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ABSTRACT 

We consider general-relativistic, spatially homogeneous, and isotropic & = 0 cosmological models 
with either pressure zero or pressure one-third the energy density. The equations for general linearized 
perturbations away from these models are explicitly integrated to obtain density fluctuations, rotational 
perturbations, and gravitational waves. The equations for light rays in the perturbed models are inte- 
grated. The models are used to estimate the anisotropy of the microwave radiation, assuming this radiation 
is cosmological It is estimated that density fluctuations now of order 10 per cent with characteristic 
lengths now of order 1000 Mpc would cause anisotropies of order 1 per cent in the observed microwave 
temperature due to the gravitational redshift and other general-relativistic effects. The p = 0 models 
are compared in detail with corresponding Newtonian models The perturbed Newtonian models do not 
contain gravitational waves, but the density perturbations and rotational perturbations are surprisingly 
similar. 

I. INTRODUCTION 

The actual Universe is quite lumpy, but the usual cosmological models assume a uni- 
form distribution of matter (McVittie 1956; Heckmann and Schiicking 1959; Bondi 
1960; this group of authors is referred to hereinafter as “Group 1”). One simple method 
for making somewhat more realistic cosmological models is to consider linear perturba- 
tions away from spatially homogeneous isotropic models (Lifshitz 1946; Bonnor 1957; 
Lifshitz and Khalatnikov 1963; Irvine 1965; Peebles 1965; Hawking 1966; Silk 1966; 
this group of authors is referred to hereinafter as “Group 2”). In this paper we shall inte- 
grate the equations governing perturbations of an expanding Friedmann model. The 
background model has the spatial curvature parameter, & = 0, and pressure, p, either 
zero or p/3, where p is the density. The corresponding values of the deceleration 
parameter (see Group 1), go, of the background model are for ÿ = 0 and +1 for 
p = p/3. After finding the perturbations we shall integrate the lightlike geodesics of the 
perturbed model. We shall then use our model to estimate the temperature variations 
in angle induced by the gravitational effects of the perturbations on the microwave 
background radiation. 

Because we assume Æ = 0, our calculations are less general than those given previous- 
ly (see Group 2). The advantage is that in our case all the perturbation equations can 
be explicitly integrated in terms of elementary functions. The value g0 = +J is con- 
sistent with current observations (Sandage 1965), although not demanded by them. 

The main mathematical result of this paper is the theorem of § lie. 

II. INTEGRATION OF THE PERTURBATION EQUATIONS 

a) Unperturbed Models 

We shall use the units c = StG = 1 throughout. Latin indices run from 1 to 4; Greek 
indices from 1 to 3; the signature of the metric gab is taken as —, —, —, +; and the 
Minkowski metric is written as 

Vab = vab = diagonal (—1, —1, —1, +1) . (D 

The signs of the Riemann and Ricci tensors are fixed by 

^a)b',c ^a;c;6 = ^i-Riabcj R^aib ^ Rab • (%) 

73 
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74 R. K. SACHS AND A. M. WOLFE Vol. 147 

The Einstein field equations for a perfect fluid with density p, pressure p, and average 
world velocity ua are 

Gab = — (p + p)uaUb + pàah (uaUa = 1) . 

The unperturbed Æ = 0 Friedmann-Tolman models are (Group 1) 

ds2 = a2(y{)[dr¡2 — dx2 — dy2 — dz2] = a2(r))r)abdxadxb. (4) 

Here we use spatial coordinates x* = (x^y^z) = jc and we choose rj = x*. Let H be 
the Hubble parameter and Hr the Hubble parameter now; then H = a'/a2, where the 
primes denote ^-derivatives. The function a{ri), the pressure p, the density p, the cosmo- 
logical proper time t, and the present value rçu of 17 are, for ÿ = 0 or p/3, respectively, 
given by (Group 1) 

¿=0, ’?Ä = 1> (5) 

P = tp, a(v)=~s-, p=—j-. í=,^rs~’ vr=i- (v 
JtlR *1 ¿tlR 

Thus we can regard t; as a dimensionless variable that replaces the proper time and has 
value unity now. The variables are also dimensionless. The coordinates in which 
equation (4) holds are fixed uniquely up to the rigid rotations and translations of 
Euclidean 3-space, as in equation (23) below. 

b) Field Equations for the Perturbations 

In considering perturbations we shall continue to assume a perfect fluid with /> = 0 or 
p = p/3, respectively. We emphasize that for p = p/3 this assumption is quite non- 
trivial because it involves neglecting transport processes. 

We shall find it convenient to write the perturbations in the form 

ds2 = a20?)foa& + hab]dxadxb. (7) 

Here a2(rj) is to have the same functional form (5) or (6) that it does in the unperturbed 
models; hab(xd) is the small perturbation. Moreover, without loss of generality we can 
insist that the coordinates x* are (Lagrangian-type) comoving coordinates and that drj 
is related to comoving proper time interval dt by the unperturbed equations (5) or (6), 
respectively. Two well-known (Ehlers 1961) formal characterizations of these coordi- 
nate conventions are 

Sad 
= —7-—<=>G\= 0, ^44=0. (8) 

a(v) 

We have chosen the coordinate conventions (8) because they have a direct meaning 
independent of any approximation scheme. In linear approximation we are then left 
with a restricted set of allowed “gauge transformations” 

[x]a = Xa — t;a(xb) . (9) 

Here £a is small in the same sense that hab is. A short calculation shows that in linear ap- 
proximation the conventions (8) restrict the allowed form of £a by either of the two 
equivalent conditions : 

h ( x^ ^ 
ua, b£b— ¡,m!> = 0 f4 = —7—, £" = (10) 

a(ri) 
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No. 1, 1967 PERTURBATIONS OF A COSMOLOGICAL MODEL 75 

where b and c* are arbitrary functions of the spatial coordinates xß alone. The functional 
change induced in hab by the transformations (9) and (10) is the Lie derivative of gab 
with respect to £a, namely, 

a1 

[ Ä ]m/3 = hpß -|- ~1~ cßtfi -}- 2 £ b rj^ß ; 
0 (ii) 

lh]vA— ~ + K* î [ ^ ] 44 == hu — 0 . 
a 

In equation (11), and throughout this paper, all indices on hab, c», and other small quantities 
are raised and lowered with the Minkowski metric rjab, vabl thus hab = r¡ac7]hdhCd,c^ = 
ViJLßCß = —ölißCß, etc. The conformal tensor, fluid shear tensor, and fluid vorticity tensor 
are gauge-invariant because their unperturbed values vanish (Hawking 1966; Sachs 
1964). 

