Short-Period Variability of B, A, and F Stars. II. Photometry of New Delta Scuti Stars*

Michel Breger
Astronomy Department, University of California, Berkeley, California

(Received 23 December 1968)

Abstract

Photoelectric data for 15 more short-period variables, as well as one suspected variable discovered during a recent variability survey amongst bright field stars, are given. The periods range from 0.042 to 0.16 days and some amplitudes are as small as 0.01 mag in visual light.

VERY little is known about the variability of stars in the instability strip below the RR Lyrae region in the $\mathrm{H}-\mathrm{R}$ diagram. Two types of pulsating variables are generally recognized in that region: Dwarf Cepheids and δ Scuti stars (Eggen 1956). Apart from the four δ Scuti stars listed by Eggen, several more have recently been found by Danziger and Dickens (1967), Millis (1967), and Eggen (1968). Periods for δ Scuti stars are less than 0.2 days, and amplitudes are typically several hundredths of a magnitude. A program to investigate the variability of about 300 field and cluster stars, mainly of spectral-type A and F, was started in 1966. In this paper, data for the short-period variables detected in the field survey are presented. The discussion of the properties of these and other known short-period variables will be made in a later paper in this series.

A number of telescopes were used: The 24 -inch reflector at the Lick Observatory, the Nos. 1 and 2 36 -inch reflectors, as well as the No. 416 -inch telescope at the Kitt Peak National Observatory. Most observations were made only in the instrumental V-magnitude system with a few stars also being measured in the $U B V$ and $u v b y$ systems. Only one color was usually measured in order to obtain higher accuracy. Furthermore, since the amplitude of variation for these variables is very small, it was thought that little was to be gained by transforming the observations to the $U B V$ system, since the errors of transformation may be as large as the amplitude. At least two (nonvariable) comparison stars were used for each variable and each observation consisted of a mean between six and ten 10 -second integrations. At the Lick Observatory, a radium source was used to determine sensitivity changes during the night. Extinctions were derived for every night. The typical mean absolute error per single observation in the V was $0.001-0.002$ mag.

The field stars discovered to be variable are listed in Table I, where the columns are self explanatory. Because of the presence of beat periods in many δ Scuti stars, the periods listed in Table I are estimated to be correct only within $\pm 8 \%$.

[^0]The individual observations of 15 of the 16 shortperiod variables are listed in Table II and shown plotted in Figs. 1-7. The variability of the 16th star,

Table I. Short-period variables found during the field-star survey, presumably of the δ Scuti type.

HR	Name	Spectrum	Period	Mean amplitude
114	28 And	Am	0.069	0.035
432	97 Psc	A4 III	0.16	0.02
515		A7n	0.16	0.015
729	26 Ari	A4n	0.06	0.03
1170		F0	0.091	0.08
1223		A5	0.046	0.01
5017	20 CVn	F0 II-IIIp	$(.14)$	0.03
5960		F0 IV	0.069	0.02
6391	63 Her	A3	0.077	0.025
7222		F2	0.096	0.04
7331	28 Aql	F0	0.1574	0.05
7501		F0	0.082	0.01
7563		F0 III	0.100	0.05
8006		F0	0.06	0.03
8494	ϵ Cep	F0 IV	0.042	0.02
8584		A5	0.056	0.02
8666^{*}		dA8	$(.052)$	$(.01)$

* Suspected variable.

Notes to Individual Stars

$H R$ 114: This star was also found to be variable by Nishimura (private communication). HR 114 is the first metallic-line A star found to have a δ Scuti-like variability. The radial velocity varies by $5 \mathrm{~km} / \mathrm{sec}$ with the same period. Although metallic-line A stars usually have large negative Δm_{1} values [a measure of metal-line strengths as defined by Strömgren (1963)], for HR $114 \Delta m_{1}=+.013$. It has recently been suggested that all Am stars are spectron 114 show no velocity variations apart from the radial-velocity data for HR 114 show no velocity variations apart from the small pulsational variation.

