |
| II | 181 | 225 | 688 | 729 | 702 | 749 | 620 | 1070 | 1290 | 1170 | 929 | 958 |
| III | 4 | 285 | 906 | 974 | 962 | 982 | 809 | 1290 | 1470 | 1270 | 1010 | 1030 |
| III | 18 | 96 | 359 | 421 | 434 | 382 | 479 | 787 | 1000 | 997 | 846 | 865 |
| BD+ | 37418 | 345 | 1050 | 1100 | 1080 | 1190 | 912 | 1370 | 1520 | 1320 | 1050 | 1080 |
| BD+ | 37432 | 343 | 1060 | 1120 | 1090 | 1190 | 908 | 1360 | 1520 | 1320 | 1060 | 1090 |
| BD+ | 37448 | 321 | 1000 | 1050 | 1010 | 1140 | 865 | 1340 | 1480 | 1310 | 1030 | 1060 |
| K | 751 | 74 | 272 | 331 | 375 | 269 | 385 | 644 | 856 | 902 | 771 | 767 |


| 5175 | 5300 | 5864 | 5892 | 6110 | 6180 | 6386 | 6564 | 6620 | 7000 | 7100 | 7400 | REMARK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 879 | 998 | 969 | 885 | 997 | 968 | 856 | 679 | 674 | 334 | 267 | 103 |  |
| 1060 | 1040 | 959 | 919 | 971 | 934 | 828 | 649 | 643 | 324 | 258 | 97 |  |
| 1160 | 1090 | 903 | 879 | 907 | 870 | 764 | 584 | 582 | 288 | 231 | 85 |  |
| 945 | 1020 | 963 | 902 | 976 | 937 | 825 | 646 | 640 | 320 | 259 | 97 |  |
| 848 | 1020 | 988 | 912 | 1020 | 972 | 870 | 692 | 679 | 342 | 276 | 105 |  |
| 900 | 985 | 1010 | 953 | 1050 | 1010 | 913 | 732 | 724 | 373 | 300 | 116 |  |
| 1090 | 1050 | 952 | 914 | 958 | 927 | 820 | 637 | 632 | 319 | 256 | 96 |  |
| 882 | 1040 | 954 | 882 | 961 | 932 | 816 | 639 | 630 | 315 | 253 | 95 |  |
| 974 | 1030 | 964 | 915 | 981 | 939 | 830 | 651 | 645 | 326 | 262 | 98 |  |
| 1030 | 1030 | 950 | 894 | 956 | 913 | 801 | 621 | 620 | 309 | 249 | 92 |  |
| 1110 | 1050 | 920 | 894 | 929 | 891 | 780 | 614 | 609 | 307 | 244 | 92 |  |
| 1100 | 1060 | 886 | 855 | 880 | 841 | 726 | 552 | 560 | 276 | 218 | 81 |  |
| 1110 | 1060 | 940 | 899 | 952 | 908 | 796 | 611 | 612 | 304 | 240 | 91 |  |
| 1080 | 1040 | 931 | 876 | 938 | 897 | 785 | 608 | 609 | 306 | 244 | 92 | $R$ |
| 994 | 1050 | 942 | 893 | 948 | 913 | 801 | 623 | 613 | 307 | 247 | 92 |  |
| 1050 | 1030 | 930 | 897 | 947 | 908 | 797 | 629 | 623 | 312 | 251 | 95 |  |
| 946 | 1010 | 979 | 910 | 1000 | 974 | 855 | 681 | 672 | 336 | 268 | 103 |  |
| 998 | 1050 | 952 | 904 | 964 | 936 | 816 | 646 | 639 | 311 | 254 | 95 | $R$ |
| 977 | 1030 | 952 | 887 | 966 | 932 | 817 | 644 | 635 | 316 | 254 | 96 | R |
| 1080 | 1070 | 898 | 847 | 883 | 852 | 728 | 545 | 556 | 269 | 216 | 79 |  |
| 623 | 1000 | 939 | 829 | 1150 | 906 | 1030 | 849 | 824 | 487 | 323 | 163 | R |
| 812 | 1010 | 1000 | 910 | 1020 | 983 | 876 | 699 | 687 | 349 | 279 | 108 | R |
| 1050 | 1020 | 994 | 923 | 1020 | 979 | 860 | 682 | 678 | 343 | 273 | 105 |  |
| 763 | 979 | 1000 | 858 | 1050 | 1010 | 890 | 714 | 708 | 354 | 279 | 109 | R |
| 1070 | 1050 | 917 | 883 | 922 | 889 | 779 | 600 | 597 | 299 | 239 | 91 |  |
| 1050 | 1060 | 894 | 854 | 887 | 848 | 732 | 545 | 560 | 269 | 217 | 78 |  |
| 815 | 973 | 1020 | 930 | 1070 | 1020 | 915 | 752 | 738 | 382 | 302 | 121 | R |
| 919 | 1020 | 978 | 908 | 1000 | 961 | 850 | 670 | 667 | 333 | 266 | 104 |  |
| 1040 | 1030 | 946 | 922 | 969 | 931 | 822 | 657 | 646 | 331 | 264 | 101 |  |
| 1060 | 1060 | 928 | 889 | 930 | 900 | 786 | 614 | 610 | 305 | 247 | 92 | R |
| 1060 | 1050 | 957 | 919 | 965 | 930 | 815 | 638 | 634 | 321 | 256 | 96 |  |
| 997 | 1040 | 956 | 904 | 979 | 945 | 827 | 654 | 640 | 320 | 255 | 96 | R |
| 954 | 1020 | 964 | 892 | 988 | 948 | 833 | 656 | 650 | 323 | 259 | 98 |  |
| 1010 | 1040 | 949 | 883 | 946 | 910 | 808 | 632 | 617 | 310 | 248 | 94 | R |
| 974 | 1050 | 964 | 920 | 973 | 950 | 838 | 683 | 648 | 329 | 266 | 100 |  |
| 962 | 1020 | 974 | 924 | 978 | 945 | 837 | 656 | 647 | 326 | 264 | 100 |  |
| 952 | 1040 | 962 | 896 | 977 | 943 | 829 | 654 | 642 | 322 | 259 | 96 |  |
| 816 | 1020 | 979 | 845 | 994 | 960 | 834 | 666 | 652 | 323 | 256 | 98 |  |
| 928 | 1020 | 947 | 891 | 967 | 943 | 818 | 648 | 638 | 318 | 256 | 96 |  |
| 788 | 991 | 991 | 892 | 1040 | 988 | 883 | 703 | 691 | 348 | 276 | 107 |  |
| 1270 | 1100 | 965 | 954 | 1010 | 977 | 868 | 688 | 674 | 349 | 280 | 107 | R |
| 1210 | 1090 | 1000 | 980 | 1050 | 1010 | 899 | 729 | 706 | 371 | 297 | 114 | R |
| 1060 | 1020 | 930 | 878 | 937 | 904 | 778 | 608 | 602 | 297 | 237 | 89 | 1 |
| 1070 | 1030 | 929 | 880 | 941 | 909 | 781 | 611 | 605 | 300 | 240 | 90 | 1 |
| 1060 | 1020 | 930 | 880 | 941 | 908 | 784 | 613 | 608 | 300 | 241 | 91 | 1 |
| 1070 | 1040 | 920 | 869 | 930 | 896 | 778 | 599 | 598 | 294 | 236 | 88 | 1 |
| 1060 | 1020 | 1110 | 1060 | 1180 | 1170 | 1080 | 881 | 856 | 473 | 376 | 157 | R |
| 1000 | 1030 | 935 | 876 | 940 | 914 | 794 | 619 | 608 | 299 | 239 | 89 | 2 |
| 866 | 1000 | 990 | 905 | 1000 | 978 | 857 | 688 | 676 | 334 | 267 | 103 | 2 |
| 791 | 985 | 1020 | 911 | 1060 | 1010 | 915 | 732 | 724 | 361 | 289 | 113 | 2 |
| 1000 | 1030 | 941 | 882 | 954 | 913 | 802 | 621 | 614 | 303 | 237 | 88 | 2 |
| 1030 | 1050 | 929 | 866 | 946 | 904 | 793 | $\checkmark 20$ | 608 | 299 | 233 | 87 | 2 |
| 826 | 992 | 1010 | 921 | 1050 | 1000 | 906 | 719 | 712 | 360 | 282 | 111 | 2 |
| 987 | 1050 | 936 | 877 | 925 | 904 | 780 | 615 | 607 | 300 | 238 | 89 | 2 |
| 938 | 1010 | 948 | 861 | 969 | 936 | 813 | 641 | 628 | 310 | 246 | 93 | 2 |
| 659 | 947 | 1030 | 874 | 1170 | 1010 | 1030 | 843 | 828 | 458 | 327 | 152 | 2 |
| 974 | 1050 | 949 | 894 | 975 | 942 | 824 | 655 | 652 | 314 | 251 | 99 | 3 |
| 854 | 1010 | 992 | 886 | 1020 | 981 | 861 | 703 | 686 | 344 | 262 | 107 | 3 |
| 991 | 1060 | 949 | 879 | 961 | 919 | 813 | 645 | 636 | 308 | 245 | 94 | 3 |
| 823 | 1010 | 989 | 912 | 1020 | 976 | 885 | 704 | 689 | 358 | 288 | 112 | 3 |
| 837 | 1010 | 981 | 906 | 1030 | 983 | 877 | 692 | 677 | 343 | 276 | 107 | 3 |
| 882 | 1030 | 968 | 893 | 977 | 951 | 815 | 654 | 638 | 322 | 255 | 97 | 3 |
| 674 | 965 | 1040 | 893 | 1140 | 1030 | 997 | 811 | 805 | 420 | 321 | 138 | 3 |
| 1080 | 1040 | 939 | 905 | 949 | 912 | 800 | 628 | 618 | 307 | 246 | 94 | 4 |
| 1090 | 1040 | 941 | 908 | 950 | 918 | 795 | 627 | 610 | 307 | 243 | 91 | 4 |
| 1050 | 1040 | 941 | 910 | 957 | 918 | 811 | 632 | 621 | 313 | 247 | 93 | 4 |
| 658 | 930 | 1040 | 894 | 1230 | 1020 | 1080 | 906 | 885 | 509 | 356 | 168 | 5 |

TABLE 6
SURVEY STAR COLORS

| WAVE | GTH | 3880 | 4040 | 4100 | 4200 | 4227 | 4300 | 4340 | 4500 | 4715 | 4900 | 5000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS | 6136 | 97 | 360 | 442 | 436 | 415 | 484 | 824 | 986 | 985 | 835 | 867 |
| BS | 6148 | 406 | 1150 | 1200 | 1150 | 1330 | 1010 | 1400 | 1550 | 1350 | 1060 | 1100 |
| BS | 6154 | 78 | 263 | 341 | 358 | 282 | 402 | 660 | 851 | 908 | 778 | 764 |
| BS | 6159 | 98 | 337 | 429 | 459 | 387 | 484 | 767 | 999 | 989 | 849 | 838 |
| BS | 6228 | 81 | 290 | 375 | 390 | 307 | 435 | 717 | 922 | 944 | 796 | 796 |
| BS | 6239 | 516 | 1300 | 1250 | 1330 | 1460 | 1170 | 1430 | 1620 | 1390 | 1060 | 1100 |
| BS | 6258 | 78 | 265 | 340 | 365 | 294 | 414 | 644 | 864 | 899 | 778 | 794 |
| BS | 6287 | 382 | 1090 | 1180 | 1130 | 1240 | 956 | 1380 | 1530 | 1330 | 1040 | 1100 |
| BS | 6292 | 421 | 1160 | 1270 | 1240 | 1330 | 1010 | 1440 | 1580 | 1360 | 1050 | 1120 |
| BS | 6293 | 108 | 406 | 505 | 500 | 475 | 533 | 873 | 1090 | 1050 | 874 | 887 |
| BS | 6299 | 210 | 722 | 805 | 755 | 844 | 685 | 1150 | 1340 | 1180 | 964 | 993 |
| BS | 6305 | 486 | 1250 | 1360 | 1330 | 1420 | 1070 | 1510 | 1660 | 1440 | 1090 | 1140 |
| BS | 6307 | 249 | 830 | 906 | 856 | 987 | 772 | 1230 | 1360 | 1210 | 970 | 1030 |
| BS | 6325 | 150 | 539 | 613 | 569 | 692 | 592 | 958 | 1130 | 1080 | 922 | 961 |
| BS | 6342 | 300 | 909 | 1050 | 989 | 1070 | 861 | 1270 | 1440 | 1290 | 1000 | 1070 |
| BS | 6364 | 152 | 548 | 618 | 607 | 609 | 597 | 1010 | 1210 | 1130 | 924 | 952 |
| BS | 6390 | 300 | 896 | 1040 | 983 | 1080 | 854 | 1270 | 1430 | 1250 | 1020 | 1070 |
| BS | 6393 | 100 | 300 | 374 | 402 | 348 | 426 | 641 | 840 | 880 | 766 | 761 |
| BS | 6443 | 356 | 1050 | 1170 | 1090 | 1220 | 945 | 1400 | 1530 | 1330 | 1050 | 1090 |
| BS | 6452 | 76 | 268 | 324 | 354 | 306 | 391 | 617 | 853 | 891 | 776 | 731 |
| BS | 6476 | 183 | 609 | 708 | 640 | 816 | 747 | 1040 | 1150 | 1070 | 906 | 944 |
| BS | 6526 | 108 | 393 | 486 | 474 | 467 | 505 | 848 | 1040 | 1030 | 869 | 903 |
| BS | 6542 | 323 | 973 | 1050 | 1010 | 1120 | 850 | 1300 | 1440 | 1270 | 1010 | 1070 |
| BS | 6575 | 329 | 966 | 1050 | 1000 | 1150 | 895 | 1320 | 1460 | 1280 | 1010 | 1040 |
| BS | 6590 | 193 | 610 | 697 | 655 | 767 | 646 | 1000 | 1160 | 1120 | 928 | 982 |
| BS | 6602 | 103 | 377 | 458 | 472 | 404 | 498 | 831 | 1030 | 997 | 857 | 850 |
| BS | 6603 | 185 | 676 | 770 | 730 | 838 | 712 | 1170 | 1310 | 1170 | 973 | 986 |
| BS | 6608 | 757 | 1670 | 1590 | 1770 | 1810 | 1330 | 1610 | 1840 | 1490 | 1110 | 1190 |
| BS | 6644 | 210 | 707 | 781 | 754 | 858 | 728 | 1140 | 1290 | 1150 | 962 | 999 |
| BS | 6654 | 246 | 839 | 935 | 884 | 1020 | 811 | 1220 | 1380 | 1240 | 995 | 1030 |
| BS | 6665 | 339 | 994 | 10.90 | 1050 | 1160 | 907 | 1340 | 1460 | 1270 | 1010 | 1080 |
| BS | 6687 | 153 | 573 | 656 | 624 | 695 | 615 | 1020 | 1180 | 1100 | 920 | 973 |
| BS | 6703 | 394 | 1120 | 1190 | 1140 | 1300 | 1020 | 1430 | 1580 | 1350 | 1060 | 1100 |
| BS | 6763 | 163 | 596 | 682 | 668 | 700 | 609 | 1040 | 1210 | 1130 | 920 | 979 |
| BS | 6765 | 78 | 250 | 325 | 353 | 232 | 383 | 595 | 754 | 825 | 717 | 635 |
| BS | 6800 | 189 | 664 | 768 | 730 | 785 | 669 | 1100 | 1270 | 1160 | 954 | 983 |
| BS | 6820 | 107 | 399 | 473 | 490 | 466 | 478 | 830 | 1050 | 1050 | 868 | 911 |
| BS | 6868 | 79 | 262 | 338 | 363 | 265 | 396 | 659 | 873 | 894 | 772 | 738 |
| BS | 6882 | 74 | 262 | 329 | 361 | 296 | 383 | 635 | 861 | 924 | 786 | 788 |
| BS | 6885 | 176 | 610 | 699 | 683 | 712 | 621 | 1050 | 1230 | 1160 | 953 | 989 |
| BS | 6895 | 206 | 708 | 791 | 774 | 815 | 677 | 1140 | 1330 | 1210 | 974 | 1010 |
| BS | 6966 | 96 | 363 | 453 | 445 | 429 | 472 | 815 | 1010 | 1010 | 860 | 883 |
| BS | 6980 | 318 | 1010 | 1080 | 1020 | 1180 | 908 | 1370 | 1510 | 1310 | 1040 | 1060 |
| BS | 7064 | 191 | 651 | 752 | 733 | 783 | 679 | 1100 | 1270 | 1160 | 948 | 991 |
| BS | 7112 | 222 | 733 | 828 | 764 | 898 | 700 | 1130 | 1270 | 1160 | 958 | 1000 |
| BS | 7132 | 120 | 456 | 555 | 548 | 545 | 543 | 913 | 1120 | 1080 | 892 | 923 |
| BS | 7181 | 184 | 640 | 715 | 714 | 719 | 618 | 1060 | 1270 | 1170 | 941 | 979 |
| BS | 7918 | 174 | 625 | 722 | 721 | 739 | 664 | 1110 | 1280 | 1180 | 955 | 988 |
| BS | 7923 | 420 | 1130 | 1240 | 1190 | 1300 | 954 | 1400 | 1540 | 1350 | 1050 | 1100 |
| BS | 7939 | 194 | 680 | 793 | 735 | 853 | 707 | 1110 | 1270 | , 1160 | 955 | 997 |
| BS | 7995 | 547 | 1320 | 1390 | 1380 | 1490 | 1130 | 1510 | 1660 | 1410 | 1080 | 1150 |
| BS | 8008 | 96 | 353 | 447 | 443 | 426 | 480 | 803 | 1010 | 1010 | 850 | 872 |
| BS | 8011 | 269 | 799 | 914 | 859 | 982 | 790 | 1200 | 1380 | 1250 | 1010 | 1040 |
| BS | 8030 | 422 | 1120 | 1230 | 1190 | 1290 | 1000 | 1410 | 1560 | 1350 | 1050 | 1090 |
| BS | 8032 | 109 | 399 | 494 | 491 | 472 | 505 | 862 | 1060 | 1040 | 863 | 897 |
| BS | 8066 | 73 | 259 | 320 | 323 | 303 | 368 | 636 | 838 | 890 | 787 | 796 |
| BS | 8163 | 80 | 251 | 319 | 361 | 264 | 389 | 607 | 820 | 877 | 754 | 722 |
| BS | 8173 | 248 | 808 | 910 | 857 | 941 | 739 | 1230 | 1410 | 1240 | 993 | 1030 |
| BS | 8197 | 281 | 890 | 1000 | 923 | 1070 | 821 | 1280 | 1430 | 1260 | 1020 | 1040 |
| BS | 8225 | 79 | 264 | 343 | 367 | 254 | 410 | 669 | 874 | 924 | 779 | 736 |
| BS | 8277 | 297 | 928 | 1030 | 954 | 1080 | 799 | 1280 | 1450 | 1260 | 1010 | 1070 |
| BS | 8287 | 105 | 395 | 486 | 465 | 496 | 501 | 829 | 1010 | 1030 | 877 | 913 |
| BS | 8325 | 171 | 621 | 721 | 697 | 744 | 651 | 1090 | 1250 | 1160 | 944 | 963 |
| BS | 8390 | 151 | 564 | 663 | 644 | 702 | 640 | 1040 | 1210 | 1150 | 945 | 971 |
| BS | 8393 | 97 | 374 | 459 | 454 | 427 | 485 | 857 | 1020 | 1000 | 856 | 880 |
| BS | 8413 | 99 | 357 | 435 | 431 | 386 | 468 | 813 | 1010 | 980 | 836 | 846 |
| BS | 8415 | 157 | 576 | 677 | 658 | 704 | 616 | 1040 | 1210 | 1140 | 939 | 983 |