We must now work out the Einstein tensor of the perturbed metric. One can proceed 
by force, computing the contravariant metric tensor, Christoffel symbols, Riemann 
tensor, and Einstein tensor of equation (7) while systematically throwing away all terms 
quadratic or higher in hab- A much faster, though conceptually more complicated, tech- 
nique is to consider first the conformal metric ds2 = (rça& + habjdoPdoi* and then use 
standard conformal methods (Jordan, Ehlers, and Kundt 1960). In any case, we find up 
to first order 

Gai — 0G
ab + bGab, (12) 

with the unperturbed 0G
ab given by 

0G
ab= -F(7i)Ô%8*b-G(r))Ôab, 

4a'2 2a' 2a' a '2 

a* 

The reader should note that we have defined 8Gab as the first-order correction to the 
mixed form Gab of the Einstein tensor and not, for example, as the correction to rjabGbC- 
One gets for 8Gab 

5G\ = ^+F(r,)S\h^-^(h\^+ W°,b - AV ) + ^( 2 - h') 5V <i3> 
^ a a a 

Here all indices on the right are, as meñtioned above, raised and lowered and with 
rjab, h = = r}ahhab = v^hßß, and xa& is the familiar (Bergmann 1942) expression: 

Xab = (hab - ¿(5%)’% + h’ab + hcd, Cd8ab - hbd'ad-hac,bc. U4) 

Because of equations (3) and (8) our linearized field equations are 

8G\ = - bp, bG\ = 0, bG»ß = b^ßbp , (15) 

where bp = Q ox bp — bp/3 for p — Q or p/3, respectively, and bGab is given by equation 
(13). 

c) Solutions for the Perturbations 

It turns out that when we assume suitable regularity conditions on h^ and h^ß we can 
find the general solution of equation (15). The method is to take first spatial Fourier 
transforms of h^ and h^ß: 

h^ = , 
U6) 

hßß == fd*k1)^(k,rj)ezk-x . 

Then one solves the field equations (15) and transforms back to position space. The 
regularityconditions we shall use are: (i) ^4(^17) and ^^ßi^Tj) are generalized functions 
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76 R. K. SACHS AND A. M. WOLFE Vol. 147 

(Lighthill 1958) that coincide with continuous ordinary functions near k = 0 ; (ii) the 
quantities fy^ßk^k13, fy^ßk13, I)%, and shall admit representations 

'bvßkW = ki{k,ri), = tfguikrf) , 

= kij(k>v), hßik» = -ik2m(k,r¡), (17) 

k2 = k*k = ~kßkß . 

Here/, gß,j, and m are to be generalized functions that coincide (Lighthill 1958) with 
continuous ordinary functions in a neighborhood of Ä = 0. We call equations (17) 
“moment conditions,,; they are rather weak conditions on h^x^rj) and hllß{x)ri)} Our 
solutions will, of course, contain some arbitrary functions of three variables, which are 
determined by initial conditions on the gravitational waves, density perturbations, and 
other perturbations that make up the most general perturbations. For ÿ = 0 we need 
(i) two arbitrary “scalar”2 functions A and B of xß alone, which correspond to potentials 
for density perturbations; (ii) a “vector” function CM of xß alone, restricted by the 
transversality condition 

0,M = 0 (is) 

which will presently be related to the perturbed rotation tensor; and (iii) an arbitrary 
transverse-transverse trace-free “tensor” solution Diiß{xa,ri) of the flat-space d’Alem- 
bert equation, e.g., 

Drf-0 = 0, Z>V = 0, (^_v2) ■D'‘|S=0’ (19) 

V2 = 
a2 a2 a2 

ax2 ay2 + as2' 
(20) 

Giving Dfiß is equivalent to giving four functions of x* alone. For the case p = p/3,ôp = 
5p/3, we need a vector and a tensor Dßß as above and also a scalar solution 
E(x^v) of the flat-space density-wave equation for sound with speed l/\/3, namely 

(3Æ-v!)£-°- 

Since the calculations are rather long-winded while the results are simple, we shall 
state the results in the form of a theorem: 

Solutions of the perturbed field equations (25) are 

i) ¿ = 0, = 0 , 

A^ß 

^4 = - 2V2C„/'V, Sp = 
H2 /6^4 35 

V T?9 W’ 
For example, in one dimension if 

then \{k)/k is finite at Æ = 0 when 

\{k) — f f(x) eikxdx , 
J — ca 

/ œdx I Xf(x')dx' 
J — co J n 

(22) 

is finite, etc. The moment conditions are sufficient, but not necessary for our calculations They can al- 
ways be imposed by altering hob at locations outside the observable portion of the universe. 

