EFFECTIVE TEMPERATURES OF THE CENTRAL STARS OF PLANETARY NEBULAE

EUGENE R. CAPRIOTTI AND WILLIAM S. KOVACH Perkins Observatory, Ohio State and Ohio Wesleyan Universities Received July 6, 1967

ABSTRACT

The effective temperatures of the central stars of thirty-five planetary nebulae are determined on the assumption that the central stars are non-gray and that there is complete absorption in the He⁺ Lyman continuum in each case The model atmospheres of Böhm and Deinzer that correspond to the Harman and Seaton sequences of stars with masses between 0.5 and 1 solar mass are assumed to be representative of the atmospheres of the central stars of planetary nebulae.

¹Upper and lower limits are set to the characteristic optical thickness at the Lyman limit in the H⁰ continuum for each object under consideration.

I. INTRODUCTION

On the assumption that there is complete absorption in the continuum of He⁺ for each of thirty-five planetary nebulae, Harmon and Seaton (1966) were able to determine in each case the temperature of the central star and that fraction of the radiation emitted by the central star in the H⁰ Lyman continuum that is converted to H⁰ line radiation in the nebula. The central stars were assumed to radiate like black bodies.

Capriotti (1967; hereinafter referred to as "Paper I") used the results of Harmon and Seaton in order to estimate an upper and lower limit to the optical thickness at the Lyman limit in the H^0 continuum for each of thirty-five planetary nebulae.

In the following sections, new estimates of the temperatures of the central stars of the thirty-five planetary nebulae are made using non-gray stellar atmospheres constructed by Böhm and Deinzer (1966). New estimates of the optical thicknesses in the H^0 continua are made using these new temperatures.

II. DETERMINATION OF THE CENTRAL STAR TEMPERATURES

The flux in the He⁺ Paschen-a line can be related to the photographic magnitude, m_{pg} , and the central star temperature and gravity by the equation

$$W(T_s,g) = 8.2 \frac{F(4686)}{h\nu(4686)} 10^{(0 \ 4m_{\rm pg}+4 \ 70)}, \tag{1}$$

where F(4686) is the energy flux at Earth in the He⁺ (4686) line. $W(T_{s,g})$ is a function of the stellar effective temperature and is given by

$$W(T_s,g) = \int_{4\nu_0}^{\infty} F_{\nu}(T_s,g) \frac{d\nu}{h\nu} / \int_0^{\infty} S_{pg} F_{\nu}(T_s,g) d\nu, \qquad (2)$$

where S_{pg} is the filter function for the photographic region. $F_{\nu}(T_s,g)$ is the emergent flux distribution for a star of effective temperature T_s and gravity g. By multiplying the numerator and denominator of equation (2) by

$$\int_{\nu_0}^{\infty} B_{\nu}(T_s) \frac{d\nu}{h\nu},$$

991

we can write

992

$$W(T_{s},g) = \left[\int_{\nu_{0}}^{\infty} B_{\nu}(T_{s}) \frac{d\nu}{h\nu} / \int_{0}^{\infty} S_{pg} F_{\nu}(T_{s},g) d\nu \right] \\ \times \left[\int_{4\nu_{0}}^{\infty} F_{\nu}(T_{s},g) \frac{d\nu}{h\nu} / \int_{\nu_{0}}^{\infty} B_{\nu}(T_{s}) \frac{d\nu}{h\nu} \right],$$
⁽³⁾

where $B_{\nu}(T_{s})$ is the Planck function.

Here we use the emergent flux distributions that were determined by Böhm and Deinzer (1966) for the Harmon-Seaton (1966) sequences of stars with masses between 0.5 and 1 solar mass. Therefore, the gravity g depends on the temperature T_s in a known way. The first ratio in equation (3) is nearly equal to

$$\int_{\nu_0}^{\infty} B_{\nu}(T_s) \frac{d\nu}{h\nu} / \int_0^{\infty} S_{\rm pg} B_{\nu}(T_s) d\nu$$

when the Böhm and Deinzer flux distributions are used. The latter ratio is denoted by $F(T_s)$ and tabulated by O'Dell (1963). Equations (1) and (3) were used to determine the effective temperatures of the central stars of the thirty-five objects under consideration.