| 5175 | 5300 | 5864 | 5892 | 6110 | 6180 | 6386 | 6564 | 6620 | 7000 | 7100 | 7400 | REMARK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 713 | 955 | 1050 | 859 | 1150 | 1060 | 994 | 813 | 805 | 420 | 326 | 136 |  |
| 1130 | 1040 | 940 | 905 | 938 | 904 | 803 | 613 | 613 | 307 | 244 | 92 |  |
| 634 | 937 | 1040 | 871 | 1240 | 1020 | 1100 | 911 | 907 | 527 | 360 | 178 |  |
| 675 | 985 | 1050 | 942 | 1180 | 1050 | 1060 | 867 | 854 | 474 | 345 | 155 |  |
| 635 | 937 | 1030 | 873 | 1210 | 1020 | 1070 | 883 | 874 | 492 | 344 | 163 |  |
| 1140 | 1060 | 931 | 888 | 926 | 890 | 783 | 597 | 609 | 302 | 239 | 90 |  |
| 652 | 941 | 1050 | 907 | 1240 | 1030 | 1090 | 903 | 901 | 523 | 361 | 174 |  |
| 1070 | 1030 | 952 | 908 | 952 | 921 | 813 | 628 | 627 | 314 | 252 | 96 |  |
| 1100 | 1060 | 942 | 909 | 943 | 904 | 801 | 615 | 614 | 310 | 250 | 93 |  |
| 718 | 968 | 1050 | 939 | 1130 | 1060 | 1000 | 809 | 804 | 423 | 329 | 136 |  |
| 900 | 1010 | 990 | 920 | 1000 | 972 | 860 | 677 | 675 | 336 | 269 | 104 |  |
| 1140 | 1090 | 940 | 900 | 944 | 903 | 797 | 618 | 613 | 308 | 247 | 92 |  |
| 966 | 1020 | 980 | 932 | 994 | 962 | 845 | 666 | 661 | 335 | 268 | 101 |  |
| 924 | 995 | 1030 | 942 | 1060 | 1010 | 913 | 718 | 728 | 364 | 290 | 115 |  |
| 994 | 1040 | 968 | 936 | 985 | 949 | 851 | 666 | 659 | 333 | 267 | 103 |  |
| 814 | 1020 | 1010 | 927 | 1070 | 1040 | 927 | 753 | 739 | 378 | 303 | 118 |  |
| 988 | 1040 | 967 | 924 | 979 | 949 | 838 | 664 | 655 | 330 | 267 | 102 |  |
| 635 | 949 | 986 | 868 | 1260 | 949 | 1120 | 938 | 926 | 572 | 362 | 201 |  |
| 1080 | 1040 | 949 | 906 | 951 | 920 | 802 | 632 | 624 | 315 | 251 | 95 |  |
| 606 | 946 | 985 | 867 | 1240 | 953 | 1120 | 919 | 902 | 544 | 349 | 186 |  |
| 951 | 982 | 1030 | 942 | 1060 | 1010 | 879 | 727 | 723 | 371 | 294 | 113 |  |
| 767 | 974 | 1050 | 948 | 1120 | 1070 | 978 | 795 | 789 | 412 | 325 | 130 |  |
| 1040 | 1020 | 945 | 908 | 963 | 934 | 814 | 668 | 631 | 313 | 253 | 93 |  |
| 1030 | 1040 | 969 | 915 | 987 | 946 | 841 | 656 | 651 | 327 | 261 | 97 |  |
| 962 | 979 | 1020 | 943 | 1070 | 1020 | 911 | 737 | 727 | 370 | 298 | 117 |  |
| 667 | 967 | 1020 | 897 | 1140 | 1030 | 994 | 817 | 799 | 436 | 324 | 140 |  |
| 885 | 1010 | 982 | 899 | 1010 | 974 | 859 | 690 | 672 | 337 | 268 | 105 |  |
| 1180 | 1070 | 886 | 859 | 875 | 832 | 713 | 521 | 538 | 264 | 207 | 75 |  |
| 866 | 1000 | 986 | 916 | 1030 | 971 | 869 | 682 | 671 | 344 | 270 | 104 |  |
| 975 | 1020 | 959 | 907 | 990 | 964 | 842 | 662 | 651 | 332 | 263 | 100 |  |
| 1060 | 1030 | 941 | 899 | 950 | 924 | 802 | 624 | 626 | 311 | 246 | 95 |  |
| 889 | 996 | 1010 | 932 | 1050 | 1010 | 896 | 720 | 708 | 363 | 289 | 112 |  |
| 1100 | 1050 | 927 | 880 | 938 | 905 | 785 | 603 | 600 | 302 | 239 | 89 |  |
| 879 | 996 | 1020 | 942 | 1080 | 1030 | 925 | 735 | 719 | 376 | 300 | 118 |  |
| 538 | 937 | 859 | 717 | 1310 | 810 | 1130 | 963 | 924 | 677 | 358 | 252 |  |
| 929 | 985 | 1010 | 938 | 1050 | 1000 | 888 | 699 | 688 | 353 | 282 | 108 |  |
| 768 | 991 | 1070 | 983 | 1180 | 1100 | 1020 | 833 | 817 | 446 | 348 | 143 |  |
| 607 | 952 | 1000 | 855 | 1260 | 982 | 1090 | 914 | 890 | 533 | 355 | 183 |  |
| 649 | 954 | 1070 | 940 | 1270 | 1080 | 1140 | 945 | 941 | 549 | 383 | 186 |  |
| 901 | 1000 | 1020 | 947 | 1050 | 1020 | 915 | 729 | 720 | 373 | 299 | 114 |  |
| 890 | 1030 | 990 | 922 | 1030 | 994 | 869 | 694 | 686 | 348 | 281 | 108 |  |
| 766 | 958 | 1060 | 964 | 1170 | 1080 | 1010 | 821 | 813 | 435 | 341 | 138 |  |
| 1060 | 1030 | 942 | 890 | 974 | 917 | 806 | 626 | 613 | 309 | 248 | 93 |  |
| 893 | 1010 | 998 | 929 | 1030 | 992 | 885 | 704 | 692 | 354 | 283 | 110 |  |
| 1010 | 1010 | 986 | 928 | 1030 | 985 | 873 | 688 | 680 | 347 | 277 | 107 |  |
| 786 | 978 | 1050 | 961 | 1110 | 1060 | 959 | 778 | 767 | 401 | 317 | 126 |  |
| 869 | 986 | 1020 | 950 | 1060 | 1020 | 917 | 730 | 711 | 373 | 300 | 115 |  |
| 870 | 1010 | 1020 | 945 | 1040 | 1010 | 907 | 724 | 719 | 365 | 293 | 113 |  |
| 1110 | 1050 | 939 | 915 | 956 | 913 | 801 | 622 | 628 | 314 | 252 | 94 |  |
| 928 | 990 | 983 | 927 | 1010 | 972 | 870 | 688 | 680 | 348 | 278 | 106 |  |
| 1150 | 1050 | 910 | 886 | 910 | 873 | 762 | 579 | 583 | 289 | 232 | 87 |  |
| 746 | 965 | 1070 | 937 | 1140 | 1080 | 997 | 816 | 811 | 427 | 334 | 139 |  |
| 1020 | 1020 | 972 | 926 | 993 | 959 | 847 | 666 | 664 | 336 | 265 | 104 |  |
| 1070 | 1040 | 933 | 897 | 942 | 900 | 792 | 614 | 611 | 305 | 245 | 92 |  |
| 763 | 969 | 1040 | 943 | 1110 | 1060 | 972 | 791 | 786 | 413 | 326 | 132 |  |
| 699 | 925 | 1080 | 922 | 1220 | 1100 | 1060 | 873 | 886 | 474 | 358 | 161 |  |
| 593 | 937 | 970 | 853 | 1260 | 931 | 1130 | 938 | 937 | 579 | 364 | 208 |  |
| 958 | 1030 | 973 | 925 | 982 | 953 | 843 | 665 | 658 | 327 | 264 | 102 |  |
| 1010 | -1020 | 953 | 918 | 966 | 929 | 813 | 639 | 632 | 317 | 254 | 95 |  |
| 596 | 937 | 939 | 803 | 1220 | 939 | 1070 | 897 | 883 | 527 | 340 | 186 |  |
| 1020 | 1030 | 956 | 917 | 961 | 928 | 817 | 636 | 635 | 315 | 255 | 96 |  |
| 814 | 956 | 1070 | 968 | 1130 | 1090 | 994 | 809 | 802 | 417 | 335 | 136 |  |
| 852 | 990 | 1000 | 924 | 1000 | 991 | 880 | 713 | 695 | 355 | 286 | 113 |  |
| 875 | 999 | 1010 | 941 | 1060 | 1020 | 916 | 737 | 716 | 372 | 296 | 116 |  |
| 736 | 958 | 1050 | 932 | 1130 | 1070 | 986 | 812 | 793 | 418 | 325 | 136 |  |
| 681 | 974 | 1020 | 872 | 1120 | 1030 | 960 | 795 | 780 | 411 | 314 | 136 |  |
| 882 | 1000 | 1020 | 940 | 1050 | 1020 | 910 | 740 | 721 | 371 | 300 | 117 |  |

            \(\underset{\sim}{\underset{\sim}{\underset{\sim}{\alpha}}} \underset{\sim}{\underset{\sim}{\alpha}}\)
    









ธ゚

โัฐ









ゅ.



1 percent (s.d.) in the blue and 0.7 percent (s.d.) in the yellow and red, except for the $\lambda 3880$ and $\lambda 4300$ points (for which the standard deviation is 1.5 percent) and for all wavelengths in all stars in NGC 188 (for which the error bars are twice as large as usual). We expect that the errors in the indices will be of the same order, yielding in most cases errors in $w$ of about $\pm 0.01$.

## VII. THE SELECTION OF THE STARS OBSERVED

The stars observed during the course of this investigation are all of MK luminosity classes III, III-IV, and IV, and, for the most part, have spectral types ranging from about G7 to M2 ( $370 \leq T \leq 720$ ). The temperature-class boundaries are somewhat arbitrary, since some hotter subgiants and cooler giants were also observed. Since the values of $w$ for the strongest damping lines are about 0.1 at $T \approx 390$ (G8) and continue to increase with decreasing $T$, the lower boundary of $T$ generally restricts the uncertainties in the equivalent widths to 10 percent or less (for 1 percent photometric accuracy). The upper boundary of $T$ was chosen to avoid the complications found in the atmospheres of middle- and late-type M giants.

Some of the program stars were chosen because prior work on them, as reported in the literature, indicated normalcy. Most, however, either are members of clusters or are objects of of interest for spectroscopic, kinematic, or other reasons. The cluster stars include one or more members of M13, M67, NGC 188, NGC 752, NGC 7789, and the Hyades; the NGC 188 stars scanned include two (III-18 and II-75) tentatively rejected from membership by Greenstein and Keenan (1964) but regarded by us as members, while the M67 stars scanned include two (Murray 1339 and Murray 1465) classified as members by Murray (1967) from his proper-motion work on the cluster. These stars, together with broad-band photometric data (when available), are listed in Table 9. The field stars were selected for such reasons as having high velocities (e.g., HD 29038 [Roman 1955]), being below the NGC 188 giant or subgiant branches in the standard color-magnitude diagram (e.g., 18 Lib A [Bidelman 1958]), having spectroscopically determined abundances (e.g., $\delta$ Eri [Pagel 1963]), or being strong- or weak-lined as determined photoelectrically (e.g., $\theta$ UMi [Griffin 1961]).

One particular star-the abundance standard-deserves special mention. The G8 giant $\epsilon$ Vir was chosen for this purpose. This star has been compared directly with the Sun by Cayrel and Cayrel (1963), who find that it has almost precisely solar-normal abundances except for an Na overabundance of a factor of 2.

Some time after the outset of the work, it was realized that an adequate standard of reference could not be derived from the relatively few normal giants observed. Therefore, in the summer of 1967, we conducted a survey of 100 stars listed in the Bright Star Catalogue (Hoffleit 1964). The object of this survey was to secure a sample of K giants unbiased by spectroscopic or kinematic considerations. The survey included stars of catalogued types G7-M2 in the right-ascension and declination intervals $16^{\mathrm{h}} 20^{\mathrm{m}}-24^{\mathrm{h}}$ and $0^{\circ}-$ $+30^{\circ}$, respectively, except for those stars for which $b^{\text {II }}<10^{\circ}$; the last of these restrictions was added because of the undesirable possibility of reddening near the galactic plane. Two observations were secured with the Crossley for each star, and ninety-six of the original 100 were deemed to have suitably accurate photometry. The Survey, as it will henceforth be called, is probably a quite representative sample of the $K$ giants in the solar neighborhood. We do not at present have a similar sample of subgiants.

## VIII. DISCUSSION OF THE SCANNER DATA: THE YELLOWRED TEMPERATURE INDEX

In order for our yellow-red color $T$ to serve as a temperature index, it must be independent of blanketing. As a check on this, we have compared it with other red and infrared colors for our brighter stars. The first comparison, in which $T_{\text {IR }}$ was used,

TABLE 7
PROGRAM STAR BLOCKING FRACTIONS

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS | 3 | 0.50 | 0.23 | 0.17 | 0.38 | 0.19 | 0.05 | 0.00 | 0.00 |  |  | 415 |
| BS | 45 | 0.49 | 0.36 | 0.58 | 0.32 | 0.41 | 0.15 | 0.27 | 0.29 | 0.10 | $-0.00$ | 757 |
| BS | 165 | 0.57 | 0.34 | 0.31 | 0.31 | 0.29 | 0.13 | 0.02 | 0.01 |  |  | 482 |
| BS | 224 | 0.56 | 0.39 | 0.50 | 0.37 | 0.35 | 0.11 | 0.08 | 0.10 | 0.09 | 0.03 | 606 |
| BS | 258 | 0.50 | 0.23 | 0.19 | 0.36 | 0.25 | 0.07 | 0.00 | 0.00 | 0.08 | 0.03 | 403 |
| BS | 271 | 0.44 | 0.20 | 0.10 | 0.30 | 0.13 | 0.04 | 0.00 | -0.00 | 0.09 | 0.02 | 388 |
| BS | 337 | 0.53 | 0.38 | 0.52 | 0.34 | 0.36 | 0.13 | 0.17 | 0.18 | 0.09 | 0.04 | 693 |
| BS | 464 | 0.59 | 0.35 | 0.30 | 0.34 | 0.28 | 0.09 | 0.01 | 0.03 |  |  | 477 |
| BS | 489 | 0.57 | 0.35 | 0.36 | 0.33 | 0.28 | 0.09 | 0.01 | 0.03 |  |  | 525 |
| BS | 495 | 0.52 | 0.26 | 0.15 | 0. 30 | 0.23 | 0.10 | 0.02 | 0.01 | 0.08 | 0.03 | 401 |
| BS | 617 | 0.53 | 0.27 | 0.20 | 0.36 | 0.19 | 0.04 | -0.00 | 0.01 | 0.09 | 0.02 | 453 |
| BS | 882 | 0.56 | 0.31 | 0.27 | 0.37 | 0.23 | 0.07 | 0.01 | 0.02 |  |  | 469 |
| BS | 911 | 0.49 | 0.37 | 0.57 | 0.33 | 0.39 | 0.15 | 0.26 | 0.29 |  |  | 788 |
| BS | 941 | 0.50 | 0.25 | 0.13 | 0.32 | 0.15 | 0.05 | 0.01 | 0.00 |  |  | 389 |
| BS | 947 | 0.54 | 0.30 | 0.17 | 0.34 | 0.16 | 0.05 | 0.01 | 0.02 |  |  | 424 |
| BS | 951 | 0.51 | 0.26 | 0.16 | 0.33 | 0.16 | 0.05 | 0.01 | 0.03 |  |  | 412 |
| BS | 1015 | 0.52 | 0.32 | 0.27 | 0.32 | 0.25 | 0.09 | 0.01 | 0.02 |  |  | 474 |
| BS | 1052 | 0.58 | 0.33 | 0.33 | 0.32 | 0.28 | 0.08 | 0.02 | 0.03 |  |  | 525 |
| BS | 1136 | 0.43 | 0.17 | 0.18 | 0.38 | 0.23 | 0.00 | -0.00 | 0.01 | 0.08 | 0.01 | 388 |
| BS | 1457 | 0.54 | 0.38 | 0.52 | 0.33 | 0.37 | 0.13 | 0.12 | 0.15 |  |  | 661 |
| BS | 1551 | 0.55 | 0.33 | 0.31 | 0.34 | 0.25 | 0.08 | -0.00 | 0.03 |  |  | 548 |
| BS | 1726 | 0.53 | 0.29 | 0.31 | 0.36 | 0.29 | 0.07 | 0.01 | 0.03 |  |  | 488 |
| BS | 1773 | 0.58 | 0.40 | 0.42 | 0.34 | 0.31 | 0.15 | 0.03 | 0.06 |  |  | 525 |
| BS | 1805 | 0.61 | 0.42 | 0.37 | 0.35 | 0.29 | 0.11 | 0.02 | 0.05 | 0.09 | 0.08 | 500 |
| BS | 1907 | 0.40 | 0.14 | 0.13 | 0.36 | 0.17 | 0.02 | 0.00 | 0.00 | 0.07 | -0.02 | 402 |
| BS | 2012 | 0.55 | 0.30 | 0.20 | 0.36 | 0.16 | 0.05 | 0.01 | 0.02 |  |  | 433 |
| BS | 2219 | 0.50 | 0.22 | 0.15 | 0.37 | 0.14 | 0.03 | 0.01 | 0.01 |  |  | 412 |
| BS | 2429 | 0.52 | 0.28 | 0.21 | 0.37 | 0.24 | 0.09 | 0.00 | 0.01 | 0.07 | 0.07 | 408 |
| BS | 2478 | 0.56 | 0.29 | 0.22 | 0.32 | 0.19 | 0.07 | 0.01 | 0.02 |  |  | 446 |
| BS | 2600 | 0.56 | 0.27 | 0.25 | 0.37 | 0.22 | 0.04 | 0.00 | 0.02 |  |  | 469 |
| BS | 2649 | 0.57 | 0.38 | 0.37 | 0.36 | 0.27 | 0.09 | 0.01 | 0.02 |  |  | 516 |
| BS | 2697 | 0.58 | 0.35 | 0.27 | 0.32 | 0.22 | 0.09 | 0.02 | 0.04 |  |  | 462 |
| BS | 2805 | 0.56 | 0.35 | 0.21 | 0.36 | 0.14 | 0.07 | 0.01 | 0.03 |  |  | 448 |
| BS | 2821 | 0.50 | 0.24 | 0.16 | 0.36 | 0.15 | 0.04 | 0.01 | 0.01 |  |  | 405 |
| BS | 2985 | 0.46 | 0.22 | 0.14 | 0.34 | 0.13 | 0.04 | 0.01 | 0.02 |  |  | 388 |
| BS | 2990 | 0.50 | 0.24 | 0.17 | 0.36 | 0.15 | 0.04 | 0.00 | 0.01 | 0.09 | 0.03 | 401 |
| BS | 3145 | 0.56 | 0.28 | 0.28 | 0.34 | 0.24 | 0.05 | 0.03 | 0.02 |  |  | 489 |
| BS | 3149 | 0.54 | 0.29 | 0.22 | 0.35 | 0.21 | 0.06 | 0.01 | 0.02 |  |  | 433 |
| BS | 3249 | 0.58 | 0.38 | 0.43 | 0.31 | 0.29 | 0.11 | 0.04 | 0.04 | 0.08 | 0.05 | 571 |
| BS | 3366 | 0.57 | 0.33 | 0.31 | 0.34 | 0.27 | 0.09 | 0.01 | 0.02 |  |  | 470 |
| BS | 3369 | 0.52 | 0.26 | 0.15 | 0.32 | 0.14 | 0.05 | 0.01 | 0.01 |  |  | 402 |
| BS | 3905 | 0.59 | 0.36 | 0.28 | 0.34 | 0.28 | 0.12 | 0.01 | 0.02 | 0.10 | 0.09 | 449 |
| BS | 3994 | 0.53 | 0.28 | 0.17 | 0.38 | 0.16 | 0.06 | 0.01 | 0.00 |  |  | 383 |
| BS | 4171 | 0.43 | 0.18 | 0.12 | 0.33 | 0.13 | 0.04 | 0.01 | -0.00 |  |  | 376 |
| BS | 4301 | 0.44 | 0.25 | 0.14 | 0.29 | 0.14 | 0.06 | 0.01 | 0.00 |  |  | 434 |
| BS | 4517 | 0.45 | 0.32 | 0.48 | 0.28 | 0.39 | 0.10 | 0.19 | 0.19 | 0.09 | -0.01 | 703 |
| BS | 4737 | 0.54 | 0.31 | 0.18 | 0.31 | 0.21 | 0.09 | 0.01 | 0.01 |  |  | 434 |
| BS | 4932 | 0.43 | 0.21 | 0.09 | 0.28 | 0.11 | 0.05 | 0.01 | -0.00 | 0.09 | 0.04 | 393 |
| BS | 5154 | 0.46 | 0.35 | 0.54 | 0.29 | 0.39 | 0.14 | 0.26 | 0.27 | 0.10 | 0.02 | 808 |
| BS | 5159 | 0.48 | 0.30 | 0.20 | 0.34 | 0.22 | 0.07 | 0.00 | -0.02 |  |  | 436 |
| BS | 5200 | 0.54 | 0.39 | 0.50 | 0.33 | 0.36 | 0.13 | 0.11 | 0.12 | 0.09 | 0.04 | 652 |
| BS | 5201 | 0.54 | 0.35 | 0.36 | 0.33 | 0.30 | 0.08 | 0.02 | 0.03 |  |  | 558 |
| BS | 5227 | 0.54 | 0.29 | 0.28 | 0.36 | 0.31 | 0.07 | -0.00 | 0.01 | 0.08 | 0.03 | 460 |
| BS | 5247 | 0.56 | 0.37 | 0.38 | 0.32 | 0.30 | 0.10 | 0.02 | 0.03 |  |  | 563 |
| BS | 5370 | 0.58 | 0.34 | 0.25 | 0.32 | 0.28 | 0.09 | 0.01 | 0.02 |  |  | 469 |
| BS | 5429 | 0.57 | 0.33 | 0.30 | 0.33 | 0.26 | 0.07 | 0.01 | 0.01 |  |  | 508 |
| BS | 5480 | 0.39 | 0.22 | 0.09 | 0.29 | 0.11 | 0.04 | 0.01 | -0.01 |  |  | 403 |
| BS | 5502 | 0.48 | 0.21 | 0.11 | 0.28 | 0.14 | 0.04 | 0.02 | -0.00 |  |  | 400 |
| BS | 5582 | 0.56 | 0.38 | 0.28 | 0.34 | 0.28 | 0.14 | 0.01 | 0.02 |  |  | 471 |
| BS | 5600 | 0.54 | 0.38 | 0.45 | 0.31 | 0.33 | 0.12 | 0.06 | 0.07 | 0.08 | 0.05 | 612 |
| BS | 5601 | 0.46 | 0.21 | 0.16 | 0.33 | 0.16 | 0.06 | 0.00 | -0.01 |  |  | 432 |
| BS | 5602 | 0.43 | 0.20 | 0.09 | 0.30 | 0.09 | 0.03 | 0.01 | 0.00 |  |  | 392 |
| BS | 5616 | 0.55 | 0.31 | 0.24 | 0.34 | 0.23 | 0.06 | 0.00 | 0.00 |  |  | 499 |
| BS | 5681 | 0.41 | 0.16 | 0.10 | 0.31 | 0.13 | 0.04 | 0.00 | 0.00 |  |  | 408 |
| BS | 5739 | 0.50 | 0.39 | 0.54 | 0.30 | 0.36 | 0.14 | 0.20 | 0.20 | 0.09 | 0.04 | 733 |
| BS | 5777 | 0.47 | 0.21 | 0.16 | 0.32 | 0.23 | 0.06 | 0.01 | -0.01 | 0.06 | 0.01 | 414 |
| BS | 5826 | 0.54 | 0.41 | 0.53 | 0.31 | 0.34 | 0.18 | 0.10 | 0.12 | 0.12 | 0.07 | 641 |