2 “Scalar,” “vector,” and “tensor” here refer to the transformation properties under the transforma- 
tions (23). 
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No 1, 1967 PERTURBATIONS OF A COSMOLOGICAL MODEL 

ii) p = p/3, 5p = áp/3 , 

77 

Moreover, every solution obeying the moment conditions has the form (22) up to a gauge 
transformation. Finally, the gauge and coordinate frame in which equations (7) and (22) 
hold are fixed uniquely up to the transformations 

x' = Ox + e; 007, = /; 0, e = const. (23) 

Proof: To see that equations (22) form a solution, we merely substitute into the field 
equations (15); the result is an indentity. Next, to see that every solution of equations 
(15) which obeys the moment conditions has the form (22) in some gauge frame we 
proceed as follows. We Fourier-transform h^, h^ß, öG^ß, and 5G44 as in equation 
(16) . We are then left with coupled ordinary differential equations with independent 
variable rj. We next split f)^ and into longitudinal and transverse parts, for ex- 
ample, 

^^(kjTj) = nfl + imkß, n^k* = 0 . (24) 

The moment conditions (17) guarantee the uniqueness of this splitting if we demand 
that m (0,7)) be finite. We similarly split and ö&^ß into traces, longitudinal-longi- 
tudinal parts, longitudinal-transverse parts, and trace-free transverse-transverse parts, 
again using the moment conditions. The system of ordinary differential equations then 
decouples into sets whose solutions are either powers of rj or spherical Bessel functions 
of low order. After solving, we transform back to position space. The result is the solu- 
tion (22) up to terms of the form (11). The extra terms can, of course, be eliminated by 
a gauge transformation. Thus we obtain solution (22). Since the details of the calcula- 
tion are both tedious and straightforward, we omit them; the reader who wishes to re- 
produce the calculation will find some auxiliary equations in Appendix I. Finally, we can 
ask what gauge transformations are still allowed after we have not only made the re- 
strictions (10) but also demanded that the solutions take the particular form (22). By 
assuming the moment conditions, we find from equations (11) and (22) that c^ß + Cß,^ 
= 0, b = 0. Consequently = €fißXß + where e^ß = —€ßfi = const., = const. 

These transformations are simply infinitesimal versions of the zero-order transforma- 
tions (23) and can therefore be included in the zero-order transformations (23) without 
loss of generality. The net effect is that no gauge transformations whatsoever are left 
and the only coordinate freedom is the zero-order group of motions (23). Q.E.D. 

d) Interpretations 

The gravitational waves with generating function D^ß have the expected two degrees 
of freedom, since the restrictions (20) are those for the rest-mass zero, spin-two repre- 
sentations of the Poincaré group (Ehlers 1965a). To see how gravitational waves are 
redshifted, we may consider a plane wave (say, for ÿ = 0) : 

^ 4l(A-JL±AlIl, „2^ = const., oD,ßk» = 0, „ZV = 0 ; (2S> 
7) 07)1 7) J 

suppose that ^77 ^>> 1. Then the phase <f> of the wave, as seen by an observer moving with 
the fluid, is effectively determined by the factor eikr}. Then dcfr/dt = ikdiq/dt = ikarl(7)). 
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78 R. K SACHS AND A. M. WOLFE Vol 147 

Thus a wave emitted at r¡E and received at r¡R is redshifted by the amount s + 1 = 
a(vR)/a(vE), just as an electromagnetic wave is (Group 1). For krj^>l the other time- 
varying factors in equation (25) are amplitude modulations. 

We mention without proof that calculating the contribution of plane waves (25) to 
the conformal tensor (Pirani 1965) shows three things: (i) the contribution is not Petrov 
type N as follows independently from Szerkes (1966); (ii) for large rj the dominant 
term in the contribution is Petrov type N ; (iii) in any case, comoving observers who 
measure the relative accelerations of neighboring test particles see the typical transverse 
pattern of gravitational plane waves. We shall henceforth ignore the gravitational waves 
and concentrate on the other terms in solution (22). In Appendix II we show for ÿ = 0 
that all the remaining terms in solution (22) have very direct analogues in the Newto- 
nian theory. To analyze the terms we introduce the rotation (vorticity) tensor o>a&, 
defined by Ehlers (1961) 

tàab = 2hCahdb(Uc',d j (26) 

where hab — — uaUb is the projection operator. In our case the zero-order contribu- 
tion to the vorticity tensor vanishes and the first-order contribution comes out = 0 
and 

== “tt V2 (Cßjp Cpyß) 
£L R 

Wfiß — r, rj V2 ( Cß,p Cpfß ) 
¿ti R 

Since Cp* = 0, equation (27) and the moment conditions show that the rotation tensor 
at any fixed rj and Cp uniquely determine each other. In this linear approximation the 
rotation tensor is not coupled to the density fluctuations ôp, as we see from solution (22). 

Finally we consider the terms responsible for the density fluctuations. When p = 8p — 
0, there are two kinds of terms, corresponding to A and B, in both of which ôp decreases ; 
8p/p decreases or increases, respectively. In the latter case the relative increase takes 
place on the same kind of time scale as the time scale of the background. There are two 
rather tenuous bits of evidence to suggest that the density fluctuations we actually ob- 
serve are of the relatively increasing type: (i) our own supercluster seems to be expand- 
ing less rapidly than the background; (ii) most galaxies seem to occur in clusters, 
whereas one might expect that in density fluctuations for which 8p/p decreases galaxies 
would be flung out individually (de Vaucouleurs 1959). It should be emphasized that the 
linear approximation we are using is quite accurate for calculating the field of a given 
lump but very inadequate for describing the internal dynamics of small lumps. For ex- 
ample, the internal dynamics of our Galaxy at present is governed by gravitational self- 
interactions and by anisotropic ^ressures^ that correspond to a suitable solution of the 
Boltzmann equation for stars; both of these effects are ignored in our treatment so that 
there is no use trying to analyze the present structure of our Galaxy with our model. 
On the other hand, suppose one has as given the essential parameters for our Galaxy— 
mass, size, angular momentum, etc.; then one can in the present model get the external 
field of the Galaxy accurate to about one part in 107 (GM/Rc2 ~ 10“7). The situation 
is wholly analogous to that in linearized theory (Fock 1959). At characteristic lengths 
L « 1Qt2/Hr « 108 It-yr we start to see lumps so loosely bound that the present ap- 
proximation may give a reasonably good picture even of the internal dynamics. The 
effect of small, tightly bound lumps on light rays has been analyzed often; two recent 
treatments are those of Bertotti (1966) and Gunn (1966). 

