INTRINSIC $U B V$ COLORS OF RR LYRAE STARS*

Conrad Sturch \dagger
Lick Observatory, University of California, Mount Hamilton, California
Received May 17, 1965; revised September 20, 1965

Abstract

Photoelectric observations on the $U B V$ system of more than one hundred Bailey type a, b RR Lyrae stars were obtained to investigate the color indices near minimum light. It is shown that for most purposes of galactic research $B-V$ and $U-B$ may be treated as constant in the phase interval $0.5<\phi<0.8$. The $U-B$ index during this interval is correlated with the metallic-line blanketing derived from highdispersion spectrograms, and is used to find a line-free index, $(B-V)_{c}$. A period versus $(B-V)_{c}$ relation is found for those variables in the galactic caps and, combined with observations from stars at lower latitudes, is used to obtain a cosecant reddening law. A $B-V$ excess at the poles of 0.03 mag . is adopted. From this, intrinsic $U B V$ colors and individual color excesses are derived for the RR Lyrae stars. The probable error of an intrinsic color is only 0.01 mag . Applications to the determination of interstellar reddening and stellar populations are discussed.

I. INTRODUCTION

A knowledge of interstellar reddening and extinction at high and intermediate galactic latitudes is essential in many problems. For example, much of our information about stellar evolution comes from fitting main sequences of globular and galactic clusters, corrected for differential line blanketing, to a standard main sequence and comparing the resulting diagrams to evolutionary models. Yet the distances, ages, and metal abundances determined from this method are often sensitively dependent upon the correction for interstellar reddening. Likewise, the distance to the center of the Galaxy is of fundamental importance in the study of galactic structure and dynamics. Probably the most direct determination of this quantity is that due to Baade (1953) who used the apparent magnitude of the frequency maximum of RR Lyrae stars in a "window" near the galactic center. The result, however, is still indecisive because the interstellar absorption assigned to these stars is uncertain. In fact, part of the uncertainty in the absolute magnitudes of the RR Lyrae stars themselves is due to inaccurate values for interstellar absorption.

Most previous determinations of extinction and reddening at high and intermediate galactic latitudes have been derived from galaxy counts and colors of galaxies and clusters because O and B stars, the commonly used reddening indicators, are concentrated in the plane. Late-type stars can be used only if accurate spectral types and luminosity classes are known. Clearly, another class of objects is needed for this purpose.

The RR Lyrae stars are likely candidates. They are easily identified, they have moderately high luminosities, they are found in all parts of the Galaxy, and, as shown in this paper, accurate intrinsic colors can be defined for them.

A number of photoelectric light-curves of Bailey type a, b RR Lyrae stars based on the $U B V$ system are now available. An examination of these curves reveals that the $B-V$ and $U-B$ colors are nearly constant for a large portion of the light cycle preceding minimum light (Preston 1964). It is further noticeable that the stars of this group which are located at high galactic latitudes, where irregularities in color excess are minimal, have nearly uniform colors near minimum light. This indictes that the intrinsic colors of these stars are probably very similar.

Before accurate intrinsic colors can be found for these objects a number of effects

* Contributions from the Lick Observatory, No. 191.
\dagger Now at the Department of Physics and Astronomy, University of Rochester.

06 yM

$8 \varepsilon \angle \multimap 81 O H$
$O ヤ J \Im N$
عOIZ6IOH

must be considered. Preston (1959) has shown that the metal lines in RR Lyrae stars vary greatly in strength. Spinrad (1961) has argued that the weak-lined variables have sizable $B-V$ and $U-B$ excesses compared to the strong-lined variables. The dependence of the colors upon period should also be considered. Finally, the RR Lyrae stars are at such great distances that even those in the galactic caps may be reddened.

The present study is a photometric survey of over 100 field RR Lyrae stars. The next section describes the observational procedure. In § III the effects of line blanketing, period, and interstellar reddening are considered in deriving an intrinsic color relation for these stars. Some applications of the results are discussed in the final section.

II. OBSERVATIONS

The survey was limited to Bailey type a, b RR Lyrae stars north of $\delta=-15^{\circ}$ and brighter than $m_{v}=14$ at minimum light. Periods were taken from the second edition of the General Catalogue of Variable Stars. To avoid type c variables, stars with periods less than 0 d 4 were not observed unless an amplitude of at least 1 mag . was indicated.

Comparison stars, chosen at the telescope, were observed with 95 per cent of the variables. Only a few of the comparison stars lie further than half a degree from the variable, and the average difference between the color of a comparison and variable near minimum light is only 0.13 mag. in $B-V$. The comparison stars are, on the average, 1.3 mag. brighter than the variables and should therefore be more accurately measured.

Primary and secondary $U B V$ standards were observed each night and used to transform both the variable and comparison stars to the $U B V$ system. An average of all observations of the comparison star was formed and each observation of the variable corrected by the residual of the comparison from this average. The observations from July, 1963, until May, 1964, were reduced with the IBM 7090 computer of the University of California, Berkeley, by a program written by C. Perry. After this time the reductions were carried out on the IBM 1620 of the Lick Observatory with a program written by T. D. Kinman, J. Smak, and the writer.

Observations were made with the Crossley and 24-inch reflectors of the Lick Observatory and the 36 -inch telescope of the Kitt Peak National Observatory. Refrigerated 1P21 photomultipliers were used at all the telescopes. The Crossley and Kitt Peak filters have been described by Webb (1964). The Lick 24 -inch filters consisted of : $V, 3.3 \mathrm{~mm}$ Corning 3384; B, 1 mm BG $12+2 \mathrm{~mm}$ GG13; $U, 3.0 \mathrm{~mm}$ Corning 9863; red leak, 3.0 mm Corning $9863+1 \mathrm{~mm}$ RG1.

The probable errors of a single observation of comparison stars in the interval $12.0<$ $m_{V}<12.5$ are

$$
\epsilon(V)= \pm 0.015 \text { mag., } \quad \epsilon(B-V)= \pm 0.012 \text { mag., } \quad \epsilon(U-B)= \pm 0.017 \text { mag. }
$$

Nine comparison stars were observed on at least two nights both at the Crossley ("Cr") and at Kitt Peak ("KP"). Similarly, another nine were in common between the Crossley and the $24-$ inch (" 24 "). The colors of these stars as found at each telescope were averaged. The differences, in the sense of the Kitt Peak 36-inch and the Lick 24inch minus the Crossley, are

$$
\begin{aligned}
& (B-V)_{\mathrm{KP}}-(B-V)_{\mathrm{Cr}}=0.001 \mathrm{mag} .,(U-B)_{\mathrm{KP}}-(U-B)_{\mathrm{Cr}}=0.000 \mathrm{mag} . \\
& (B-V)_{24}-(B-V)_{\mathrm{Cr}}=0.002 \mathrm{mag} .,(U-B)_{24}-(U-B)_{\mathrm{Cr}}=-0.006 \mathrm{mag} .
\end{aligned}
$$

Table 1 contains all the observations of stars used in the discussion plus other observations that may be of use to observers of variable stars. The light-curves were shifted to make phase 0.0 coincide with maximum light. The uncertainties (~ 0 P05) in these shifts are unimportant for our purposes. The first column of Table 1 gives the JD (geocentric) of the observation. An "L" or " K " after the JD indicates that the Lick 24 -inch or the

THE OBSERVATIONAL DATA

$\stackrel{\mathrm{JD}}{2438000+}$	Phase (Per.)	V	$\mathrm{B}-\mathrm{V}$	U-B	$\begin{gathered} \mathrm{JD} \oplus \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
SW And		8.932	0.581	0.112	SX Aqr (continued)				
351.710	0.85	10.069	. 526	0.153	621.801 L	0.60	12.153	0.408*	0.066*
351.719	. 87	10.057	. 521	0.165	621.842 L	. 68	12.126	. 416*	0.056*
351.734	. 90	9.888	. 424	0.097	621.884L	. 76	12.092	.404*	0.046*
351.740	. 92	9.730	. 375	0.068					
351.786	. 02	9. 209	. 208	0.173	TZ Aqr		10.398	. 523	-0.001
351.850	. 07	9.507	. 343	0.193					
358.718	. 695	9. 988	. 523*	0.193*	238.956	. 08	$11.985 \dagger$	- $264 \dagger$	$0.040 \dagger$
358.759	. 79	10.107	. $517 *$	0.187*	243.957	. 84	$12.476 \dagger$. 464* \dagger	0.024* \dagger
364.629	. 06	9.307	. 242	0.190	263.806	. 58	12.344	. $467 *$	0.008*
364.680	. 18	9.531	. 353	0.180	298.715	. 70	12.342	. 460 *	0.056*
364.742	. 31	9.725	. 451	0.184	367.631	. 35	12.160	. 461	0.099
364.770	. 38	9. 813	. 484	0.145					
397.616	. 645	9. 953	. $531 *$	0.190*	YZ Aqr		10.381	. 315	0.002
397.654	. 73	10.001	. $547 *$	0.165*	283.750	. 24	12.571	. 351	0.066
397.679	. 785	10.091	. 536*	0.166*	286.815	. 80	12.917	. 460 *	-0.016*
397.707	. 85	10.116	. 533	0.149	287.758	. 50	12.894	. 463*	0.032*
					298.745	. 41	12.764	. 506*	0.114*
XX And		11.126	. 490	-0.065	326.668	. 00	$12.095 \dagger$. $140 \dagger$	0.077†
287.834	. 68	10.952	. $469 *$	-0.031*	BN Aqr		12.328	. 556	-0.030
287.845	. 695	10.988	. $442 *$	0.006*			12.328	. 556	-0.030
288.017	. 93	10.668	. 246	-0.065	315.756	. 00	11.820	. 098	0.018
295.928	. 88	$11.065 \dagger$. $447 \dagger$	$0.014 \dagger$	315.772	. 03	11.938	. 111	0.076
295.988	. 96	10.399	. 228	0.054	326.654	. 20	12.410	. 296	0.084
296.000	. 98	10. 269	. 200	0.067	326.700	. 30	12.575	. 390	0.080
					326.741	. 39	12.749	. 393	0.015
AT And		9. 465	. 372	0.082	326.750	. 41	12.787	. 374	-0.001
333.620	. 245	10.649	. 519	0.133	328.723	. 61	12.924	.398*	-0.082*
333.631	. 26	10.678	. 524	0.159	BR Aqr		11.065	636	0.144
333.655	. 30	10.706	. 553	0.112			11.065	. 636	0.144
333.690	. 36	10.736	. 557	0.104	243.972	. 22	11.316	. 315	0.055
333.718	. 40	10.747	. 582	0.093	255.913	. 00	10.768	. 138	0.101
333.740	. 44	10.817	. 550	0.143	263.793	. 35	11.518	. 406	0.084
333.784	. 51	10.851	. 555*	0.085*	263.936	. 65	11.691	.471*	0.111*
333.811	. 55	10.835	. 592*	0.142*	283.773	. 81	11.864	. $446 *$	0.077*
333.818	. 565	10.866	. 560*	0.093*	376.639	. 53	11.674	. 415*	0.031*
334.643	. 90	10.594	. 462	0.067	CP Aqr				
334.667	. 94	10.543	. 421	0.080			11.761	. 696	0.212
334.688	. 97	10.467	. 391	0.135			11.758	135	-0.016
334.703	. 00	10.416	. 422	0.141	240.893	. 94	11.677	. 340	- 0.187
334.723	. 03	10.435	. 426	0.103	298.816	. 24	11.686	. 286	0.169
334.738	. 055	10.434	. 463	0.126	298.816 298.731	. 05	11.689	. 140	0.083
334.768	. 105	10.518	. 457	0.121	283.735	. 68	12.098	0.512*	0.112*
334.786	. 135	10.560	. 480	0.074			12.098	0.512	0.112
SX Aqr		11.181	. 543	-0.042	AA Aql		9.426	1. 302	1.338
587.889	. 30	11.777	. 340		243.770	. 40	11.985	0.470*	0.128*
587.945	. 40	11.891	. 434	0.032	243.867	. 66	12.181	. $464 *$	0.169*
589.851 L	. 96	11.528	. 193	0.012	243.890	. 73	$12.374 \dagger$. 447 * \dagger	0.102* \dagger
589.862L	. 98	11.263	. 141	0.092	263.862	. 935	12.088	. 376	0.008
591.852	. 70	12.125	. 432*	0.013*	263.869	. 955	11.723	. 335	0.008
592.860	. 58	12.144	. $447 *$	0.001*	298.666	. 14	11.402	. 217	0.188
592.928	. 71	12.117	. 408*	0.043*			8. 853	. 224	0.170
605.816	. 76	12.123	. 406*	0.017*	341 Aq1		8. 853		0.170
612.795 L	0.79	12. 064	0.405*	-0.011*	263.852	0.90	$11.400 \dagger$	$0.476 \dagger$	$0.050 \dagger$