TABLE 7-CONTINUED

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS | 5854 | 0.57 | 0.33 | 0.20 | 0.30 | 0.23 | 0.09 | -0.00 | 0.01 | 0.07 | 0.09 | 444 |
| BS | 5888 | 0.48 | 0.21 | 0.13 | 0.33 | 0.15 | 0.04 | 0.01 | 0.01 | 0.08 | 0.02 | 416 |
| BS | 5889 | 0.26 | 0.08 | 0.08 | 0.28 | 0.12 | 0.03 | 0.01 | $-0.00$ | 0.09 | -0.02 | 374 |
| BS | 5901 | 0.47 | 0.21 | 0.15 | 0.31 | 0.22 | 0.06 | 0.01 | -0.01 | 0.07 | 0.04 | 412 |
| BS | 5940 | 0.53 | 0.28 | 0.23 | 0.33 | 0.28 | 0.08 | 0.01 | 0.00 | 0.09 | 0.04 | 447 |
| BS | 5947 | 0.56 | 0.30 | 0.22 | 0.31 | 0.22 | 0.06 | 0.01 | 0.00 | 0.09 | 0.04 | 486 |
| BS | 5966 | 0.44 | 0.21 | 0.13 | 0.35 | 0.12 | 0.04 | 0.00 | 0.00 |  |  | 410 |
| BS | 6014 | 0.43 | 0.18 | 0.20 | 0.34 | 0.28 | 0.08 | 0.00 | 0.00 |  |  | 403 |
| BS | 6018 | 0.49 | 0.21 | 0.14 | 0.32 | 0.20 | 0.05 | 0.01 | 0.00 | 0.05 | 0.05 | 419 |
| BS | 6103 | 0.47 | 0.23 | 0.12 | 0.31 | 0.16 | 0.06 | 0.02 | -0.00 |  |  | 400 |
| BS | 6220 | 0.43 | 0.17 | 0.07 | 0.28 | 0.13 | 0.03 | 0.01 | 0.01 | 0.07 | 0.02 | 393 |
| BS | 6623 | 0.35 | 0.09 | 0.05 | 0.28 | 0.15 | 0.03 | 0.02 | 0.01 | 0.09 | -0.02 | 357 |
| B S | 6770 | 0.45 | 0.21 | 0.12 | 0.30 | 0.12 | 0,04 | 0.02 | 0.01 |  |  | 392 |
| BS | 6791 | 0.40 | 0.17 | 0.08 | 0.18 | 0.13 | 0.06 | 0.01 | 0.01 |  |  | 393 |
| BS | 6817 | 0.43 | 0.19 | 0.15 | 0.33 | 0.20 | 0.05 | 0.01 | -0.00 |  |  | 394 |
| BS | 6869 | 0.43 | 0.16 | 0.10 | 0.29 | 0.16 | 0.04 | 0.01 | 0.00 | 0.08 | 0.02 | 399 |
| BS | 6872 | 0.54 | 0.31 | 0.21 | 0.33 | 0.19 | 0.07 | 0.00 | 0.01 |  |  | 443 |
| BS | 7149 | 0.49 | 0.28 | 0.18 | 0.39 | 0.18 | 0.05 | -0.00 | -0.01 |  |  | 410 |
| BS | 7176 | 0.51 | 0.30 | 0.18 | 0.34 | 0.19 | 0.07 | 0.01 | 0.00 | 0.09 | 0.07 | 418 |
| BS | 7373 | 0.34 | 0.11 | 0.11 | 0.35 | 0.16 | 0.06 | 0.01 | -0.00 | 0.10 | -0.00 | 349 |
| BS | 7405 | 0.52 | 0.37 | 0.52 | 0.35 | 0.40 | 0.12 | 0.19 | 0.19 |  |  | 648 |
| BS | 7429 | 0.54 | 0.29 | 0.25 | 0.33 | 0.30 | 0.09 | 0.01 | 0.01 | 0.08 | 0.06 | 456 |
| BS | 7430 | 0.41 | 0.24 | 0.13 | 0.33 | 0.11 | 0.07 | 0.01 | 0.01 |  |  | 442 |
| BS | 7576 | 0.58 | 0.38 | 0.33 | 0.33 | 0.31 | 0.14 | 0.02 | 0.02 | 0.10 | 0.07 | 475 |
| BS | 7602 | 0.37 | 0.10 | 0.10 | 0.35 | 0.15 | 0.04 | 0.01 | 0.01 | 0.08 | -0.01 | 380 |
| BS | 7670 | 0.33 | 0.09 | 0.10 | 0.33 | 0.19 | 0.04 | 0.01 | -0.01 | 0.10 | -0.01 | 348 |
| BS | 7806 | 0.56 | 0.34 | 0.34 | 0.30 | 0.27 | 0.09 | 0.01 | 0.03 | 0.09 | 0.04 | 504 |
| BS | 7831 | 0.53 | 0.32 | 0.20 | 0.35 | 0.22 | 0.07 | 0.01 | 0.01 | 0.07 | 0.07 | 442 |
| BS | 7949 | 0.50 | 0.21 | 0.12 | 0.31 | 0.15 | 0.02 | 0.01 | 0.01 | 0.09 | -0.01 | 426 |
| BS | 7957 | 0.43 | 0.16 | 0.15 | 0.38 | 0.17 | 0.04 | 0.00 | -0.01 | 0.08 | -0.00 | 390 |
| BS | 8082 | 0.46 | 0.23 | 0.17 | 0.35 | 0.15 | 0.04 | 0.01 | 0.00 |  |  | 414 |
| BS | 8255 | 0.51 | 0.28 | 0.17 | 0.36 | 0.17 | 0.05 | 0.01 | 0.01 |  |  | 419 |
| BS | 8317 | 0.53 | 0.30 | 0.20 | 0.35 | 0.19 | 0.07 | 0.01 | 0.01 | 0.09 | 0.07 | 426 |
| BS | 8448 | 0.30 | 0.13 | 0.09 | 0.28 | 0.19 | 0.07 | 0.01 | 0.01 |  |  | 394 |
| BS | 8551 | 0.44 | 0.19 | 0.16 | 0.35 | 0.22 | 0.05 | -0.01 | -0.00 |  |  | 421 |
| BS | 8841 | 0.49 | 0.26 | 0.21 | 0.40 | 0.19 | 0.05 | 0.00 | -0.00 | 0.08 | 0.04 | 426 |
| BS | 8857 | 0.53 | 0.27 | 0.18 | 0.33 | 0.21 | 0.07 | 0.01 | -0.00 | 0.08 | 0.05 | 419 |
| BS | 8924 | 0.55 | 0.31 | 0.26 | 0.35 | 0.30 | 0.14 | 0.01 | 0.01 | 0.08 | 0.06 | 426 |
| BS | 8974 | 0.52 | 0.24 | 0.19 | 0.35 | 0.23 | 0.06 | -0.01 | -0.00 |  |  | 412 |
| HD | 29038 | 0.57 | 0.32 | 0.29 | 0.34 | 0.30 | 0.10 | 0.02 | 0.02 |  |  | 459 |
| HD | 122563 | -0.04 | 0.00 | 0.02 | 0.11 | 0.03 | 0.01 | 0.00 | 0.00 | 0.05 | -0.01 | 433 |
| HD | 165195 | 0.11 | 0.06 | 0.02 | 0.11 | 0.05 | 0.02 | 0.00 | 0.01 |  |  | 461 |
| BS | 1346 | 0.46 | 0.23 | 0.09 | 0.29 | 0.13 | 0.06 | 0.01 | 0.00 | 0.09 | 0.03 | 386 |
| BS | 1373 | 0.48 | 0.24 | 0.10 | 0.31 | 0.12 | 0.05 | 0.00 | 0.00 | 0.09 | 0.04 | 391 |
| BS | 1409 | 0.50 | 0.25 | 0.11 | 0.31 | 0.13 | 0.05 | 0.01 | 0.00 | 0.10 | 0.04 | 394 |
| BS | 1411 | 0.43 | 0.22 | 0.12 | 0.31 | 0.14 | 0.05 | 0.01 | -0.00 | 0.09 | 0.02 | 382 |
| M13 | 59 | 0.42 | 0.30 | 0.17 | 0.23 | 0.08 | 0.04 | -0.02 | 0.03 |  |  | 613 |
| FAG | 84 | 0.55 | 0.27 | 0.18 | 0.35 | 0.17 | 0.06 | -0.00 | 0.00 |  |  | 392 |
| FAG | 105 | 0.55 | 0.31 | 0.28 | 0.35 | 0.25 | 0.09 | -0.00 | 0.01 |  |  | 442 |
| FAG | 108 | 0.57 | 0.34 | 0.36 | 0.35 | 0.30 | 0.11 | 0.01 | 0.01 | 0.09 | 0.04 | 479 |
| FAG | 141 | 0.55 | 0.28 | 0.18 | 0.37 | 0.18 | 0.06 | 0.01 | 0.02 |  |  | 396 |
| FAG | 151 | 0.53 | 0.27 | 0.19 | 0.34 | 0.17 | 0.07 | 0.02 | 0.02 |  |  | 390 |
| FAG | 170 | 0.58 | 0.34 | 0.30 | 0.33 | 0.28 | 0.09 | 0.01 | 0.03 | 0.10 | 0.07 | 475 |
| FAG | 193 | 0.45 | 0.21 | 0.17 | 0.34 | 0.22 | 0.06 | -0.01 | 0.01 |  |  | 388 |
| FAG | 224 | 0.54 | 0.29 | 0.20 | 0.31 | 0.22 | 0.09 | 0.00 | 0.01 |  |  | 408 |
| MUR | 1465 | 0.54 | 0.40 | 0.50 | 0.33 | 0.36 | 0.15 | 0.11 | 0.13 |  |  | 615 |
| 1 | 1 | 0.39 | 0.22 | 0.17 | 0.34 | 0.21 | 0.06 | 0.00 | 0.02 |  |  | 410 |
| I | 69 | 0.51 | 0.34 | 0.28 | 0.41 | 0.27 | 0.11 | 0.01 | 0.06 |  |  | 458 |
| I | 105 | 0.51 | 0.31 | 0.20 | 0.38 | 0.19 | 0.07 | 0.02 | 0.01 |  |  | 410 |
| II | 75 | 0.52 | 0.26 | 0.28 | 0.36 | 0.29 | 0.08 | 0.01 | 0.01 |  |  | 463 |
| II | 181 | 0.47 | 0.33 | 0.29 | 0.40 | 0.27 | 0.08 | 0.01 | 0.01 |  |  | 456 |
| III | 4 | 0.49 | 0.24 | 0.22 | 0.35 | 0.26 | 0.08 | -0.00 | 0.01 |  |  | 417 |
| III | 18 | 0.56 | 0.40 | 0.47 | 0.33 | 0.37 | 0.14 | 0.07 | 0.07 |  |  | 565 |
| BD+ | 37418 | 0.47 | 0.21 | 0.12 | 0.32 | 0.13 | 0.04 | 0.01 | 0.01 | 0.09 | 0.02 | 398 |
| $B{ }^{+}$ | 37432 | 0.47 | 0.20 | 0.13 | 0.33 | 0.12 | 0.03 | 0.00 | 0.01 |  |  | 395 |
| $B D+$ | 37448 | 0.48 | 0.24 | 0.14 | 0.34 | 0.14 | 0.03 | 0.01 | 0.02 |  |  | 405 |
| K | 751 | 0.56 | 0.38 | 0.55 | 0.35 | 0.33 | 0.14 | 0.14 | 0.15 |  |  | 677 |

TABLE 8
SURVEY STAR BLOCKING FRACTIONS


| 6136 | 0.56 | 0.39 | 0.42 | 0.32 | 0.33 | 0.18 | 0.05 | 0.05 |  |  | 560 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6148 | 0.43 | 0.20 | 0.07 | 0.29 | 0.09 | 0.04 | 0.01 | 0.01 |  |  | 394 |
| 6154 | 0.52 | 0.39 | 0.52 | 0.31 | 0.36 | 0.16 | 0.15 | 0.17 |  |  | 708 |
| 6159 | 0.52 | 0.35 | 0.45 | 0.31 | 0.36 | 0.10 | 0.09 | 0.11 |  |  | 625 |
| 6228 | 0.54 | 0.39 | 0.52 | 0.32 | 0.37 | 0.16 | 0.13 | 0.15 |  |  | 659 |
| 6239 | 0.36 | 0.15 | 0.06 | 0.24 | 0.09 | 0.05 | 0.01 | 0.01 |  |  | 385 |
| 6258 | 0.52 | 0.39 | 0.51 | 0.30 | 0.35 | 0.13 | 0.14 | 0.16 |  |  | 699 |
| 6287 | 0.43 | 0.19 | 0.12 | 0.31 | 0.13 | 0.05 | 0.00 | 0.00 |  |  | 404 |
| 6292 | 0.41 | 0.15 | 0.09 | 0.30 | 0.13 | 0.03 | 0.01 | -0.00 |  |  | 395 |
| 6293 | 0.57 | 0.37 | 0.40 | 0.32 | 0.33 | 0.11 | 0.03 | 0.05 |  |  | 560 |
| 6299 | 0.53 | 0.31 | 0.23 | 0.37 | 0.23 | 0.07 | 0.00 | 0.01 |  |  | 444 |
| 6305 | 0.37 | 0.14 | 0.08 | 0.30 | 0.12 | 0.04 | 0.01 | -0.00 |  |  | 391 |
| 6307 | 0.51 | 0.27 | 0.15 | 0.33 | 0.19 | 0.05 | 0.00 | 0.01 |  |  | 435 |
| 6325 | 0.55 | 0.36 | 0.22 | 0.33 | 0.19 | 0.08 | 0.01 | 0.02 |  |  | 486 |
| 6342 | 0.47 | 0.21 | 0.14 | 0.30 | 0.19 | 0.03 | 0.01 | 0.01 |  |  | 429 |
| 6364 | 0.55 | 0.35 | 0.35 | 0.35 | 0.29 | 0.08 | -0.00 | 0.01 |  |  | 500 |
| 6390 | 0.46 | 0.21 | 0.13 | 0.30 | 0.20 | Q. 04 | 0.00 | -0.00 |  |  | 425 |
| 6393 | 0.46 | 0.34 | 0.43 | 0.29 | 0.36 | 0.12 | 0.23 | 0.24 |  |  | 774 |
| 6443 | 0.45 | 0.20 | 0.11 | 0.31 | 0.13 | 0.05 | 0.00 | 0.01 |  |  | 405 |
| 6452 | 0.54 | 0.40 | 0.49 | 0.34 | 0.38 | 0.12 | 0.21 | 0.23 |  |  | 731 |
| 6476 | 0.51 | 0.31 | 0.13 | 0.19 | 0.15 | 0.08 | 0.02 | 0.02 |  |  | 483 |
| 6526 | 0.55 | 0.38 | 0.39 | 0.33 | 0.30 | 0.10 | 0.02 | 0.03 |  |  | 545 |
| 6542 | 0.46 | 0.21 | 0.13 | 0.33 | 0.14 | 0.04 | 0.00 | -0.01 |  |  | 403 |
| 6575 | 0.45 | 0.22 | 0.10 | 0.30 | 0.15 | 0.06 | 0.01 | 0.01 |  |  | 420 |
| 6590 | 0.49 | 0.30 | 0.19 | 0.31 | 0.16 | 0.07 | 0.01 | 0.01 |  |  | 485 |
| 6602 | 0.56 | 0.37 | 0.46 | 0.33 | 0.37 | 0.12 | 0.07 | 0.09 |  |  | 577 |
| 6603 | 0.56 | 0.31 | 0.21 | 0.32 | 0.24 | 0.08 | 0.00 | 0.02 | 0.08 | 0.07 | 445 |
| 6608 | 0.26 | 0.05 | 0.03 | 0.28 | 0.10 | 0.03 | 0.02 | 0.01 |  |  | 339 |
| 6644 | 0.52 | 0.29 | 0.19 | 0.31 | 0.25 | 0.07 | 0.03 | 0.02 |  |  | 448 |
| 6654 | 0.52 | 0.25 | 0.14 | 0.31 | 0.18 | 0.05 | -0.00 | 0.01 |  |  | 429 |
| 6665 | 0.45 | 0.20 | 0.11 | 0.30 | 0.13 | 0.04 | -0.00 | 0.02 |  |  | 402 |
| 6687 | 0.57 | 0.33 | 0.26 | 0.33 | 0.22 | 0.08 | 0.01 | 0.02 |  |  | 478 |
| 6703 | 0.43 | 0.20 | 0.09 | 0.28 | 0.12 | 0.05 | 0.01 | 0.01 |  |  | 389 |
| 6763 | 0.56 | 0.31 | 0.27 | 0.36 | 0.23 | 0.07 | 0.02 | 0.02 |  |  | 491 |
| 6765 | 0.49 | 0.34 | 0.56 | 0.28 | 0.41 | 0.16 | 0.36 | 0.38 |  |  | 929 |
| 6800 | 0.54 | 0.29 | 0.24 | 0.34 | 0.19 | 0.07 | 0.02 | 0.01 |  |  | 460 |
| 6820 | 0.56 | 0.37 | 0.40 | 0.37 | 0.31 | 0.08 | 0.04 | 0.04 |  |  | 587 |
| 6868 | 0.51 | 0.40 | 0.56 | 0.34 | 0.38 | 0.15 | 0.20 | 0.20 |  |  | 720 |
| 6882 | 0.54 | 0.40 | 0.50 | 0.35 | 0.36 | 0.12 | 0.12 | 0.16 |  |  | 736 |
| 6885 | 0.53 | 0.30 | 0.27 | 0.36 | 0.22 | 0.07 | 0.01 | 0.01 |  |  | 484 |
| 6895 | 0.53 | 0.29 | 0.25 | 0.37 | 0.25 | 0.07 | 0.01 | 0.00 |  |  | 456 |
| 6966 | 0.57 | 0.39 | 0.41 | 0.35 | 0.29 | 0.09 | 0.05 | 0.04 |  |  | 577 |
| 6980 | 0.49 | 0.24 | 0.12 | 0.32 | 0.13 | 0.06 | 0.03 | 0.00 |  |  | 402 |
| 7064 | 0.53 | 0.28 | 0.24 | 0.33 | 0.23 | 0.07 | 0.01 | 0.01 |  |  | 461 |
| 7112 | 0.51 | 0.28 | 0.16 | 0.34 | 0.14 | 0.06 | 0.02 | 0.01 |  |  | 452 |
| 7132 | 0.57 | 0.34 | 0.35 | 0.34 | 0.29 | 0.08 | 0.02 | 0.03 |  |  | 526 |
| 7181 | 0.53 | 0.30 | 0.29 | 0.38 | 0.24 | 0.07 | 0.02 | 0.00 |  |  | 485 |
| 7918 | 0.55 | 0.29 | 0.27 | 0.34 | 0.25 | 0.07 | 0.00 | 0.01 |  |  | 475 |
| 7923 | 0.40 | 0.16 | 0.08 | 0.32 | 0.11 | 0.03 | 0.02 | 0.00 |  |  | 400 |
| 7939 | 0.54 | 0.29 | 0.18 | 0.31 | 0.20 | 0.06 | 0.01 | 0.01 |  |  | 454 |
| 7995 | 0.33 | 0.13 | 0.06 | 0.28 | 0.10 | 0.03 | 0.01 | 0.00 |  |  | 377 |
| 8008 | 0.56 | 0.39 | 0.41 | 0.33 | 0.30 | 0.12 | 0.03 | 0.04 |  |  | 570 |
| 8011 | 0.45 | 0.26 | 0.15 | 0.31 | 0.15 | 0.05 | 0.00 | 0.02 |  |  | 438 |
| 8030 | 0.39 | 0.17 | 0.10 | 0.29 | 0.14 | 0.04 | 0.02 | -0.00 |  |  | 391 |
| 8032 | 0.56 | 0.37 | 0.39 | 0.34 | 0.30 | 0.10 | 0.02 | 0.03 |  |  | 546 |
| 8066 | 0.54 | 0.45 | 0.48 | 0.36 | 0.30 | 0.14 | 0.07 | 0.09 |  |  | 654 |
| 8163 | 0.48 | 0.37 | 0.54 | 0.31 | 0.39 | 0.12 | 0.24 | 0.25 |  |  | 787 |
| 8173 | 0.50 | 0.27 | 0.20 | 0.37 | 0.20 | 0.05 | 0.00 | 0.00 |  |  | 430 |
| 8197 | 0.49 | 0.25 | 0.13 | 0.33 | 0.16 | 0.04 | $0.01{ }^{-}$ | 0.00 |  |  | 412 |
| 8225 | 0.51 | 0.39 | 0.58 | 0.32 | 0.39 | 0.14 | 0.21 | 0.23 |  |  | 716 |
| 8277 | 0.48 | 0.25 | 0.15 | 0.36 | 0.16 | 0.04 | 0.01 | -0.00 |  |  | 411 |
| 8287 | 0.57 | 0.38 | 0.34 | 0.32 | 0.25 | 0.09 | 0.01 | 0.02 |  |  | 555 |
| 8325 | 0.55 | 0.30 | 0.25 | 0.34 | 0.25 | 0.08 | -0.02 | 0.01 |  |  | 467 |
| 8390 | 0.57 | 0.32 | 0.26 | 0.31 | 0.24 | 0.07 | 0.01 | 0.02 |  |  | 487 |
| 8393 | 0.58 | 0.39 | 0.42 | 0.34 | 0.31 | 0.11 | 0.03 | 0.05 |  |  | 558 |
| 8413 | 0.55 | 0.41 | 0.47 | 0.35 | 0.36 | 0.14 | 0.05 | 0.07 |  |  | 556 |
| 8415 | 0.56 | 0.31 | 0.26 | 0.35 | 0.24 | 0.08 | 0.00 | 0.00 |  |  | 486 |
| 8458 | 0.52 | 0.37 | 0.57 | 0.33 | 0.40 | 0.15 | 0.22 | 0.24 |  |  | 731 |
| 8461 | 0.46 | 0.18 | 0.11 | 0.30 | 0.18 | 0.07 | 0.01 | 0.01 |  |  | 393 |
| 8482 | 0.55 | 0.29 | 0.23 | 0.32 | 0.27 | 0.10 | 0.00 | 0.01 |  |  | 446 |
| 8562 | 0.54 | 0.38 | 0.50 | 0.35 | 0.34 | 0.12 | 0.09 | 0.10 |  |  | 635 |
| 8564 | 0.56 | 0.33 | 0.22 | 0.32 | 0.18 | 0.08 | 0.00 | 0.01 |  |  | 459 |
| 8618 | 0.42 | 0.18 | 0.08 | 0.29 | 0.12 | 0.04 | 0.00 | -0.01 |  |  | 392 |
| 8642 | 0.43 | 0.24 | 0.17 | 0.35 | 0.18 | 0.06 | -0.02 | -0.00 |  |  | 430 |
| 8660 | 0.50 | 0.23 | 0.12 | 0.35 | 0.15 | 0.05 | 0.00 | 0.01 |  |  | 415 |
| 8703 | 0.45 | 0.24 | 0.17 | 0.27 | 0.20 | 0.08 | -0.02 | 0.02 |  |  | 446 |
| 8730 | 0.56 | 0.30 | 0.16 | 0.33 | 0.17 | 0.07 | 0.01 | -0.00 |  |  | 432 |
| 8742 | 0.50 | 0.25 | 0.11 | 0.31 | 0.15 | 0.08 | 0.00 | 0.00 |  |  | 389 |
| 8751 | 0.59 | 0.35 | 0.33 | 0.32 | 0.29 | 0.11 | 0.00 | 0.04 |  |  | 518 |
| 8785 | 0.48 | 0.22 | 0.12 | 0.34 | 0.14 | 0.05 | 0.01 | -0.01 |  |  | 383 |
| 8795 | 0.51 | 0.38 | 0.59 | 0.33 | 0.39 | 0.15 | 0.18 | 0.20 | 0.11 | 0.03 | 685 |
| 8824 | 0.56 | 0.34 | 0.32 | 0.32 | 0.26 | 0.08 | 0.00 | 0.01 |  |  | 503 |
| 8833 | 0.47 | 0.21 | 0.14 | 0.38 | 0.14 | 0.03 | 0.01 | -0.01 |  |  | 403 |
| 8842 | 0.31 | 0.12 | 0.04 | 0.25 | 0.06 | 0.04 | 0.02 | -0.00 |  |  | 374 |
| 8852 | 0.37 | 0.15 | 0.11 | 0.35 | 0.14 | 0.03 | 0.00 | -0.00 |  |  | 395 |
| 8878 | 0.49 | 0.24 | 0.20 | 0.31 | 0.22 | 0.04 | 0.01 | -0.01 |  |  | 478 |
| 8893 | 0.58 | 0.35 | 0.32 | 0.33 | 0.28 | 0.09 | 0.00 | 0.02 |  |  | 493 |
| 8912 | 0.46 | 0.22 | 0.12 | 0.34 | 0.15 | 0.03 | 0.01 | 0.00 |  |  | 407 |
| 8916 | 0.51 | 0.26 | 0.17 | 0.35 | 0.18 | 0.05 | 0.01 | 0.01 | 0.09 | 0.04 | 420 |
| 8922 | 0.52 | 0.25 | 0.14 | 0.35 | 0.17 | 0.04 | 0.00 | 0.01 |  |  | 430 |
| 8923 | 0.43 | 0.21 | 0.13 | 0.33 | 0.12 | 0.05 | -0.04 | 0.02 |  |  | 387 |
| 8991 | 0.52 | 0.39 | 0.52 | 0.34 | 0.37 | 0.12 | 0.24 | 0.25 |  |  | 772 |
| 8997 | 0.42 | 0.18 | 0.09 | 0.31 | 0.12 | 0.03 | 0.01 | 0.01 |  |  | 392 |
| 9035 | 0.50 | 0.38 | 0.57 | 0.31 | 0.40 | 0.14 | 0.26 | 0.28 |  |  | 748 |
| 9055 | 0.25 | 0.13 | 0.27 | 0.00 | 0.00 | 0.00 | 0.52 | 0.56 |  |  | 762 |