R 42 : Bluest δ Scuti star known so far [A4 III, $(b-y)=0.090$].
HR 515 : Wilson and Joy (1950) found an indication for variable velocity (-14 to $+19 \mathrm{~km} / \mathrm{sec}$), but their measurements are not conclusive. The velocity variation could be caused by pulsation and/or the line differences in the measured spectra.
oby Noby photometer attached to the No. 2 36-inch reflector at the Kitt Peak National Observatory. The mean variations in $(b-y)$ and c_{1} indices (the c_{1} 0.020 and 0.047 mag , respectively, while the m_{1} index showed no significant variation. It is interesting to transform these intrinsic variations to M_{v} using the Strömgren calibration (Strömgren 1963). The ($b-y$) and c_{1} indices indicate a variation of 0.076 mag in the absolute magnitude M_{v}. This compares very favorably with the measured mean visual amplitude of 0.08 mag. This indicates that the Strömgren calibration of color and Balmer jump, made by comparing different stars, is applicable even to the small pulsational changes in one star.
$H R$ 1223: The light variation on J.D. 2439782 is shown in Fig. 1. Measurements on J.D. 2439787 and 2439789 indicate strong semiregular variations of between 0.01 and 0.02 mag . The period derived from the first night is still clearly evident, but secondary bumps are also visible.
$H R 5017$: After the star was found to be variable, no further observations were made when information was received that Dickens was also bserving this star.

R 7 . Aso found to be variable by Millis (1967)
$H R$ 7501: This star has a very small variable amplitude of about 0.01 mag, which at times approaches the limits of detectability.
HR 8494: Light curve was published previously (Breger 1966). Danziger and Dickens (1967) listed this star as "? Var.," while Millis (1967) found conclusive variations. The velocity curve is shown in Fig. 8.
$H R 8584$: Spectroscopic binary, period 2.3 days.

FIg. 1. Light variations of $H R$ 432, HR 515, and HR 1223: All light curves are drawn free-hand.
ϵ Cep ($=\mathrm{HR}$ 8494), has already been announced (Breger 1966). The error bars shown in the figures refer to the mean absolute error per single observation as derived from the comparison stars. Since several
different telescopes were used, many observations are listed only as ΔV (relative to an unknown V magnitude). However, when a star was observed on more than one night, the ΔV magnitudes always refer to

Fig. 2. Light variations of HR 114, HR 5017, HR 7222, HR 8006, and HR 8584.

Fig. 3. Light variations of HR 729 and HR 5960.
the same zero point (except for HR 7563). For most of these stars, $U B V$ and/or $u v b y$ measurements were obtained separately (Breger 1968). The observations of the suspected variable, HR 8666, on two nights are shown plotted in Fig. 4.

Abt (1965) has investigated the radial velocity of many A stars for variability to detect possible binary nature. The velocity variations caused by pulsation are typically $5 \mathrm{~km} / \mathrm{sec}$ and are generally too small to be detected by Abt's binary search because the radial-

Fig. 4. Light variations of HR 1170 and the suspected variable HR 8666 using a period of 0.052 days: The light variations of HR 1170 are in the narrow-band $u v b y$ system and the variations of the indices $(b-y), m_{1}, c_{1}$ are also shown.

Fig. 5. Light variations of HR 7331.

Fig. 6. Light variations of HR 7501 and HR 6391: The two comparison stars used for HR 7501 are also shown.

Fig. 7. Light variations of HR 7563.

Table II. Photometry of the new variables.

Table II (continued)

Table II (continued)

Table II (continued)