For p = p/3, 8p — 8p/3, and krj \/3 the density perturbations, governed by E 
in solution (22), are simply density waves with the characteristic sound velocity v2 = 

(P = 0), 
(27) 

(¿ = p/3). 
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No. I, 1967 PERTURBATIONS OF A COSMOLOGICAL MODEL 79 

dp/dp = This fact is most easily seen by looking at the Fourier transform of equations 
(22) (ii) ; the relevant term is 

hi — const, rj M 77 ( 
d ("exp i(k* x + k *7/ V3^ 

drj L T]2 !!• 
(28) 

where <5r is the i'ourier transform of bp. 
The factors in rj are merely slowly varying modulations when krj^>>\/3. Because the 

relation between rj and t is universal, the waves are redshifted in the same way that 
gravitational and electromagnetic waves are; similarly the charcteristic length of the 
density wave is L ^ a(rj)/k with k constant, and this length grows at a corresponding 
rate. For long wavelengths, kr}<£\/3, the dominant time dependence in equation (28) is 
carried by the factors I/776, etc. In that case, the density perturbation bp decreases, but 
the time scale for the decrease of bp is of the same order of magnitude as the time 
scale for the decrease of p. Specifically, in a given interval A77 we have A(bp)/ 
bpo^^Ap/p. This transition from a time dependence governed by e^kvlVs) for k large 
to a time dependence on the same time scale as that of the background for k small is 
sometimes called a Jeans instability (Bonnor 1957; Peebles 1965); “instability” is not 
the best word; gravitational and electromagnetic waves show the same kind of behavior. 

The above methods and results are similar to those of Lifshitz (Group 2). His back- 
ground models are less restricted, but our solutions are more explicit. 

e) Lightlike Geodesics and Redshifts 

The models considered here have the very convenient property that one can integrate 
the equations for lightlike geodesics in the perturbed metric. These lightlike geodesics 
are the key elements which relate formal equations like (22) to astronomical observa- 
tions. We shall now perform the integration. In this subsection we shall use only the 
form (7) of the metric and the “comoving” coordinate conventions (8) ; the more explicit 
form (22) of the metric is not needed in this subsection, nor is the special gauge in which 
(22) holds relevant. 

The geodesic equations can be integrated by force, but it is a little simpler to use 
conformal techniques. Suppose two metrics ds2 and ds2 are related by a conformal trans- 
formation 

ds2 = a2(xa)ds2. (29) 

Then the lightlike geodesics of ds2 coincide with those of ds2. However the preferred 
(affine) parameters do not coincide. More specifically, suppose we are given a lightlike 
geodesic xa(v) — where v and w are affine parameters for ds2 and ds2, respectively. 
Let ka — dxa/dv and ka ~ dxa/dw be the respective tangents. Then the relation between 
v and w can be written in any of the three forms 

ka = a2{xb)ka<=>ka — ka<=>dv = a2dw . (30) 

Let us now apply these results to the metric (7), (8) with a2 = a2(ri) and ds2 the physical 
metric. We shall first find ka, xa(w) and then use equation (30). For ds2 the geodesic 
equations are 

dw = 0<=>-^- 
dw 

dxh JL h ^^—1/ dxb dxc 

dw ah dw) * lhc'a dw dw * 
(31) 

To zero order we get for 0x
a(w) 

d2^ 

dw2 
,yt Q — 

0vV 0, (32) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



80 R. K. SACHS AND A. M. WOLFE Vol. 147 

Suppose a light signal is emitted at event (x^^e) and received at (0,77#), where we can 
set the spatial coordinate of the reception event to zero without essential loss of gen- 
erality. Then equation (32) has the solution 

oV = Vr — w, oXß = eßw, eßeß = —l,eß = const. (33) 

where eß = 77,sMeM. In equation (32) we have chosen a specific origin and normalization 
factor for w without essential loss of generality. The vector eß = e represents to zero 
order the spatial direction of the light signal as seen by a receiver moving with the fluid. 
The zero-order tangent 0k

a is given by 

0k
a = (e, — 1) . (34) 

In the following equations we shall denote by “0” or “(0)” a quantity evaluated at the 
unperturbed 0x

a(zi) or 0x
a(w) ; for example, 

( ^a/3,y £^) (o) 6ß (35) 

Then the first-order correction ixa to xa(iv) is, according 

d2ixa 

dw2 ]aC [ ( 2 hdb, c hbc,d) ok** ] . (36) 

Since the right-hand side of equation (36) is explicitly known when hab is known, equa- 
tion (36) can be integrated directly. In the next section we shall need only dir¡/dw: 

div 
dw 

(37) 

where all the quantities in the integral are evaluated at the unperturbed 0x
a(y). 