| WAVEL | ENGTH | 7980 | 8190 | 8400 | 8662 | 8800 | 8900 | 9200 | 10300 | 10700 | T (IR) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BS | 45 | 169.8 | 164.0 | 149.0 | 130.0 | 144.0 | 146.0 | 126.0 | 76.6 | 45.8 | 267.0 |
| BS | 224 | 125.6 | 117.0 | 107.0 | 94.9 | 103.0 | 105.0 | 85.3 | 52.1 | 31.1 | 186.0 |
| BS | 258 | 74.2 | 67.0 | 59.6 | 51.5 | 53.9 | 54.8 | 42.8 | 24.0 | 14.2 | 92.1 |
| BS | 271 | 70.9 | 63.4 | 57.3 | 49.5 | 51.9 | 51.9 | 41.5 | 22.5 | 13.0 | 87.4 |
| BS | 337 | 152.3 | 141.0 | 129.0 | 116.0 | 127.0 | 129.0 | 106.0 | 67.4 | 39.5 | 234.0 |
| BS | 495 | 71.9 | 65.2 | 58.1 | 50.2 | 52.7 | 53.6 | 42.0 | 23.8 | 13.7 | 90.3 |
| BS | 617 | 87.2 | 80.0 | 72.6 | 63.2 | 67.6 | 68.2 | 54.6 | 30.6 | 18.1 | 116.0 |
| BS | 1136 | 71.5 | 64.1 | 57.5 | 49.5 | 51.3 | 52.0 | 41.2 | 22.2 | 12.7 | 86.2 |
| BS | 1805 | 93.4 | 83. 8 | 77.6 | 68.8 | 75.3 | 76.2 | 58.2 | 36.2 | 21.4 | 133.0 |
| BS | 1907 | 77.3 | 70.1 | 62.6 | 55.0 | 57.1 | 56.5 | 48.0 | 25.3 | 14.8 | 97.2 |
| BS | 2429 | 74.6 | 66.9 | 59.0 | 52.6 | 55.0 | 56.0 | 41.6 | 24.1 | 14.0 | 93.1 |
| BS | 2990 | 74.7 | 68.1 | 61.3 | 52.8 | 55.7 | 56.3 | 44.5 | 24.8 | 14.3 | 94.8 |
| BS | 3249 | 118.1 | 108.0 | 97.7 | 87.7 | 94.9 | 95.9 | 77.0 | 47.9 | 27.9 | 171.0 |
| BS | 3905 | 83.6 | 75.6 | 69.2 | 60.3 | 66.0 | 67.0 | 49.7 | 30.3 | 17.8 | 114.0 |
| BS | 4517 | 155.1 | 149.0 | 133.0 | 119.0 | 130.0 | 130.0 | 113.0 | 66.6 | 39.9 | 237.0 |
| BS | 4932 | 72.3 | 65.5 | 58.3 | 49.8 | 52.7 | 53.6 | 41.4 | 23.1 | 12.8 | 88.7 |
| BS | 5154 | 185.0 | 174.0 | 160.0 | 142.0 | 159.0 | 159.0 | 136.0 | 84.2 | 50.1 | 293.0 |
| BS | 5200 | 136.4 | 126.0 | 116.C | 103.0 | 114.0 | 115.0 | 93.7 | 57.2 | 33.9 | 205.0 |
| BS | 5227 | 86.9 | 79.2 | 72.1 | 63.4 | 66.3 | 68.4 | 53.5 | 30.6 | 18.0 | 115.0 |
| BS | 5600 | 124.1 | 115.0 | 105.0 | 94.4 | 102.0 | 104.0 | 82.6 | 51.2 | 30.4 | 184.0 |
| BS | 5739 | 158.3 | 149.0 | 136.0 | 122.0 | 135.0 | 138.0 | 112.0 | 71.8 | 42.9 | 250.0 |
| BS | 5777 | 77.1 | 70.0 | 63.2 | 55.8 | 56.2 | 57.8 | 46.2 | 26.3 | 15.0 | 97.4 |
| BS | 5826 | 132.0 | 122.0 | 113.0 | 97.2 | 109.0 | 112.0 | 86.8 | 55.1 | 33.0 | 197.0 |
| BS | 5854 | 81.8 | 74.1 | 66.0 | 58.9 | 62.2 | 64.7 | 47.5 | 29.1 | 16.5 | 108.0 |
| BS | 5888 | 77.6 | 70.2 | 63.2 | 55.5 | 58.2 | 58.0 | 46.8 | 26.2 | 15.0 | 99.4 |
| BS | 5889 | 66.7 | 60.1 | 53.6 | 45.8 | 48.0 | 47.7 | 39.3 | 19.8 | 11.5 | 79.4 |
| BS | $5901$ | 77.1 | 69.3 | 61.9 | 55.0 | 57.3 | 57.6 | 45.0 | 25.5 | 14.8 | 97.5 |
| BS | 5940 | 83.3 | 75.8 | 69.0 | 59.6 | 62.9 | 63.9 | 50.3 | 29.0 | 17.0 | 109.0 |
| BS | 5947 | 93.6 | 85.8 | 77.6 | 68.1 | 73.0 | 73.9 | 58.3 | 34.1 | 19.9 | 127.0 |
| BS | 6018 | 77.5 | 69.8 | 62.7 | 56.5 | 57.9 | 58.1 | 45.6 | 26.4 | 15.0 | 99.2 |
| BS | 6220 | 72.4 | 64.8 | 58.5 | 51.0 | 52.7 | 53.0 | 42.0 | 22.9 | 13.2 | 88.8 |
| BS | 6623 | 63.4 | 56.0 | 49.9 | $42 \cdot 3$ | 43.9 | 43.7 | 35.8 | 18.1 | 10.1 | 72.1 |
| BS | 6869 | 74.9 | 68.2 | 60.8 | 52.8 | 54.8 | 55.1 | $44 \cdot 1$ | 24.0 | 13.9 | 92.6 |
| BS | 7176 | 76.3 | 68.9 | 62.0 | 53.6 | 57.5 | 58.8 | 44.2 | 26.1 | 14.7 | 98.3 |
| BS | 7373 | 61.9 | 56.3 | 49.2 | 40.9 | 42.7 | 42.8 | 34.4 | 17.6 | 10.0 | 70.3 |
| BS | 7429 | 87.6 | 78.7 | 71.5 | 63.0 | 66.2 | 68.2 | 52.2 | 31.3 | 17.4 | 115.0 |
| BS | 7576 | 88.9 | 80.5 | 72.9 | 63.5 | 69.1 | 71.4 | 53.7 | 32.6 | 19.6 | 121.0 |
| BS | 7602 | 72.4 | 64.7 | 57.9 | 50.1 | 51.4 | 51.4 | 42.4 | 22.2 | 12.9 | 86.6 |
| BS | 7670 | 61.6 | 55.2 | 48.6 | 40.6 | 42.3 | $42 \cdot 2$ | 34.5 | 17.6 | 10.2 | 70.0 |
| BS | 7806 | 99.0 | 89.8 | 80.9 | 71.2 | 77.2 | 79.8 | 62.7 | 37.3 | 21.9 | 136.0 |
| BS | 7831 | 82.8 | $74 \cdot 3$ | 66.1 | 59.7 | 63.0 | 63.3 | 48.7 | 28.9 | 16.6 | 108.0 |
| BS | 7949 | 81.0 | 73.1 | 66.7 | 57.4 | 60.2 | 60.8 | 49.7 | 26.6 | 15.6 | 102.0 |
| BS | 7957 | 73.1 | 65.8 | 59.0 | 50.9 | 52.7 | 52.9 | 42.9 | 22.8 | 13.3 | 88.1 |
| BS | 8317 | 78.8 | 71.8 | 64.0 | 55.3 | 59.2 | $60 \cdot 1$ | 45.7 | 27.0 | 15.7 | 102.0 |
| BS | 8841 | 78.9 | 71.9 | 65.2 | 56.9 | 59.8 | 60.6 | 47.1 | 26.9 | 15.8 | 102.0 |
| BS | 8857 | 78.2 | 70.7 | 63.6 | 55.3 | 57.8 | 58.4 | 45.7 | 26.6 | 15.3 | 99.6 |
| BS | 8924 | 77.4 | $70 \cdot 1$ | 63.4 | 55.8 | 58.6 | 59.9 | 45.5 | 26.9 | 15.8 | 101.0 |
| HD | 122563 | 85.4 | 77.2 | 71.2 | $64 \cdot 7$ | 66.1 | 64.1 | $54 \cdot 8$ | 29.5 | 16.7 | 112.0 |
| BS | 1346 | 69.6 | 62.2 | $56 \cdot 5$ | 48.2 | 50.7 | 52.0 | 40.3 | 22.5 | 13.0 | 86.3 |
| BS | 1373 | 70.6 | 63.4 | 57.3 | 49.2 | 52.3 | 53.1 | 41.2 | 22.9 | 13.3 | 88.5 |
| BS | 1409 | 71.7 | 64.6 | 58.4 | 49.7 | 53.0 | 54.2 | 41.6 | 23.3 | 13.5 | 89.8 |
| BS | 1411 | 69.3 | 62.7 | 56.0 | 48.2 | 50.8 | 50.5 | 40.5 | 22.0 | 12.7 | 85.5 |
| FAG | 108 | 92.8 | 85.0 | 76.7 | 68.0 | 74.8 | 76.0 | 60.7 | 36.4 | 20.8 | 132.0 |
| FAG | 170 | 90.2 | 83.2 | $74 \cdot 1$ | 65.0 | 72.0 | 72.0 | 56.1 | 34.6 | 20.0 | 127.0 |
| B04, | 37418 | 74.6 | 68.0 | 60.1 | 52.1 | 55.4 | 56. 1 | 44.8 | 24.8 | 14.0 | 94.2 |
| BS | 6603 | 84.0 | 75.8 | 68.7 | 60.6 | 63.7 | 66.1 | 49.3 | 30.0 | 17.1 | 111.0 |
| BS | 8795 | 148.6 | 141.0 | 129.0 | 112.0 | 126.0 | 127.0 | 105.0 | 65.0 | 39.0 | 230.0 |
| BS | 8916 | 77.5 | 71.4 | 64.0 | 55.5 | 58.7 | 59.0 | 46.3 | 26.5 | 15.4 | 101.0 |

REMARKS TO TABLES 5, 6, 7, 8, 8a

exhibited a small but definite anomaly correlated with stellar CN strength. The anomaly was in the sense that the stars with particularly strong CN bands had $T$ 's too blue (small numerically) for their $T_{\text {IR's }}$, and vice versa; the size of this anomaly never exceeded 5 percent. The physical explanation of the problem is the presence of the red CN system in the $\lambda \lambda 6800-7500$ region (cf. Davis and Phillips 1963); these bands, while but weakly present in the solar spectrum, reach significant strengths in late G and K giants. (There is little or no CN blanketing in the passbands defining $T_{\text {IR. }}$.) To correct this anomaly, the $T$ residuals were compared with residuals from a mean relation between the $\lambda 4200 \mathrm{CN}$ index and $T$ for a moderate-sized group of stars (Fig. 1), and the resulting correlation was then used to correct $T$ for all stars. The corrected values of $T$ correlate well with $T_{\text {IR }}$ (for stars not used for the original correlation; see Fig. 2) and also with independent infrared measures such as those made in the standard broad-band system of Johnson (Johnson et al. 1966; Mendoza V. 1967; see Figs. 3-5) and Argue's (1967) ( $r-i$ ) system (Fig. 6).

TABLE 9
Cluster Stars, Supplementary Data

| Star | $M_{v}$ | $V$ | $(B-V)_{0}$ | $(U-B)_{0}$ | $E(B-V)$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta^{1}$ Tau <br> $\gamma$ Tau <br> $\delta$ Tau <br> $\epsilon$ Tau | a) The Hyades <br> (Johnson et al 1966) |  |  |  |  |  |
|  | +080 | 3.85 | 096 | 074 | 000 |  |
|  | 68 | 366 | 099 | 81 | 00 |  |
|  | 66 | 377 | 099 | 82 | 00 |  |
|  | +054 | 352 | 101 | 087 | 000 |  |
|  | b) M67 (Johnson and Sandage 1955; Eggen and Sandage 1964; Sandage 1968) |  |  |  |  |  |
| Murray 1465 | $-09$ | 883 | 150 | 188 | 006 |  |
| Fagerholm 170 | +01 | 969 | 130 | 144 | 06 |  |
| Fagerholm 108 | +02 | 972 | 132 | 150 | 06 |  |
| Fagerholm 105 | +08 | 1030 | 120 | 128 | 06 |  |
| Fagerholm 141 | +09 | 1048 | 105 | 094 | 06 |  |
| Fagerholm 151 | +09 | 1049 | 104 | 094 | 06 |  |
| Fagerholm 84 | +10 | 1059 | 106 | 091 | 06 |  |
| Fagerholm 224 | +12 | 1076 | 107 | 105 | 06 |  |
| Fagerholm 193 | +27 | 1226 | 094 | 080 : | 006 | Subgiant |
|  | c) M13 (Arp and Johnson 1955) |  |  |  |  |  |
| M13 \#59 | -27: | 1203 | 152 | 177 | 006 | $M_{v}$ here assumes RR Gap at $M_{v}=+05$ |
|  | d) NGC 752 (Eggen 1963; Johnson 1953) |  |  |  |  |  |
| $\begin{array}{r} +37^{\circ} 418 \\ +37^{\circ} 432 \\ +37^{\circ} 448 \end{array}$ |  | 88 95 | $\begin{array}{ll}0 & 99 \\ 0 & 97 \\ 1 & 02\end{array}$ | 075 | $\begin{array}{lll}0 & 02 \\ 0 & 02 \\ 0 & 02\end{array}$ | $=$ Heinemann 75 <br> $=$ Heinemann 213 <br> $=$ Heinemann 311 |
|  |  |  |  | 073 |  |  |
|  |  |  |  | 080 |  |  |
| Küstner \#751 | e) NGC 7789 (Burbidge and Sandage 1958) |  |  |  |  |  |
|  | -12 | 1084 | 159 |  | 025 |  |
|  |  | f) N | 188 (San | 1962; E | n and San | age 1968) |
| III-18* | 00 | 1134 | $149:$ | 179 : | 010 | $\left\{\begin{array}{l} \text { Membership from anoma- } \\ \text { lous line strengths } \\ \text { Composite? member? } \end{array}\right.$ |
| (III-4) | + 3 | 1166 | 104 | 101 | 10 |  |
| (II-75* $\dagger$ ) | - 7 | 1084 | 118 | 127 | 10 |  |
| I-69. | + 9 | 1226 | 120 | 128 | 10 |  |
| I-105. | + 9 | 1230 | 107 | 100 | 10 |  |
| II-181 $\dagger$. | $+7$ | 1209 | 114 |  | 10 |  |
| I-1 | +05 | 1188 | 104 | 075 | 010 | Member; composite; Hand K-emission (Greenstein and Keenan 1964) |

* Greenstein and Keenan (1964) weakly suggest III-18 and II-75 to be nonmembers from examination of low-dispersion spectra.
$\dagger$ Sandage (1962) only. Also, stars enclosed in parentheses are likely nonmembers on the basis of new proper-motion data by $R$ Cannon


Fig. 1 -Correlation between residuals of individual program K-giant blue ( $\lambda 4200$ ) CN-band indices and residuals in an uncorrected red color $\dot{T}$, compared with $T_{\text {IR }}$ Positive correlation is due to the presence of numerous weak lines of the red CN system in the $T$-defining passbands $\lambda \lambda 7000$ and 7400 In practice we use $\Delta \mathrm{CN}$ to determine the small percentage residual in $T$ which is then used to correct $T$ (see discussion in text).