In Table 1 the black-body temperatures listed in Paper I are given in the second column and the effective temperatures for the non-gray models are given in the third column. One can see that the temperature of the central star found from the non-gray model is larger in each case than the assigned black-body temperature. This is a result of the fact that a Böhm and Deinzer model of a particular effective temperature shows a depletion in the continuum beyond the He⁺ Lyman limit (due primarily to the absorption by Ne, He, N, C, and O ions in the stellar atmosphere) when compared to a black body with the same temperature.

III. CALCULATIONS OF THE OPTICAL THICKNESSES IN THE H^{0} LYMAN CONTINUA

The probability of absorption of direct radiation from the central star beyond the Lyman limit is defined to be

$$\bar{G}_{1} = \int_{\nu_{0}}^{\infty} \left\{ 1 - \exp\left[-\tau \left(\frac{\nu_{0}}{\nu} \right)^{3} \right] \right\} F_{\nu}(T_{s},g) \frac{d\nu}{\nu} \Big/ \int_{\nu_{0}}^{\infty} F_{\nu}(T_{s},g) \frac{d\nu}{\nu}.$$
(4)

This can be expressed in terms of G_1 , which is defined in Paper I as the probability of absorption of the central star radiation beyond the Lyman limit, assuming the central star radiates as a black body, by

$$\bar{G}_{1} = \left[\left[\int_{\nu_{0}}^{\infty} \left\{ 1 - \exp\left[-\tau \left(\frac{\nu_{0}}{\nu} \right)^{3} \right] \right\} F_{\nu}(T_{s}, g) \frac{d\nu}{\nu} \right] \int_{\nu_{0}}^{\infty} \left\{ 1 - \exp\left[-\tau \left(\frac{\nu_{0}}{\nu} \right)^{3} \right] \right\} B_{\nu}(T_{s}) \frac{d\nu}{\nu} \right]$$

$$\div \left[\int_{\nu_{0}}^{\infty} B_{\nu}(T_{s}) \frac{d\nu}{\nu} \right] \int_{\nu_{0}}^{\infty} F_{\nu}(T_{s}, g) \frac{d\nu}{\nu} G_{1} \right].$$
(5)

The determination of \bar{G}_1 then reduces to the evaluation of the above integrals since G_1 is already known for various combinations of T_s and τ . The integrals were evaluated numerically by fitting polynomials between successive absorption edges and then integrating the resulting polynomial. The integrals involving $B_r(T_s)$ were done in the same manner so as to avoid systematic errors. The value of the second ratio in equation (5),

No. 3, 1968

done by this method, differed by less than 1 per cent from the value found by considering the area under a plot of $B_{\nu}(T_s)$ versus ν . The values of \bar{G}_1 are given in Table 2 as a function of τ and T_s . The values of T_s were those used by Böhm and Deinzer. Since the largest value of T_s is 150000° K, we must extrapolate when a star's effective temperature appears greater than 150000° K.