$\begin{gathered} \text { HR } 7331=28 \mathrm{Aql} \\ \text { J.D. } \odot \end{gathered}$		$\begin{gathered} \text { Comparison } \\ \text { stars: } \\ \text { HR 7332, } 7280 \\ \Delta V \end{gathered}$	HR 73	$\begin{aligned} & 331=28 \mathrm{Aql} \\ & \text { J.D. } \odot \end{aligned}$	$\begin{gathered} \text { Comparison } \\ \text { stars: } \\ \text { HR 7332, } 7280 \\ \Delta V \end{gathered}$	$\begin{gathered} \text { HR } 7331=28 \mathrm{Aql} \\ \text { J.D. } \odot \end{gathered}$	$\begin{gathered} \text { Comparison } \\ \text { stars: } \\ \text { HR 7332, } 7280 \\ \Delta V \end{gathered}$
243	9358.8129	$-.018$	243	9369.7373	-. 024	2439373.6822	-. 006
	. 8164	-. 011		. 7456	-. 025	. 6850	-. 005
	. 8205	-. 009		. 7477	-. 027	. 6878	$-.001$
	. 8247	$-.002$. 7522	-. 026	. 6919	$+.003$
	. 8295	$+.002$. 7574	-. 018	. 6934	$+.007$
	. 8337	$+.008$. 7581	-. 020	. 7003	$+.011$
	. 8379	$+.012$. 7595	-. 010	. 7037	$+.014$
	. 8420	$+.015$. 7644	$-.007$. 7072	$+.016$
	. 8462	+. 018		. 7664	. 000	. 7174	$+.010$
	. 8545	$+.023$. 7692	$+.006$. 7308	$+.010$
	. 8601	$+.025$. 7706	$+.005$. 7357	$+.013$
				. 7783	$+.010$. 7551	$-.007$
	9366.7250	$-.009$. 7803	$+.006$. 7593	-. 007
243	r .7298	-. 011		. 7817	$+.007$. 7801	-. 028
	. 7347	-. 019		. 7831	$+.009$. 7836	-. 028
	. 7368	-. 019		. 7859	$+.014$. 8037	-. 019
	. 7403	-. 018		. 7873	$+.014$		
	. 7416	-. 020		. 7887	+.011 +.012		Comparison
	. 7444	-. 024		. 7894	+.012		stars:
	. 7465	-. 024		.7921 .7942	+.017 +.017		HR 7502, 7505
	. 7493	-. 024		.7942 .7949	+.017 +.016	HR 7501	7533
	.7528 .7562	-. 023		. 7963	+.016 +.022	J.D. \odot	ΔV
	. 7597	-. 023		. 7970	+. 019	2439683.7910	-. 001
	. 7632	-. 022		. 7977	$+.019$. 7980	$+.001$
	. 7666	-. 019		. 7991	$+.020$. 8042	$+.002$
	. 7701	-. 017		. 8005	$+.027$. 8104	$+.003$
	. 7774	-. 016		. 8033	$+.021$. 8200	$+.008$
	. 7861	-. 014		. 8046	$+.030$. 8278	$+.013$
	. 7889	-. 012		. 8060	$+.026$. 8313	$+.010$
	. 7944	-. 006		. 8067	+. 029	. 8375	$+.005$
	. 7979	-. 002		. 8081	$+.025$. 8577	$-.010$
	. 8000	-. 002		. 8109	$+.029$. 8639	-. 008
	. 8035	-. 002		. 8130	$+.031$. 8708	-. 006
	. 8083	$+.003$. 8137	$+.027$. 8788	-. 003
	. 8118	+. 009		. 8144	+. 022	. 8913	$+.003$
	. 8146	$+.010$. 8151	$+.031$. 9014	$+.007$
	. 8180	$+.010$. 8164	$+.034$. 9091	+. 008
	. 8278	$+.014$. 8192	+. 022	. 9215	$+.002$
	. 8312	$+.015$. 8206	$+.014$. 9250	$+.000$
	. 8347	+. 018		. 8220	$+.016$. 9305	. 000
	. 8479	+. 012		. 8227	$+.016$. 9368	-. 004
	. 8521	$+.007$. 8241	$+.016$. 9431	$-.007$
	. 9024	$-.024$. 8262	+. 021	. 9493	-. 004
				. 8283	$+.015$. 9563	-. 010
243	9369.6789	$+.016$. 8296	+. 014	. 9618	-. 002
	. 6817	+. 014		. 8303	$+.021$. 9659	-. 006
	. 6831	+. 016		. 83317	+.019 +.013	. 9729	-. 005
	. 6845	$+.015$. 8345	+.013 +.013	. 9799	-. 0001
	. 6859	+. 011		. 8359	$+.013$. 9819	$+.005$
	. 6887	+. 002		. 8395	+.009 +.003	. 9902	$+.011$
	. 6901	$+.003$. 8491	$+.003$	2439740.658	
	. 6908	-.000		. 85512	-. 005	243 9740.658	+.002 +.001
	. 6956	-. 001		. 8526	-. 010	. 674	+. 003
	. 6977	-. 007		. 85333	-. 014	. 676	$+.006$
	. 6998	-. 009		. 85486	-. 015	. 679	$+.004$
	. 7026	-. 008		. 85888	-. 026	. 684	. 000
	. 7045	-. 012		. 8602	-. 027	. 687	$-.002$
	. 7067	-. 016		. 8616	-.026 -.025	. 694	-. 002
	. 7137	-. 021		. 8671	-. 037	. 708	+.002
	. 7192	-. 028		. 8692	-. 037	. 716	-. 001
	. 7206	-. 031				. 719	-. 003
	. 7220	-. 033	243	9373.6510	-. 006	. 726	-. 001
	. 7248	-. 032		. 6579	-. 017	. 729	-. 001
	. 7262	-. 035		. 6628	-. 016	. 738	-. 004
	. 7276	-. 033		. 6662	-. 013	. 741	-. 001
	. 7289	$-.033$. 6760	-. 007	. 750	$+.002$
	. 7303	$-.031$. 6794	-. 007	. 761	$+.007$
	. 7331	$-.027$. 6815	-. 007	. 768	$+.004$