Fig. 2.-Correlation between $T_{\text {IR }}(\lambda \lambda 8800,10300,10700)$ and $T$ (corrected) for field and cluster program stars. The CN correction has now removed residuals which are systematic with abundance; we note a very tight correlation for the apparently bright stars


Fig 3 -Correlation between $T$ and the $(I-K$ ) broad-band infrared color of Johnson et al. (1966). Estimated photometric error bars are shown The $\Phi$ Aur data are due to recent unpublished photometry communicated to us by Dr. R Mitchell.


Fig 4.-Correlation between $T$ and $(V-K)$ of Johnson et al. (1966)


Fig. 5.-Correlation of $T$ and $(R-I)$ on the Johnson system for M67 and Hyades cluster stars observed by Mendoza V. (1967)

Comparisons of $T$ with unpublished six-color photometry by Kron (1968) have also proven satisfactory. The tightness of these correlations, together with the insensitivity of $T$ to differential back warming and variation of convective efficiency (see R. Cayrel 1968), indicates that $T$ is an excellent temperature parameter; we emphasize this point in view of the fact that it has been disputed (G. Cayrel 1967).

We note that the $T$ base line is close enough to the $B-V$ base line (in $1 / \lambda$ ) that interstellar reddening has a similar effect on both colors.

We may attempt to establish a rough correlation between effective temperature and $T$ by using the comparison of cool-star continua in the $\lambda \lambda 7800-11000$ region with


Fig. 6 - Correlation of $T$ and the broad-band $(r-i)$ colors of Argue (1967). In this and the preceding three figures we find $T$ correlates well with published broad-band red and infrared colors There are no systematic deviations with abundance We conclude $T$ is quite free from differential blanketing effects for G8-M1 III stars.

Planckian energy distributions made by Wing (1967), who utilized the calibration of Hayes. Wing's temperatures agree quite well with the few directly measured for cool stars (as derived from the diameter measures of Pease and Michelson [Pettit and Nicholson 1928]). The relation between $T$ and Wing's temperatures ( $T_{e}$ ) is given in Figure 7; Table 10 lists $T_{e}$ values for those of our values of $T$ which correspond to certain spectral types, together with those types. A comparison of Table 10 with the tabulation of Johnson (1966) and with the temperature $4940^{\circ} \pm 100^{\circ} \mathrm{K}$ derived by the Cayrels for $\epsilon$ Vir from their study of the star's $\mathrm{H} a$ profile indicates excellent agreement. These temperatures are given solely. for illustrative purposes and are not used in any of the discussion which follows.

## IX. A COMPARISON OF T'S AND MK SPECTRAL TYPES

A comparison of the $T$ 's and the MK spectral types of a number of the stars observed reveals inconsistencies between the two methods of assigning temperature parameters. Table 11 lists some of the outstanding examples. All MK classifications listed are from

Johnson and Morgan (1953) or the Bright Star Catalogue, with the following exceptions: $\gamma, \delta, \epsilon$, and $\theta^{1}$ Tau (Morgan and Hiltner 1965); Fagerholm 151 in M67 (Burbidge and Burbidge 1959); and $\epsilon \operatorname{Vir}$ (Keenan 1963). The first star or stars in each of the three lists of Table 10 have abnormal line strengths, as indicated by the scanner measurements; $\omega \operatorname{Ser}, \delta$ Boo, and $\Phi^{2}$ Ori are generally weak-lined, 55 Peg has strong Ca I $\lambda 4227$, and the first five stars in the third list belong to high-abundance clusters (the Hyades and M67; see § X). In each list (and for all other cases found), the inconsistency is of such a nature


Fig. 7.-Correlation of $T$ with the infrared color-temperature scale of Wing (1967) derived from the unpublished calibration of Vega given by Hayes (1967).

TABLE 10
$T$ versus $T_{e}$ (Wing)

| $T$ |  | Approximate MK <br> Spectral Type |
| :---: | :---: | :---: |
| 390 | G8 III | $T_{e}\left({ }^{\circ} \mathrm{K}\right)$ |
| 420 | K1 III | 5000 |
| 450 | K2 III | 4800 |
| 480 | K3 III | 4400 |
| 540 | K4 III | 4100 |
| 660 | K5 III | 3800 |

that stars of progressively higher abundances with a given $T$ are assigned progressively later spectral types. The obvious explanation of these inconsistencies is that abundanceinduced variations in line strength influence the parameters used to assign MK spectral types; in particular, such variations will cause misinterpretations of a straightforward kind when line strengths themselves are used as temperature parameters. (Note that Ca I $\lambda 4227$ is used in just such a manner in early M giants, thus neatly explaining the spectral class assigned to 55 Peg .) That some such effect might exist is reasonable a priori, since the MK system uses two parameters (spectral type and luminosity class) to describe a system with three free variables (temperature, luminosity, abundance). A similar
effect has been noted in recent work on late-type dwarfs (Whiteoak 1967; Pagel 1962). It appears that variations in line strength at a given temperature, the existence of which was used by Morgan and Hiltner as an argument for the usefulness of MK classification, actually provide a compelling reason to avoid exclusive dependence on such work for basic information about a star.

We maintain that MK-classification work on stars cooler than the Sun should be accompanied whenever possible by reddening-corrected red and infrared photometry, in order to check temperature classifications and to permit the identification of possible abundance anomalies. Without resorting to a detailed discussion (which would be beyond the scope of this paper), we also conjecture that a similar procedure may be necessary for hotter stars as well.

## X. DISCUSSION OF THE SCANNER DATA: THE $w-T$ DIAGRAMS

We now address ourselves to the task of assessing the abundances of our program stars from their photometric-abundance parameters ( $w$ for each feature and $T$ ). Since we can directly compare stars only if they have identical or nearly identical temperatures, and since we wish to compare stars having different temperatures with each other

TABLE 11
$T$ versus MK Spectral Class for Giants

| Star | MK Class | $T$ | Star | $\begin{aligned} & \text { MK } \\ & \text { Class } \end{aligned}$ | $T$ | Star | $\begin{aligned} & \text { MK } \\ & \text { Class } \end{aligned}$ | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\delta$ Boo | G8 | 409 | 55 Peg | M2 | 685 | $\gamma$ Tau | K0 | 387 |
| $\omega$ Ser | G8 | 417 | $\beta$ And | M0 | 694 | $\delta$ Tau | K0 | 391 |
| $\Phi^{2}$ Ori | G8p | 402 | $\chi$ Peg | M2 | 757 | $\epsilon$ Tau | K1 | 394 |
| $\epsilon$ Vir | G8 | 393 |  |  |  | $\theta^{1} \mathrm{Tau}$ | G9 | 382 |
| $\beta$ Gem | K0 | 401 |  |  |  | Fag 151 (M67) | K0 | 391 |
| $\theta$ Psc | K1 | 420 |  |  |  | $\epsilon$ Vir | G8 | 393 |
|  |  |  |  |  |  | $\beta$ Boo. | G8 | 393 |

and with the Sun by way of our abundance standard $\epsilon$ Vir, we can accomplish our purpose only if we can devise an indirect way of making such comparisons. To accomplish this for the giants, we adopt the following approach. The Survey data are plotted in diagrams of blocking fraction versus temperature index ( $w-T$ ), and mean lines are drawn in these diagrams by eye estimate. These lines, which are assumed to be isoabundance trajectories, are then placed in corresponding $w-T$ diagrams for the program stars. Comparison across temperature differences may be made by reference to these lines; moreover, they may be calibrated in terms of solar abundances by comparison with the abundance standard and then used to effect the desired comparisons of the program stars to the Sun. This approach, as may be seen, stands or falls with the validity of the one assumption; we shall see later that there is encouraging internal evidence that this assumption is indeed a good one. As for the subgiants, we must be content with using means derived from the program stars themselves; these will admittedly yield somewhat less precise results.

The $w-T$ plots for the Survey stars, together with the adopted means, are given in Figures 8-10. We note in passing that these diagrams are of some interest in their own right. Note the relatively small scatter about the means; note also the degree of symmetry, which extends even to the outlying stars. For the most part, these K giants appear to be quite uninteresting in the pathological sense.

Figures 11-14 contain the $w-T$ plots for the program giants. The first five of these (CN, Ca r $\lambda 4227, \mathrm{CH}$ [G band], Mg [b-triplet], and Na [D-lines]) are quite similar to
each other. Our comparison star $\epsilon$ Vir falls on the Survey mean lines in all the plots except those for the CN bands and the D-lines, in which it is somewhat above the mean lines; since it is known to be overabundant with respect to the Sun only in Na, this indicates that the mean lines represent solar abundance in each plot. This is further confirmed by the positions of the Hyades, which are also significantly above the lines


Fig. 8.-The Survey w-T (blocking fraction) diagrams for the Na I D-lines, the sum of the w's for the two blue CN bands ( $\lambda \lambda 3880$ and 4200 ), and the blue CN band at $\lambda 4200$ The mean line in each relation is hand-drawn and is used as a definition of normalcy Note the positions of the stars 2 Psc and 7 Psc.


Fig. 9 -The Survey $w-T$ diagrams in the $b$-triplet of Mg I and the G-band of CH . Note the rather small dispersion in each parameter, especially CH. HR 6476 is apparently C-poor, and also has rather weak Mg I lines.
only in the CN (Griffin and Redman) and Na (Helfer and Wallerstein 1964) plots. The members of NGC 752 and NGC 7789 fall on or near the lines, a fact which indicates that their abundances are essentially solar. The independent abundance information available for some of the stars below the means, such as $\Phi^{2}$ Ori (Schwarzschild et al. 1957), HD 122563 and HD 165195 (Wallerstein et al. 1963), and M13 No. 59 (Arp and Johnson 1955; Morgan 1956), indicates that the straightforward interpretation of underabundance is correct for this group of stars. The equivalent interpretation of the stars above the Survey lines is that they are overabundant with respect to the Sun and


Fig. 10.-The Survey w-T diagrams for Ca I $\lambda 4227$ and the sum of the blocking fractions for the red TiO bands with heads near $\lambda \lambda 6148$ and 7054 . TiO is measured confidently at about type K4 III $(T \sim 540)$, and we note a modest dispersion in the $w-T$ diagram for TiO . The $\mathrm{Ca} I$ figure is rather similar to that of $w(\mathrm{Na} \mathrm{D})$ in Fig. 8; note some decrease in the dispersion of the stars around the mean line in Ca I with increasing red color $T . \nu \mathrm{Peg}$ (K4 III) has anomalously strong TiO and Ca I $\lambda 4227$. Approximate photometric error bars are indicated.
(in many cases, notably those of M67 and NGC 188) even overabundant with respect to the Hyades themselves; since this interpretation is in flat contradiction to current astrophysical mythology, we shall consider the matter further below.

The w-T diagrams for TiO (Fig. 13) and Ca II $\lambda 8662$ (Fig. 14) require separate mention. There is no possibility of comparing the TiO strengths of most of the clusters or of referring comparisons to $\epsilon$ Vir, since we usually begin to measure TiO satisfactorily only at spectral type $\mathrm{K} 4(T \approx 540)$. However, we note that, as in the other five diagrams, M13 No. 59 falls far below the Survey mean and the cooler M67 and NGC 188 stars fall above it, an observation which suggests that this plot is fundamentally similar to the others. The $\lambda 8662$ line is the only one from an ion measured; the w-T plot is almost devoid of scatter, with $w=0.09 \pm 0.01$ for above 80 per cent of the thirty-five stars plotted. There is no systematic displacement of the cluster stars.

The w-T diagrams for the subgiants are given in Figures 15-18. As far as one can tell, they are quite similar to the corresponding plots for the giants. Note particularly the positions of the M67 star.

There are a number of particularly interesting field program stars which deserve special mention. We refer the reader to Table 12 for details concerning these stars.

We now return to the matter of interpreting the positions of the stars above the adopted means in the various $w-T$ diagrams. The alternative explanation given first consideration by other investigators who have encountered this phenomenon (cf. Pagel


Fig. 11.-Program-star (field and cluster) $w-T$ diagrams for $C N$ (both the $\lambda 4200 \mathrm{CN}$ band and the sum of the $w$ 's for the two blue bands) and the Na I D-lines. Solid lines, Survey mean relations from Fig. 8. Blocking fractions for program stars show a large dispersion, as both metal-rich and metal-poor stars were observed. Many of the interesting stars are cited in Table 12 of the text, but note the weakness of CN and D in the halo giants HD 122563 and HD 165195 and M13 No. 59. The Hyades G8 III stars ( $T \simeq 390$ ) are above normal in these three parameters; however, note the presence of NGC 188 and M67 stars higher yet in each subsection of the figure. $\epsilon$ Vir lies very slightly above the Survey means in CN and Na. Note the approximate normalcy of the stars in NGC 752 and the M0 III in NGC 7789. The dispersion in the CN measures decreases toward greater $T$-values; this is mainly a side-band absorption effect (see discussion in text).

1966; Johnson, MacArthur, and Mitchell 1968) is that of surface-gravity effects; others include microturbulence effects (on the bands; the other features measured are damping lines) and interstellar contributions (in the case of the D-lines). Microturbulence effects may be dismissed by noting that the strengths of the various bands do not vary in lockstep (Taylor 1967). Interstellar contributions are quite negligible; in the case of the Dlines, we note that the equivalent widths of interstellar lines rarely exceed $500 \mathrm{~m} \AA$ in stars at moderate galactic latitude which lack intrinsic D-lines (cf. Greenstein 1968), and


Fig. 12.-Program-star $w-T$ diagram for Mg I $b$ and the G-band of CH . Our abundance standard star, $\epsilon$ Vir, is Survey-normal in both parameters. Note the weakness of CH in the metal-poor giants HD 122563 and 165195 and the C-poor star HR 6791 (cf. Helfer and Wallerstein 1968). The Mg I blocking-fraction diagram is rather similar to that shown for Na; note that the NGC 188 (triangular) and the M67 (open circle) symbols are parallel to and well above the Survey mean line, and lie above the Hyades near $T \simeq 390$.


Fig. 13.-Program star $w-T$ diagrams for Ca I $\lambda 4227$ and the sum of the two red TiO bands (heads near $\lambda \lambda 6148,7054$ ). TiO is anomalously strong in $a \operatorname{Vul}$ and $\nu$ Vir, a pair of high-velocity, CN-weak stars which are likely to have large $0 / \mathrm{C}$ ratios (see the text). TiO is also stronger than normal in the coolest stars observed in M67 (M1465) and NGC 188 (III-18), which have strong CN. The Ca I plot shows $\epsilon \operatorname{Vir}$ normal, the Hyades stars slightly strong (especially $\theta^{1}$ Tau, the hottest, at $T=382$ ), and the M67 and NGC 188 stars very high. Note again the constriction of the $w(\mathrm{Ca})$ range at large $T$-values.


Fig 14．－Program star $w-T$ diagram for Ca II $\lambda 8662$ ．Note approximate constancy at $w=0.09 \pm$ 0.01 for all giants observed，except HD 122563．Contrast with the behavior of Ca I $\lambda 4227$ in Fig． 13.


Fig 15．－Subgiant w－T diagram for the Na I D－lines．Range in $T$ is equivalent to spectral types G6 IV－K3 IV．Note unusual strength of the D－lines in the M67 star，F193（ $M_{V}=+27$ ）and in the secondary component of the eclipsing system AR Lac The AR Lac observations refer to the minimum light phase in the total eclipse．Solid line in this graph and the other subgiant diagrams of blocking fraction versus $T$ are internal means and were not derived from an independent Survey．See Table 12 for interest－ ing field stars in this diagram．


Fig．16．－Subgiant w－T diagram for the two blue CN bands．Note the CN weakness of the AR Lac secondary；this result confirms earlier work by Miner（1966）and Hall（1967）on the CN deficiency of some subgiant components of close binary systems．The M67 star has strong CN bands and resembles the more luminous M67 giants in this anomaly．


Fig．17．－Subgiant $w-T$ diagram for the $\mathrm{Mg} b$－triplet lines（probably plus MgH ）．Note four stars with strong Mg lines－they are M67 F 193，$\gamma$ Cep $(T=413), \nu^{2} \mathrm{CMa}(T=409)$ ，and HR 7670 （ $T=$ 348）．
that the interstellar lines will fall at or near the bottom of the stellar lines in low-velocity K stars, thus greatly reducing the equivalent widths of the former. Distant highvelocity stars ( $\rho>40 \mathrm{~km} \mathrm{sec}^{-1}$ ) could have $w(\mathrm{D})$ increased by one or two hundredths in some cases, which would be significant in our context only for metal-poor stars such as No. 59 in M13. As for gravity effects, the available luminosity data for the giants studied indicate that most, if not all, have above the same intrinsic luminosities; there is little scatter in the $w-T$ plot for the Ca II lines, which is well known to be luminosity sensitive (cf. Sharpless 1956); and, as we shall see in § XII, there is a strong positive correlation between CN-band and D-line anomalies, which is exactly opposite to what would be expected from gravity effects. We conclude that the stars above the Hyades in the $w-T$ plots for the giants and significantly above the means in the corresponding plots for the subgiants have higher metal abundances than the Hyades, in accord with our previously published conclusions (Spinrad and Taylor 1967; Taylor 1967).

Before terminating discussion of the $w-T$ diagrams, we should comment on the success of the approach used for giants to make comparisons across temperature differences. The fact that all of the Survey means which can be compared to $\epsilon$ Vir appear to represent solar abundance is an indication that the approach has succeeded for the hotter stars. For the cooler stars, the convergence of the lines defined by the M67 and NGC 188 stars toward the mean Survey lines as $T$ increases might appear to indicate that these


Fig. 18.-Subgiant w-T diagram for Ca I $\lambda 4227$. This graph is similar in most respects to that for Mg (Fig. 17).
lines depart from true isoabundance trajectories. Further examination reveals, however, that there is a general decrease in amount of departure from the Survey means with decreasing temperature for all the stars plotted; moreover, the amount of collapse is a function of the feature that is being discussed, and is greatest for those in the blue and quite small for those in the yellow and red. This strongly suggests that the effect is primarily due to progressively increasing side-band blanketing; if this is admitted to be the case, then there is no evidence that the Survey means are not isoabundance trajectories over the entire temperature range considered.

## XI. DISCUSSION OF THE SCANNER DATA: CONTINUUM-BLANKETING MEASURES

Another method of utilizing the scanner data is to compare overall blanketing in the blue ( $\lambda \lesssim 5000 \AA$ ) at a given red color. Since such blanketing is dominated by weak and partially saturated lines, this approach provides a valuable check on the strong-feature data. Here we use three blanketing index-temperature index pairs: (1) published $U-$ $B$ 's and our $T$ 's; (2) our pseudocontinuum color at $\lambda 4040$, called $I(4040)$, and our $T$ 's; (3) all of our pseudocontinuum blue colors, together with our continuum colors in the yellow and red.

We anticipated that a useful new ultraviolet residual could be defined by using $U-$ $B$ 's and our yellow-red colors. This expectation is amply confirmed; we find enormous $U-B$ blanketing differences between strong- and weak-lined stars. As with the $w-T$ diagrams, we compare the program giants with the Survey mean (Figs. 19 and 20) and the program subgiants with an internally defined mean (Fig. 21). The results are strik-
ingly similar to the strong-feature data. Let us define the parameter $\Delta(U-B)$ as $(U-B)_{\text {observed }}-\left(U_{r}-B\right)_{\text {mean, } T}$, the latter quantity in the expression being the ( $U-$ $B$ ) of the adopted mean relation at the star's $T$. (Note that positive $\Delta(U-B)$ implies a metallicity excess.) We see that $\Delta(U-B)$ is about 0.00 mag for $\epsilon \mathrm{Vir}$ and the stars in NGC 752 and NGC $7789,+0.14 \mathrm{mag}$ (on the average) for the Hyades, +0.21 mag for the hottest M67 giants, and +0.15 mag for star I-105 in NGC 188, all as we would expect from the data in $\S \mathrm{X}$; similar agreement is found for the field giants of interest and the subgiants (Tables 12 and 13). The influence of microturbulence on $\Delta(U-B)$ is


Fig. 19.-Published broad-band $(U-B)$ colors for Survey giants versus $T$. We have used photometry from Eggen (1966), Johnson et al (1966); and Argue (1963, 1966). The relatively minute sizes of the expected photometric errors are indicated by error flags. We define $\Delta(U-B)$ as the deviation from the hand-drawn mean line in the diagram, with positive $\Delta(U-B)$ indicating a blanketing excess-usually associated with a metal-rich star. Note that 2 Psc (rich) and 7 Psc (poor) have rather large blanketing anomalies. These stars have already been mentioned with regard to the $w-T$ diagrams for CN and Na (cf. Fig. 8).
apparently unimportant, in conformity with the results of Barry (1967), McNamara (1967), and Kraft, Kuhi, and Kuhi (1968). Eggen (1964), Pagel (1966), and Johnson et al. (1968) have successfully used this general technique to study abundances in G and K dwarfs; evidently it is highly useful for K giants as well.

