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Application of coagulation theory to the process of accumulation of the planets from solid
matter leads to the conclusion that this matter was in the form of particles and bodies of
different sizes. Falling onto the planets, the bodies imparted to them a rotational moment
consisting of two components of different nature: a regular component ("direct" rotation),
related to rotation of the system as a whole, and a random component, related to the ran-
dom direction of velocity of the falling bodies relative to the planet and manifested in the
inclinations of the axes of rotation of the planets. The largest bodies made the principal
contribution to the random component of rotation. This article gives the derivation of ex-
pressions relating the values of the random component of rotation to the masses my of the
largestbodies falling onto a planet of mass m on the assumption of an exponential distribu-
tion function of the sizes of the bodies. Table 1 gives the values m;/m determined from a
comparison of the theoretically computed angles of inclination of the axes of rotation of the
planets and the observed values, The largest bodies falling onto the earth had masses of
about 1073 of the earth's mass, that is, they were of the size of the largest asteroids. This
same mechanism makes it possible to explain the anomalous rotation of Uranus if it is as-
sumed that the random component of the rotation of Uranus was greater than the systematic

component. The mass of the largest body falling onto the surface of Uranus in this case
would have to be 0.05 of the mass of that planet.

An estimate of the size of the largest bodies
falling onto the planets during their formation is
important for determining the principal laws of the
process of accumulation of the planets. It also is
of considerable interest for geophysics because it is
necessary for determining the earth's initial tem-
perature and makes it possible to judge the scale of
the initial inhomogeneities of the earth's mantle
[1] which could exert an influence on the entire sub-
sequent development of the earth. We already have
noted [2] that the maximum size of the bodies from
which the planets were formed can be determined
from the inclinations of the axes of rotation of the
planets. It was determined roughly that in the final
stage of growth of a planet the masses of bodies
falling onto it were less than 1072 of the mass of the
planet itself. This problem is considered in greater

detail in this article, taking into account the probable
distribution function of the protoplanetary bodies.
The observed rotation of the planets can be
broken down into two components — systematic (re-
gular) with the moment K; (directed perpendicular
to the central plane of the planetary system), char-
acterizing direct rotation, and the random com-
ponent with Ky, manifested in the inclinations of the
axes of rotation of the planets. The latter is related
to the discreteness of the process of formation of
the planets. It shows that a considerable part of
the mass fell onto the planet in the form of indi-
vidual bodies having randomly directed relative mo-
tion at the time of the impact. An identical order
of magnitude of the angles of inclination of the axes
of most of the planets is a characteristic property
of a planetary system which has not yet been given
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due attention and which indicates a definite regular-
ity in the growth process and a regularity in the size
distribution of the bodies.

Assume m and r are the mass and the radius
of the growing planet ("nucleus") and m'{ is the mass
of the bodies falling onto it. First as a clarifica-
tion we will consider the case when all the falling
bodies have identical masses mY = m' and move in
the plane Oxy relative to the planet m, whose cen-
ter is situated at O. Assume v is the velocity of the
body relative to the planet prior to its approach to
the planet. Then the momentum imparted to the
planet by the mass m'y

AKy; = m'vl; 8H)

is directed along the z axis and represents a ran-
dom value since the impact parameter l; of the fall-
ing body is a random value with a constant density
probability distribution in the interval (—7, +1;).
The mathematical expectation 7 (mean value 1) is
equal to zero, but the mathematical expectation 72

(! dispersion) is not equal to zero:

1+la
Dl—1 ;27S

=l

1

Ml =T1=0, lzdl=§l02, (2)

The value /; is the maximum impact parameter lead-
ing to a collision of m' with m and is related to the
radii r and r' by the known relation

2G(m + m’)

r+4r ——]" ®)

v = (r4r')2 [U2—|-

being an elementary corollary of the laws of con-
servation of energy and moment of momentum in
a two-body system. .

With the falling of several bodies m' onto m,
in accordance with the theorem of addition of dis-
persion as the sum of the independent random
values [3], when m'v = const we have

D Z AK“ = (m'v)ZD 2 li

i=1 i=1

= (m'v)? Y, Dl; = (m'u)zg. (4)

i=1

Therefore, the mean value of the square of mo-
mentum, imparted by n bodies m' with the total
mass Am =nm', is equal to

_ 1,2 ’
AK2? = (m’v)zn—;— = (vlo)ZiAm.

3 (5)

V. S. SAFRONOV

Since A'E a7 =0, the random component of the mo-
ment of momentum AK; imparted to the planet by
the falling bodies obviously is determined by its
mean-square deviation, related to m' by expression
(5). Expression (5) shows that the imparted mo-
mentum is the greater the larger the body m'. Small
particles make virtually no contribution to AK;.

In the more general case of motion of bodies
in all possible directions an estimate of the im-
parted momentum can be made in the following way.
Assume one third of all the bodies (n/3) move
parallel tothe x axis, a third parallel to the y axis
and a third parallel to the z axis. This method is
applied in the kinetic theory of gases.