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD} \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	$B-\mathrm{V}$	U-B	$\begin{gathered} \mathrm{JD} \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
341 Aql (continued)					SW Boo		12.253	0.660	0.211
276.758	0.225	$10.640 \dagger$	$0.241 \dagger$	$0.200 \dagger$	469.895K	0.30	12.537	. 344	0.082
594.797 L	. 45	10.985	. 441	0.085	469.991 K	. 485	12.816	. 412 *	-0.020*
594.808L	. 47	11.025	. 429	0.098	473.884 K	. 065	12.032	. 148	0.194
594.859 L	. 56	11.096	. 449*	0.107*	493.788	. 83	12.928	. 345	0.035
594.902 L	. 63	11.148	. 460*	0.123*	498.810	. 61	12.739	. 427 *	0.098*
594.945 L	. 70	11.240	. 467*	$0.102 * \dagger$	579.731 L	. 19	12.261	. 300	0.158°
605.872	. 61	11.124	. 454*	0.094*	579.786 L	. 30	12.467	. 351	0.101
605.925	. 70	11.243	. 443 *	0.070*	579.795L	. 315	12.553	. 334	0.109
618.721	. 84	11.292	. 452*	0.088*	587.708	. 725	12.800	. 405*	-0.011*
619.757	. 63	11.160	. $454 *$	0.073*	589.719L	. 64	12.801	. $397 *$	0.060*
X Ari		7. 291	. 427	-0.007	TW Boo		9. 985	. 501	0.021
364.645	. 60	9. 805	. $579 *$	0.072*	469.915 K	. 20	11.196	. 284	0.112
364.694	. 675	9. 851	. $567 *$	0.054*	469.973K	. 31	11.373	. 351	0.082
364.761	. 775	9. 809	. $543 *$	0.031*	473.843K	. 58	11.616	. 445*	0.032*
364.787	. 82	9. 866	. 546*	0.094*	473.909K	. 705	11.616	. 430*	0.032*
367.652	. 22	9. 413	. 449	0.134	473.945K	. 77	11.639	.397*	0.067*
367.688	. 27	9. 505	. 465	0.116	505.830 K	. 675	11.633	. $397 *$	0.054*
367.711	. 305	9. 552	. 483	0.069	505.865K	. 74	11.613	. 370 *	0.049*
367.772	. 40	9. 668	. 540	0.087	505.916K	. 83	11.714	. $432 *$	0.036*
367.825	. 48	9. 744	. 574*	0.067*					
376.627	. 00	9. 053	. 305	0.162	UU Boo		11.461	. 457	-0. 076
376.711	. 065	9. 221	. 370	0.175					
386.704	. 48	9. 762	. $562 *$	0.068*	493.990	. 575	12.737	. $408 *$	-0.028**
386.761	. 565	9. 820	. $566 *$	0.060*	527. 979	. 97	12.209	. 173	-0.033
386.770	. 58	9. 820	. 581 *	0.079*	527.984	. 98	11.970	. 159	-0.033
410.612	. 195	9. 363	. 418	0.132	526.820	. 43	12.562	. 362	-0.044
410.670	. 285	9. 497	. 482	0.130	526.891	. 585	12.730	. $398 *$	0.047*
TZ Aur		12.392	. 516	-0.014	526.936	. 68	12.743	. $367 *$	0.004*
TZ Aur		12.392	. 516	-0.014	526.984	. 79	12.703	. $388 *$	-0.058*
435.680	. 96	11.147	. 092	0.022					
435.690	. 985	11.114	. 083	0.008	UY Boo		10.667	. 484	-0. 019
440.630 K	. 60	12. 253	. 437*	0.198*	473.925K	. 60	11.259	.388*	0.029*
440.710 K	. 80	12. 404	. 502*	0.175*	491.784	. 04	10.636	. 215	0.067
440.786 K	. 00	$11.085 \dagger$. $215 \dagger$	-0.075 \dagger	491.909	. 23	10.908	. 325	0.036
441.643 K	. 18	$11.694 \dagger$. $324 \dagger$	0.246†	491.962	. 315	11.013	. 392	-0.016
441.728 K	. 40	12.134	. 470*	0.192*	492.898	. 75	11.248	. $394 *$	-0.033*
ST Boo		10.157	. 543	-0.085	492.975	. 87	11. 244	. 435	-0.065
ST Boo		10.15		-0.085	526.727	. 73	11.267	. 413*	-0.026*
506.845 K	. 20	10.913	. 262	0.079	526.786	. 825	11.352	. 402*	0.006*
506.905 K	. 30	11.085	. 310	0.077					
506.965K	. 395	11.172	. 380	0.037	RW Cnc		11.493	. 628	0.052
528.801L	. 48	11.200	. 431**	-0.021	386.906	. 98	11.287	118	0.066
528.933 L	. 69	11.297	. 418*	0.056*	386.914	. 995	11.248	. 130	0.042
558.708 L	. 54	11.220	. 411*	0.027*	387.010	. 17	11.654	. 260	0.060
558.779 L	. 655	11.281	. 405*	0.079*	409.788	. 80	12.154	. $395 *$	0.013*
558.800 L	. 68	11.292	. 406*	0.041*	428.781	. 505	12.060	. $425 *$	-0.026*
SV Boo		12.545	. 561	0.017	428.810	. 56	12.074	. 425**	0.036*
SV Boo		12.545	. 561	0.017	428.823	. 58	12.086	. 407*	-0.021*
469.906K	. 65	13.448	.393*	0.044*	428.863	. 655	12.101	. $402 *$	0.009*
470.001 K	. 81	13.508	. 447*	0.053*	SS Cnc		10.977	. 444	-0. 024
473.865K	. 46	13.339	. 430*	0.055*					
526.834	. 56	13.378	. 459*	-0.016*	386.895	. 54	12.596	. 501*	0.190*
526.950	. 76	13.440	. 489*	-0.062*	386.976	. 76	12.749	. 501*	0.170*
528.900L	0.11	12.883	0.284	-0.108	387.066	0.005	11.764	0.157	0.188

TABLE 1 (Continued)

$\stackrel{\mathrm{JD}}{\underset{2438000+}{\oplus}}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD}_{\oplus}^{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
SS Cnc (continued)					SZ Cvn		10.390	0.563	0.070
351.965	0.45	12. 501	0.452	0.285	469.880K	0.40	13.113	. 372	0.045
351.980	. 49	12.503	. 461	0.226	469.952K	. 53	13.254	. 428*	0.023*
435.801	. 68	12.694	. 510*	0.246*	470.012K	. 64	13.291	.407*	0.030*
428.833	. 81	12.707	. $542 *$	0.190*	473.969K	. 84	13.298	. 419	0.002
					474.763K	. 28	12.963	. 308	0.072
TT Cnc		11.383	. 179	0.137	498.757	. 935	12.996	. 245	---
351.999	. 92	11.371	. 419	0.031	RV Cap				
432.743	. 23	11.242	. 375	0.099					
432.801	. 34	11.383	. 452	0.075	238.888	. 03	$10.615 \dagger$	-0.013†	$0.068 \dagger$
432.887	. 49	11.572	.484*	0.094*	240.883	. 49	$11.276 \dagger$	$0.430 * \dagger$	$0.017 * \dagger$
432.918	. 54	11.598	. 534*	0.069*	283.786	. 31	$10.952 \dagger$. $263 \dagger$	0.059†
435.850	. 73	11.610	.446*	0.114*					
492.666	. 57	11.578	.494*	0.046*	RV Cet		11.183	. 382	-0.038
492.713	. 65	11.596	. 498*	0.033*	287.920	. 90	10.843	. 326	-0.043
492.777	. 76	11.658	. 445*	0.075*	287.929	. 915	10.804	. 327	-0.017
W Cvn		9. 456	. 448	-0.007	295.911	. 72	11.105	. $400 *$	0.045*
					326.824	. 31	10.874	. 386	0.014
469.888 K	. 90	10.850	. 392	-0. 005	326.913	. 45	10.973	. 450*	0.048*
469.988K	. 08	10.180	. 215	0.150	409.609	. 105	10.630	. 273	0.068
473.957K	. 275	10.518	. 349	0.098					
505.699K	. 80	10.880	. 418 *	0.086*	RX Cet		11.790	. 567	-0.015
506.680K	. 58	10.755	. 468*	0.074*	283.800	. 20	11.208	. 331	-0.010
506.731 K	. 67	10.792†	. $435{ }^{*} \dagger$	0.054* \dagger	283.821	. 24	11.293	. 340	-0.004
506.764K	. 73	10. 809	. 400*	0.077*	286.841	. 50	11.584	. 430 *	0.045*
528.756 L	. 415	10.773	. 445	0.059	328.811	. 655	11.649	. $436 *$	-0.005*
560.736L	. 55	10.785	. $421 *$	0.076*	358.697	. 75	11.731	. 342	$0.043 \dagger$
560.789L	. 645	10. 820	. 430*	0.055*		. 75	11.731	. 34	0.043
Z Cvn		12.115	. 655	0.146	RZ Cet		9. 819	. 347	-0.018
444.787K	. 80	12.191	.390*	0.009*	286.912	. 00	11.244	. 122	0.078
444.905K	. 98	11.574	. 127	0.110	298.889	. 455	11.949	. $412 *$	0.018*
445.015 K	. 15	11.789	. 272	0.092	315.897 315.946	. 76	12.165 12.148	. 401 * $38{ }^{*}$	$0.009 *$ $0.006 *$
474.735K	. 60	12.190	. 407*	-0.036*	315.946 326.815	. 86	12.148 11.486	. $238{ }^{*}$	0.006 0.077
474.775K	. 66	12.206	. 405*	0.011*	326.855	. 225	11.639	. 268	0.040
RR Cvn		12.055	. 585	-0. 009	326.907	. 33	11.789	. 334	---
443.861 K	. 20	12.614	. 321	0.134	UU Cet		10.456	. 536	0.079
443.978 K	. 41	12.928	. 380	0.053	287.811	90	12.136	. 433	-0.083
444.752K	. 80	13.112	. 410*	0.029*	287.822	. 92	12.081	. 358	-0.084
444.874K	. 015	12. 161	. 168	0.203	295.888	. 16	11.899	. 328	-0.012
469.750K	. 545	12.977	. $435 *$	0.068*	295.897	. 17	11.910	. 332	-0.037
473.779K	. 76	13.154	.379*	0.123*	298.837	. 09	11.734	. 218	0.065
493.854	. 70	13.030	.413*	0.053*	367.613	. 57	12.186	. $440 *$	0.053*
SW Cvn		12.582	. 484	-0. 228	367.663	. 65	12.207	. 404*	-0.015*
441.842K	. 40	13.203	.434*	0.059*	S Com		10.167	. 289	0.022
443.869K	. 99	12.294 \dagger	. $084 \dagger$	$0.166 \dagger$	428. 911	. 65	12.009	. 403*	-0.001*
443.956K	. 19	12.967	. 219	0.208	428.944	. 705	12.051	. $392 *$	0.000*
445.011 K	. 575	13.332	.412*	0.038*	428.979	. 765	11.991	.374*	0.047*
473.768K	. 69	13.367	.386*	0.012*	429.005	. 81	12.068	.376*	0.032*
473.816K	. 80	13.444	. $382 *$	0.045*	432.859	. 38	11.801	. 360	0.035
526.770	. 70	13.382	.366*	0.017*	432.927	. 50	11.941	.383*	0.033*
526.800	0.77	13.425	0.321*	0.046*	433.001	0.62	11.977	0.406*	0.017*

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD}_{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD}_{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
S Com (continued)			XZ Cyg (continued)						
440.857 K	0.015	10.935	0.046	0.107	594.748L	0.44	9. 998	0.394*	0.064*
443.839K	. 10	11.173	. 116	0.194	594.785L	. 53	10.090	.415*	0.052*
443.920 K	24	11.525	. 253	0.135	594.820 L	. 60	10.112	.424*	0.056*
443.947K	. 285	11.605	. 281	0.114	594.844 L	. 65	10.110	. $392 *$	0.061*
					594.882L	. 73	10.079	.395*	0.059*
V Com		11.470	. 596	0.072	594.922L	. 81	10.160	. 391 *	0.078*
432.940	. 90	$13.535 \dagger$. $384 \dagger$	-0.046†	594.972L	. 93	9. 492	. 208	0.032
432.949	. 92	13.292	. 224	-0.044	612.772 L	. 075	9. 368	.211	0.201
433.020	. 07	12.954 \dagger	. $085 \dagger$	$0.137 \dagger$	621.674 L	. 15	9.579	. 266	0.160
435.941	. 29	$13.505 \dagger$. $310 \dagger$	$0.022 \dagger$	621.682 L 621.829 L	. 178	9.610 9.951	. 276	0.145 $0.066 *$
436.037	. 50	13.763† \dagger	. $401 * \dagger$	0.064* \dagger	$621.829 L$ 621.872 L	. 588	9.951 10.031	. $416{ }^{*}$	0.066* $0.087 *$
444.897K	. 38	13.579	. 376	0.084	621.872 L 622 L	. 605	10.031 10.036	. 4911 *	$0.087 *$ $0.060 *$
463.791	. 66	13.734	. $396 *$	0.046*	622.818L	. 605	10.036	.411*	0.060*
463.824	. 73	13.770	.384*	0.020*	DM Cyg				
463.838	. 76	13.743	.418*	0.019*			12.551	. 550	0.010
					230.942	. 95	$11.962 \dagger$. $604 \dagger$	---
Z Com		12. 092	. 624	0.003	231.951	. 36	$11.586 \dagger$. $523 \dagger$	$0.236 \dagger$
493.709	. 94	13.884	. 293		255.972	. 55	$11.739 \dagger$. $622 \dagger$	$0.217 \dagger$
493.725	. 97	13.476	. 150		326.709	. 05	$10.965 \dagger$. $246 \dagger$	$0.196 \dagger$
494.700	. 75	14.128	. 450 *		326.772	. 20	$11.296 \dagger$. $374 \dagger$	$0.203 \dagger$
494.713	. 77	14.135	. 469*	---	586.937	. 85	11.988	.585*	0.237*
494.719	. 78	14.168	. 418 *	---	586.968	. 92	11.886	512	0.181
494.730	. 80	14.219	.433*	---	593.893L	. 42	11.468	449	0.231
494.752	. 85	14.238	. 443		619.925	. 42	11.605	.513 .522	0.295 0.271
494.761	. 86	14.267	. 410		622.900L	. 505	11.605 11.722	. $531 *$	0.227*
RY Com		10.331	. 624	0.078	RW Dra		9.548	. 598	0.077
492.727	. 48	12.661	. 410*	0.014*	505.961 K	47	12.009	398*	0.073*
492.814	. 665	12.815	.373*	0.005*	528.959L	. 40	11.836		
492.923	. 90	12. 770	. 352	-0.013	589. 708 L	. 56	12.041	. 413 *	0.108*
493.908	. 00	12.152	. 124	0.033		. 69	12.077	. $418 *$	0.053*
530.770	. 60	12.827	. $405 *$	0.026*	589. 813 L	. 69	12.063	. 391 *	$0.053 *$ $0.065 *$
530.827	. 72	$12.867 \dagger$.398* \dagger	0.091* \dagger	593.743 L	. 67	12.056	. $412 *$	0.014*
UY Cyg		11.241	. 311	0.163	XZ Dra		10.493	572	0.041
577.911	. 73	11.377	. 510*	0.089*	568.753 L				
577.975	. 85	11.428	. 476	0.164	568.827L	. 51	10.462	. 456 *	0.107*
579.827L	. 15	10.756	. 241	0.207	568.894 L	. 65	10.551	469*	0.146*
579.947L	. 36	11.061	. 446	0.110	579.838 L	. 62	10.587	. $474 *$	0.145*
586.907	. 77	11.370	. $455 *$	0.111*	579.897 L	. 74	10.630	. 461 *	0.129*
591.813	. 52	11.237	. 533*	0.136*	57.897	. 74	10.630		0.129
605.888	. 63	11.318	. 496*	0.116*	AE Dra		10.154		
605.946	. 73	11.384	. 500*	0.085*			10.154	536	-0.043
618.775	. 61	11.387	. 464*	0.119*	560.926L	. 15	12.421	. 290	0.135
618.843	. 73	11.401	. 475*	0.119*	560.964L	. 21	12.513	. 371	0.109
619.856	. 54	11.313	. 468*	0.117*	579.850L	. 55	12.874	.412*	0.074*
622.717 L	. 64	11.324	. 516*	0.120*	579.909L	. 65	12.853	. 431*	0.078*
622.727 L	. 66	11.365	.483*	0.114*	593.731 L	. 58	12.789	. 475*	-0.022
622.745 L	. 69	11.321	. 515*	0.091*	593.776L	. 66	12.823	.446*	0.113*
622.781 L	. 76	11.350	.489*	0.080*	593.828L	. 74	12.894	.483*	0.172
XZ Cyg		10. 912	. 214	0.189	RX Eri		8. 277	. 493	0.003
594.704 L	. 35	9. 865	. 367	0.099	386.740	. 02	9.276	. 246	0.125
594.713 L	0.37	9. 879	0.384	0.094	386.818	0.15	9. 545	0.328	0.078