In equation (37) we have set an integration constant to zero without loss of gener- 
ality. Equation (37) can be used to calculate redshifts. Let z = AX/X as usual. Then 
(Kristian and Sachs 1966; Schrödinger 1959) for emitter and receiver moving with the 
fluid we have 

2+1 

(kaU ) a yw—VR VE 

( k Ma )iy=0 d{'r}E)(:kaÜa)w=0 
(38) 

In equation (38) we have set üa = aua <=>üa = crlua. From expressions (38), (7), (8), and 
(37) we get for the redshift correct up through first-order terms 

2+1 
a(v r) 
a(yE) i>-*/ 

VE / d htf 
\~d~y~ 

-2 (39) 

As a check, we note that, since s is a directly observable quantity, equation (39) must 
be invariant under the gauge transformations (9) and (10). In fact a direct calculation 
shows that a transformation (9) and (10) leaves the right-hand side of (39) invariant. 
(Note that ve and tjr change numerically under a gauge transformation for which b 0, 
and that by gauge invariance we here mean numerical, not functional, invariance.) 

III. ANGULAR VARIATIONS IN THE MICROWAVE RADIATION 

We shall now illustrate how our results are related to observations by an example 
which has considerable intrinsic interest. We wish to calculate angular variations in the 
microwave radiation (Dicke, Peebles, Roll, and Wilkinson 1965; Peebles 1965) caused 
by the following mechanism (a) at present there are fluctuations 8p in the mass density; 
(b) these fluctuations contribute to the gravitational field as in equation (22) ; (c) the 
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No. 1, 1967 PERTURBATIONS OF A COSMOLOGICAL MODEL 81 

field causes changes in the redshift as in equation (39) ; (d) if the microwave radiation 
is cosmological, it shows a corresponding variation of temperature with angle. 

The model we shall use is the following highly idealized one: (i) we take the present 
value of H to be 10“10 year-1; (ii) we ignore density variations on scales less than 109 

It-yr and assume that at present (tjä = 1), for some scale L « 109-1010 It-yr, there are 
density variations of order bp/p ^ 10 per cent; (ni) we assume that the appropriate 
background model is that with ^ = 0, with the microwave radiation giving a negligible 
contribution to p; (iv) we assume that only density perturbations of the relatively in- 
creasing type are relevant; (v) we assume that at some < | in the gauge frame of 
equations (22) the microwave radiation as measured by observers moving with the ÿ = 0 
gas was isothermal with temperature Te independent of position xa. We suppose that 
since t)e no significant Thomson scattering of the microwave background has taken 

Fig 1 —Space-time diagram for the microwave radiation in the unique gauge frame (22). The lump 
boundaries have vertical world lines when T = 0 in (22) (for dust) because then bp = 8p(xß)f(7j) in our 
comoving frame. This picture in comoving coordinates does not accurately represent actual distances, 
but to zero order, lightlike lines are at 45°. 

place (see Figs. 1 and 2). The actual value that we will use is r¡E ~ tin8 value cor- 
responds to an emission temperature Te oí order 3000° K, since in the background 
models 

Tb/Te 
aivs) =Ve2 

diva) Vr2 
10-3; 

however, any value of tje <% would give rather similar results. 
Most of the assumptions stated above may be a little on the conservative side. Thus 

the estimate at which we shall arrive is intended really as a lower limit on the radiation 
anisotropy. In particular, the assumption (v) of intrinsic uniformity is very question- 
able. Any intrinsic variations in emission temperature could easily dominate the effects 
we are analyzing here. In fact, the effects we shall consider are present for any extended 
source which is of order 109-1010 It-yr away; but for, say, galactic groups the effects are 
swamped by intrinsic variations of the sources. Moreover, the reader should note that 
assumption (v) is not gauge-invariant under the transformations (9)-(ll). Assumption 
(v) becomes meaningful only after we specialize to the (unique) gauge frame in which 
equations (22) hold (see Fig. 3). 

In our model the temperature observed at any one angle, specified by e**, is inversely 
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82 R. K. SACHS AND A M. WOLFE Vol. 147 

proportional to 2 + 1, where z = AX/X is the redshift between tje and = 1 at that 
angle. This result is proved as follows. In the geometric optics approximation (Kristian 
and Sachs 1966; Zipoy 1966) we can describe the radiation by the scalar general-rela- 
tivistic photon-distribution function F^^p0) ; here pa, the photon momentum, is subject 
to the constraint papbgab = 0. Since there is no Thomson scattering (or absorption), F 
obeys the general-relativistic Liouville equation (Lindquist 1965 ; Ehlers 19656). Imagine 
some emission event E, and let Va be that world velocity at the reception event (0,1) 
obtained by parallel transport of the fluid world velocity from E to (0,1) along the light- 
like geodesic joining these points. Liouville’s theorem implies that an observer at (0,1) 
moving with world velocity Va sees the emission temperature 7^ in the direction of E. 

Fig. 2.—Zero-order diagram which schematically represents actual distances more accurately than 
Fig. 1. The cones are light cones. 

Fig. 3.—Assumption (v) is not invariant under the gauge transformations (11), because^ T in gen- 
eral varies along the hypersurface [rj] = const, and the Thomson-scattering cutoff is determined by tje 
rather than [77] (denoted by rj in figure). 
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The transformation from an observer at (0,1) with world velocity Va to an observer 
at the same event moving with the fluid velocity is the same as in special relativity. 
Therefore 

(40) 

as was to be shown. Note that the proof does not depend on any approximations; equa- 
tion (40) holds exactly. 

From expressions (40) and (39) we have, to first order, 

where 
STr 

Tr 

1 
2 

dhtf 
d r¡ 

e>eß-2?p± 
dr] 

(41) 

(42) 

According to assumptions (iii) and (iv) above we can evaluate equation (42) using 
= 0 in solution (22) and setting A = = D^ß = 0. Then 

= jq [ Rr]R (B^e*1) e^eA-Br — ], (43) 

where R denotes the reception event (0,1) and E the emission event [e(r)R — tje), ue]. 
We shall now analyze each term in equation (43) separately. We shall give some intui- 

tive interpretations; the reader is warned that our interpretations are valid only when 
we consider the redshifts due to density fluctuations of the relatively increasing kind. 
If A in (22) is non-zero, the equation corresponding to (43) is more complicated and 
our heuristic discussion below is not valid. 