Table II（continued）

Table II（continued）

$\begin{aligned} & \text { HR } 8006 \\ & \text { J.D. } \odot \end{aligned}$	$\begin{gathered} \text { Comparison } \\ \text { stars: } \\ \text { HR } 8054,8095 \\ \Delta V \end{gathered}$	$\begin{aligned} & \text { HR } 8006 \\ & \text { J.D. } \odot \end{aligned}$	$\begin{gathered} \text { Comparison } \\ \text { stars: } \\ \text { HR } 8054,8095 \\ \Delta V \end{gathered}$	$\begin{gathered} \text { HR } 8584 \\ \text { J.D. } \odot \end{gathered}$		$\begin{aligned} & \text { Comparison } \\ & \text { stars: } \\ & \text { HR } 8574,8641 \\ & \Delta V \end{aligned}$
2439376.7784	$+.018$	2439376.8409	$+.020$	243	9782.6694	$+.007$
． 7811	＋． 018	． 8436	$+.015$		． 6757	＋． 001
． 7839	$+.020$	． 8479	＋． 010		． 6813	－． 004
． 7877	$+.015$				． 6868	－． 009
． 7916	＋． 015				． 6910	－． 010
． 7936	$+.001$				． 6972	$-.007$
． 7943	$+.002$		stars：		． 7035	． 000
． 7971	$+.001$		HR 8574， 8641		． 7076	$+.003$
． 7978	$+.001$	$\text { J.D. } \odot$	（1）${ }^{\text {dV }}$		． 71111	＋．004
． 8006	.000 -.003				． 7146	$+.007$
． 8027	－． 003	2439782.6131	－． 001		． 7188	$+.005$
． 8048	－． 002	． 6194	－． 004		． 7229	$+.009$
． 8075	－． 003	． 6278	－． 008		． 7264	$+.007$
． 8152	－． 004	． 6326	－． 009		． 7299	－． 001
． 8179	－． 006	． 6368	－． 010		． 7333	$-.001$
． 8200	$-.001$	． 6403	－． 009		． 7368	－． 002
． 8221	$+.007$	． 6444	－． 007		． 7410	－． 006
． 8249	$+.011$	． 6479	－． 006		． 7444	－． 008
． 8277	$+.014$	． 6514	－． 002		． 7479	－． 008
． 8285	$+.010$	． 6563	－． 0001		． 7521	$-.006$
． 8325	＋． 019	． 6597	$+.005$		． 7563	＋． 002
． 8360	$+.014$	． 6632	$+.006$			

＊Plus a small undetermined constant．
velocity variations caused by orbital motion may be much larger．It is interesting to note that whereas Abt listed the velocity of the variable $\epsilon \operatorname{Cep}(=\mathrm{HR}$ 8494）

Fig．8．Mean velocity curve of HR 8494 using measurements by Abt（1965）on 13 August 1959：A period of 0.042 days derived from light variations is used．Each circle represents the mean of two observations，while the error bar corresponds to the mean probable error of each point．The solid curve is drawn free hand．
as constant，his radial－velocity measurements are of sufficient accuracy to define a velocity curve with an amplitude of $5 \mathrm{~km} / \mathrm{sec}$ once the period of light varia－ tions is applied．This is shown in Fig． 8.

REFERENCES

Abt，H．A．1961，Astrophys．J．Suppl．6， 37.
—．1965，ibid．11， 429.
Breger，M．1966，Astrophys．J．146， 958.
－－．1968，Astron．J．73， 84.
Danziger，I．J．，and Dickens，R．J．1967，Astrophys．J．149， 55.
Eggen，O．J．1956，Publ．Astron．Soc．Pacific 68， 238.
－．1968，Inform．Bull．Var．Stars 250.
Millis，R．J．1967，Ph．D．thesis，University of Wisconsin．
Strömgren，B．1963，Quart．J．Roy．Astron．Soc．4， 8.
Wilson，R．E．，and Joy，A．H．1950，Astrophys．J．111， 221.

[^0]: * Contribution of the Kitt Peak National Observatory, No. 414. The Kitt Peak National Observatory is operated by the Assocition of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