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD} \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\stackrel{\mathrm{JD}}{\oplus} \underset{2438000+}{ }$	Phase (Per.)	V	B-V	U-B
RX Eri (continued)			RR Gem (continued)						
386.863	0.23	9.658	0.390	0.083	426.763	0.27	11.446	0.444	0.215
410.648	. 73	10.007	. $472 *$	0.025*	426.788	. 335	11.536	. 476	0.208
431.683	. 55	9. 896	. 510*	0.066*	426.797	. 36	11.550	. 495	0.200
440.645K	. 81	10. 071	.480*	0.088*	426.811	. 40	11.576	. 472	0.162
441.650K	. 52	9. $859 \dagger$. $477 * \dagger$	0.098* \dagger	426.832	. 45	11.592	. 498	0.187
444.633 K	. 60	9. 929	. 467*	0.097*	426.843	. 475	11.615	. 507	0.202
					426.854	. 50	11.682	.495*	0.196*
SV Eri		11.325	. 523	0.047	$\begin{aligned} & 426.864 \\ & 426.874 \end{aligned}$. 53	11.701	. 501*	0.210*
		9.631	. 303			. 555	11.687	. 521*	0.196*
315.874	. 95	9. 961	. 278	0.104	426.883	. 575	11.698	. 515*	0.205*
315.925	. 02	9. 559	. 267	0.087	431.709	. 63	11.6915	. $525 *$	0.238*
326.786	. 24	9. 900	. 320	0.046	431.720	. 77	11.805	. $567 *$	0.177*
326.836	. 31	9. 959	. 377	0.065	431.752	. 84	11.806	. 490	0.137
326.924	. 43	10. 083	. 437	-0.002	431.811	. 98	10.743	. 146	0.177
410.634	. 71	10. 231	. 452 *	-0.013*	431.811	. 98	10.743	. 146	0.17
410.659	. 745	10. 201	.435*	-0.011*	AK Gem		14.066	. 339	0.166
UZ Eri		9. 838	. 424	-0.058	432.650	. 60	13.842	. 587*	0.176
298.947	. 97	12. 408	. 193	0.086	432.714	. 72	13.976	. $534 *$	0.290
315.939	. 17	12.632	. 299	0.058	432.778	. 84	14.130	. 573 *	0.072
326.885	. 045	12.337	. 197	0.083	432.874	. 025	13.326	. $275 \dagger$	$0.195 \dagger$
326.942	. 13	12.565	. 244	0.103	435.659 435.732	. 29	13. 480	. 348	-0.010
351.748	. 37	12.978	. 445	0.020	435. 732		13.814		
351.804	. 46	13.266	. 400	-0.009	GI Gem				
351.817	. 48	13.199	. 435	-0.009					
409.623	. 60	13.153	. $481 *$	-0.001*	351.934	. 61	$13.253 \dagger$. $449 * \dagger$	0.137* \dagger
409.633	. 62	13.163	. $480 *$	0.024*	351.955	. 66	$13.333 \dagger$. 441 * \dagger	0.016* \dagger
409.704	. 73	13.181	. 453*	0.010*	409.748	. 05	$12.389 \dagger$. $182 \dagger$	$0.138 \dagger$
					409.756	. 07	12.459 \dagger	. $194 \dagger$	$0.173 \dagger$
BB Eri		13.051	. 462	-0.066	431.740	. 81	$13.458 \dagger$. 482* \dagger	$0.093 * \dagger$
426.708	. 65	11.741			431.784	. 91	$13.351 \dagger$. $561 \dagger$	$0.037 \dagger$
426.723	. 675	11.700	. $423 *$		428.764	. 94	$13.099 \dagger$. $309 \dagger$	$0.039 \dagger$
431.618	. 26	11.433	. 332	0.016	428.766	. 945	$12.948 \dagger$. $335 \dagger$	$-0.023 \dagger$
431.654	. 33	11.578	. 366	0.039	428.774	. 96	12.732 \dagger	- $210 \dagger$ ¢ ${ }^{\text {¢ }}$	0.061 \dagger
432.620	. 02	11.066	. 115	0.051	441.693 K	. 78		. $5741 * \dagger$	$0.2114{ }^{*} \dagger$ 0.14
432.729	. 215	11.422	. 317	0.038	441.748 K	. 91	$13.390 \dagger$. $475 \dagger$	$0.156 \dagger$
435.718	. 46	11.655	. $405 *$	0.039*	444.695 K	. 80	13.402†	. $421 * \dagger$	0. $224 *$ +
441.605K	. 79	11.773	. $415 *$	0.052*	444.695K	. 80	$13.402 \dagger$. 421	0. 224 +
441.659K	. 88	11.762	. 398	-0.018	TW Her		10.554	. 266	-0.004
443.654 K	. 38	11.597	. 406	0.031			10.554		-0.004
					240.719	. 36	11.548	. 426	0.142
BK Eri		8.138	. 507	-0.105	243.718	. 86	10.570	. 105	0.091
286.934	. 95	12.214	. 212	-0.005	275.747	. 015	10.942	. 197	0.192
286.941	. 965	12.095	. 174	-0.038	275.757	. 04	10.993	. 248	0.178
287.004	. 15	12.200	. 184	0.186	275.796	. 14	11.195	. 341	0.127
261.010	. 16	12. 237	. 198	0.180	275.802	. 62	11.233	. 445 *	0.179*
298.904	. 765	12. 962	. $405 *$	-0.086*	558.948L	. 725	11.812	. $460 *$	0.221*
326.800	. 565	12. 931	. $395 *$	-0.026*	577.747	. 77	11.824	. $439 *$	0.084
328.844	. 34	12.837	. 443	-0.044	577.827	. 97	10.801	. 188	0.200
					591.704	. 70	11.790	.481*	0.151*
RR Gem		10. 273	. 370	-0.024	592.826	. 505	11.628	. $470 *$	0.164*
327.020	. 20	11.353	. 399	0.191					
426.753	0.25	11.410	0.427	0.207	VX Her		10.711	0.584	0.044

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD}_{\oplus} \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD}_{\oplus}^{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
VX Her (continued)					CE Her				
230.800	0.025	9. $937 \dagger$	$0.113 \dagger$	$0.105 \dagger$	231.765	0.25	$12.302 \dagger$	$0.393 \dagger$	$0.120 \dagger$
231.752	. 115	$10.314 \dagger$. $180 \dagger$	$0.160 \dagger$	238.734	. 01	$11.658 \dagger$.155 \dagger	$0.173 \dagger$
234.713	. 62	11.108	. 465	0.007	287.697	. 51	$12.689 \dagger$	513* \dagger	0.023* \dagger
238.718	. 41	10.817	. 393	0.093	298.642	. 55	$12.688 \dagger$. $500 * \dagger$	0.079* \dagger
255.797	. 92	10.948	. 372	0.021	326.613	. 68	12.722†	488* \dagger	$-0.010 * \dagger$
263.721	. 32	10. 793	. 382	0.047					
568.722L	. 105	10.315	. 199	0.218	EE Her		11.405	. 653	0.146
568.734 L	. 13	10.404	. 225	0.212	527.936	. 75	13.549†	. 489*†	0.111* \dagger
568.800L	. 28	10.740	. 325	0.147	527.936	. 78	$13.549 \dagger$. 463 *	0.101*
568.877L	. 445	11.025	. 406	0.060	530.811	. 55	13.619 13.462	. 453 *	0.121*
575.749 L	. 54	$11.111 \dagger$. $443 * \dagger$	$0.066 * \dagger$	587.802	. 56	13.430	. 485 *	0.103*
575.778 L	. 60	11.163	. 418*	0.090*	587.802	. 56	13.430	. 485	$0.10{ }^{*}$
575.809L	. 67	$11.085 \dagger$. $438 * \dagger$	0.066* \dagger					-0.036
575.847 L	. 75	11.115	. 408*	0.077*	EP Her		11.044	. 483	-0.036
579.705L	. 225	10.650	. 309	0.171	585.802	. 95	13.189	---	---
591.745	. 665	11.116	. $434 *$	0.071*	585.812	. 97	12.751	. 152	0.067
					585.818	. 99	12.438	. 115	0.097
VZ Her		10.947	. 510	0.050	587.765	. 56	13.542	.493*	0.065*
547.756L	. 40	11.753	. 351	$0.092 \dagger$	587.816	. 68	13.537	. 432*	0.046*
577.767	. 555	11.887	. 433 *	0.066*	593.790 L	. 71	13.449	. 486 *	0.149*
577.818	. 67	11.891	. $399 *$	0.079*	619.695	. 56	13.537	475*	0.072*
577.860	. 77	11.910	. 381 *	0.040*	619.777	. 63	13.534	. $461{ }^{*}$	0.090*
577.892	. 84	12.035	. 360	0.017		755	13.544	. $444 *$	0.113
577.931	. 93	11.311	---		OS Her		10.799	. 676	0.186
577.934	. 94	11.171	. 136	0.050					
577.942	. 95	10.843	. 065	0.075	585.851	. 02	13.256	. 121	0.186
577.945	. 96	10.753	. 073	0.065	585.861	. 055	13.346	. 143	0.177
577.949	. 97	10.716	. 059	0.056	585.895	. 13	13.623	. 230	0.215
582.741	. 85	12.007	. 404	0.077	586.840	. 51	14.270	443*	0.057
582.772	. 92	11.474	. 238	-0.031	586.887	. 64	14.235	.471*	---
592.703	. 48	11.861	. 420 *	0.071*	587.736	. 775	14.356	. $474 *$	0.173*
592.765	. 62	11.901	.417*	0.053*	619.711	. 49	14.219	. 392	0.181*
592.808	. 71	11.919	. $416 *$	0.032*	619.745	. 58	14.223	. 470*	0.171*
592.842	. 79	11.908	.414*	0.073*	619.806	. 73	14.307	. 522 *	0.173*
AR Her		9.886	. 498	-0.001	OX Her		9. 920	.759	0.224
506.884K	. 90	11.294	. 284	-0.019	580.757	. 90	13.172	. 441	0.025
506.929 K	. 995	10.592	. 074	0.074	580.804	. 96	12.875	. 372	0.036
528.829 L	. 59	11.553	. $382 *$	0.009*	582.821	. 625	13.252	. 453*	-0.003*
528.879 L	. 70	11.600	.333*	0.009*	582.897	. 725	13.287	434*	0.021*
528.924 L	. 79	11.524	. $327 *$	0.010*	582.947	. 79	13.351	. $433 *$	0.023*
526.907	. 50	11.534	. 350 *	0.006*					
560.777 L	. 56	11.504	. 375 *	0.042*	RR Leo		10.400	. 090	0.105
560.814 L	. 64	11.570	. 350 *	0.067*	440.698K	. 80	11.125	.422*	0.062*
BD Her		11.391	. 539	0.114	440.738 K	. 89	11.248	. 392	0.104
BD Her					441.704K	. 02	9. 949	. 113	0.150
585.918	. 90	12.547	. 593	0.131	441.795 K	. 22	10.620	. 252	0.159
585.934	. 935	12.180	. 432	0.195	441.891 K	. 435	$10.976 \dagger$. $413 \dagger$	$0.099 \dagger$
585.938	. 945	12.089	. 435	0.187	444.688K	. 62	11.125	. 406*	0.104*
586.731	. 61	12.584	.654*	0.197*	RX Leo		11.792	425	-0.041
586.802	. 76	12.692	.612*	0.259*	RX Leo		11.792		-0.041
592.879	. 59	12.539	.643*	0.272*	443.766K	. 15	11.727	. 309	0.098
612.761 L	. 54	12.451	. 614*	0.259*	443.877 K	. 32	11.895	. 418	0.103
621.765 L	0.54	12.457	0.609*	0.325*	444.007K	0.52	12.092	0.449*	0.060*