The intensity $I(4040)$ is measured at a local blanketing minimum; the only strong lines in the $\lambda 4040$ passband are Fe I $\lambda 4045$ and $\mathrm{Mn} \mathrm{I} \lambda \lambda 4033$, 4034, and 4035. In the solar spectrum, the remaining blanketing in the band comes equally from lines on the linear portion ( $W<60 \mathrm{~m} \AA$ ) and the flat portion ( $60 \mathrm{~m} \AA \leq W \leq 300 \mathrm{~m} \AA$ ) of the curve of growth (Minnaert et al. 1940). This color correlates well with $B-V$ for the Survey stars (Fig. 22)-a circumstance, we note parenthetically, which illustrates the inade-


Fig. 20.-( $U-B$ ) versus $T$ for field and cluster program giants. Solid line, mean Survey relationship (Fig. 19). Note the large ultraviolet excesses for HD 122563 and $165195(\Delta(U-B) \simeq-0.6)$, and the large ( $U-B$ ) deficiencies ( $\Delta$ positive) for the very strong-line stars in the clusters M67 and NGC 188. The range in $\Delta(U-B)$ seems somewhat contracted for the coolest stars $(T>550)$. See Table 13.


Fig. 21.- $(U-B)$ versus $T$ for subgiants. Note the intermediate position of normal-abundance star $\delta$ Eri (Hazelhurst 1963; Pagel 1963) and the heavy blanketing in F193 in M67. See Table 13 for blanketing data on interesting field stars. Solid line is an internal mean.
quacy of $B-V$ as a temperature parameter for significantly blanketed stars. There are only three noticeably deviant stars in Figure 22-7 Psc, $\gamma$ Psc, and HR 6820-and, since these stars are metal poor, low $\mathrm{Mn} / \mathrm{Fe}$ ratios of the sort found by Wallerstein (1962) in metal-poor G dwarfs would neatly explain the deviation. On the whole, the data in Figure 22 indicate that $I(4040)$ is representative of blue-region blanketing as a whole. The plots of $I(4040)$ versus $T$ for the Survey stars (Fig. 23) and the program stars (Fig. 24) have smaller excursion ranges than the corresponding plots for $U-B$, because the blanketing in the $\lambda 4040$ passband is less than the mean blanketing difference between the $U$ and $B$ filters; otherwise, they are exactly similar to the corresponding $U-B$ plots, star by star.

In order to extract the maximum possible blanketing information from our scans, we
TABLE 12
Data on w-T for Noteworthy Field Stars

| BS/HD | Name | CN $\lambda 4200$ | CaI | CH | Mg | D | $\begin{gathered} \mathrm{TiO}(\lambda 6148+ \\ \lambda 7054) \end{gathered}$ | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1136 | $\delta$ Eri | 017 | 018 | 038 | 023 | 006 | 001 | 388 |
| 1805 | $\Phi$ Aur | . 42 | 37 | 35 | 29 | 11 | 07 | 500 |
| 2429 | $\nu^{2} \mathrm{CMa}$ | . 28 | 21 | 37 | 24 | 09 | 01 | 408 |
| 3905 | $\mu$ Leo | 36 | 28 | 34 | 28 | 12 | 03 | 449 |
| 4517 | $\nu$ Vir | 32 | . 48 | 28 | 39 | 10 | 38 | 703 |
| 4737 | $\gamma$ Com | 31 | . 18 | . 31 | . 21 | . 09 | 02 | 434 |
| 5854 | a Ser | 33 | . 20 | 30 | 23 | 09 | 01 | 444 |
| 6791. |  | 17 | 08 | 18 | . 13 | 06 | 02 | 393 |
| 7405 | a Vul | 37 | 52 | 35 | 40 | . 12 | 38 | 648 |
| 7429 | $\mu \mathrm{Aql}$ | 29 | 25 | . 33 | 30 | 09 | 02 | 456 |
| 7576 | 20 Cyg | 38 | 33 | 33 | 31 | 14 | 04 | 475 |
| 7670 |  | . 09 | . 10 | 33 | 19 | 04 | 00 | 348 |
| 8413 | $\nu \mathrm{Peg}$ | . 41 | 47 | 35 | . 36 | . 14 | 12 | 556 |
| 8448 | AR Lac | 13 | 09 | 28 | 19 | . 07 | 02 | 394 |
| 8795 | 55 Peg | 38 | 59 | . 33 | 39 | . 15 | 38 | 685 |
| 8924 |  | . 31 | 26 | . 35 | . 30 | . 14 | 02 | 426 |
| 122563 |  | 00 | 02 | . 11 | 03 | 01 | 00 | 433 |
| 165195 |  | 006 | 002 | 011 | 005 | 002 | 001 | 461 |

TABLE 13
Blanketing Data for Noteworthy Field Stars

| BS/HD | Name | $U-B$ | $T$ |
| :---: | :---: | :---: | :---: |
| 1805 | Ф Aur | 163 | 500 |
| 3905.. | $\mu$ Leo | 138 | 449 |
| 4517 | $\nu$ Vir | 182 | 703 |
| 5854. | a Ser | 124 | 444 |
| 6791. | . | 068 | 393 |
| 7405. | a Vul | 176 | 648 |
| 7429 | $\mu \mathrm{Aql}$ | 125 | 456 |
| 7576 | 20 Cyg | 150 | 475 |
| 8413 | $\nu$ Peg | 180 | 556 |
| 8795 | 55 Peg | 187 | 685 |
| 8924 | . | 114 | 426 |
| 122563 |  | 038 | 433 |
| 165195 |  | 050 | 461 |

may compare the total energy distributions of weak- and strong-lined stars with those of stars having normal abundances and the same or nearly the same temperatures. We illustrate five such comparisons in Figures 25-29. These involve, in order, the Hyades $\delta$ and $\epsilon$ Tau and the M67 stars Fagerholm 84 and Fagerholm 141, which are compared with $\epsilon$ Vir; star I-105 in NGC 188, which is compared with the normal-abundance Survey star HR 8912; $\gamma$ Psc and HR 6791, which are compared with $\epsilon$ Vir; $\Phi^{2}$ Ori, which is compared with $\kappa$ Aur; and HD 122563, which is compared to $a$ Ari. In each case, the quantity


Fig. 22.-Correlation between published $(B-V)$ colors and our pseudocontinuum intensity at $\lambda 4040$ for the Survey giants. $I(4040)$ is measured with an exit slot corresponding to $15 \AA$. Deviations from the hand-drawn line are quite small (see photometric error bars); the slightly deviant stars $\gamma$ Psc, 7 Psc, and HR 6820 are discussed in the text. $I(4040)$ is apparently affected by line blanketing in much the same way as the $(B-V)$ color.


Fig. 23.-Relation between $I(4040)$ and $T$ for the Survey stars. The mean line here, as usual, defines normalcy for the program stars. Note the $\lambda 4040$ continuum flux excesses for $\gamma$ and 7 Psc.
$\left[I(\lambda) / I(\lambda)_{\text {comparision }}-1\right] \times 100$ percent is plotted as a function of $\lambda$. Progressing from short to long wavelengths in the first comparison, we note in order a depressed region due to the high blanketing in the cluster stars, ending at about $\lambda 4340$; a region of small flux excess extending to $\lambda 5360$ (but not including the apparently blanketed $\lambda 5000$ point), apparently due to back warming; and a region in which the continua match (except at the


Fig. 24. $-I$ (4040) versus $T$ for the field and cluster stars. This diagram shows $\lambda 4040$ blanketing, and is very similar in form (star by star) and in interpretation to Fig. 20, which displays $U-B$ blanketing.


Fig. 25.-Complete continuum blanketing diagrams for G8 III stars $(T=393)$ F84 and F141 in M67 and the Hyades stars $\epsilon$ and $\delta$ Tau, with respect to the abundance standard $\epsilon$ Vir. Plotted is the percentage blanketing residual, $\mathrm{R}=\left[I_{\lambda}\right.$ (Program Star) $\left./ I_{\lambda}(\epsilon \mathrm{Vir})-1\right] \times 100$ percent, versus $\lambda$. Note that a negative residual implies larger blanketing than $\epsilon$ Vir, and vice versa. Note the flux deficiencies of about 12 percent for the M67 stars and 5 percent for the Hyades in the deep blue. The blanketing decreases rapidly toward longer wavelengths (except the $\lambda 5000$ point) and a small flux excess appears for $\lambda \geq 4500 \AA$ We interpret this excess in the green-yellow region as due to "back warming"-the escape of radiation blocked by the numerous lines in the ultraviolet and blue parts of the spectrum in the metal-rich and SMR stars. In the red the spectra all match well if one recalls the mild CN blanketing for $\lambda \geq 7000 \AA$.


FIG 26.-A complete continuum-blanketing diagram for I-105 in NGC 188 compared with the normal Survey giant HR 8912. Both stars have $T=410$. The features shown here are similar to those of Fig. 25.


Fig. 27.-Blanketing diagrams for two metal-poor stars versus $\epsilon$ Vir, all with $T \simeq 393$. Note that the metal-poor stars mirror-image the continuum residuals of the metal-rich stars illustrated in the previous two figures.


Fig. 28 -More extensive coverage in wavelength of the relative continuum blanketing of the metalpoor star $\Phi^{2}$ Ori and the normal giant $\kappa$ Aur. The temperature match here is imperfect; the dotted line would be a somewhat better "zero-residual" base line to take account of the slightly higher effective temperature of $\Phi^{2}$ Ori. In any case, the blue excess of $\Phi^{2}$ Ori is now large; the back warming of this star is less than normal, and the continuum match in the red is satisfactory to $1 \mu$.


Fig 29.-Blanketing diagram for the metal-poor halo star HD 122563 as compared with the almost normal K2 III a Ari This figure is similar to the previous one in detail, but the blue flux excess of HD 122563 is very large; $R=70$ percent at $\lambda 4040$ !
requires temperatures of the order of $4 \times 10^{9} \mathrm{~K}$ (Hoyle and Fowler 1960), and this is a condition extremely unlikely to be attained in the interiors of K giants. Fifth, the mechanism which supplies stars with their "intrinsic" metal contents is now required to yield well-correlated amounts of a product of the CNO cycle (nitrogen), a product of the $\mathrm{Ne}-\mathrm{Na}$ cycle or a form of helium burning (sodium), and an $e$-process element (iron), while supplying $a$-elements (magnesium and calcium) in amounts somewhat "decoupled" from those of the first three elements mentioned (Burbidge et al. 1957; see Fig. 34 for the Mg -Na correlation). It is difficult to understand how this last matter can be explained, and we suspect that the pursuit of the explanation may prove to be a merry one indeed.


Fig. 33.-Schematic representation of the blue and ultraviolet CN bands occuring in K-star spectra, together with the equal-energy $U$ and $B$ filter response curves. Note approximate symmetry of the CN bands with respect to these curves; we conclude that unusual CN strength alone cannot cause substantial $\Delta(U-B)$ variations.


Fig. 34.--The residual correlation between Mg and Na anomalies, $\Delta w(\mathrm{Mg})$ versus $\Delta w(\mathrm{D})$. Here the positive correlation is somewhat less marked than those seen in Figs. 30-32. Note position of $\Phi^{2}$ Ori, a star possibly rich in Mg and a-elements and with an overall metal deficiency (cf. Helfer and Wallerstein 1968).
XIII. SLIT SPECTROGRAMS

In order to spot-check the scanner strong-feature measurements, particularly for those stars with metal abundances higher than those of the Hyades (which we shall refer to hereinafter as super-metal-rich or SMR stars [Spinrad and Taylor 1967]), and also to obtain more detailed information on weak-line blanketing, we have obtained a number of slit spectrograms in the yellow and blue wavelength regions. There are two groups of these spectrograms; one was obtained at high dispersion ( $8 \AA \mathrm{~mm}^{-1}$ ) with the 120 -inch telescope and 40 -inch coudé camera, while the other was obtained at lower dispersion ( $39 \AA \mathrm{~mm}^{-1}$ ) with the Cassegrain spectrograph of the 84 -inch telescope at Kitt Peak National Observatory. The stars observed were selected so as to be comparable in pairs or groups, each pair or group being characterized by the same value of $T$ and containing one star with particularly interesting feature strengths. Five pairs or groups of spectrograms are illustrated in Figure 35 and Figures 36-39 (Plates 6 and 7); in each of these, one of the stars whose spectra are illustrated is SMR, according to the scanner observations. On inspecting these figures, we note the following: first, the scanner data on the strong lines


Fig. 35.-Tracings of $\epsilon$ Tau (Hyades) and F84 (M67) from Kitt Peak 84-inch Cassegrain spectra with an original dispersion of $39 \AA \mathrm{~mm}^{-1}$. For both stars, $T=393$. The intensity scales (virtually identical) appear as the left-hand ordinate. Note the greater depths of Fe I $\lambda \lambda 4384$ and 4325 in F84 and the substantial strength of Ca $1 \lambda 4227$ in the M67 star, compared with $\epsilon$ Tau. CH is also slightly enhanced in the M67 giant.

 weak TiO lines near $\lambda 59000$ in $\Phi$ Aur.

 have $T \simeq 448$. Note enhancement of Mg I $\lambda \lambda 5167,5175,5184$, weak MgH lines, and Fe I $\lambda 5328$, Cr I $\lambda 5345$, and Ni I $\lambda 5347.7$ in the spectrum of $\mu \mathrm{Leo}$. Spinrad and Taylor (see page 1323)


 Spinrad and Taylor（see page 1323）
illustrated are in qualitative agreement with the appearances of these lines. Second, the weak lines vary from star to star in phase with the strong lines, exactly as we would expect for abundance-induced changes. Third, the line of Y I at $\lambda 6023.4$ is strong in $\Phi$ Aur and 20 Cyg (Figs. 36 and 39, Pls. 6 and 7); Helfer and Wallerstein find $[\mathrm{Y} / \mathrm{Fe}]=+0.1$ in 20 Cyg. Coupling this with our overall metal-abundance excess found for this star or even with the more conservative $[\mathrm{Fe} / \mathrm{H}]=+0.1$ obtained by Mannery, Wallerstein, and Welch (1968), we obtain $[\mathrm{Y} / \mathrm{H}] \geq+0.2$. Since Y is an $s$-process element (Burbidge et al. 1957), this could indicate that the enrichment process for these stars (and perhaps others as well) involved material from quite different synthesis sites, although one might also suppose that these stars simply synthesized $s$-process elements from their "primordial" supply of Fe . The first two of these points eliminate any vestiges of reasonable doubt concerning the cause of the observed feature strengths; the third indicates a direction for further investigation.

## XIV. THE PROBLEM OF HELIUM ABUNDANCE

We have not yet examined the possibility that the high metal-to-hydrogen ratios found in the SMR stars observed are expressions of high helium (and correspondingly low hydrogen) content and not of high metallicity. In order to shed light on the matter, we resort to the following test. In the atmosphere of a K giant in which metals are being increased at the expense of hydrogen, the increasing electron pressure will cause the ionization equilibrium to favor neutrality by progressively greater amounts, and the ratio of the strengths of neutral lines to those of ionized lines will progressively increase. On the other hand, in a similar atmosphere in which helium is being increased at the expense of hydrogen, transparency will progressively increase because of the steady decrease of $\mathrm{H}^{-}$opacity, and the strengths of neutral and ionized lines will increase in lockstep. In principle, one may therefore differentiate between the two possibilities by intercomparing the behavior of such lines. Figure 40 contains a plot of residuals (from the respective Survey means) of our $w$-values for Ca I $\lambda 4227$ against similar quantities for Ca II $\lambda 8662$. The solid lines represent the approximate behavior expected for the cases of "changing metals only" and "changing helium only." The large uncertainty and the quantization of the residuals involved make the test quite rough, but we see that there appears to be no indication of the lockstep behavior expected for the case of helium variation. We discuss in §XVI additional evidence concerning this question for the particular case of M67.

## XV. SUPERMETALLICITY IN DWARFS AND THE QUESTION OF PRIMORDIALITY

If the abundances of our SMR giants are primordial, there should be SMR dwarfs; moreover, SMR dwarfs and giants of common origin should have the same abundances. SMR dwarfs are indeed known to exist (van den Bergh and Sackmann 1965; Pagel 1966; Taylor 1967; Greenstein and Oinas 1968). Furthermore, observations of the secondary of 18 Lib by Taylor (unpublished) indicate that the abundances of this star are similar to those of the SMR primary (Tables 5 and 6). These findings strongly support the conclusion made in § XII that the abundances of the SMR stars observed are primordial. Very recent measures of the Na D-lines in several M67 F dwarfs near the cluster turnoff indicate these unevolved stars have $[\mathrm{Na} / \mathrm{H}]$ greater than in the Hyades F stars.

## XVI. CALCULATIONS OF METAL ABUNDANCES AND COMPARISONS WITH PREVIOUS DETERMINATIONS

Through the use of the scanner data presented in the w-T diagrams ( $\S \mathrm{X}$ ) and the equations of Deutsch as checked by Strom's model atmospheres (§ III) we may calculate differential abundances in stars of interest for each of the three elements- $\mathrm{Ca}, \mathrm{Mg}$, and Na -whose lines we have measured. This approach requires that ratios of values of $w$
between two stars accurately reflect ratios of equivalent widths. Referring to the discussion of § II, we see that this requirement is well satisfied for Na and Mg , but it appears that differential Ca over- or underabundances will be consistently underestimated. In this last case, we proceed as if the systematic error did not exist, and regard the result as a lower limit. Because of this error, and because of the necessarily rough and approximate nature of the method itself, these results are probably the weakest in this paper.


Fig. 40.-Plot of the Ca I $\lambda 4227$ and the Ca II $\lambda 8662$ blocking-fraction percentage residuals for the program stars. These residuals are defined as $\left(W_{*} / W_{\text {survey }}-1\right) \times 100$ percent. Expected error bars are rather large, $\pm 10$ percent in most cases. Points are badly scattered and quantized to discrete residual levels. The two solid lines with largest slopes are the theoretically anticipated slopes for changing the $\mathrm{Ca} / \mathrm{H}$ ratio as computed tby Deusch's (1966) rules and from Strom's unpublished models. The smallerslope solid line is a relation in the residual-residual plane estimated for helium enrichment at the expense of H , with $\mathrm{Ca} / \mathrm{H}$ held constant. Open circle is F170 in M67. Note that, at least for the metal-rich stars (upper right quadrant), the observations are suggestive of calcium abundance variations rather than any large He enrichment.

However, as we shall see later, they are accurate enough to be very interesting.
In Table 14, we list abundances for the most interesting of our hotter stars ( $390 \leq$ $T \leq 400$ ). Here the computations are straightforward and reliable, particularly since Deutsch's rules have been checked for this temperature range. For cooler stars, we encounter the scale constriction in $w$ noted in § X; we overcome this difficulty by assuming that the M67 stars define an isoabundance trajectory in each relevant w-T diagram and adding correction factors obtained by comparing this trajectory to the Survey mean to the computations. The relatively small scatter of the M67 stars about their trajectory and the similarity of the trajectory defined by the NGC 188 stars make this assumption
appear reasonable. A selection of results for the cooler stars is also given in Table 14. Note that, in all cases listed, the greatest overabundance with respect to the Sun is about a factor of 4.

It is of interest to compare abundances derived in this manner with those obtained for the same stars in previously published investigations. We direct our attention first toward results obtained using curve-of-growth and model-atmosphere techniques. Table 15 lists results (referred, as usual, to the Sun) necessary to the comparison; Part 1 is restricted to stars with spectral types G7-K1, while Part 2 lists cooler stars. Inspecting Part 1, we

TABLE 14
Abundances of Interesting Stars

| Star or Cluster | HR, BD, Cluster No. | Our Type | $T$ | Ca/H* | Mg/H* | $\mathrm{Na} / \mathrm{H} *$ | [M/H] $\dagger$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 495 | K2 IV | 401 | 10 : | 14 : | 40 : | +03: |  |
| $\gamma$ Tau | 1346 | G8 III | 386 |  |  |  |  |  |
| $\delta$ Tau | 1373 | G8 III | 391 | 14 | 13 | 19 | +02 | Average of $\gamma, \delta$, |
| $\epsilon$ Tau | 1409 | G8 III | 394 |  |  |  |  |  |
| $\theta^{1}$ Tau | 1411 | G7 III | 382 | 2.5 | 22 | 19 | +035 |  |
| $\nu^{2} \mathrm{CMa}$ | 2429 | K0 IV | 409 | 27 : | 18 : | 35 : | +04 |  |
| $\mu$ Leo | 3905 | K2 III | 449 | 36 | 40 | 44 | +06 |  |
| $a \mathrm{Ser}$ | 5854 | K2 III | 445 | 12 | 15 | 24 | +02 |  |
| $\epsilon \mathrm{CrB}$ | 5947 | K3 III | 486 | 05 | 07 | 06 | -02 |  |
| $\mu \mathrm{Aql}$ | 7429 | K3 III-IV | 457 | 15 | 33 | 17 | +03 |  |
| 20 Cyg | 7576 | K3 III | 475 | 35 | 32 | 44 | +055 |  |
| $\epsilon \mathrm{Cyg}$ | 7949 | K1 III | 427 | 05 | 05 | 02 | -04 |  |
| $\gamma$ Cep | 8974 | K1 IV | 413 | 13 : | 15 | 12 : | +0 1: |  |
| M13 | 59 |  | 616 | 0 07: | 0 02: | 0 1: | -13: |  |
| M67 | F84 | G8 III | 392 |  |  |  |  |  |
| M67 | F141 | G8 III | 396 | 36 | 29 | 22 | +045 | Average of F84, |
| M67. | F151 | G8 III | 390 |  |  |  |  | F141, F151 |
| M67. | F193 | K0 IV | 388 | 23 : | 18 : | 23 : | +03 |  |
| NGC 188 | I-105 | K0 III | 410 | 34 | 24 | 22 | +04 |  |
| NGC 752 | $+37^{\circ} 418$ | G9 III | 398 |  |  |  |  |  |
| NGC 752 | +3700432 | G9 III | 395 | 13 | 10 | 08 | +0 05 | Average of $37^{\circ} 418$, |
| NGC 752.. | ${ }_{+}^{+37^{\circ} 448}$ | G9 III | 405 |  |  |  |  | $+37^{\circ} 432 \text {, }$ |
| NGC 7789. | K751 | M0 III | 677 | $15:$ | 07 : | 10 | +0 05 | $\underline{+37^{\circ} 448}$ |

* Ratio of stellar to solar value.
$\dagger$ Average of three abundance ratios, expressed in usual logarithmic form, relative to the Sun.
note substantial disagreement for $\lambda$ Hya; we have no ready explanation for this, especially since the temperatures assigned by the two approaches agree rather well. Otherwise, the scatter is about what one would expect from the sizes of the internal errors (about $\pm 0.15$ in the log for each technique). For Part 2, the situation is somewhat less satisfactory; note particularly $\Phi$ Aur (G. Cayrel 1966), 20 Cyg (Helfer and Wallerstein 1968), $\mu$ Leo, and $\delta$ Psc (Peat and Pemberton 1968). The question immediately arises: Whose is the error? The abundances quoted in the literature for the four cool stars mentioned above are compatible with our data only if a strong gradient of metal abundance with temperature exists in the two old clusters and for the average field star; for $\Phi$ Aur, the size of this gradient would approach an order of magnitude per half spectral interval. Since this is extremely unlikely, we conclude that the error lies in the previously published analyses, and we suggest that this conclusion is generally true in this temperature range (except possibly for the most underabundant stars, for which both techniques are quite imprecise). A gradient of the sort described above is implied by a comparison of observations used by Peat and Pemberton with their calculated relations between abundance and line strength (see their Figs. 3, 4, and 7); the sense of the gradient is that
stars of progressively lower temperatures are assigned progressively lower abundances, and is suggestive of the existence of an unsuspected source of opacity in K giants. Our technique is not affected by such considerations because it does not involve comparisons across temperature differences.