The angular dependence of the first term, for a coordinate system here and now 
whose s-axis is aligned with (vB)r, is simply 

STr 

Tr 
( const. ) cos 6 , (44) 

where d is the usual polar angle. Therefore this first term is essentially a Doppler shift 
induced by the fact that our fluid velocity here and now does not coincide with that world 
velocity which would make the received temperature as isotropic as possible. The inter- 
pretation of this term as essentially a Doppler shift can also be seen from the Newtonian 
models of Appendix II. 

The second term in equation (43) is essentially a similar Doppler-shift correction for 
the world velocity of the source; if rjE — -¿q this second term is normally small. Finally 
the terms 

(4S) 
J- R 

are rather similar to a standard gravitational redshift since B in equations (22) is rather 
similar to a Newtonian potential. Note that we should consider the source of the “po- 
tential” B to be the fluctuation bp at the present time ^ = 1, not at the emission time 
or intermediate times. The time dependence of ôp and hab has already been taken into 
account. We emphasize again that in a generic gravitational field one cannot distinguish 
gravitational redshifts from Doppler shifts by any standard recipe; thus our division 
of equation (43) into three parts has only a heuristic significance. 

To estimate the order of magnitude of the most interesting term (eq. [45]), imagine 
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that the present density perturbations 8p are sinusoidal with some characteristic ampli- 
tude 8op and characteristic scale L: 

o(vr) 2 _ 8 p = 8op exk'x¡ I k 

then from solution (22) 
HrV 

o ’ 0 3 KwHr2)' 
Consequently, equations (5), (45), and (46) give 

1 R P 

(46) 

(47) 

(48) 

Suppose the universe contains lumps with scale Í7Z, « 0.3 (e.g., L is about 1000 Mpc) 
and density fluctuations 8p/p « 10 per cent. Then 

ÔT; 
0.5 per cent (49) 

While we have no convincing direct evidence for or against 10 per cent density fluctua- 
tions over scales as large as HL « 0.3, the fact that much more drastic density fluctua- 
tions occur with scales HL « 10~3 — IO-2 (de Vaucouleurs 1961) suggests that (49) is 
not a severe overestimate. Of course expression (49) is not a surprising result: for the 
density fluctuations considered, the dimensionless concentration parameter GM/Lc2 is 
not negligible and general relativistic effects must come in. 

If one uses 10 per cent density fluctuations over scales HL ~ 0.3 to evaluate the 
constant in equation (44), this constant comes out of order 1.5 per cent. Thus the 
“Doppler shift” term, though less interesting, is a little larger. 

A slightly more sophisticated estimate can be obtained if one uses stochastic averages. 
Suppose (Wax 1954) that at tjä = 1 

ôp = Hr2$dzkQ(k) eik'x, (50) 

where Q(k) is a random function. Suppose for simplicity 

<(?(*)(?(*')> = S{k)8*{k + *'), S(k) > 0 , (5i) 

where the angular brackets denote an ensemble average. Then 

//73£ pik-X 
—jï—Qik). <52) 

Consequently, for the angular autocorrelation function /(0) of the term (45) we get 
(Wax 1954) 

f(e) = rh* <{B[e(vu - ve)] - B(0)} {B[e'(VR - VE)] - 5(0)|> 

= | y"—-|~-{exp[íft* (e — e')(riR — riB)] -exp[ik-e(riB- i¡E)] 

— exp[ — fft - e'(??fi-■>?*:)] + 1}, 

(53) 

where 6 is the Euclidean angle between c and e'. 
The only term in equation (53) that actually depends on 6 is the term 

g(0) =1 f ~[-S(k)exp[ik- (e — e')(r)R — riß)] 
16ir i co dkS(k) sin kx 
~9~ Jo kX 
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where 

X = 2(77# — v)e) sin 0/2 « 2 sin (0/2) . (55) 

Suppose S(k) is sharply peaked near some value k0 of k. Then [g(0)]1/2 gives back our 
former magnitude estimates. From equations (54) and (55) we can estimate the angular 
resolution needed to detect the effect considered. For ¿0 <k 1 the resolution required is 
of order lir/ko radians of arc. 

By an analysis similar to the above one finds that if the present value of 8p comes 
from density perturbations of the relatively decreasing kind, so that only ^4 0 in 
equation (22) (i), then 8T/T is larger than the values given above. Moreover it is pos- 
sible to imagine that 8 pis zero everywhere between us and the emitting event but B 7^ 0 
(or ^4 5^ 0). For such terms B and A would have to be solutions of the homogeneous 
Laplace equation essentially up to the (spatial) particle horizon (Penrose 1964; Rindler 
1956). We might visualize such terms as the longitudinal gravitational fields of large 
masses so distant that the masses are outside our present particle horizon. No a priori 
upper limits can be set on the size of such terms. Finally, gravitational waves with very 
long wavelengths could also contribute to 8T/T, and would presumably not be detect- 
able otherwise. 

IV. CONCLUSION 

We have estimated that anisotropies of order 1 per cent should occur in the microwave 
radiation if this radiation is cosmological. This figure is a reasonable lower limit provided 
even rather modest 10 per cent density fluctuations with a scale of | the Hubble radius 
occur at present. Larger variations could arise from intrinsic inhomogeneities in the 
radiation temperature at the time Thomson scattering became negligible, from the 
effects discussed at the end of the last section, or from effects to which our perturbation 
theory here is not applicable, such as non-linear large-scale anisotropies of the universe. 
Conversely, if isotropy to within 1 per cent or better could be established, this would be 
a quite powerful null result. 