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD}_{\oplus}^{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD}_{\oplus}^{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
RX Leo (continued)					V Lmi		10.533	0.439	-0.070
444.796K	0.725	12.178	0.458*	0.054*	440.729K	0.95	11.517	. 211	0.010
444.918K	. 91	12.002	. 351	0.047	440.841 K	. 16	11.538	. 191	0.162
489.815	. 625	12.094	.461*	0.033*	441.718 K	. 77	12.118	. $416 * \dagger$	0.056* \dagger
489.860	. 69	12.149	.448*	0.076*	444.717K	. 28	11.750	. 309	0.123
491.730	. 55	12.094	. 438*	0.067*	444.833 K	. 495	12.069	. 382 *	0.055*
491.865	. 76	12.212	. 475*	0.031*	469.698K	. 21	11.646	. 248	0.135
					469.804K	. 405	11.938	. 394	0.082
SS Leo					474.629 K	. 275	11.749	. 274	0.146
449. 811	. 91	$11.356 \dagger$. $359 \dagger$	-0.037†	474.638 K	. 29	11.776	. 319	0.098
449.870	. 00	$10.413 \dagger$. $098 \dagger$	$0.096 \dagger$	474.661 K	. 33	11.866	. 364	0.076
449.963	. 14	$10.813 \dagger$. $219 \dagger$	$0.107 \dagger$	473.688 K	. 545	12.095	.395*	0.050*
463.847	. 315	$11.111 \dagger$. $331 \dagger$	$0.034 \dagger$	473.709K	. 585	12.085	. $412 *$	0.054*
474.693 K	. 725	$11.380 \dagger$. $397 * \dagger$	0.012* \dagger	473.721K	. 605	12.096	. 420 *	0.040*
474.719 K	. 77	$11.464 \dagger$. $403 * \dagger$	-0.021* \dagger	Y Lmi		12.332	. 570	0.044
474.785K	. 87	$11.511 \dagger$. $396 \dagger$	$0.005 \dagger$					
492.695	. 37	$11.160 \dagger$. $386 \dagger$	$0.039 \dagger$	440.720 K	. 115	12.490	. 255	0.135
506.651 K	. 75	$11.364 \dagger$. $427 * \dagger$	0.054* \dagger	440.827 K	. 315	12.896	. 420	0.042
506.711 K	. 78	$11.403 \dagger$. $386 * \dagger$	$0.050 * \dagger$	444.761K	. 86	13.015	. 332	0.006
					443.699 K	. 795	13.069	.401*	-0.020*
ST Leo		11.290	. 473	-0.064	469.659K	. 29	12.809	. 376	0.081
469.736K	. 78	11.926	. 368*	0.117*	469.708K	. 40	12.951	. 393	0.016
469.842K	. 00	10.772	. 081	0.130	469.761 K	. 49	13.007	. $441 *$	0.054*
469.929K	. 18	11.296	. 269	0.176	469.795 K	. 55	13.068	.430*	-0.025*
474.753K	. 275	11.481	. 368	0.116	489.828	. 75	12.997	.347*	-0.067*
473.854 K	. 395	11.739	. 387	0.118					
473.899K	. 49	11.833	. 441 *	0.092*	TT Lyn		10.933	. 319	0.019
489.791	. 74	11.907	.411*	0.055*	440.689K	. 08	9.517	. 247	0.128
491.713	. 76	11.914	.393*	0.044*	440.747K	. 18	9.670	. 310	0.107
					441.680 K	. 74	10.051	. $415 *$	0.005*
SU Leo		12.817	. 527	-0.005	441.743K	. 84	10.165	. 427	0.071
386.938	. 50	13.835	.399*	0.050*	443.797K	. 28	9. 779	. 369	0.115
435.750	. 86	13. 948	.404*	-0.021*	443.850K	. 37	9. 894	. 432	0.088
435.836	. 04	12. 805	. 024	0.054	463.722	. 635	10.061	.435*	0.035*
435.912	. 20	13.254	. 190	0.130	463.734	. 655	10.062	.439*	0.025*
435.991	. 365	13.633	. 305	0.114	463.749	. 68	10.047	.432*	0.032*
441.785 K	. 64	13. 942	. 429*	0.098*	463.759	. 70	10.044	. 435*	0.036*
441.882K	. 85	13.988	.378*	-0.008*	469.615K	. 50	10.023	. 448*	0.035*
					469.640K	. 54	10.029	.468*	0.030*
WW Leo		12. 202	. 504	-0.051	RZ Lyr		9.800	. 166	0.160
386.925	. 32	12.593	. 472	0.057					
428.881	. 94	12.348	. 292	0.029	587.911	. 115	11.519	. 320	0.158 0.154
432.845	. 52	12.739	.498*	0.068*	587.970	. 23	11.559	. 365	0.176
432.988	. 75	12.840	. 481 *	0.034*	589.741 L	. 69	12.016	. 451 *	
469.625 K	. 55	12.765	.472*	0.063*	589. 868L	. 94	11.366	. 223	0.034*
469.650K	. 59	12.816	. $396 *$	0.125*	592.745	. 57	11.968	. $444{ }^{*}$	0.161 $0.084 *$
					592.791	. 66	12.032	.446*	0.055*
AA Leo		11.299	. 476	-0.057	592.849	. 77	12.008	.424*	0.034*
443.900K	. 40	12.520	. 426	0.092	593.839L	. 72	11.971	.440*	0.091*
443.968K	. 515	12.624	.430*	0.046*	594.725L	. 44	11.875	.470*	0.051*
444.737K	. 80	12.869	.426*	0.096*					
444.855K	. 00	11.734	. 139	0.154	AQ Lyr				
444.967K	. 18	12.259	. 305	0.071	231.845	. 92	$13.315 \dagger$. $428 \dagger$	$0.197 \dagger$
491.758	. 34	12.483	. 404	0.042	231.875	. 00	$12.486 \dagger$. $247 \dagger$	$0.176 \dagger$
526.688	. 69	12.688	.436*	0.013*	238.845	. 52	$13.250 \dagger$. $560 * \dagger$	0.172* \dagger
526.709	0.725	12.715	0.449*	0.052*	238.872	0.59	$13.219 \dagger$	0.548* \dagger	0.249* \dagger

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD}_{\oplus}^{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	
AQ Lyr (continued)			445 Oph (continued)							
255.742	0.83	$13.514 \dagger$	0.560* \dagger	0.237* \dagger	575.716L	0.30	11.030	0.612	0.377	
263.739	. 22	$12.879 \dagger$. $415 \dagger$	$0.256 \dagger$	575.731 L	. 335	11.017	. 645	0.418	
263.825	. 45	13.216†	. $574 * \dagger$	$0.253 * \dagger$	575.761L	. 41	11.088	. 700	0.424	
					575.799L	. 51	11.183	.739*	0.465*	
CX Lyr		10.595	. 468	-0.046	575.831 L	. 59	11.242	. 731*	0.445*	
240.818	. 46	13.074	. 579	0.153	$\begin{aligned} & 587.747 \\ & 587.795 \end{aligned}$. 60	11.236	. 706*	0.375*	
243.785	. 275	12.714	. 427	0.278		. 72	11.315	. 760 *	0.382*	
255.781	. 73	13.127†	. $564 \dagger$	$0.043 \dagger$	$\begin{aligned} & 587.795 \\ & 592.712 \end{aligned}$	$\begin{array}{r} .11 \\ . .63 \end{array}$	$\begin{aligned} & 10.658 \\ & 11.253 \end{aligned}$	$\begin{aligned} & .472 \\ & .735^{*} \end{aligned}$	$\begin{aligned} & 0.368 \\ & 0.370^{*} \end{aligned}$	
283.699	. 00	12.145	. 329	0.246	$\begin{aligned} & 592.712 \\ & 593.714 \mathrm{~L} \end{aligned}$					
283.705	. 01	12. 204	. 355	0.268	452 Oph		11.958	. 684	0.145	
582.802	. 03	12.248	. 309	0.257						
582.914	. 21	12.728	. 441	0.251	231.730	. 185	$12.023 \dagger$. $409 \dagger$	$0.218 \dagger$	
582.966	. 295	12.895	. 507	0.191	240.774	. 42	$12.333 \dagger$. $580 \dagger$	$0.128 \dagger$	
586.774	. 47	13.077	. 571	0.148	276.730	. 95	$12.559 \dagger$. $579 \dagger$	-0.041 \dagger	
586.873	. 63	13.171	. 569*	0.127*	286.708	. 86	$12.525 \dagger$. $612 \dagger$	$0.088 \dagger$	
591.796	. 615	13.162	. $594 *$	0.145*	579.756L	. 82	12.480	. 595*	0.205*	
					579.872L	. 02	11.685	. 297	0.308	
10 Lyr		11.296	. 482	-0.039	580.700L	. 51	12.421	.608*	0.201*	
558.927L	. 30	11.826	. 433	0.146	580.769L	. 64	12.456	. 662 *	0.178*	
558.967 L	. 37	11.937	. 424	0.134	585.727	. 535	12.504	.603*	0. 202*	
560.800 L	. 55	12.041	. $464 *$	0.124*	589.730 L	. 72	12.504	.651*	0.168*	
560.893 L	. 71	12. 092	. 470*	0.080*	591.826	. 48	12.472	.601*	0.204*	
560.952 L	. 81	12. 225	. 458*	0.102*	CM Ori		12.311	. 493	-0.032	
KX Lyr		7. 260	. 502	-0.055	326.970	. 00	12.134	. 368	0.294	
560.940L	. 37	11.111	. 406	0.201	326.980	. 015	12.151	. 365	0.355	
568.740 L	. 06	10.489	. 157	0.245	375.832	. 50	12. 862	.623*	0.171*	
568.813 L	. 22	10. 907	. 315	0.266	409.728	. 175	12. 494	. 527	0.222	
568.887L	. 39	11.102	. 465	0.209	431.641	585	13.002	.657**	0.145*	
568.909L	. 44	11.197	. 435	0.194	431.797	. 82	13.167	.686*	0.136*	
593.701 L	. 67	11.368	. $514 *$	0.169*						
612.695 L	. 75	11.422	. $475 *$	0.155*	VV Peg		12.271	. 666	0.113	
612.729 L	. 83	11.466	. $466 *$	0.142*						
621.710 L	. 195	10.793	. 269	0.280	240.975	. 28	$11.997 \dagger$. $420 \dagger$	-0.016†	
622.756 L	. 57	11.321	. 475*	0.153*	255.982	. 01	11.496†	. $153 \dagger$	$0.165 \dagger$	
622.794 L	. 66	11.368	. 478*	0.161*	294.794	. 48	12.237	.411*	-0.007*	
622.837 L	. 75	11.429	. 480*	0.175*	294.810	. 515	12.243	. 427*	0.007*	
					298.783	. 65	12.213	. 417*	-0.045*	
ST Oph		9. 579	. 525	0.112	298.862	. 81	12.142	. $415 *$	-0.009*	
231.778	. 41	$12.350 \dagger$. $593 \dagger$	$0.232 \dagger$	589.926L	. 79	12.279	. 421*	-0.008*	
234.747	. 005	$11.338 \dagger$. $271 \dagger$	$0.302 \dagger$	592.959	. 00	11.413	. 160	0.184	
238.778	. 955	$12.127 \dagger$. $555 \dagger$	$0.151 \dagger$	605.902	. 505	12.243	.447*	0.064*	
255.813	. 78	$12.513 \dagger$. $683 \dagger$	$0.302 \dagger$	AE Peg		11.398	. 696	0. 275	
263.699	. 29	$12.142 \dagger$. $509 \dagger$	$0.246 \dagger$	AE Peg		11.398			
579.718L	. 00	11.328	. 287	0.225	240.965	. 80	13.078	. 414*	0.049*	
579.770L	. 115	$11.673 \dagger$. $402 \dagger$	$0.351 \dagger$	243.833	. 57	13.101	.468*	-0.079	
579.861 L	. 32	12.169	. 574	0.263	263.953	. 08	12.368	. 259	0.162	
582.748	. 73	12.557	.615*	0.184*	286.897	. 27	12.808	. 435	0.023	
582.778	. 795	12.543	.608*	0.168*	315.791	. 43	13.076	. $438 *$	0.007*	
586.718	. 54	12.532	. 650 *	0.168*						
586.788	. 70	12.514	.609*	0.227*	AO Peg		10.271	. 392	0.032	
587.728	. 785	12.535	.606*	0.209*						
					286.675	. 40	13.073	. 503	0.053	
445 Oph		11.377	0.786	0.201	286.829	0.68	13.142	0.471*	0.030*	