TABLE 1

EFFECTIVE TEMPERATURES OF CENTRAL STARS

<u></u>	T _s (Paper I)	T _s	$ar{y}(T_s)$	$ar{G}_1(\min)$	$ar{G}_1(\max)$	$ au(\min)$	$\tau(\max)$
NGC 650-1	182000	195000?	0 251	0 49	0 61	17	30
IC 351	91000	108000	028	06	14	0 34	0 92
NGC 1501	72000	88000	0063	021	035	0 08	0 19
NGC 1535	74000	90000	0071	039	063	0 18	0 32
NGC 2022	91000	108000	028	034	055	0 17	0 30
NGC 2371-2	100000	118000	047	053	085	0 32	0 50
NGC 2392	68000	84000	004	008	013	< 0.05	0 065
NGC 3242	93000	109000	028	.065	.10	0 40	0 62
NGC 3587	105000	123000	056	.24	.34	2 0	34
NGC 6058	72000	88000	0063	016	.026	0 07	0.10
NGC 6309	95000	112000	036	054	087	0 25	0.50
NGC 6439	72000	88000	0063	045	.074	0 22	0 34
NGC 6445	182000	206000?	.282	.67	77	40	100
NGC 6543	66000	82000	0032	25	36	14	24
NGC 6572	61000	77000	0015	17	25	0 73	14
NGC 6751	76000	92000	0089	031	056	0 12	0 34
NGC 6772	112000	130000	074	26	37	2 5	4 2
NGC 6778	85000	100000	018	12	19	0 65	12
NGC 6781	91000	110000	032	13	21	0 73	1 3
NGC 6804	72000	88000	0071	014	023	0 07	0 09
BD 30°3639	46000	60000	00008	001	002	< 0.05	< 0.05
NGC 6818	195000	222000?	355	49	61	25	40
NGC 6826	69000	85000	0045	094	.14	0 44	0 69
NGC 6853	132000	148000	120	45	58	79	15 5
NGC 6881	69000	85000	0045	015	025	0 07	0 10
NGC 6891	56000	71500	0006	038	062	0 18	0 27
NGC 6894	98000	116000	043	20	30	15	25
NGC 6905	102000	120000	050	11	17	0 72	12
NGC 7008	98000	116000	045	057	092	0 33	0 55
NGC 7009	81000	98000	0063	056	.09	0 28	0 43
NGC 7026	98000	116000	043	20	29	1 5	25
NGC 7139	98000	116000	043	27	38	21	38
IC 5217	74000	90000	0074	07	11	0 36	0 50
NGC 7354	102000	120000	050	11	18	0 73	1 3
NGC 7662.	100000	118000	0 047	0 10	0 15	0 58	10

Following the arguments in Paper I, upper and lower limits can be placed on \bar{G}_1 and correspondingly on τ by the relations

$$\bar{G}_{1}(\min) = 1.22\bar{y}(T_{s})\frac{F(H\beta)}{F(4686)}$$
(6)

and

$$\bar{G}_1(\max) = \frac{\bar{G}_1(\min)}{0.4 + 0.6G_1(\min)},$$
(7)

where $\bar{y}(T_s)$ is here defined to be

$$\bar{y}(T_s) = \int_{4\nu_0}^{\infty} F_{\nu}(T_s, g) \frac{d\nu}{\nu} \Big/ \int_{\nu_0}^{\infty} F_{\nu}(T_s, g) \frac{d\nu}{\nu}, \tag{8}$$

© American Astronomical Society • Provided by the NASA Astrophysics Data System

A theoretical curve was constructed of $\tilde{y}(T_s)$ versus T_s . Thus for the temperatures determined in § I and the $F(H\beta)/F(4686)$ ratio given in Paper I, $\tilde{G}_1(\min)$ and $\tilde{G}_1(\max)$ can be determined. By interpolation in Table 2 or by interpolation in a \tilde{G}_1 versus T_s plot, with τ being the free parameter, $\tau(\min)$ and $\tau(\max)$ can be found. Table 1 lists the values of $\tilde{G}_1(\max)$, $\tilde{G}_1(\min)$, $\tau(\max)$, and $\tau(\min)$ for thirty-five planetary nebulae assuming, as in Paper I, that $T_s \simeq 1 \times 10^4$ ° K. It can be seen from Table 1 that only ten of the thirty-five nebulae have minimum optical depths in the H⁰ Lyman continua that are greater than unity.

As pointed out above, the models of central stars made by Böhm and Deinzer (1966) indicate ultraviolet deficits for frequencies beyond the He⁺ Lyman limit. The following analysis is carried out in order to provide insight into the effects of the ultraviolet deficits of a non-gray model when it is used to determine G_1 and τ .