Of course very many other effects, observable in principle, can be obtained from the 
approach used in this paper. We have not so far found any others that seem particularly 
promising, though our present ignorance of most of the parameters involved leaves many 
possibilities open. More interesting seem to be two extensions of the theory developed. 
First, the linear perturbations are so surprisingly simple that a perturbation analysis 
accurate to second order may be feasible using the methods of Hawking (1966). One 
could then judge the domain of validity of the linear treatment and, more important, 
gain some insight into the non-linear effects. Second, it would be desirable to describe 
the matter and radiation by the Boltzmann equation (Gilbert 1966) rather than just 
using fluid dynamics. The mechanism for producing lumps of a certain size and density 
is at present very obscure. Perhaps, for example, radiation viscosity is an effective 
mechanism for producing small-scale perturbations and damping large-scale perturbations 
during the p = p/3 phase of the universe that general-relativistic cosmologies predict. 
The fluid dynamical approach is not well suited for discussing transport processes or 
various non-gravitational instabilities. 

Future observations may exclude the homogeneous, isotropic, general-relativistic 
& = 0 models, even as zero-order approximations. At present they are as acceptable as 
any other models and considerably simpler than most models. 

We thank Professors J. Ehlers, E. Schücking, W. Drummond, and G. de Vaucouleurs 
at the University of Texas; Professor P. Peebles at Princeton; Professor S. Chandra- 
sekhar at the University of Chicago; and Professor D. Zipoy at the University of Mary- 
land for comments and discussions. 
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APPENDIX I 

AUXILIARY EQUATIONS 

We shall list a few of the equations used in deriving equations (22). We split f)^ and f)M/3 as 
follows: 

f)M4 = + irnkp nnkfl = 0 , 

= pnß + ¿((Ißkß + Qßkß) “■ skßkß + rripß , (i-i) 

Piiß = pßm pßß ^ 0, Pußffl == Qßkß = 0 , 

where m, p^ß, and r are functions of h and r¡. The moment conditions (17) imply that (i) 
such a splitting is possible; (ii) we can require m, qß, s, and r to be finite at Ä = 0; and (iii) the 
splitting is then unique. We then split 0©M4 and 0©^ in the same way. The result is 

a.l) (r'a2)' + Æ45p = 0 , 

a.2) —a2k2r — [(s'k2 — 2mk2)a2}' = 0 , 

a.3) + cPF^m] = 0 , 

a. 4) ÆV + —- (3r' + s'k2 — link2) — a2bx = 0 , (i*2) 
a 

b. l) ikßKq'p - nß)a2]r = 0 , 

b.2) -Hq', - nß) + laïF^n, = 0 , 

c) a2k2pßß + {p\ßa2)' = 0 , 

where primes denote ^-derivatives, k2 — k*k= and all indices are raised or lowered 
with rjnß = —bßß as before. Because of the moment conditions equation (1.2) can be simplified; 
for example, (1.2.a.2) can be written 

— a2r — [(s' — 2m)a2]' = 0 , (i-3) 

since r, s', and m are finite at ¿ = 0. 
After simplifying, expressions (1.2.a), (1.2.b), and (I.2.c) can be solved directly. For example, 

with a2 = const, rj2 (e.g., p — p/3), equation (1.2.c) reads 

kWpnß + (P* nßV2)' = 0 (1-4) 

with solution pßß = pßß(k)eikr,/rj. The Fourier transform of this last expression is [D^x^y/rj, 
where D^ß is any solution of equation (20). Apart from terms of the form (11) we then get equa- 
tions (22). 

APPENDIX II 

NEWTONIAN ANALOGUES 

We will perturb the Newtonian cosmological equations and get solutions for the first-order 
corrections in density and velocity. As in the previous general-relativistic calculations we will 
use a background model which is both homogeneous and isotropic. We set the cosmological 
constant A = 0, and we consider the case of “free fall,,, which is analogous to the case of zero 
curvature (k — 0) in general relativity. If the Newtonian and relativistic solutions agree, one 
can have greater confidence in the validity of these results. For ÿ = 0 the correspondence is very 
close. 
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a) Background Models 

For the case of dust (p — 0) we calculate the equations for the background and then for the 
first-order perturbations Let and <KM) be the velocity, density, and potential of the 
dust cloud at time t and position r. The Newtonian equations for dust (in Cartesian coordinates) 
are the continuity equation 

ÿ+V(pi>)=0, (H.1) 
ot 

the Navier-Stokes equation 

(l>- V)l> = - V<¿, (II-2) 
at 

and Poisson’s equation (with A = 0) 

VV = 47rGp . (II.3) 

In the zero-order approximation these equations will yield a class of evolving background 
models. From the postulate that the background flow be homogeneous and isotropic we infer 
that v — H(t)r and p = p(t) (Heckmann and Schticking 1959), where p{t) represents the 
smoothed-out background matter density. We let H{t) — [da(¿)/d/]/u(¿), where a{t) is the 
usual expansion parameter which is called R{t) in Heckmann and Schticking. These expressions 
are then substituted into equations (II. 1), (II. 2), and (II. 3). The subsequent calculations have 
been done by Heckmann and Schticking. We consider the case where h, the energy of a unit mass 
particle, vanishes. This is known as “free fall” since the particle can just escape to infinity. The 
energy equation being identical to the relativistic Friemann equation, we can identify h with 
the curvature of the spacelike hypersurfaces t = const. Hence we have the same background 
model that we used in our relativistic calculations. We now give the results of Heckmann and 
Schticking for “free fall.” We use the result that M = ^/GHr where M is the “mass” of the 
universe and Hr is the present Hubble constant. We also define the variable 77 by ¿ = {GM/ó)??3. 
In this notation r){t) is the same time coordinate we used in the relativistic calculations with the 
present value of 77, rpz = 1. Therefore: 