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD}_{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD}_{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
AO Peg (continued)			AR Per (continued)						
287.679	0.23	12. 897	0.392	0.124	409.671	0.915	10.525	0.670	0.265
298.800	. 56	13.139	. 508*	0.071*	409.679	. 935	10.309	. 586	0.245
376.664	. 84	13.348	. 449*	0.119*	367.752	. 41	10.576	. 738	0.372
					367.797	. 515	10.645	. 781*	0.303*
AV Peg		9.345	. 653	0.120	440.606K	. 61	10.671	. $758 *$	0.392*
605.795	. 10	10.173	. 311	0.240	440.666K	. 75	10. 802	. $770 *$	0.395*
605.805	. 125	10.256	. 315	0.233	443.677K	. 82	10.847	. 789*	0.354*
605.957	. 515	10. 724	. $484 *$	0.176*	334.825 334.834	. 03	9.953	. 484	0.342
618.868	. 59	10.789†	. $509 * \dagger$	0.212* \dagger	334.834 334	. 05	10.014	. 498	0.356
619.786	. 94	9. 975	. 186	0.152	334.861	. 11	10.172	. 547	0.359
619.795	. 96	9. 875	. 187	0.184	334.870 334 885	14	10.219 10.281	. 515	0.357 0.348
622.736 L	. 495	10.688	. 505*	0.232*	334.885 334.900	. 17	10.281 10.316	. 615	0.348 0.327
622.772 L	. 585	10.744	. 521*	$0.241 *$	334.910	. 23	10.353	. 688	0.327 0.339
622.809 L	. 68	10. 801	. 532*	0.253*	3344.919	. 25	10.422	. 6681	0.339 0.368
622.845 L	. 775	10.906	. 539*	0.224*	334.919		10.422		
BF Peg		12.024	. 555	0.074	RY Psc		10.734	. 713	0.070
287.725	. 00	12.343	. 226	0.114	328.779	. 83	12.641	. 448 *	-0.003
287.740	. 03	12.330	. 279	0.130	328.869	. 00	12.024	. 233	0.280
287.863	. 28	12.822	. 397	0.108	286.865	. 71	12.551	. $464 *$	0.125
294.739	. 145	12.635	. 293	0.106	287.777	. 43	12.507	. 408	0.242
294.752	. 17	12.689	. 329	0.087	298.827	. 29	12.444	. 375	-0.132
294.821	. 31	12.904	. 432	0.060	VY Ser				
294.829	. 325	12.941	. 401	0.095	VY Ser		8. 442	. 505	0.043
315.800	. 625	13.074	.440*	0.077*	488.933	. 85	10.522	. 430*	0.002*
315.884	. 69	12.990	.428*	-0.025*	488.980	. 915	10.462	. 432	-0.010
					489.898	. 20	9.954	. 326	0.058
CG Peg		11.086	. 489	0.043	491.952	. 08	9.747	. 251	0.089
231.916	. 59	$11.385 \dagger$. $542 \dagger$	$0.235 \dagger$	492. 938	. 46	10.221	. 449*	0.039*
240.913	. 85	$11.557 \dagger$	$\stackrel{.}{ } 576 \dagger$	$0.129 \dagger$	505.907K	. 62	10.358	. $422 *$	0.063*
243.947	. 34	$11.214 \dagger$. $467 \dagger$	$0.192 \dagger$	505.939K	. 665	10.346	.450*	0.033*
589.888L	. 895	11.468	. 497	0.133			10.682	. 637	0.187
589.900L	. 92	11.269	. 429	0.068	AN Ser		11.348	. 465	0.032
593.913 L	. 51	11.314	. 546*	0.189*					
593.955 L	. 60	11.447	. $502 *$	0.212*	489. 913	. 12	10.706	. 341	0.199
594.955L	. 74	11.452	. $531 *$	0.190*	489.997	. 28	10.953	457	0.143
618.763 L	. 71	11.433	. $545 *$	0.195*	491.941	. 005	10.496	. 212	0.237
622.863 L	. 48	11.300	. $526 *$	0.199*	493.920	. 795	11.440	. $534 *$	0.268*
622.888 L	. 54	11.339	. $547 *$	0.196*	505.820 K	. 59	11.298	. 508*	0.296*
622.912 L	. 59	11.360	. $543 *$	0.157*	527.782	. 655	11.348	. 568*	$0.251 *$
					527.814	. 72	11.398	. $554 *$	0.270*
DZ Peg		11.446	. 457	-0.019	AT Ser		10.003	. 477	-0.095
287.714	. 73	12.277	. 437*	0.060*	530.917	. 09	11.095	. 200	0.070
287.872	. 99	11.304	. 113	0.089	530.931	. 11	11.123	. 223	0.089
287.904	. 04	11.422	. 112	0.117	547.715 L	. 59	11.685	. 451 *	0.046*
326.641	. 82	12.429	. 453*	0.021*	558.885 L	. 55	11.684		
328.763	. 32	11.989	. 365	0.101	558.885 L	. 76	11.684	.434*	0.051*
351.663	. 02	11.311	. 108	0.101	577.703	. 76	11.738	. 443 *	0.072*
351.672	. 04	11.344	. 126	0.095	577.734	. 80	11.873	. $422 *$	0.032*
AR Per		8.691	. 515	-0. 013	AV Ser		11.656	. 646	0.120
364.713	. 27	10. 414	. 692	0.307	530.886	. 15	11.246	. 343	0.218
409.669	0.91	10.591	0.668	0.272	530.898	0.175	11.307	0.376	0.195

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD}_{\oplus} \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD} \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
AV Ser (continued)			RV Uma (continued)						
558.849L	0.50	11.761	0.531*	0.218*	506.864K	0.23	10.765	0.311	0.078
558.859L	. 52	11.822	. 516*	0.214*	506.896K	. 295	10.830	. 342	0.064
560.754L	. 41	11.640	. 505*	0.226*	506.935K	. 38	10.946	. 373	0.061
560.877L	. 66	11.852	. 532*	0.167*					
					TU Uma		8.941	. 558	0.067
AW Ser		11.957	. 447	-0.109	449.761	. 56	10.112	.412*	0.010*
527.904	. 02	12.386	. 178	0.117	449.771	. 58	10.098	. 426*	0.043*
527.918	. 045	12. 480	. 178	0.130	449.794	. 62	10.103	. 409*	-0.004*
530.791	. 855	12.998	. 319	-0.027	449.844	. 71	10.145	. 413*	0.028*
577.722	. 45	13.150	. $417 *$	0.021*	449.897	. 805	10.208	. 412 *	0.000*
577.792	. 57	13.205	. 435*	0.025*	450.006	. 00	9.388	. 222	0.077
589.754L	. 60	13.213	. $461 *$	0.046*	469.671 K	. 26	9.904	. 365	0.066
					469.730 K	. 37	10.011	. $422 \dagger$	$0.072 \dagger$
CS Ser		12.309	. 512	-0.064	474.650K	. 19	9.796	. 326	0.069
491.991	. 85	12.791	. 420	-0.057	474.670K	. 23	9. 835	. 360	0.064
493.891	. 455	12.715	. 489	-0.017	474.708K	. 30	9.920	. 399	0.059
493.975	. 61	12. 811	.392*	0.038*	UU Vir				0.038
505.803 K	. 06	12. 131	. 183	0.088			11.604	. 531	
505.890K	. 22	12.433	. 365	0.077	449.831	. 23	10.706	. 361	0.120
505.975K	. 385	12.683	. 400	0.039	449.881	. 34	10.838	. 395	0.112
527.756	. 715	12.717	. 422*	0.067*	449.986	. 55	10.923	. 410*	0.095*
527.795	. 79	12.738	. 352	-0.041	491.897	. 68	11.022	. $389 *$	---
547.732L	. 62	12.682	. 441 *	0.002*	505.667	. 63	10.938	. 410 *	0.088*
558.832L	. 685	12.718	.389*	0.017*	505.736 K	. 775	10.972	. 427	0.046*
					505.841 K	. 00	10.249	. 194	0.169
SS Tau		11.486	. 576	0.044					
375.783	. 76	12.977	.682*	0.320*	UV Vir		11.756	. 419	-0.022
375.812	. 84	12.986	. 668	0.266	435.929	. 32	11.884	. 377	0.099
375.841	. 92	12.757	. 498	0.264	436.006	. 45	12.066	. 406	0.076
375.843	. 925	12.703	. 459	0.174	441.870K	. 44	12.081	. 369	0.098
375.851	. 945	12.337	. 382	0.270	443.887 K	. 875	12.261	. 388	0.076
376.673	. 17	12.308	. 520	0.338	435.988K	. 05	11.350	. 109	0.145
376.725	. 31	12.680	. 542	0.332	444.949K	. 685	12.240	.427*	0.072*
376.744	. 36	12.740	. 602	0.397	473.790K	. 81	12.354	.387*	0.087*
376.772	. 44	12.795	. 597	0.332	491.881	. 63	12.203†	. $384 * \dagger$	$0.044 * \dagger$
386.683	. 22	12. 522	. 518	0.336	493.736	. 785	12.284	. 426*	0.058*
386.693	. 25	12.570	. 538	0.343	527.691	. 62	12.186	. $435 *$	0.070*
386.713	. 30	12.699	. 570	0.256					
386.746	. 395	12.787	. 604	0.270	AS Vir		11.684	. 404	-0.021
386.804	. 55	12.949	.681*	0.228*	435.955	. 935	11.813	. 265	0.023
U Tri					436.019	. 05	11.618	. 203	0.088
U Tri					488.891	. 59	12.120	.432*	---
286.780	. 70	12. $966 \dagger$. $445{ }^{*} \dagger$	$0.158 * \dagger$	491.800	. 845	12.222	. 398	0.025
286.803	. 75	13.042 \dagger	. 482 * \dagger	0.199* \dagger	492.827	. 70	12.186	. 388 *	0.057*
286.959	. 10	$12.187 \dagger$. $123 \dagger$	$0.177 \dagger$	528.710 L	. 65	12.159	.426*	0.060*
287.789	. 95	$12.816 \dagger$. $356 \dagger$	$0.055 \dagger$	528.770L	. 76	12.148	.440*	0.027*
287.791	. 96	$12.718 \dagger$. $383 \dagger$	$0.085 \dagger$	AT Vir		11.675	. 452	-0.056
287.800	. 98	$12.516 \dagger$. $237 \dagger$	$0.063 \dagger$					
287.802	. 99	$12.418 \dagger$. $226 \dagger$	-0.008 \dagger					
287.972	. 55	$12.756 \dagger$. $419 * \dagger$	$0.153 * \dagger$	492.765 492.838	. 34	11.427 11.686	.361 .373	0.027 0.073
386.793	. 315	$12.718 \dagger$. $376 \dagger$	$0.161 \dagger$	492.909	. 575	11.730	. $438 *$	-0.006*
RV Uma		10. 301	. 675	0.173	505.677K	. 86	11.775	. 407*	0.057*
RV Uma		10.301	. 675	0.173	505.745K	. 985	10.725	. 101	0.112
506.757K	. 00	10.371	. 148	0.150	506.691K	. 785	11.715	. $346 *$	0.077*
506.819K	0.13	10.621	0. 260	0.121	506.722K	0.845	11.819	0.380*	0.034*

TABLE 1 (Continued)

$\begin{gathered} \mathrm{JD} \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B	$\begin{gathered} \mathrm{JD} \oplus \oplus \\ 2438000+ \end{gathered}$	Phase (Per.)	V	B-V	U-B
AT Vir (continued)					BN Vul (continued)				
528.743 L	0.725	11.673	0.372*	0.026*	276.750	0.125	$10.711 \dagger$	$0.698 \dagger$	$0.265 \dagger$
530.752	. 545	11.732	.444*	0.002*	577.840	. 90	11.364	. 809	0.301
					577.852	. 92	11.163	. 758	0.263
BC Vir		11.708	. 525	-0.004	575.874L	. 59	$11.249 \dagger$. $842 * \dagger$	$0.337 * \dagger$
527.714	. 10	12.019	. 227	0.078	579.929L	. 415	$11.119 \dagger$. $924 \dagger$	$0.391 \dagger$
527.770	. 20	12.190	. 340	0.029	579.957L	. 46	11.185	. 824	0.330
547.705 L	. 51	12.460	. 403 *	0.109*	591.840	. 46	11.179	. 859	0.364
560.713 L	. 56	12.487	. $434 *$	0.067*	612.718 612.811 L	. 605	11.257 11.300	. 8532^{*}	0.314^{*} $0.330 *$
BN Vul		10.579	. 553	0.072	618.684	. 645	11.288	. 869*	0.326*
BN Vul		10.579	. 553	0.072	618.735	. 73	11.303	. 827*	0.338*
230.879	. 92	10.875 \dagger	. $864 \dagger$	---	621.722 L	. 76	11.298	. 839*	0.338*
231.820	. 50	$11.228 \dagger$. $862 \dagger$	$0.301 \dagger$	621.754 L	. 81	11.361	. 856*	0.362*
234.843	. 59	$11.252 \dagger$. $899 \dagger$	$0.294 \dagger$	621.782 L	. 86	11.397	. 850	0.347
238.816	. 28	10.960 \dagger	. 834†	$0.288 \dagger$	622.763 L	0.51	11.220	0.855*	0.311*
276.741	0.11	$10.627 \dagger$	$0.679 \dagger$	$0.388 \dagger$					

Kitt Peak 36 -inch telescope was used. All other observations were obtained at the Crossley. The second column gives the approximate phase. The next three columns give $V, B-V$, and $U-B$ corrected from the comparison star unless otherwise indicated. The first entries for each star are the magnitude and colors of the comparison star used. A dagger (" \dagger ") after an observation indicates that a comparison star was not observed. An asterisk ("*") indicates that the observation is used to form the average color index at minimum as described in the next section.

III. ANALYSIS OF THE DATA

a) Color-Index Variations near Minimum Light

The behavior of the $B-V$ and $U-B$ color indices of type a, b RR Lyrae stars is indicated in Figure 1. The average $B-V$ and $U-B$ color indices for each star were

Fig. 1.-Differences in color index from the value in the phase interval 0 ? $60<\phi<0$? 65
formed at each interval of 0 P 05 for which there were observations. Figure 1 is a plot of the differences, $(B-V) \phi$ and $(U-B) \phi$, between the color indices at any given phase interval and that in the interval $0.60<\phi<0.65$. Each point represents the difference found for an individual star. The average and the standard deviation of these differences were calculated for each phase interval and are listed in Table 2.

The average value of $B-V$ in each interval from 0 P 50 to 0 P. 80 deviates by less than 0.01 mag. from the value in the interval 0 P $60<\phi<0$ P 65 . The same deviation for $U-B$ is less than 0.02 mag . The scatter, as represented by the standard deviations, is about 0.03 mag . in $B-V$ and 0.04 mag . in $U-B$ and increases in the intervals closer to maximum light. An inspection of the individual light-curves that make up Figure 1 does not reveal any systematic departure from this average behavior.

An error in the observation in the interval 0 P $60<\phi<0$? 65 produces a corresponding
shift in all the $(B-V)_{\phi}$'s and $(U-B)_{\phi}$'s obtained for a given star. Also, many of the points in Figure 1 represent observations of faint stars so that photometric errors contribute greatly to the scatter. The first source of error is partially eliminated if we compare the observations in each phase interval to the average color index in the entire interval 0 P. $50<\phi<0$? 80 . The second source of error is reduced by making these comparisons for a group of well-observed stars. For this purpose all the variables which are brighter than $m_{V}=12.0$ at minimum light, which are north of $\delta=10^{\circ}$, and which were observed at least ten times in one season were chosen. Table 3 gives $(B-V)_{\phi}$ and $(U-B)_{\phi}$, redefined as the differences in color index from the average value during the interval 0 P $50<\phi<0$ P 80 , for these selected stars.