We will consider bodies moving toward the sur-
face of a planet in the direction of the z axis. Upon
falling onto the planet they will impart to it the mo-
mentum components Kjjy and Kyjy along the x and
y axes respectively. Obviously

Kiiw = m'vlsing, Ky = m’vlcos
Yy [

(6)

where ¢ is the angle between the plane Oxz and the
orbital plane of the body relative to the planet. The
dispersion of the random value K¢ is equal to

by 2n
S S (Isin @)21dl dg molo)?
— b ¢ (m/vly
DKyix = Kzux = (m'v)? Io 2n =73 )
§ Siardg
o 0 @)
Similarly
IRY
DKy = (m'vlo)*

The component of momentum along the x axis
is also introduced by bodies moving parallel to the
y axis toward the surface of a planet; in this case
the dispersion DKjix is determined by expression
(7). The dispersion of the sum of the random values
Kjix is equal to the sum of the dispersions of the
terms

n
D Y Ky =2

=1

(m'vly)2.

i DKy = % (8)

3

The dispersion of the components of momentum
along the y and z axes will be the same., According
to (8), the mathematical expectation of the square
of the component of momentum along the x axis is

I a— 9)
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o AK2 = AKp2+ AKp2 + AK 2 = —;—vzlozm’Am. (10)
N

L0p]]

2 We substitute here v from (3), on the right-hand

C side of the latter,assuming v® = Gm/6r, where 6
is of the order of unity, and omitting the terms m'
and r', which, as will be demonstrated below, are
small in comparison with m and r. Then

1 1
. Am— (14 L = (1
AK; (1+26)GmrmAm (1+26)Gmmm 1)

The imparted specific momentum is inversely
proportional to the root of n:

AK, [ Am = V(1 + 1/208)Gmr [ n. 11"

On the basis of the rule of addition of dispersion
it is easy to obtain an expression for AK} in the
more general case when the masses m'j of falling
bodies are different. This requires that expression
(11) be summed for all m%. Assume n(m') is the
mass distribution of bodies falling onto the planet;
these bodies have the total mass

Am == S m'n(m’)dm’. (12)
0

Integrating (11) for all m' and substituting Am from
(12), we obtain

Sn(m’)m”dm’
AK2 2 (1 + Tie) Gmr2———— Am, (13)

my
S- n(m’)ym’ dm’
0

where my is the mass of the largest body, not count-
ing the planet itself. Obviously, this relation makes
sense when my < Am < m.

In general, the expression

1§ln(m’)m’2 dm’
Jm,m)y=-"— (14)

mp
m g n(m’ym'dm’
0

is a function of planetary mass m, since n(m'j is
dependent on time. ¥

n{m/,t) = c(t)ym'9, (15)

then, when g < 2,
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J(m, my) = °m = - - (16)

1_
m S m’ " 4dm’
0

The masses m' of the falling bodies increase
parallel with the growth of the planet; therefore, in
the first approximation it can be assumed that my/m
is constant. Then J = const. Assuming the density
of the planet to be constant and integrating (13) for
m, we find the value of the square of the random
component of the rotational moment of the planet:

m
Ke= Take=(1 +2—19>G1Sm2rdm
0

~ LVGr 3 s
and

K1=mV%(1 —I—%)]Gmr. an

Allowance for an increase of density of the planet
with m exerts virtually no influence on the results:
the right-hand side of (17) increases only by a value
of about 1%. It is possible that m;/m increased in
the final stage of growth of m. Then the masses of
the largest falling bodies could be several tens of
percent greater than the values determined below
on the basis of (20) on the assumption J = const.

It was assumed in (13) that Am is the total in-
crement of the earth's mass, since we assume that
virtually all bodies falling onto the earth imparted
both regular and random components of rotation.
According to the A, V. Artem'ev-V. V. Radzievskii
hypothesis [4], the regular component of rotation
was imparted by bodies not falling directly onto the
planet but trapped by it as a result of their inelastic
collisions in its zone of attraction, that is, by essen-
tially the same mechanism which according to E. L.
Ruskol [5] led to the formation of a satellite swarm
around the planet. If the largest bodies were not
present in the matter trapped in this way, or if these
bodies were greatly broken down during collisions,
the random rotational component which they im-
parted to the planet was small., Then (if the authors'
hypothesis is accepted) these bodies should not be
included in Am. However, according to the authors'
own estimate,the part of the matter falling onto the
planet by such a "two-stage™ method should be only
several percent. The corresponding correction to
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my therefore falls within the limits of accuracy of
our estimate.