( \ 21,2 s r r 'i 
ri R V 

i / \ H- R n jj f \ R 
<t>(r, n) r2, 

We now have complete knowledge of the time evolution and spatial dependence of the back- 
ground expansion parameter, density, velocity, potential, and Hubble constant. These zero- 
order quantities will appear in the first-order calculations. 

b) First-Order Solutions (p = 0) 

If a small perturbation is placed on the background, first-order corrections appear in the 
velocity, density, and potential. We will call these 8v(r,t), 8p(r,t). and The Newtonian 
equations are now solved to first order. The perturbed Navier-Stokes equation is 

/dr + Hhv = -v(a<¿>). (ii.s) 
at 

The perturbed continuity equation is [for convenience we define the density fluctuation, 
D(r,t) = &p(r ,t) /p{t)] 

—v+Hr-VD + V-(St;) =0. (H-6) 
at 

v(r, v) 
HRr 

(II.4) 
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Finally the perturbed Poisson equation is 

V2(50) = 4:TrGp(t)D . (H*7) 

Equations (II. 5), (II. 6), and (II. 7) can be combined to yield the following differential equation 
for D(r,¿) : 

(J^+ 2#+ Hr • (jjj+Hr-vD^ = 4:TrGpU)D. (n-8) 

The method used in getting this differential equation is given in Peebles (1965). 
In order to compare the Newtonian and relativistic perturbations we transform equation 

(II. 8) to a coordinate system comoving in zero order by going from the components of the 
Cartesian r to coordinates 

xß = rP/a(t) . (II-9) 

We shall use the symbol Vx to indicate d/dxß. Under the coordinate transformation (II. 9) 
equation (II. 8) goes into the form 

d2D 

dt2 f 2H(0 
ÔD 
dt 

4:TrGpD = 0 . (II. 10) 

Transforming from / to 77 and substituting the background values for H and p gives 

dr]2 r] dr] rj2 

The general solution of this equation can be written 

D(x^,v) =Yf[—-f-ßt*'*)’?2] . 

(II • 11) 

(11.12) 

where A and B are any functions of the xß alone and the numerics have been chosen to facilitate 
comparison with the relativistic solutions. From equation (11.12) and the definition of D we get 

, _ H2
r ^ {6A ,B\ 

Sp~ 32TrGVx\v* V/' 
(11.13) 

We can now obtain 0(p by putting equation (II. 7) into comoving coordinates xß. The solu- 
tion comes out 

5* = 3[(^4/ij5) - (ß/10)] + /«„), (h.14) 

where J is any solution of V V = 0. If we impose on <j> conditions analogous to the moment 
conditions described in the text, J must be zero and we henceforth assume that such is the case. 

Finally, we can now solve the perturbed Navier-Stokes equations (II. 5) to get 8v. We shall 
compute the Cartesian components of 8v as functions of the comoving coordinates xß. If we 
transform variables in equation (II. 5), it becomes 

d8 

dt 
+ H(t)8vß = 

1 d8<¡) 
a dxß 1 

(H.15) 

where 8vß are still the Cartesian components. When we introduce rj and the relevant background 
values this equation reduces to 

d8vß 2 
drj rj 

8 vß = -3 
d /A 

dxß \r)b 
(11.16) 
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Let Cß(xa) be any function of the xß alone. Then the general solution of equation (II. 16) can be 
written in the form 

Ô >0 = 
V2*C* 

2 daA T?4 ^ 5 / 
(II.17) 

We can now compare with the relativistic solutions by setting SttG = 1: moreover, the co- 
ordinates x& are fully analogous in the two cases because they are comoving to zero order in both 
cases and small corrections to x^ are irrelevant when considering terms already small to first 
order. For 8p the Newtonian and relativistic expressions are simply identical: 

dp 
H*r . [6A(xn 

4 V* «»9 
3B(xn-\ 
5 y,* J 

^4,5 arbitrary). (H.is) 

There are no simple relativistic analogues of v and </> which are gauge-invariant, though quanti- 
ties analogous to the Newtonian 5t; do appear in the redshift equations. However a simple rela- 
tionship exists between the relativistic vorticity tensor o)ab and the Newtonian analogue g> = 
V X v = Vx X v/a(r¡). For a comparison we may work out the scalar magnitude of both 
quantities, which is first order in both cases since the zero-order vorticity vanishes. A short 
calculation shows that the magnitudes are in fact equal: 

TJ2 
w<o = coa6wc<ig‘'cgM = -^f[V2i(ViXC) ]2; C = C() arbitrary. (IM9) 

We note that C as in the relativistic case has no longitudinal part. This may be seen by sub- 
stituting the solutions for 8va and dp/p into the perturbed continuity equation expressed in 
comoving coordinates. This completes the Newtonian analogue. The only term in (22) (i) which 
has no direct analogue here is the gravitational radiation term Daß, which must of course be 
missing in Newtonian approximation. 

c) The Case of Radiation (p = p/3) 

The same perturbation scheme was tried with the following results. The background New- 
tonian equations (II. 1), (IL2), and (II.3) had to be modified (Harrison 1965) to get the correct 
background solutions. When these modified equations were perturbed to first order, their 
solutions did not agree with the relativistic results, even qualitatively. 

Note added in proof: (1) The Newtonian calculations have been done by Doroshkevich 
and Zeldvich in 1963 {Astr. Zh., 40, 807). (2) The temperature-shift argument relating 
to equation (40) was given previously by Etherington in 1933 (Phil. Mag., ser. 7, 15, 
761). (3) We have investigated the density perturbations of the relatively increasing 
type (B type) in detail, and find that the mass of these lumps increases with time at 
the same rate as the background expansion parameter a. We also find that the increasing 
mass is supplied by a perturbed matter flow from the background. 
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