TABLE	2
-------	---

		T _s (°K)									
τ	46250	63100	91200	10600	15000						
0.05 .	0 017	0 012	0 011	0 011	0 011						
0 10	035	029	025	022	022						
0 50	155	125	.102	084	.064						
1 00	276	221	185	151	.116						
2 50	499	419	350	296	231						
5 00	682	.601	506	.437	352						
7 50	766	689	595	526	432						
10 00	817	.750	659	590	490						
25 00	934	902	833	786	677						
50 00	977	965	927	902	.803						
75 00	991	984	960	.948	897						
100 00	0 996	0 992	978	971	966						
250 00 .			997	997	966						
500.00 .			0 998	0 999	988						
750 00 .					.994						
. 00 00					0.996						

 \bar{G}_1 , PROBABILITY OF ABSORPTION OF DIRECT RADIATION OF CENTRAL STAR BEYOND THE LYMAN LIMIT FOR A NON-GRAY SOURCE

From equations (3), (6), and (8) we obtain

$$\bar{G}_{1}(\min) = 1.22W(T_{s},g)\frac{F(H\beta)}{F(4686)} \left[\int_{0}^{\infty} S_{pg}B_{\nu}(T_{s}) d\nu \middle/ \int_{0}^{\infty} B_{\nu}(T_{s}) \frac{d\nu}{h\nu} \right] \dots \left[\int_{\nu_{0}}^{\infty} B_{\nu}(T_{s}) \frac{d\nu}{\nu} \middle/ \int_{\nu_{0}}^{\infty} F_{\nu}(T_{s},g) \frac{d\nu}{\nu} \right].$$
⁽⁹⁾

The product $1.22W(T_{s,g}) F(H\beta)/F(4686)$ is determined observationally for each object and is therefore independent of the choice of central star model. It turns out that

$$\int_{\nu_0}^{\infty} F_{\nu}(T_s,g) \frac{d\nu}{\nu} \Big/ \int_{\nu_0}^{\infty} B_{\nu}(T_s) \frac{d\nu}{\nu} \simeq 1$$

when the emergent flux distributions are those of Böhm and Deinzer. The ratio

$$\int_0^\infty S_{\rm pg} B_\nu(T_s) \, d\nu \bigg/ \int_{\nu_0}^\infty B_\nu(T_s) \frac{d\nu}{h\nu}$$

© American Astronomical Society • Provided by the NASA Astrophysics Data System

994

CENTRAL STARS OF PLANETARY NEBULAE No. 3, 1968

decreases as T_s increases. The value of the effective temperature determined from the non-gray model is greater than the value of the effective temperature determined from the black-body model in each case. Therefore, $\bar{G}_1(\min) < G_1(\min)$, where $G_1(\min)$ is the minimum value of the probability of absorption by the nebula of direct radiation of the central star beyond the Lyman limit for a black-body source.

The characteristic optical thickness increases with an increase in $G_1(\min)$ when the effective temperature is held constant, but it also increases with an increase in effective temperature when $G_1(\min)$ is held constant. Although $G_1(\min) < G_1(\min)$, $T_s(\operatorname{non-}$ gray) > T_s (black body). Therefore, it is difficult to predict whether the value of a characteristic optical thickness at the Lyman limit obtained from any non-gray model should be larger or smaller than the value obtained using the black-body model. It is fact, however, that nearly all the values of the characteristic optical thicknesses obtained from the Böhm and Deinzer models are smaller than the respective values obtained from the black-body models.

It should be noted that we did not strictly follow the Harmon and Seaton sequences. We don't allow for the fact that two central stars with two different surface gravities may have the same temperatures. Only the hottest stars considered here are affected and they don't fall on a Harmon and Seaton sequence anyway.

REFERENCES

Böhm, K. H., and Deinzer, W. 1966, Zs. f. Ap., 63, 177. Capriotti, E. R 1966, Ap. J., 147, 979 (Paper I) Harmon, R. J, and Seaton, M. J 1966, M.N.R.A.S, 132, 15. O'Dell, C R. 1963, Ap J, 138, 67.

Copyright 1968 The University of Chicago Printed in USA

1968ApJ...151..991C