To determine the dependence of color index upon period, the fifteen well-observed stars were divided into two groups with periods longer and shorter than 0 d 5 . The average values of $(B-V)_{\phi}$ and $(U-B)_{\phi}$ for each of these groups are plotted against phase in

TABLE 2
Differences in Color Index from the Value at $0.60<\phi<0.65$

ϕ	$(B-U) \phi$	σ	$(U-B) \phi$	σ
0.15-0.20.	-0.137	± 0.039	+0.022	± 0.040
. $20-.25$.	$-.100$	$\pm .034$	+ . 038	$\pm .051$
25-. 30.	-. 073	$\pm .038$	+. 021	$\pm .061$
. $30-.35$.	-. 051	$\pm .020$	$+.037$	$\pm .037$
. $35-.40$.	-. 035	$\pm .033$	+. 018	$\pm .036$
. $40-.45$.	-. 009	$\pm .031$	+. 017	$\pm .031$
.45-. 50.	-. 014	$\pm .032$	$+.001$	$\pm .040$
50-. 55.	-. 007	$\pm .026$.	. 000	$\pm .046$
.55-. 60.	$+.009$	$\pm .030$	+. 014	$\pm .043$
. $60-.65$. 000	$\pm .000$. 000	$\pm .000$
.65-. 70 .	-. 002	$\pm .021$	-. 006	$\pm .025$
.70-. 75.	-. 006	$\pm .028$	+. 018	$\pm .034$
75-. 80	-. 003	$\pm .029$	-. 009	$\pm .043$
80-. 85	-. 014	$\pm .027$	$-.005$	$\pm .036$
0.85-0.90.	-0.026	± 0.027	-0.036	± 0.042

TABLE 3
Differences in Color Index from the Average Value during $0.50<\phi<0.80$ For a Selected Group of Stars

ϕ	$(B-V)_{\phi}$	σ	$(U-B)_{\phi}$	σ
0.15-0.20	-0.138	± 0.028	+0.039	± 0.040
.20-. 25.	-. 089	$\pm .028$	$+.038$	$\pm .037$
25-. 30	- . 071	$\pm .023$	+. 034	$\pm .037$
.30-. 35	-. 046	$\pm .023$	+. 023	$\pm .015$
.35-. 40	-. 028	$\pm .022$	+. 018	$\pm .029$
.40-. 45	-. 017	$\pm .015$	+. 011	$\pm .025$
.45-. 50	-. 001	$\pm .011$	+. 006	$\pm .007$
. $50-.55$	+. 005	$\pm .016$	-. 008	$\pm .023$
.55-. 60	+. 005	$\pm .014$	+. 004	$\pm .008$
.60- . 65	+. 002	$\pm .012$	-. 005	$\pm .023$
.65-. 70	+. 002	$\pm .008$	+. 004	$\pm .015$
70-. 75	-. 007	$\pm .013$	+. 003	$\pm .021$
75-. 80	-. 003	$\pm .019$	-. 006	$\pm .019$
.80-. 85	-. 011	$\pm .015$	+. 007	$\pm .034$
0.85-0.90	-0.055	± 0.034	-0.043	± 0.024

Figure 2. The group with $P<0$ d 5 days has a larger total range in $B-V$. It also seems to have a more nearly constant $B-V$ preceding minimum light. Extensive observations would be needed to prove whether the stars with $P>0 \mathrm{~d} 5$ days are really bluer at 0 P 70 than at 0 P 50 as the diagram indicates. In any case the total change in $B-V$ appears to be less than 0.03 mag. on the average, and the deviation from the average color in the entire interval even less.

It therefore seems reasonable to expect that the average value of $B-V$ in the interval 0 P $50<\phi<0$ P 80 can be estimated to within $\pm 0.03 \mathrm{mag}$. from a single observation anywhere within the interval provided, of course, that the photometry is accurate. For most problems in galactic research an RR Lyrae star can be considered to be constant in color during this interval. Multiple measurements should reduce the errors in color excesses to $\pm 0.01 \mathrm{mag}$. so that the uncertainty in RR Lyrae distance moduli would be essentially due to the uncertainty in their absolute magnitudes.

Fig. 2.-Difference in color index from the average value during the interval 0 P $50<\phi<0$ P80. The data are taken from a group of well-observed stars as described in the text. The crosses and filled circles represent stars with $P>0 \mathrm{~d} 5$ and $P<0 \mathrm{~d} 5$, respectively.

The $U-B$ measurements show more scatter, but a tendency for the group with longer periods to have more of a depression in the ultraviolet after maximum is indicated. Preston and Paczynski (1964) noted that SW And and DX Del, both strong-lined stars, have small depressions. This observer found the same to be true of the strong-lined stars AT And and AR Per, but a pronounced depression is seen in KX Lyr, another example of this group. Near minimum light no large differences in $U-B$ are noted.

It was decided to use simply the average of all observations during the interval 0 P $50<\phi<0$ P 80 as a parameter to compare the various stars. In the discussion of the data in this survey, observations slightly outside this phase interval were included in this average when the data were sparse for a particular star. The observations used to form these averages are denoted with asterisks in Table 1. Throughout the rest of the paper the expressions $B-V$ and $U-B$ will refer to these average values listed in the fifth and sixth columns of Table 4. The number of observations making up the averages appears in the seventh column. The third column contains the period in days. The galactic latitudes and longitudes are taken from Plaut's (1963) catalogue. The other quantities in Table 4 will be explained later.

TABLE 4
MINIMUM LIGHT COLOR INDICES AND DERIVED QUANTITIES

	Star	P	$\Delta \mathrm{S}$	B-V	U-B	n	δ (U-B)	$(\mathrm{B}-\mathrm{V})_{\mathrm{c}}$	$\mathrm{E}_{\mathrm{B}-\mathrm{V}}$	$1^{\text {II }}$	$\mathrm{b}^{\text {II }}$
1.	SW And	0.442	0	0.531	0.180	5	0.148	0.420	0.134	116°	-33. ${ }^{\circ}$
2.	XX And	. 723	9	. 455	-0.012	2	. 010	. 447	. 094	128	-23.6
3.	AT And	. 617	3	. 569	0.107	3	. 048	. 533	. 205	110	-18.1
4.	SX Aqr	. 536	9	. 416	. 029	8	. 080	. 356	. 047	058	-34.0
5.	TZ Aqr	. 571	5	. 464	. 029	3	. 045	. 430	. 113	053	-44.3
6.	YZ Aqr	. 552	-	. 476	. 043:	3	. 050:	. 439 :	. 127:	049	-49.8
7.	BN Aqr	. 470	(4)	. 398 :	---	1	---	---	---	056	-50.7
8.	BR Aqr	. 482	3	. 444	. 073 :	3	. 103:	. 368 :	. 072:	075	-65.2
9.	CP Aqr	. 463	3	. 512	. 112	1	. 093	. 442	. 151	049	-31.3
10.	AA Aql	. 362	0	. 460	. 133	3	. 152	. 346	. 079	043	-25.0
11.	341 Aql	. 578	3	. 454	. 094	7	. 117	. 366	. 047	046	-22.0
12.	X Ari	. 651	10	. 565	. 066	8	. 009	. 558	. 222	169	-39.8
13.	TZ Aur	. 392	2	. 470	. 188	3	. 200	. 320	. 046	177	20.9
14.	ST Boo	. 622	-	. 414	. 051	4	. 103	. 337	. 008	057	55.2
15.	SV Boo	. 581	-	. 444	. 015	5	. 045	. 410	. 091	069	65.5
16.	SW Boo	. 513	(7)	. 410	. 031	4	. 086	. 346	. 043	063	67.7
17.	TW Boo	. 532	(. 412	0.045	6	. 098	. 339	. 031	071	62.9
18.	UU Boo	. 457	-	. 391	-0.007	5	. 061	. 345	. 055	056	58.0
19.	UY Boo	. 651	(10)	. 399	-0.006	4	. 057	. 356	. 020	354	68.8
20.	RW Cnc	. 547	-	. 411	0.002	5	. 056	. 369	. 058	197	43.5
21.	SS Cnc	. 367	2	. 513	. 199	4	. 180	. 378	. 110	199	26.3
22.	TT Cnc	. 563	7	. 483	. 072	6	. 074	. 428	. 113	212	28.4
23.	W Cvn	. 552	7	. 429	0.070	6	. 111	. 346	. 034	072	71.0
24.	Z Cvn	. 654	(8)	. 401	-0.005	3	. 056	. 359	. 022	124	73.3
25.	RR Cvn	. 559	7 :	. 409	0.068	4	. 124	. 316	. 002	154	81.1
26.	SW Cvn	. 442	-	. 384	. 036	6	. 110	. 302	. 016	135	79.8
27.	SZ Cvn	. 550	-	. 418	. 027	2	. 077	. 360	. 048	077	73.7
28.	RV Cap	. 448	6	. 430	. 017	1	. 057	. 387	. 099	033	-35.5
29.	RR Cet	. 553	5	. 445	. 032	4	. 062	. 399	. 086	143	-59.9
30.	RZ Cet	. 511	4	. 400	. 011	3	. 073	. 345	. 042	178	-60.3
31.	UU Cet	. 606	4	. 422	. 019 :	2	. 065 :	. 373 :	. 048:	073	-75.1
32.	S Com	. 587	7	. 389	. 021	6	. 091	. 321	. 000	213	85.9
33.	V Com	. 469	-	. 400	. 037	4	. 099	. 325	. 032	209	80.8
34.	Z Com	. 547	-	. 442	---	4	---	---	---	328	80.6
35.	RY Com	. 469	3:	. 396	. 034	4	. 099	. 321	. 028	342	85.1
36.	UY Cyg	. 561	3	. 492	. 108	12	. 104	. 416	. 101	075	-09.6
37.	XZ Cyg	. 467	6	. 404	. 065	9	. 124	. 311	. 019	088	17.0
38.	DM Cyg	. 420	0	. 558 :	. 232	2	. 180	. 423 :	. 143	079	-12.4
39.	RW Dra	. 443	3	. 406	. 063	5	. 121	. 315	. 034	087	40.6
40.	XZ Dra	. 476	3	. 465	. 132	4	. 147	. 355	. 061	096	22.5
41.	AE Dra	. 603	(4)	. 449	. 088	4	. 115	. 363	. 038	084	25.4
42.	RX Eri	. 587	9	. 481	0.075	5	. 079	. 422	. 101	214	-33.9
43.	SV Eri	. 714	9	. 444	-0.012	2	. 019	. 430	. 079	194	-53.5
44.	UZ Eri	. 649	-	. 471	0.011	3	. 022	. 455	. 119	199	-54. 5
45.	BB Eri	. 570	8	. 413	0.045	3	. 098	. 340	. 023	219	-34.4
46.	BK Eri	. 354	-	. 400	-0.056:	2	. 006:	. 396 :	. 131:	176	-51.7
47.	RR Gem	. 397	3	. 524	0.194	7	. 167	. 399	. 124	187	19.5
48.	AK Gem	. 529	-	. 565	---	3	---	---	---	201	07.0
49.	GI Gem	. 433	-	. 467 :	. 137:	6	. 151:	. 353 :	. 069 :	202	08.9
50.	TW Her	0.400	2	0.459	. 178	4	0.198	0.311	0.035	056	24.8

TABLE 4 (Continued)

	Star	P	$\Delta \mathrm{S}$	B-V	U-B	n	$\delta(\mathrm{U}-\mathrm{B})$	$(\mathrm{B}-\mathrm{V})_{\mathrm{c}}$	E_{B-V}	$1{ }^{\text {II }}$	$\mathrm{b}^{\text {II }}$
51.	VX Her	0.455	5	0.428	0.074	5	0.116	0.341	0.052	035°	$39^{\circ} 1$
52.	VZ Her	. 440	4	. 411	. 059	7	. 113	. 326	. 040	060	34.6
53.	AR Her	. 470	6	. 353	. 024	6	---		---	074	48.2
54.	BD Her	0.474	2	. 626	. 262	5	. 161	. 506	. 212	048	07.6
55.	CE Her	1.209	7	. 500	. 031	3	---	---		039	22.0
56.	EE Her	0.496	-	. 472	. 109	4	. 120	. 382	. 083	033	43.0
57.	EP Her	. 426	-	. 465	. 089	6	. 104	. 387	. 105	052	23.4
58.	OS Her	. 396	-	. 476	. 175 :	4	. 182:	. 340 :	. 065 :	061	25.0
59.	OX Her	. 757	6 :	. 440	. 014	3	. 047	. 405	. 043	065	25.4
60.	RR Leo	. 452	8	. 414	. 083	2	. 135	. 313	. 025	208	53.1
61.	RX Leo	. 653	(5)	. 455	. 054	6	. 076	. 398	. 061	209	70.5
62.	SS Leo	. 626	-	. 403	. 024	4	. 084	. 340	. 010	265	57.1
63.	ST Leo	. 478	7	. 403 :	. 077	4	. 137:	. 300 :	. 005	253	66.1
64.	SU Leo	. 472	-	. 402	. 030:	4	. 091:	. 334 :	. 041 :	229	43.8
65.	WW Leo	. 603	-	. 462 :	. 072	4	. 090:	. 395 :	. 070 :	226	38.4
66.	AA Leo	. 599	-	. 435	. 052	4	. 089	. 368	. 044	254	66.1
67.	$V \mathrm{Lmi}$. 544	(4)	. 405	. 051	5	. 109	. 328	. 017	201	57.8
68.	Y Lmi	. 524	-	. 404	. 015	4	. 075	. 348	. 042	194	56.0
69.	TT Lyn	. 597	-	. 439	. 028	7	. 062	. 393	. 070	176	41.6
70.	RZ Lyr	. 511	9	. 446	. 058	6	. 087	. 381	. 078	062	15.8
71.	AQ Lyr	. 357	-	. 561	. 228	4	. 174	. 431	. 165	055	15.2
72.	CX Lyr	. 617	7 :	. 581	. 136	2	. 068	. 530	. 202	059	12.7
73.	IO Lyr	. 577	3	. 464	. 102	3	. 118	. 375	. 057	061	20.0
74.	KX Lyr	. 441	0	. 481	. 159	6	. 163	. 359	. 073	069	20.4
75.	ST Oph	. 450	6	. 618	. 191	5	. 096	. 546	. 258	023	16.6
76.	445 Oph	. 397	1	. 734	. 407	5	. 229	. 562	. 287	008	28.5
77.	452 Oph	. 557	$5:$. 620	. 193	6	. 097	. 547	. 233	033	25.7
78.	CM Ori	. 656	-	. 661	. 166	4	. 040	. 631	. 294	200	-06.7
79.	VV Peg	. 488	9	. 423	0.000	6	. 045	. 389	. 092	078	-30.4
80.	AE Peg	. 497	7	. 440	-0.008:	3	. 025:	. 421 :	.122:	080	-33.9
81.	AO Peg	. 547	1	. 476	0.073	3	. 080	. 416	. 105	070	-22.6
82.	AV Peg	. 390	0	. 515	. 223	6	. 203	. 363	. 089	077	-24.1
83.	BF Peg	. 496	-	. 434	. 026 :	2	. 064:	. 386 :	. 087:	089	-30.4
84.	CG Peg	. 467	2	. 534	. 191	7	. 157	. 416	. 124	077	-20.8
85.	DZ Peg	. 607	-	. 445	. 040	2	. 070	. 393	. 067	093	-41.4
86.	AR Per	. 426	0	. 775	. 361	4	. 153	. 660	. 378	155	-02.3
87.	RY Psc	. 530	7	. 456	---	2	---	---	---	101	-62.9
88.	VY Ser	. 714	9	. 438	. 034	4	. 069	. 386	. 035	006	44.1
89.	AN Ser	. 522	0	. 541	. 271	4	. 232	. 367	. 062	024	45.2
90.	AT Ser	. 747	9	. 438	. 050	4	. 085	. 374	. 015	018	42.5
91.	AV Ser	. 488	(6)	. 521	. 206	4	. 181	. 385	. 088	011	36.8
92.	AW Ser	. 597	7:	. 438	. 031	3	. 066	. 389	. 066	029	43.4
93.	CS Ser	. 527	(6)	. 411	. 031	4	. 086	. 347	. 041	007	45.4
94.	SS Tau	. 369		. 681	. 274:	2	. 134 :	. 581 :	. 312 :	180	-38.5
95.	U Tri	. 447	2	. 449 :	. 170	3	. 197:	. 301 :	. 014:	138	-27.2
96.	TU Uma	. 558	6	. 414	. 015	5	. 067	. 364	. 050	199	71.9
97.	UU Vir	. 476	2	. 409	. 076	3	. 132	. 310	. 016	281	60.5
98.	UV Vir	. 587	-	. 412	. 066	5	. 119	. 323	. 002	287	62.3
99.	AS Vir	. 553	-	. 421	. 048	3	. 095	. 350	. 037	303	52.6
100.	AT Vir	. 526	-	. 398	. 032	6	. 096	. 326	. 020	305	57.4
101.	BC Vir	. 565	-	. 418 :	. 088:	2	. 138:	. 315 :	. 000:	323	67.5
102.	BN Vul	0.594	6	0.846	0.332	8	0.073	0.791	0.468	059	03.4