There are three recent abundance determinations for M67 of which we also wish to take notice. The first of these is the photometric analysis of the cluster K giants made by Mannery, Wallerstein, and Welch (1968); this yields $[\mathrm{Fe} / \mathrm{H}]=+0.4$, in excellent agreement with our results $([\mathrm{M} / \mathrm{H}]=+0.45)$. The second is that of Sargent (1968), who concludes from a study of the cluster's horizontal-branch stars that M67 has normal abundances. With respect to this result, we make the following comments:

1. Sargent bases his abundance determination on a plot of equivalent width against ( $B-V$ ) of the Ca II K -line (Fig. 3 in his paper). The scatter in this plot is quite noticeable, as he himself remarked; according to Deutsch's equations, it corresponds to about a factor of 3 in abundance. Moreover, no correction for gravity effects is made for the

TABLE 15
Comparisons of Our abundances with Published Values

| BS or BD | Name | $T$ | Our Type | [M/H] | $\Delta(U-B)$ | Published <br> [ $\mathrm{Fe} / \mathrm{H}$ ] | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Part 1. G8-K0 |  |  |  |  |  |  |
| 1136 | $\delta$ Eri | 389 | K0 IV | +0 1: | +0 01 | 00 | 1 |
| 1346 | $\gamma$ Tau | 386 | G8 III |  |  |  |  |
| 1373 | $\delta$ Tau | 391 | G8 III | + 2 | + 15 | $+.15$ | 2 |
| 1409 | $\epsilon$ Tau | 394 | G8 III |  |  |  |  |
| 1411 | $\theta^{1} \mathrm{Tau}$ | 382 | G7 III | + 35 | + . 12 | + 3 | 2 |
| 1907 | $\Phi^{2}$ Ori | 402 | K0 III | - 7: | - 10 | - 5 | 3 |
| 2219 | $\kappa$ Aur | 412 | K0 III | 0 | - 01 | - 3 | 3 |
| 3994 | $\lambda$ Hya | 384 | G7 III | + 6: | + 29 | 2 | 3 |
| 5480 | 31 Boo | 403 | K0 III | - 15 | + 00 | 0 | 3 |
| 5681 | $\delta$ Boo | 409 | K0 III | - 1 | - 12 | - 4 | 3 |
| 6791 |  | 393 | G8 III | + 1 | - 01 | + 2 | 3 |
| 8255 | 72 Cyg | 419 | K1 III | + 1 | + 16 | + 2 | 3 |
| $+37^{\circ} 432$ |  | 395 | G9 III | +0 05 | +0 01 | -0 05 | 4 |
|  | Part 2 K2-K5 |  |  |  |  |  |  |
| 224 | $\delta \mathrm{Psc}$ | 606 | K5 III | +0 1 | -0 06 | -10 | 5 |
| 1805 | ¢ Aur | 500 | K3 III | +04 | + 17 | -0 4 | 6 |
| 3905 | $\mu$ Leo | 449 | K2 III | +06 | + 26 | -0 1: | 5 |
| 7429 | $\mu \mathrm{Aql}$ | 457 | K2 III | +035 | + 07 | +04 | 3 |
| 7576 | 20 Cyg | 475 | K3 III | +055 | + 20 | +01 | 3 |
| 122563 |  | 434 | K2p | -20: | - 62 | -27: | 7, 8 |
| 165195 |  | 462 | K3p | -20: | - 68 | -27: | 7 |
| M13 | \#59 | 614 | K5p | -13 | -0 09 | -12 | 9 |

References:
1 Hazelhurst (1963) and Pagel (1963)
2. Helfer and Wallerstein (1964
3. Helfer and Wallerstein (1968) as corrected by Mannery et al (1968) and referred to the Sun using the differential Hayes abundance of 02 quoted by Alexander (1967).
4. Wallerstein and Conti (1964)
5. Peat and Pemberton (1968)
6. G. Cayrel (1966)

Wallerstein et al (1963)
Pagel (1965).
9. Helfer et al (1959); their analysis refers to Barnard 140
hotter stars; since the M67 stars have lower gravities, the correction would increase the equivalent widths of their K -lines. We conclude that these data do not contradict our results for M67.
2. Sargent notes that for two stars, Fagerholm 55 and Fagerholm 153, the metallicline type is much later than the K-line type, and he concurs in Pesch's (1967) classification of them as metallic-line A stars. He also notes, however, that the ratio of K-line to hydrogen-line strengths is not abnormally low, as it is in many classical Am stars. We submit that these facts are much better explained by supposing that the two stars mentioned above simply share the cluster's intrinsic overabundances; judging from the print of Sargent's plates, they have this in common with the other cluster members he observed.
3. Sargent compares his line-strength data for Fagerholm 81, the B7 V star seen in the cluster ( $[B-V]_{0}=-0.13$ ), with the data of Searle and Sargent (1964), and concludes that both its metallic and helium abundances are normal. But "normalcy" as defined by those authors covers a broad range of abundance (see their Figs. 1 and 2), since they were interested in excluding only Ap and Am stars from the definition, and since certain of the overabundances in these stars attain two orders of magnitude. We have looked into this question in somewhat more detail; through the courtesy of Dr. Sargent, we have examined this plate and tracing of the spectrum of Fagerholm 81. Table 16 lists

TABLE 16
Equivalent Widths of Fagerholm 81

| Line ( $\lambda$ ) | Identification | $W_{\lambda}(\mathrm{m} \AA)$ | [El/H] | Comparison-Star References |
| :---: | :---: | :---: | :---: | :---: |
| 4471 | He I | 390 | 00 | Searle and Sargent (1964); Williams (1936) |
| 3862 | Si II | $136 \pm 20$ | $+.5$ | Wolff (1967); Searle and Sargent (1964) |
| 4131 | Si II | $184 \pm 40$ | $+.7$ | Wolff (1967); Searle and Sargent (1964) |
| 4481 | Mg II | 450 | $+.6$ | Wolff (1967); Searle and Sargent (1964) |
| 4508 | Fe II | $100 \pm 30$ | $\gtrsim 0.0$ | Wolff (1967) |

equivalent widths of several moderately strong lines (either as measured by Spinrad or as averaged from independent measurements by Spinrad and Sargent) and abundances derived from each, relative to the Sun, by using the data of Searle and Sargent and also those of Wolff (1967). The abundances are naturally rather imprecise, but they do indicate that Fagerholm 81 has the same enhancement of metals as the cluster's cool stars. They also confirm Sargent's result for helium. If Fagerholm 81 is a cluster member (and, as Pesch points out, the only discordant datum, the radial velocity, is not discordant enough to rule it out), then these results are consistent with our own; in addition, they provide further evidence that abnormal helium abundances do not confound our linestrength interpretations (see § XIV). We conclude that Sargent's data generally support our results for M67.

The third abundance determination for M67 which we wish to compare with our results is that of Eggen and Sandage (1964). These authors derive $E(B-V)=0.06 \mathrm{mag}$ and $\delta(U-B)=+0.03 \mathrm{mag}$ for M67 by fitting the Hyades main-sequence relation to their data in the ( $U-B, B-V$ )-plane. This small ultraviolet excess suggested that M67 was slightly metal-poor compared with the Hyades. With respect to this result, we make these comments:

1. The reddening of M67 derived in this manner is lower than that derived by using the observed amount of neutral hydrogen in the cluster line of sight (which, at the galactic latitude of M67 [ $32^{\circ}$ ] should all be in front of the cluster) and a calibration of the ( $N_{\mathrm{H}}, E_{B-V}$ )-relation that uses photometry of high-latitude RR Lyrae stars and reddening values derived by using the technique of Sturch (1969). A complete discussion of this
technique will be given in a subsequent paper; we note here, however, that the preliminary values of $E(B-V)$ for M67 and NGC 188 are at least 0.03 and 0.07 mag higher, respectively, than those given by Eggen and Sandage (1964) for M67 and by Eggen and Sandage (1969) for NGC 188.
2. Our photometry of the M67 giants Fagerholm 84, Fagerholm 141, and Fagerholm 151 is inconsistent with that of Eggen and Sandage if the value $E(B-V)=0.06 \mathrm{mag}$ is used. In an appendix to their 1964 paper, these authors give a result which implies that unreddened giants of Hyades chemical composition will lie on the Hyades main sequence in the ( $U-B, B-V$ )-plane for $B-V$ 's between about 0.63 and 1.10 mag . According to the photometry of Johnson and Knuckles (1955), this is true of the Hyades giants themselves, as consistency requires. By plotting the three M67 giants in the twocolor diagram given by Eggen and Sandage (their Fig. 2) and applying their reddening, we obtain $(B-V)_{0, \text { Hyades }} \approx 1.05 \mathrm{mag}$ for these stars, while our red colors (corrected for the equivalent amount of reddening) imply that these stars have the same temperature as $\delta$ and $\epsilon \mathrm{Tau}$, whose average $B-V$ is 1.00 mag ; the latter conclusion is the same if the red photometry of Mendoza V. (1967) or Kron (1968) is used instead. This discrepancy may be removed by increasing the reddening; this decreases the $(B-V)_{0, \mathrm{Hyades}}$ assigned by both the red photometry and the $U B V$ photometry, but the ( $B-V)_{0, \text { Hyades }}$ derived by the $U B V$ photometry decreases more rapidly as the assumed reddening is increased, since its derivation involves correction along a blanketing vector whose slope is not too different from that of the Hyades main sequence. Any attempt actually to derive the interstellar reddening of M 67 by comparison of the resultant $(B-V)_{0, \mathrm{Hyades}}$ derived from the red and $U B V$ photometry is difficult, since the technique is very sensitive to photometric errors and also to the slope of the blanketing vector used. A rough calculation, however, suggests that $E(B-V) \geq 0.1 \mathrm{mag}$.
3. It is physically unlikely that the M67 giants have heavy-element abundances different from those of the M67 dwarfs. Increasing the reddening removes this discrepancy; this increases the abundances derived for both giants and dwarfs, but those derived for the dwarfs (by ultraviolet excess) increase faster for the same reason as that given above.
4. The M67 UBV photometry is, on the whole, not inconsistent with a reddening value somewhat higher than that given by Eggen and Sandage, especially since the data of highest weight near $B-V=0.6 \mathrm{mag}$ (see Fig. 2 of Eggen and Sandage 1964) indicate the presence of nonnegligible observational scatter.

We conclude that considerable evidence exists that the reddening-and hence the blanketing-of main-sequence stars in M67 has been underestimated by Eggen and Sandage. We have nonetheless used the reddening values given by Eggen and Sandage $(1964,1968)$ for M67 and NGC 188, since they yield lower limits for the abundances derived for these clusters. Increasing these reddening values does not materially affect our results.

## XVII. APPLICATIONS TO GALACTIC STRUCTURE

We now turn to an examination of possible correlations between metallicity and kinematic properties for as many of our stars as have published space motions. Most of the space motions used here were taken from lists given by Eggen (1962, 1966), ${ }^{2}$ although other sources were also used (Roman 1955, 1967; Wallerstein et al. 1963); all of these vectors have been computed with respect to the Sun. For the sake of convenience, we use $\Delta(U-B)$ as the abundance parameter throughout. We first compare this parameter with $Q=\sqrt{ }\left(U^{2}+V^{2}+W^{2}\right)$ (Fig. 41), position in the Haas-Bottlinger dia-

[^0]gram (Fig. 42), and $|W|$ (Fig. 43), for those of the Survey stars for which the kinematic data are available. Note the total or almost total lack of correlation in these diagrams; only in the last one is there any sign of a trend, and the numbers involved are small enough so that this may merely be statistical. The diagram for $|W|$ is in reasonable accord with similar diagrams given by Eggen, Lynden-Bell, and Sandage (1962), Wallerstein (1962), and Pagel (1966), but the Haas-Bottlinger diagram suggests the possibility of disagreement with these authors, since it contains a few metal-rich stars with $e>0.35$.

The abundance-kinematic data for the field program stars are given for the subgiants in Figures $44(Q)$ and 46 (Haas-Bottlinger diagram) and for the giants in Figures $45(Q)$, 46, and 47 (|W|). In common with the Survey data, as may be seen, they exhibit no correlations. The Haas-Bottlinger diagram for these stars exhibits noticeable disagreement with those given in the three investigations cited above, since it contains a number of stars for which $\Delta(U-B)>0$ and $0.35<e<0.5$. The diagram for $|W|$ is again


Fig. 41.-Metal abundance, as measured by $\Delta(U-B)$, versus total space velocity (Eggen 1962 and 1966) for Survey giants. Note lack of correlation out to $Q=110 \mathrm{~km} \mathrm{sec}^{-1}$. Both metal-rich and metal-poor stars fall into the high-velocity regime; most metal-poor stars actually have rather low velocities ( $Q \leq$ $40 \mathrm{~km} \mathrm{sec}{ }^{-1}$.
largely in accord with the results of those investigations, but note an outstanding excep-tion-HD 29038, an SMR star with $|W|=63 \mathrm{~km} \mathrm{sec}^{-1}$.

Violations of the accepted correlations may also exist among the clusters investigated. The M67 stars have potential energy such that $|W|$ would equal $36 \mathrm{~km} \mathrm{sec}^{-1}$ at $z=0$ kpc (Murray, Corben, and Allchorn 1965), and we estimate that the corresponding parameter for NGC 188 would be slightly higher.

Indirect evidence for supermetallicity at relatively large distances above the plane is to be found in Upgren's (1962) spectroscopic investigation of high-latitude K giants (for which generally $1 \mathrm{kpc} \leq z \leq 1.6 \mathrm{kpc}$ ). ${ }^{3}$ Upgren notes strong CN in about 2.5 percent of his stars. Since HD 104998 (CN + 3; Keenan 1963) is thus described, but $\gamma$ Com (Fig. 11; Table 12) is not, we conclude that only extreme SMR stars were noticeable as unusual at his dispersion, and that the actual percentage of SMR stars in his sample is undoubtedly noticeably higher. (One could, of course, suppose as an alternative explanation that these stars are supergiants, but then they would be intolerably young for their galactic positions.)

We conclude that the correlations found by Eggen et al., Wallerstein, and Pagel are not completely valid for K giants. Since we find a considerable range in angular momentum and potential energy with respect to the plane for our SMR stars, we further conclude that they have originated throughout the disk and well into the halo. We have no

[^1]

Fig．42．－A Haas－Bottlinger diagram for the Survey stars．Open circles，metal－rich stars；triangles， metal－poor stars．The ellipse around the solar vicinity is the approximate locus for galactic orbital ec－ centricity of 01 ；HR 8325 at $U=+100 \mathrm{~km} \mathrm{sec}^{-1}, V=-36 \mathrm{~km} \mathrm{sec}^{-1}$ has an eccentricity near 04 ．The Survey stars are a low－velocity sample－typical of stars in a modest volume near the Sun．


Fig．43．－Plot of $\Delta(U-B)$ versus $|W|=(|d z / d t|)$ for Survey stars Here there may be a very weak correlation between abundance and kinematic property，in the sense that stars of low metal abundances are more frequent than metal－rich stars at larger $|W|$ values However，the number of stars sampled with $|W| \geq 30 \mathrm{~km} \mathrm{sec}^{-1}$ is very small，so this trend may or may not be statistically meaningful．

Fig． 44 －Plot of $\Delta(U-B)$ versus $Q$ for field and M67 subgiants，There is no obvious correlation between abundance and the total space motion of class IV stars sampled here，despite the fact that our stars include some rather high－velocity objects．


Fig. 45.-Plot of $\Delta(U-B)$ versus $Q$ for program field giants. Again note the large scatter and the lack of any systematic trends. The galactic clusters of interest can be mentally superposed onto the diagram at the following approximate locations: Hyades at +0.15 mag and $45 \mathrm{~km} \mathrm{sec}^{-1}$, NGC 752 at +0.01 mag and $15 \mathrm{~km} \mathrm{sec}^{-1}$, M67 at +0.20 mag and $50 \mathrm{~km} \mathrm{sec}^{-1}$, and NGC 188 at +0.18 mag and 60 $\mathrm{km} \mathrm{sec}{ }^{-1}$.


Fig. 46.-The Haas-Bottlinger diagram for field giants and subgiants. Open circles, metal-rich giants; filled circles, metal-rich subgiants; triangles, metal-poor stars. The limit of eccentricity at the left edge of the figure is about $e=0.5$. Note the lack of correlation between abundance and $U, V$ velocity vectors.
ready explanation for the lack of G-dwarf counterparts to our more kinematically extreme K giants in the three investigations mentioned; what data are available indicate that such stars do exist (Eggen 1964). Taylor is currently investigating this matter as part of a thesis project consisting of scanning nearby late-G and $K$ dwarfs.

## XVIII. AGE-ABUNDANCE CONSIDERATIONS

In this section we discuss the ages of the SMR stars and attempt to reassess the ageabundance scheme of the Galaxy in light of their existence. We illustrate in Figure 48 a conventional color-magnitude diagram showing schematic loci for M67 (Eggen and Sandage 1964) and NGC 188 (Eggen and Sandage 1968), together with those of our field stars which have trigonometric parallaxes (Jenkins 1952) or K reversal widths (Wilson and Bappu 1957; Wilson 1967) and which are either SMR or below the M67 locus. The diagram indicates that the SMR stars plotted include some which are extremely oldperhaps as old as the disk itself-and none younger than M67. Admittedly the sample


Fig. 47.- $\Delta(U-B)$ versus $|W|$ for program giants. Again we find little or no correlation. Compare with the trend noted by Pagel (1966) for K-dwarf velocities and abundances. See text.
is small and the luminosities are rather imprecise, but the possibility that a lower age limit exists for SMR stars is nonetheless striking enough to merit further attention.

In order to check on this matter, we need an unbiased statistically significant sample of stars which will include SMR stars younger than M67, if such exist. In order to obtain such a sample, we turn to the catalog of Strömgren and Perry (1962). ${ }^{4}$

Figure 49 contains a plot of $m_{1}$ versus $(b-y)$ of all main-sequence stars listed in the catalog which have $(b-y$ )'s in the range $0.240-0.420$ (which corresponds approximately to the spectral-type range F0-G2), have right ascensions in the range $0^{\mathrm{h}}-16^{\mathrm{h}}$, and are not noticeably evolved (as judged from their $c_{1}$ indices). The Hyades and M67 isoabundance trajectories are also depicted; the former is from Crawford and Perry (1966), and the latter is derived from our results and the relations of Strömgren (1964) between abundance and $m_{1}$. On inspecting this plot, we see that SMR F stars do in fact exist, but we also note that for spectral types earlier than about G0-which is roughly the M67 turnoff position-the region around and above the M67 trajectory is devoid of stars. We note further that the percentage of SMR stars is noticeably greater in the F8-G2 region than in either the F2-F5 or F5-F8 regions (Table 17). The prima facie conclusion to be drawn by combining this plot and our data is that, for stars with M67-like and higher
${ }^{4}$ We are indebted to Dr. R. P. Kraft for referring us to this catalog.


Fig. 48.-Conventional C-M diagram for the old galactic clusters M67 and NGC 188 (corrected for reddening and absorption) and old field giants and subgiants scanned at Lick. All field stars plotted are SMR except $\delta$ Eri (solar abundances) and 91 Aqr A and $\tau \mathrm{CrB}$ (slightly metal rich). Absolute magnitudes are from trigonometric parallaxes (circles), Olin Wilson's unpublished K-line widths and the calibration given by Wilson and Bappu (1957) (filled squares), Spinrad's K-line width for $\mu$ Leo and the same calibration (with estimated error flags), and, in the case of the brighter component of the visual binary 18 Lib, from the assumption that the secondary lies on the Hyades main sequence An idea of the uncertainty of individual $M_{v}$ determinations may be obtained by examination of the two plotted positions of HR 8924. The thrust of this figure is to point out that most SMR stars are underluminous; also, their rough positions on the C-M diagram indicate that they may be very old. There is certainly little indication that many, if any, SMR K giants are young.