The vector K; has a random direction in space.
Assume the angle between the systematic component
of momentum K, directed perpendicular to the or-
bital plane and K; is equal to 6,.and the angle be-
tween K, and the vector of the total moment of mo-
mentum of the planet K = K, + K; (inclination of the
axis of rotation) is equal to €. Then the component
of momentum perpendicular to K; is equal to

K sin® = Ksine. (18)

The right-hand side of (18) is known from observa-
tions., On the left~hand side K; represents the rela-
tion (17) and the angle 4 can have any value between
0 and 7. As the probable value sin<d in (18) it is
natural to use its mean value. In the case of a uni-
form distribution of vectors K; over the sphere,

x
I

sin ¥ = (19)

iSsin1‘}2:r'csim‘}d1‘}=
43':0

Substituting sind and K, expressed through m;/m
using (16) and (17), into (18), we find

m 3—q 160 sin%e K2
m~ 2—gq 3m2(1+1/20) Gm3r’

(20)

For numerical estimates it is convenient to intro-
duce the velocity of rotation at the equator vy and
the Keplerian angular velocity vg at the surface of
the planet:

K= i— wmrv,, v, ==YGm/r. (21)
Then from (20) we obtain
my _3—gq 10 (Sp.sins vr>2 @2)
m  2—q 3(14+1/26) 5 - ve/

The masses of the largest bodies falling onto
the planet, computed using this formula, on the as-
sumption of a power function distribution for them
with a value g = 3/2 (distribution by radii with the
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exponent p = 3q — 2 = 2.5) are given in the first
column of Table 1.

For Uranus,in place of sin £ we used the ratio
7K; /4K, found on the assumption that the systematic
component of the moment of Uranus K, corresponds
to a period of rotation of 15 h (approximately the
same as for Neptune).

When 6 = 3 the role of the parameter in (22)
characterizing the relative velocities of bodies before
encountering the planet is insignificant. We as-
sumed 6 = 3, Change of q from 3/2 to 5/3 (p = 3) in-
creases my/m by only 4/3 times. Only when q—2
(p —4) does the result change appreciably. When
q = 2 on the right-hand side of (22) in place of
(83— q)/(2 —q) we have In (my/my), where m, are
the masses of the smallest particles in the used
distribution. However, a distribution with q = 2,
in which a large part of the mass is accounted for
by large particles, apparently is unrealistic. Data
on size distribution of asteroids [6, 7], meteors [8],
and comets [9] indicate values p of about 2.6-3.4.

The second column of the table gives values
my/m computed for q =—, that is, for a case when
all the falling bodies have identical masses. These
values are smaller than the preceding values by a
factor of three. Another limiting case can be con-
sidered, when the random component K; of the mo-
ment is imparted by only one body myy, while all the
remaining matter falling onto the planet imparts to
it only regular rotation (K;). Then

. T L R 2
Ksme:—[;Ki=—4—mulu=%mu§lov (23)
and
™ —————6 VEH vr sine (24)

m  5ayl+1/28 v,
The values my;/m are given in the last column of
the table. They are less variable from planet to
planet than the values m;/m and do not involve the
assumption of a specific form of the size distribu-
tion function for the bodies. The values my;/m can
be considered the upper limit for masses of bodies
falling onto the planets.

TABLE 1
mim mijm
Planet mu/m Planet mam
g =32 ' =—c g=32 [ g=—=
Earth 8-10-* | 3.10~* 1.1072 Saturn 3.107%2 | 1-10-2 6-10-2
Mars 2.107% | 6-10* 1.3-10-2 Uranus 5.1072 | 2.10-2 8.10-2
Jupiter 3.107* | 9-10-° 5.10-3 Neptune 5.10-3 | 2.10-2 2-10-2
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E: their formation are determined quite reliably:

- there is not more than a threefold deviation in either
direction. The masses of the largest bodies falling
onto the earth were about 1072 of the mass of the

rotation is slowed, and although the inclination & of
the axis increases, the value vy sine decreases [10].
If the moon was formed considerably closer to the
earth than its present position, vy sin e in the past
was considerably greater. Therefore, it is not im-
possible that the value my/m for the earth deter-
mined above should be increased by a factor of 2-3.
The retrograde rotation of Uranus can be at-
tributed naturally to the relatively greater sizes
of the bodies forming the planet. The masses of
the largest bodies falling onto Uranus attained 0.05
of the planetary mass. The bodies in the zone of
formation of Saturn also were of considerable size.
The largest of these bodies were 0.03 of the planet-
ary mass. Therefore, the rotation of Saturn differs
little in its anomalous character from that of Uranus.
The apparent cause of the anomalies is the flight
of larger bodies from the zone of Jupiter into the
zones of these planets, Jupiter grew considerably
more rapidly and attained a critical mass earlier.
Upon attaining this critical mass the gravitational
scattering of bodies from its neighborhood began.

_ These results of computations reveal that de-

\ 1 spite the absence of final data on the size distribu-
:<>f: tion function for the bodies the masses of the largest
2 bodies falling onto the planets during the course of
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It should be noted that the estimates of my/m for
Jupiter and Saturn made above are in need of ap-
preciable refinement because they do not take into
account the accretions of gaseous hydrogen in the
final stage of growth of these planets. However,
such a refinement is possible only on the basis of
the theory of growth of the major planets, which re-
quires consideration of a number of poorly studied
earth. As a result of the lunar tidal effect the earth's factors,and such a theory has not yet been developed.
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