TABLE 4 (Continued)

Data from Other Observers

Table 4 includes a number of stars from other observers. These are: DX Del, Preston (1961); SU Dra, Spinrad (1961); TV Leo, Paczynski (1963); and RR Lyr, Hardie (1955). The last eighteen stars are from the southern hemisphere survey of Kinman (1961). The colors listed are the average of all the published observations from 0 P 50 to 0 P80. One star, RX Eri, is in common between the present survey and Kinman's. Kinman's observations in this phase interval are 0.013 mag. redder in $B-V$. Paczynski's data for RX Eri (Preston and Paczynski 1964), obtained the season before at the Crossley, give results that are more negative by 0.017 mag . in $B-V$ and 0.009 mag . in $U-B$ than those obtained in the present survey. These stars from other observers are included in all the discussions that follow.

b) Line-blanketing and Period Relations

Figure 3 is a plot of $B-V$ versus $U-B$ for all the stars in the survey. The curved line is the relation for the main sequence of the Hyades (Sandage and Eggen 1959, Table III). Three different symbols have been used to denote different period groups.

Fig. 3.-The observed $U-B, B-V$ diagram for RR Lyrae stars near minimum light. The curved line represents the main sequence of the Hyades. The straight line is an interstellar reddening line with a slope of 0.72 . Open and filled circles represent stars with $P<0 ₫ 48$ and $0 ₫ 48<P<0 d 58$, respectively. The crosses represent stars with $P>0.58$.

The intrinsic $U B V$ colors of a star are influenced by its temperature, line-blanketing, and surface gravity. The effect of interstellar reddening is to move the position of the star downward and to the right in the $U-B, B-V$ diagram, an effect, clearly seen in the few RR Lyraes in Figure 3 having large values of $B-V$ and $U-B$. The majority of the stars, which are less affected by reddening, lie in the region $0.4<(B-V)<$ 0.5 but show roughly twice this range in $U-B$. This large vertical dispersion cannot be attributed to differential interstellar reddening. Since the variables most deficient in the ultraviolet tend to be those with the shortest periods, we further conclude that this inhomogeneity is related to period.

A relation between $B-V$ and period is obtained from Figure 4 which contains those stars with $\left|b^{\mathrm{II}}\right|>50^{\circ}$. We assume that the stars at such high galactic latitudes are little affected by differential interstellar reddening. However, Figure 5, in which $U-B$ is
plotted against period for the same stars, again shows a large dispersion in $U-B$. The photometric errors discussed in § II cannot account for the scatter. We therefore conclude that even this high-latitude sample is inhomogeneous.

Preston (1959) has demonstrated that a correlation between period and line strength exists. Line blanketing in $B-V$ is not negligible (Preston 1961). So if the scatter in $U-B$ is at least partially attributable to differential line blanketing, the line-free $B-V$ color index, $(B-V)_{c}$, probably does not have the same dependence on period that is found for the observed color index, $B-V$. If possible, we should correct for differential line blanketing before obtaining a color-period relation.

A number of blanketing estimates for RR Lyrae stars have been made from high dispersion spectrograms (Preston 1961; Oke, Giver, and Searle 1962; and Sturch 1963). The corrections for $B-V$, the $\Delta(B-V)$'s listed in Table 5 , are thought to be fairly accurate, but those for $U-B$ are probably unreliable. The spectrograms do not cover the entire region of the U filter, the stellar continuum is difficult to find in strong-lined stars, and the effect of the converging Balmer lines is difficult to assess. Therefore, the slope

Fig. 4.-Observed $B-V$ versus period for stars with $\left|b^{\text {II }}\right|>50^{\circ}$

Fig. 5.-Observed $U-B$ versus period for stars with $\left|b^{1 I}\right|>50^{\circ}$

TABLE 5
Line-blanketing Effects

Star	P (days)	$\Delta(B-V)$	$\delta(U-B)$
X Ari	0.651	-0.01	0.009
SU Dra	. 660	+. 04	. 040
RR Lyr	. 567	$+.04$. 069
DX Del.	473	$+.10$. 137
SW And.	0.442	-0.11	0.148

of the blanketing line, i.e., the line in the $U-B, B-V$ plane along which the line-free colors are shifted as the intensity of the metallic lines increases, is unknown.

The line-blanketing estimate for X Ari is the smallest of those listed in Table 5. The observed $B-V$ and $U-B$ of X Ari should be nearly equivalent to the line-free $B-V$ and $U-B$ of an RR Lyrae with a period of 0 d 65 , except for the effect of interstellar reddening. The straight line in Figure 3 is an interstellar-reddening line that passes 0.01 mag. above the observed position of X Ari. The intrinsic line-free colors of X Ari should lie somewhere on this line. Intrinsic line-free colors of the other RR Lyrae stars should lie close to this line also, except that, as seen from Figure 4, the $B-V$'s of the shorterperiod stars are probably slightly bluer. The vertical displacement of the observed color indices from this line, $\delta(U-B)$, gives an indication of the amount of line blanketing present.

Fig. 6.-The correlation of $\delta(U-B)$ with ΔS
This reddening line is given by the equation

$$
\begin{equation*}
U-B=-0.35+0.72(B-V) \tag{1}
\end{equation*}
$$

and $\delta(U-B)$ is defined as

$$
\begin{equation*}
\delta(U-B)=(U-B)-[-0.35+0.72(B-V)] \tag{2}
\end{equation*}
$$

where $(U-B)$ and $(B-V)$ are the observed values.
The slope of this line, $E_{U-B} / E_{B-V}=0.72$, is the same as that usually given for O-type stars although the second-order term, $0.05 E_{B-V}$ has been omitted. Wampler (1961) has suggested that the second-order term might be simply the result of combining observations from different galactic longitudes where the reddening slope differs. Fernie (1963) found a slope of 0.71 ± 0.01 with no evidence for a second-order term for F-type supergiants. From the concentration of points near $B-V=0.4$ in Figure 3 it would appear that few of the stars in the survey are reddened more than 0.2 mag., so the effect of the second-order term would be less than 0.01 mag. for most of the stars.

A strong correlation should exist between $\delta(U-B)$ and ΔS (Preston 1959) since both are measures of line strength. The quantity ΔS is the difference in tenths of a spectral type of an RR Lyrae at minimum light as judged from the Ca ir K line and the hydrogen lines. It varies from 0 (strong-lined) to 11 (weak-lined). Figure 6 is a plot of $\delta(U-B)$ versus ΔS for those stars for which both quantities have been observed. Preston esti-
mates the error in obtaining ΔS at around 2 , and the error in $\delta(U-B)$ is at least 0.02 mag. Much of the scatter can therefore be explained by the observational errors involved.

The quantity $\delta(U-B)$ has been introduced to provide a photometric parameter suitable for estimating the line blanketing in $B-V$. Before we proceed to use it in determining intrinsic colors for the RR Lyrae stars, it should be noted that the parameter $\delta(U-B)$ may prove to be as useful as the information on intrinsic colors (see § IV).

The $\delta(U-B)$'s for the five stars of Table 5 are plotted against their $\Delta(B-V)$'s in Figure 7. The value of $\delta(U-B)$ seems to be a smoothly increasing function of $\Delta(B-V)$. The relation

$$
\begin{equation*}
\delta(U-B)=\frac{4}{3} \Delta(B-V) \tag{3}
\end{equation*}
$$

represents the data well.

Fig. 7.-The relation between $\delta(U-B)$ and $\Delta(B-V)$
The equation

$$
\begin{equation*}
(B-V)_{c}=B-V-\frac{3}{4} \delta(U-B) \tag{4}
\end{equation*}
$$

is used to obtain $(B-V)_{c}$, the $B-V$ color index free from blanketing due to the metallic lines. This quantity is tabulated in the ninth column of Table 4. In Figure 8, ($B-V)_{c}$ is plotted against period for the stars with galactic latitude $b^{\mathrm{II}} \geq 56^{\circ}$. Cosecant b varies by only 0.2 for these stars, and the elimination of the southern stars assures that any differences in the total amount of interstellar reddening between the two galactic poles is not introduced.

The line in Figure 8 is the least-squares solution obtained for the data

$$
\begin{equation*}
(B-V)_{c}=0.21+0.24 P \text { (days) } \pm 0.03 \pm 0.05 \text { (p.e.). } \tag{5}
\end{equation*}
$$

The probable error of the individual $(B-V)_{c}$'s is less than 0.02 mag .

c) Interstellar Reddening and Intrinsic Colors

Before the intrinsic colors of RR Lyrae stars can be found, an estimate of the interstellar reddening at the galactic poles must be obtained. If the RR Lyrae stars in high galactic latitudes have sufficiently large z distances that they lie above the dust associated with the plane, a cosecant reddening law may be employed for this purpose.

Extensive use has been made of a model of the galactic dust layer that assumes an exponential decrease in the coefficient of selective absorption with increasing z (e.g., Williams 1934). If the selective absorption is represented by

$$
\begin{equation*}
c(z)=c_{0} \exp (-z / \beta), \tag{6}
\end{equation*}
$$

where c_{0} and β are constants and $z=r \sin b$, it follows that the reddening for a given object is

$$
\begin{equation*}
E=\frac{c_{0} \beta}{\sin } \frac{\beta}{b}\left[1-\exp \left(-\frac{r \sin b}{\beta}\right)\right] . \tag{7}
\end{equation*}
$$

For large values of ($r \sin b / \beta$), equation (7) reduces to a simple cosecant law. Let us investigate the values of the exponential term in equation (7) for the stars in this survey with $b>20^{\circ}$. We assume that $M_{V}=0.5$ for an RR Lyrae star. The m_{V} 's are approximated by subtracting 0.5 mag . from the values found at minimum light, and no correction is made for interstellar absorption. Stibbs (1955) has reviewed the work of Oort, Parenago, and van Rhijn, and finds values of β that range between 100 and 124 pc . Other values of β have been found in specific directions: 187 pc at the north equatorial pole

Fig. 8.-The relation between $(B-V)_{c}$ and period for stars with $b^{I I}>56^{\circ}$
(Abt and Golso 1962); 140, 82, and 83 pc toward the center and anticenter of the Galaxy (Arp 1965). The average of these determinations agrees well with the highest value reported by Stibbs, so we use $\beta=124 \mathrm{pc}$. The largest value found for $\exp (-r \sin b / \beta)$ is that for XZ Dra, 0.08 . Four other stars have values close to 0.05 ; the rest have values smaller than 0.05 . Therefore omission of the exponential term would introduce errors of less than 5 per cent in a reddening law determined from stars in this survey with $b>20^{\circ}$.

Arp (1962) has suggested the possibility of reddening material at large z distances. Such material might be detectable from the color indices of RR Lyrae stars with $b \geq 56^{\circ}$. To eliminate any differences due to line blanketing we use the $(B-V)_{c}$ index for this purpose. The period dependence has been removed by adding $0.24 \Delta P$ to each $(B-V)_{c}$, where ΔP is the difference, $0.65-P$ (days). The result, $(B-V)_{c, p}$, is plotted against m_{V} at minimum light in Figure 9. The least-squares solution for these data gives a slope of $0.005 m_{V}$, or an increase of around 0.02 mag . in the color index from the brightest to the faintest of these stars. However, if the ($B-V)_{c, p}$ for SV Boo (which is 0.03 mag. redder than the value for any other star) is not considered in the solution, the slope is reduced to 0.0015 , an increase of only 0.006 mag . in $(B-V)_{c, p}$ for the magnitude range of these data. Using the same assumptions as before, the distances of these stars (which closely correspond to their z distances) range from 0.7 to 4 kpc . We conclude that there is little evidence for additional reddening. (The same conclusion can be drawn from the observed $B-V$'s, uncorrected for period or line blanketing.)