FIg 49.-Strömgren's $m_{1}$ metal index versus his intermediate band color $(b-y)$, for main-sequence F and G dwarfs. Data were taken from the Strömgren-Perry (1962) catalog; these stars are represented by filled circles. Only the first two-thirds of the catalogue has been plotted The few open circles are highvelocity "disk" stars noted by Strömgren (1964). The Hyades main-sequence line and computed M67 and solar abundance trajectories, parallel to the Hyades, are indicated. Note absence of stars hotter than G0 V in the neighborhood of or above the M67 line. See discussion in text.
abundances, there is indeed a lower age limit, and that the maximum metallicity of newly formed disk stars dropped fairly abruptly by at least three tenths in the log shortly after the formation of M67.

If the above conclusion is correct, we would expect to see the higher percentage of SMR dwarfs below the M67 turnoff persist into later spectral types. The investigations of van den Bergh (1963), Schmidt (1963), and Spité (1966) all indicate SMR fractions of about 10 per cent for G dwarfs, a marginal difference at best from the fraction found for the stars earlier than F8. However, the photometry of Argue $(1963,1966)$ and that of Johnson et al. (1968) yield, respectively, SMR fractions of 24 percent for the range G4K4 and 20 percent for the range G3-K3; these are decisively different from the F-star fraction. These numbers are all necessarily imprecise, due to the sizes and natures of the samples involved, but they provide a fair indication that the expected effect is present. We are certain that the strongly blanketed stars found in the latter two investigations are indeed SMR, since Taylor has scanned and described SMR dwarfs previously (Taylor 1967).

On the basis of the available data, we conclude that the cutoff described above did take place. Since this appears to be incompatible with the "uniform enrichment" hypothesis described by Burbidge et al., it would seem necessary to reexamine the case for this

TABLE 17
Fractions of SMR Stars in Figure 49

|  | $b-y$ Interval | Spectral-Type <br> Interval | Percent <br> SMR |
| :--- | :---: | :---: | :---: |
|  | Total <br> Number |  |  |
| 0 $24-0$ 30  <br> 0 $30-0$ 35 . <br> 0 $35-0$ F2-F5 F5-F8 <br>  F8-G2 8 78 | 17 | 81 |  |

postulate. ${ }^{5}$ If uniform enrichment occurred during the formation of the halo, we would expect to find a certain minimum primordial metallicity for all stars formed subsequently in the disk; this conclusion is reached by Dixon (1965), and is supported by the data of Strömgren and Perry and by our Survey data. If, on the other hand, uniform enrichment has occurred in the disk itself, we would expect the metallicity of newly formed disk stars to have steadily increased with time; judging from our data on the cutoff, this has not happened. We therefore suggest that uniform enrichment was operative only during the formation of the halo, and has played no important role in the history of the disk. We refrain from proposing an alternative enrichment mechanism at this time, since we know of none which will account for the existence of the cutoff; the mechanism of dust depletion by radiation pressure suggested by Schmidt and van den Bergh (1969), which is the only hypothesis on this subject extant, probably fails because the depletion envisioned by these authors is gradual, while the cutoff appears to be relatively abrupt.

Because of the widespread belief that of the uniform-enrichment hypothesis is probably approximately correct, we should note at this point that no reasonably decisive observational proof has ever been given to show that uniform temporal and/or spatial enrichment has taken or is taking place in the galactic disk. Previous investigations have shown only that, if enrichment has been taking place in the disk, the enrichment rate has been small. Arp (1961), Sandage (1962), and Eggen and Sandage (1964) have suggested enrichment rates of near zero over the past 5-10 $\times 10^{9}$ years, primarily on the basis of $U B V$ observations of NGC 188 and M67. The physical situation is complicated, however, by the probable presence of large-scale chemical inhomogeneities in the inter-

[^2]stellar medium; the existence of these inhomogeneities may be demonstrated by comparisons between star clusters, examples being a comparison of the Hyades and Coma (Johnson and Knuckles 1955; Strömgren 1958; Mendoza V. 1963; Price 1966b) and a comparison of the Hyades and the Pleiades (Fig. 50; see also Arp 1961), and also by examination of the extensive data on luminosities and ultraviolet excesses of stars as cool as or cooler than the Sun (cf. Eggen 1964; Eggen and Sandage 1964; Pagel 1963), although interpretation of the latter data is somewhat confused by the dependence of a star's rate


Fig. 50--Pleiades main-sequence stars, approximately over the range G5 V-K3 V, plotted in the ( $U-B, B-V$ ) plane, compared with the Hyades main sequence (Morgan and Hiltner 1965). Pleiades data from Iriarte (1967) and Johnson and Mitchell (1958). Points should be moved upward and to the left in the figure by the lengths of the small arrow, a mean reddening value derived from the hot stars in the Pleiades cluster. The Pleiades appear to have a definite ultraviolet excess compared with the Hyades stars.
of evolution on its metallicity (cf. Demarque 1968). These inhomogeneities have prevented ruling out the possibility that metal enrichment has been taking place in the disk-averaged over the inhomogeneities-at a low but nonzero rate.

We end this discussion with a note of caution. The conclusions drawn in this section from our data depend either wholly or in part on the nonexistence of stars with M67-like or higher abundances which are younger than M67 itself. The available observations make this appear very likely, but it is by no means certain, and further work is needed on young stellar groups and young field stars for the sake of confirmation.

## XIX. SUPERMETALLICITY IN THE NUCLEI OF GALAXIES

Recent evidence from synthesis of integrated photoelectric spectra of galaxies indicates that supermetallicity is found in the cores of giant ellipticals and also in the nuclei of spirals (Spinrad 1966, 1967; McClure and van den Bergh 1968). We cite this result here in view of the possibility that there may be some connection with the results pre-
sented in this paper. The data of § XVII, which indicate that the SMR stars studied have originated in a variety of places in the Galaxy, make it appear unlikely that there is a physical connection between disk and halo supermetallicity, on the one hand, and supermetallicity in the nucleus, on the other (assuming that the nucleus of the Galaxy is indeed SMR, as seems likely). However, the existence of supermetallicity under the conditions found in giant ellipticals and the nuclei of spirals may provide a clue to the nature of the enrichment mechanism generally responsible for primordial stellar metal abundances; we feel that this is a possibility which might be profitably explored.

## XX. SUMMARY

In summary, we have described a technique for deriving abundances from observations with a photoelectric spectrum scanner, and we have presented data on cool stars obtained by using this technique. From these data, we have arrived at the following conclusions:

1. Evolved K stars with metal abundances greater than that of the Hyades exist. The available evidence leaves little doubt that these abundances are primordial and are not the product of the star's own nuclear evolution. The abundances found range as high as a factor of 4 times solar values for $\mathrm{Ca}, \mathrm{Mg}$, and Na . The K-giant and subgiant members of the old galactic clusters M67 and NGC 188 have abundances higher than those of the Hyades; independent data on the hotter stars in M67 indicate that this is likely to be true of them also.
2. The range of abundances in K giants tends to cause systematic errors in MK spectral classification of these stars, and makes supplementary red photometry necessary.
3. At least one significant source of error exists in standard differential curve-ofgrowth and model-atmosphere techniques for giants cooler than about K0.
4. A tight correlation exists between $\mathrm{N}, \mathrm{Na}$, and Fe abundances for the stars studied, and is presumably of general validity. This correlation does not, however, extend in full strength to Ca and Mg .
5. K giants and subgiants exist which have solar or higher abundances and orbital eccentricities up to 0.5 or maximum heights above the galactic plane of 1.5 kpc . The velocity-abundance correlations found previously for $G$ dwarfs are probably not valid for evolved K stars and may not be valid generally.
6. A relatively abrupt cutoff in the production of stars with M67-like and higher element abundances took place shortly after the epoch of formation of M67 itself. From this result and the results of other investigations, it is concluded that uniform enrichment was probably important during the formation of the halo but has played no significant role in the history of the disk.

We wish to acknowledge conversations with and suggestions from many astronomers during the course of this research. In particular, we thank Drs. J. L. Greenstein, A. R. Sandage, I. R. King, R. F. Wing, L. V. Kuhi, P. S. Conti, A. Klemola, R. P. Kraft, and M. and S. Peimbert. We are gratefully indebted to Dr. S. Strom for the model-atmosphere data on damping lines. Dr. E. J. Wampler introduced us to the Lick Observatory scanner which made this project possible. Mr. S. Shawl computed the results necessary for the assessment of side-band blanketing.

Financial support for this project came from ONR contract N 00014-67-C-0215, project NR 046-811, and also (in the case of B. J. T.) from the Davidson Fund of the University of California. Financial support for the Lick Observatory scanner is derived from NSF grant GP 63-10.

## APPENDIX

For the convenience of other observers, we give in Table 1A a list of possible SMR stars which we have either not observed or observed incompletely, together with the references from which the stars have been selected. This list is by no means exhaustive.

TABLE 1A
Possible K-Giant SMR Stars

| Star | Spectral Type | Reference |
| :---: | :---: | :---: |
| HD 104998 | K0 III | Keenan (1963) |
| HD 112127 | K2 III | Keenan (1963) |
| HR (1779A) | K1 III-IVp | Bidelman (1958) |
| HD 29122. | gK, $\lambda 4150$ | Bidelman (private comm.) |
| HD 154277 | gK, $\lambda 4150$ | Bidelman (private comm.) |
| HD 171767 | gK, $\lambda 4150$ | Bidelman (private comm.) |
| HD 174350 | gK, 入4150 | Bidelman (private comm.) |
| HR 645 | K0 III | Roman (1952) |
| 38 Aur | K0 III | Roman (1955) |
| HD 43624 | K1 III | Roman (1955) |
| HR 315. | K2 III | Roman (1955) |
| HR 3110 | K0 III | Roman (1955) |
| HD 9166 | K3 III | Roman (1955) |
| 132 Tau. | G8 III | Gyldenkerne (1964) |
| 73 Leo | K3 III | Gyldenkerne (1964) |
| $\tau$ Dra. . | K3 III | Gyldenkerne (1964) |
| HR 8485 | K3 III | Gyldenkerne (1964) |
| HR 8779 | K3 III | Gyldenkerne (1964) |
| HR 285 | K2 III | Gyldenkerne (1958) |
| 65 And. | K4 III | Gyldenkerne (1958) |
| HR 999. | K4 III | Gyldenkerne (1958) |
| HR 4997 | K4 III | Gyldenkerne (1958) |
| HR 6476 | gK1 | Yoss (1961) |
| HR 5924 | K4 III | Deeming (1960) |
| $\rho$ Ser | K5 III | Price (1966a) |
| 17 Mon | K4 III | Price (1966a) |
| $\psi^{7}$ Aur. | K3 III | Peat (1964) |
| 31 Leo | K4 III | Peat (1964) |
| 3 Dra.. | K3 III | Peat (1964) |
| HR 4521 | K3 III | Peat (1964) |

## REFERENCES

Alexander, J. B. 1967, M.N.R.A.S., 137, 41.
Argue, A. N. 1963, M N.R.A.S., 125, 557.
——. 1966, ibid., 133, 475.
-_. 1967, ibid., 135, 23.
Arp, H. C. 1961, in Problems of Extra-Galactic Research, ed. G. C. McVittie (New York: Macmillan Co ), p. 42.
——. 1962, Ap J., 136, 66.
Arp, H. C , and Johnson, H. L. 1955, Ap J., 122, 171.
Barry, D. C 1967, Ap.J. (Letters), 148, L87.
Bidelman, W. P 1958, Pub. A S P., 70, 168.
Burbidge, E. M., and Burbidge, G.' R. 1959, Ap. J., 129, 513.
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F. 1957, Rev. Mod Phys., 29, 547.
Burbidge, E. M., and Sandage, A. R. 1958, Ap.J., 126, 322.
Cayrel, G. 1966, Ann. d'ap., 29, 413.
1967, paper presented at the first meeting of the International Association of Geochemistry and Cosmochemistry (Paris).
Cayrel, G., and Cayrel, R. 1963, Ap.J., 137, 431.

Cayrel, R. 1968, Ap. J., 151, 997.
Crawford, D. L., and Perry, C. L. 1966, A J , 71, 206
Davis, S. P., and Phillips, J. G. 1963, The Red System of the CN Molecule (Berkeley and Los Angeles: University of California Press).
Demarque, P. 1968, A.J., 73, 669.
Deeming, T. J. 1960, M.N.R.A S., 121, 52.
Deutsch, A. J. 1966, in Abundance Determinations in Stellar Spectra IAU Symposium No. 26, ed. H. Hubenet (London: Academic Press), p 112.
Dixon, M. E 1965, M N.R.A.S., 129, 51.
Eggen, O. J. 1962, R.O B., No. 51.
-. 1963, Ap.J., 138, 356.
——. 1964, A J., 69, 570
-_ 1966, R.O.B., No. 125.
Eggen, O. J , Lynden-Bell, D., and Sandage, A. R. 1962, Ap.J., 136, 748.
Eggen, O. J., and Sandage, A. R. 1964, Ap. J., 140, 130.
——. 1969, Ap.J. (in press).
Greene, T. F. 1968, A J., 73, S515.
Greenstein, J. L. 1968, Ap J., 152, 431.
Greenstein, J. L., and Keenan, P. C. 1964, Ap.J., 140, 673.
Greenstein, J. L., and Oinas, V. 1968, Ap J., 153 (Letters), L91.
Griffin, R. F. 1961, M.N.R.A S., 122, 181.
Griffin, R. F., and Redman, R.O. 1960, M N.R.A S., 120, 287.
Gyldenkerne, K. 1958, Pub. Copenhagen Obs , No. 175. 1964, ibid., No. 178.
Hall, D. S. 1967, A.J., 72, 301.
Hayes, D. 1967, unpublished dissertation, University of California, Los Angeles.
Hazelhurst, J. 1963, Observatory, 83, 128.
Helfer, H. L., and Wallerstein, G. 1964, Ap.J. Suppl., 9, 81.
-. 1968, ibid., 16, 1.
Helfer, H. L., Wallerstein, G., and Greenstein, J. L. 1959, Ap.J , 129, 700.
Hoffleit, D. 1964, Catalogue of Bright Stars (3d ed.; New Haven: Yale University Observatory).
Hoyle, F., and Fowler, W. A. 1960, Ap.J , 132, 565.
Iriarte, B. 1967, Bol.Obs. Tonantzintla y Tacubaya, 4, 79.
Jenkins, L. F. 1952, General Catalogue of Trigonometric Stellar Parallaxes (New Haven: Yale University Observatory).
Johnson, H. L. 1953, A p. J., 117, 357.
——. 1966, Ann Rev. Astron and Ap., 4 (Palo Alto, Calif.; Annual Reviews, Inc ).
Johnson, H. L , and Knuckles, C. F. 1955, Ap. J., 122, 209.
Johnson, H. L., MacArthur, J. W., and Mitchell, R. I. 1968, Ap J, 152, 465.
Johnson, H. L., and Mitchell, R. I. 1958, A p. J., 126, 134.
Johnson, H. L., Mitchell, R. I., Iriarte, B , and Wisniewski, W. Z. 1966, Comm. Lunar and Planetary Lab., 4, 99.
Johnson, H. L., and Morgan, W. W. 1953, A p. J., 177, 313.
Johnson, H. L., and Sandage, A. R. 1955, A p.J., 121, 616.
Keenan, P. C. 1963, in Stars and Stellar Systems, Vol. 3, ed. K. Aa. Strand (Chicago: University of Chicago Press), p. 530.
Kraft, R. P., Kuhi, L. V., and Kuhi, P. S. 1968, A.J., 73, 221.
Kron, G. E. 1968 (private communication)
McClure, R. D., and van den Bergh, S. 1968, A.J., 73, 313.
McNamara, D. H. 1967, Pub. A.S.P., 79, 434.
Mannery, E., Wallerstein, G., and Welch, G. A. 1968, A J., 73, 548.
Mendoza V., E. E. 1963, Bol.Obs. Tonantzintla y Tacubaya, 3, 137.
-_ 1967, ibid., 4, 149.
Miner, E. D. 1966, Ap. J., 144, 1101.
Minnaert, M., Mulders, G.'F. W., and Houtgast, J. 1940, Photometric Atlas of the Solar Spectrum $3332 \AA$ to 8771 Å (Amsterdam: Schnabel).
Moore, C. E , Minnaert, M., and Houtgast, J. 1966, N B.S. Monog., No. 61 (Washington: U.S. Government Printing Office).
Morgan, W W. 1956, Pub. A.S.P., 68, 509.
Morgan, W. W., and Hiltner, W. A. 1965, Ap.J., 141, 177.
Murray, C. A. 1967 (private communication).
Murray, C. A., Corben, P. M., and Allchorn, M. R. 1965, R.O B., No. 91.
Oke, J. B. 1964, A p. J., 140, 689.
Pagel, B. E. J. 1962, R.O B , No. 55.
—. 1963, Observatory, 83, 133.
——. 1965, R.O.B., No. 104.

Pagel, B. E. J. 1966, in Abundance Determinations in Stellar Spectra IAU Symposium No. 26, ed. H. Hubenet (London: Academic Press), p. 359.
Peat, D. W. 1964, M.N.R.A.S., 128, 475.
Peat, D. W., and Pemberton, A. C. 1968, M.N.R.A.S., 140, 21.
Pesch, P. 1967, Ap. J., 148, 781.
Pettit, E., and Nicholson, S. B. 1928, Ap. J., 68, 279.
Price, M. J. 1966a, M.N.R.A.S., 134, 135.
-_. 1966b, ibid., p. 171.
Roman, N. G. 1952, Ap.J., 116, 122.
-. 1955, Ap. J. Suppl., 2, 195.
. 1967, in Stars andStellar Systems, Vol. 5, ed. A. Blaauw and M. Schmidt (Chicago: University of Chicago Press), p. 345.
Sandage, A. R. 1962, Ap. J., 135, 333.
-. 1968 (private communication).
Sargent, W. L. W. 1968, A p. J., 152, 885.
Scarfe, C. D. 1966, M.N.R.A.S., 133, 99.
Schmidt, K.-H., and van den Bergh, S. 1969, A str. Nach., $291,115$.
Schmidt, M. 1963, Ap.J., 137, 758.
Schwarzschild, M., Schwarzschild, B., Searle, L., and Meltzer, A. 1957, Ap. J., 125, 123.
Searle, L., and Sargent, W. 1964, Ap. J., 139, 793.
Sharpless, S. 1956, Ap.J., 124, 342.
Spinrad, H. 1966, Pub. A.S.P., 78, 367.
1967, oral communication to IAU Commissions 28 and 45, Prague.
Spinrad, H., and Taylor, B. J. 1967, A.J., 72, 320.
Spité, F. 1966, Ann. d'ap., 29, 601.
Strömgren, B. 1958, Ric. astr. Spec. astr. Vatic., 5, 257.
——. 1964, Ap. Norvegica, 9, 333.
Strömgren, B., and Perry, C. 1962, Photoelectric uvby Photometry for 1217 Stars Brighter than $V=6 \mathrm{~m} 5$, Mostly of Spectral Classes $A, F$, and $G$ (Princeton, N.J.: Institute for Advanced Study).
Sturch, C. 1969, A.J., 74, 82.
Taylor, B. J. 1967, Pub. A.S.P., 79, 441.
1968, oral communication at the Conference on Low Luminosity Stars, Charlottesville.
Upgren, A. R. 1962, A.J., 67, 37.
van den Bergh, S. 1963, A.J., 68, 413.
van den Bergh, S., and Sackmann, I. J. 1965, A.J., 70, 353.
Wallerstein, G. 1962, Ap.J. Suppl., 6, 407.
Wallerstein, G., and Conti, P. 1964, Ap. J., 140, 858.
Wallerstein, G., Greenstein, J. L., Parker, R., Helfer, H. L., and Aller, L. H. 1963, Ap. J., 137, 280.
Wampler, E. J. 1966, Ap. J., 137, 280.
Weller, W., Crull, H., and Hynek, J. A. 1968, A p.J., 153, 349.
Whiteoak, J. B. 1967, Ap. J., 150, 521.
Whitford, A. E. 1958, A J., 63, 201.
Wildey, R. L., Burbidge, E. M., Sandage, A. R., and Burbidge, G. R. 1962, Ap.J., 135, 94.
Williams, E. G. 1936, A p.J., 83, 279.
Wilson, O. C. 1967 (private communication).
Wilson, O. C., and Bappu, V. 1957, Ap. J., 125, 661.
Wing, R. 1967, unpublished doctoral dissertation, University of California, Berkeley.
Wolff, S. C. 1967, Ap. J. Suppl., 15, No. 134.
Yoss, K. M. 1961, Ap.J., 134, 809.


[^0]:    ${ }^{2}$ We are aware of the criticism recently directed at the 1962 paper (Weller, Crull, and Hynek 1968). However, our stars are bright and therefore reasonably close to the Sun; moreover, the space motions given for those of our stars found in both papers are in excellent agreement. We feel that the space motions quoted here are generally trustworthy.

[^1]:    ${ }^{3}$ We are indebted to Dr. A. Klemola for pointing out the existence of this investigation to us.

[^2]:    ${ }^{5}$ The uniformity referred to here may be either spatial or temporal or both.