From the above analysis it seems reasonable to use the RR Lyrae stars in this survey
to determine a cosecant reddening law. We again use the line-free color index, $(B-V)_{c}$, for this purpose and include all stars with $|b|>20^{\circ}(\csc b<2.9)$. Solutions for both galactic caps, including both period and coescant terms, are
north galactic cap:

$$
\begin{aligned}
(B-V)_{c}= & 0.21+0.17 P(\text { days })+0.04 \csc b \\
& \pm 0.03 \quad \pm 0.05 \quad \pm 0.01 \text { p.e. }
\end{aligned}
$$

south galactic cap:

$$
\begin{aligned}
(B-V)_{c}= & 0.21+0.12 P(\text { days })+ \\
& \pm 0.01 \mathrm{csc} b . \\
& \pm 0.04 \quad \pm 0.01 \text { p.e. }
\end{aligned}
$$

The period terms are appreciably smaller in these solutions than in equation (5) for the stars with $b \geq 56^{\circ}$. These solutions do not take into account well-known effects of longitude upon interstellar reddening. If the color indices are examined with respect to longitude, it becomes apparent that the stars in the Taurus and Ophiuchus regions are

Fig. 9.-The $B-V$ color index, corrected for both line blanketing and period, versus m_{V} near minimum light for stars with $b>56^{\circ}$.
excessively reddened. Stars like X Ari $(P=0 d 65)$ and SS Tau ($P=0.37$), representative of the extremes in period in this survey, are included in these regions, resulting in a smaller coefficient for the period term in a least-squares solution. If these reddened regions are omitted (but stars with $b>70^{\circ}$ are kept) the following solutions are obtained:
north galactic cap, $45^{\circ}<l^{\text {II }}<360^{\circ}$:

$$
\begin{aligned}
(B-V)_{c}= & 0.19+0.24 P \text { (days) }+0.02 \csc b \\
& \pm 0.02 \quad \pm 0.03 \quad \pm 0.01 \text { p.e. }
\end{aligned}
$$

south galactic cap, $0^{\circ}<l^{\mathrm{II}}<100^{\circ}, 210^{\circ}<l^{\mathrm{II}}<360^{\circ}$:

$$
\begin{aligned}
(B-V)_{c}= & 0.23+0.19 P \text { (days) }+0.03 \csc b \\
& \pm 0.04 \quad \pm 0.05 \quad \pm 0.01 \text { p.e. }
\end{aligned}
$$

Another solution avoids much of the reddened area. It is the one for all stars with $b>$ 30° :
north galactic cap, $b>30^{\circ}$, all longitudes:

$$
\begin{aligned}
(B-V)_{c}= & 0.15+0.24 P(\text { days })+ \\
& \pm 0.05 \csc b \\
& \pm 0.02 \quad \pm 0.01 \text { p.e. }
\end{aligned}
$$

The period terms in these solutions that avoid heavily reddened regions all agree well with each other and with equation (5). The probable errors of these solutions are generally smaller also. We therefore adopt the average of these solutions, 0.03 mag ., for the reddening at the poles and the following equation for the intrinsic, line-free color index of an RR Lyrae:

$$
\begin{equation*}
(B-V)_{0, c}=0.18+0.24 P(\text { days }) . \tag{8}
\end{equation*}
$$

We now define the color excess, E_{B-V}, as the difference between the observed $B-V$ corrected only for blanketing and the intrinsic, line-free $B-V$ as calculated from equation (8). Thus,

$$
\begin{equation*}
E_{B-V}=(B-V)_{c}-(B-V)_{0, c} . \tag{9}
\end{equation*}
$$

The values of E_{B-V}, calculated in this manner, may be found in the tenth column of Table 4.

Assuming that $E_{U-B} / E_{B-V}=0.72$, then

$$
\begin{align*}
& (B-V)_{0}=B-V-E_{B-V}, \text { and } \tag{10}\\
& (U-B)_{0}=U-B-0.72 E_{B-V}, \tag{11}
\end{align*}
$$

where $(B-V)_{0}$ and $(U-B)_{0}$ are the intrinsic color indices corrected for reddening but not for blanketing, $B-V$ and $U-B$ are the observed values near minimum light, and the E 's are the color excesses from equation (9).

By combining equations (2), (4), (8), (9), (10), and (11), the intrinsic color indices of RR Lyrae stars at minimum light are

$$
\begin{align*}
& (B-V)_{0}=-0.54 B-V+0.75 U-B+0.24 P(\text { days })+0.44 \tag{12}\\
& (U-B)_{0}=-1.11 B-V+1.54 U-B+0.17 P(\text { days })+0.32 \tag{13}
\end{align*}
$$

The internal accuracy of equations (12) and (13) may be judged from Figure 10, a $(U-B)_{0},(B-V)_{0}$ diagram for those stars with observed ΔS values. The open, halffilled, and filled circles represent ΔS values of 6-10, 4-5, and 0-3 respectively. The increasing value of ΔS with increasing ultraviolet excess is easily discerned. The straight line through these points is the least-squares solution for all the RR Lyrae stars with $U B V$ photometry regardless of whether they have observed ΔS values. Its equation is

$$
\begin{equation*}
(B-V)_{0}=0.37+0.35(U-B)_{0} \tag{14}
\end{equation*}
$$

and the probable error of a single determination is 0.008 mag . The slope of this solution is not due to line blanketing alone since the line-free index, $(B-V)_{c}$, is dependent on period. Also it is well known that the position of a star in this portion of the $U-B$, $B-V$ diagram is sensitively dependent upon its surface gravity as seen in the three curved lines in Figure 10 which represent the empirical relations for the Hyades main sequence and for stars 1.0 and 2.0 mag. above the Hyades (Eggen and Sandage 1964). A surface gravity or luminosity effect that is correlated with line strength or period would be difficult to distinguish by $U B V$ photometry alone. Perhaps an intermediate band-width system such as Strömgren's (1963) could be used for this purpose. We can, however, determine whether it is reasonable to attribute the range of $(U-B)_{0}$ to line blanketing alone. Preston (1961) found DX Del to have 0.19 mag. more line blanketing than X Ari in $U-B$. The result was uncertain for the reasons stated above, but compares favorably with the difference of 0.17 mag . in $(U-B)_{0}$ found in this study.

A diagram similar to Figure 10 can be drawn which indicates individual ΔS values. Considerable overlapping of ΔS values occurs in any interval of $(U-B)_{0}$ in such a diagram. However, it is possible to explain this overlapping from the errors in assigning
ΔS values. A differential luminosity effect in the RR Lyrae stars may still be present, but it is not needed to explain either the total range in $(U-B)_{0}$ or the overlapping of ΔS values.

d) Peculiar Stars

Two of the stars in this survey, AR Her and BK Eri, have anomalous colors. The peculiarity of AR Her is best seen from its position in Figure 3. It is 0.03 mag. bluer in

Fig. 10.-The $(U-B)_{0},(B-V)_{0}$ diagram for those stars with observed ΔS values. The open, halffilled, and filled circles represent ΔS values of $6-10,4-5$, and $0-3$, respectively. The straight line is the least-squares solution for all stars with $U B V$ photometry. Also shown are the relations for the Hyades main sequence and for stars 1.0 and 2.0 mag. brighter than the Hyades.
$B-V$ than any other variable in the survey and 0.06 mag. bluer than would be predicted from the intrinsic color relation and its galactic latitude. This star was observed during the 0 P 50 to 0 ? 80 phase interval a total of six times on three nights. It is therefore reasonable to assume that its blueness cannot be attributed to observational error alone. Preston (1959) noted that AR Her is one of a few stars in the period interval 0 d 44 to 0 d 48 which has systematically stronger hydrogen lines at minimum light than all the other Bailey type a 's. Stronger hydrogen lines would indicate a higher temperature resulting in a smaller $B-V$ index.

A spectrogram of AR Her has been obtained by Preston at the coudé spectrograph of the 120 -inch reflector. The dispersion was $48 \AA / \mathrm{mm}$ and the exposure time was 96
\min beginning at JD 2438576.810. The approximate phase interval covered was from 0 P 67 to 0 P 81 . A similar 4 -min exposure of RR Lyr was made on the same plate immediately thereafter; it was near 0 P 70 at the time. Direct-intensity microphotometer tracings indicate that the hydrogen lines in AR Her were stronger than those in RR Lyr. Comparisons of the $\mathrm{H} \gamma$ profiles of each star were made with the theoretical profiles of Searle and Oke (1962). As Searle and Oke found, the profile for $\theta_{e}=0.83\left(\theta_{e}=5040 / T_{e}\right)$ and $\log g=1.5$ agreed well with the observed profile for RR Lyr. The same type of agreement was achieved for AR Her only when profiles for smaller θ_{e} were used. The best fit for AR Her was for $\theta_{e}=0.80 \pm 0.02$.

A relation between the $B-\bar{V}$ index and θ_{e} was developed by Preston and Paczynski (1964), but this relation did not include the effects of line blanketing. A maximum light the observed $B-V$ is affected only by interstellar reddening since line blanketing is negligible. Near minimum light both sources of reddening are present. The quantity θ_{e} was determined both at maximum and minimum light for five stars by Preston and Paczynski. Their results are listed in the second and third columns of Table 6. The intrinsic, unblanketed color indices at minimum as determined from equation (8) are listed in the fourth column. The $B-V$'s at maximum as observed by Paczynski are given in

TABLE 6
Temperatures and Colors of RR Lyrae Stars

Star	$\theta_{e} \mathrm{~min}$.	θ_{e} max.	$(B-V)_{o, c}$	$B-V_{\text {max }}$	$E_{\text {B-V }}$	$\begin{gathered} (B-V)_{0} \\ \max . \end{gathered}$
SW And	0.85	0.68	0.286	0.20	0.13	0.07
X Ari.	. 83	. 66	. 336	. 30	. 22	. 08
RR Cet.	. 83	. 70	. 313	. 16	. 09	. 07
RX Eri	. 84	. 68	. 321	. 24	. 10	. 14
TU Uma.	0.84	0.68	0.314	0.17	0.05	0.12

the next column. The sixth column contains the color excesses as determined in this paper from which are obtained the intrinsic colors at maximum light. The relation between θ_{e} and the intrinsic, line-free $B-V$ index can be seen in Figure 11. If the points at the extremes of the relation are averaged, the following equation is obtained:

$$
\begin{equation*}
(B-V)_{0, c}=-0.83+1.36 \theta_{e} . \tag{15}
\end{equation*}
$$

Using this relation the predicted color of AR Her at minimum light is

$$
(B-V)_{0, c}=0.26 \pm 0.03 .
$$

The color predicted from equation (8) is $(B-V)_{0, c}=0.29$.
It is therefore possible to explain the observed discrepancy in $B-V$ in terms of θ_{e} derived from the $\mathrm{H} \gamma$ profile. The cause of the higher temperature, however, remains unknown.

It should be noted that the reason the anomalous color of AR Her was discovered is that it lies in an area that is not heavily reddened. If it had had a large color excess the position of this object in Figure 3 would not have seemed unusual. There are about thirty stars making up the envelope of the bluest variables in the survey indicating that as high as 3 per cent of the RR Lyrae stars may have colors similar to AR Her.

The other obviously peculiar star in the survey is BK Eri. From its short period ($P=0 \mathrm{~d} 354$) one would expect it to be a strong-lined star. Its $\delta(U-B)$, however, is similar to that of X Ari. Subsequent observations in the autumn of 1964 have confirmed the ultraviolet excess for this star and have failed to indicate any large departure from
the published period. It is definitely a type a RR Lyrae: an increase of 1.0 mag . in m_{V} in roughly 15 per cent of the period has been observed.

Since BK Eri has the shortest period of any star in the survey having $U B V$ photometry, it may belong to another class of objects. A star with a slightly longer period, AQ Lyr $(P=0$ d 357), has a typically large $\delta(U-B)$. Other stars with shorter periods should be investigated to determine whether BK Eri is abnormal or simply representative of another type of variable.

Fig. 11.-The $B-V$ index, corrected for line blanketing and reddening, versus $\theta_{e}\left(=5040 / T_{e}\right)$ at minimum and maximum light.

IV. APPLICATIONS

a) Interstellar Reddening

The few O and B stars that exist at large z-distances are often peculiar and do not follow the intrinsic color relations. Later-type stars abound in these regions but are of little use as reddening indicators. The reason for this is illustrated quite effectively in Figure 12, the $U-B, B-V$ diagram for the comparison stars used in this survey with $|b|>30^{\circ}$. The solid line is the Hyades relation according to Sandage and Eggen (1959). The dotted line is the main sequence of nearby stars taken from Johnson and Morgan (1953). The data seem to fit the latter relation better, although there are numerous stars with ultraviolet excesses. Similar ultraviolet excesses were found for stars near the north galactic pole by Slettebak, Bahner, and Stock (1961). These authors found that the metallic lines in these objects are very weak and classified the spectra as those of F - and G-type subdwarfs. It would be extremely difficult to separate the effects of differential line blanketing and interstellar reddening for these stars by $U B V$ photometry alone.

The integrated colors of galaxies and globular clusters have also been used to determine reddening at high latitudes. Besides the inherent difficulties of photometry of extended objects, the lack of precise intrinsic color relations for clusters and galaxies limits the accuracy of this method. As we have seen in this paper, however, accurate intrinsic colors of RR Lyrae stars can be defined.

The study of absorption in these areas has been confined to counts of galaxies. This is a statistical approach at best because of the irregularities in the distribution of galaxies.

The fine structure of the absorbing and reddening material cannot be determined from either galaxies or clusters, but it may be possible to make such a determination from RR Lyrae stars. These stars, which occupy the Hertzsprung gap, have a very low space density; however, their distribution extends to many kiloparsecs above the galactic plane. The number of RR Lyrae stars in the galactic caps is of the order of one per square degree brighter than $m_{\mathrm{pg}}=18$ (Kinman 1963). This coverage compares favorably with the several square degrees which are usually averaged to obtain reliable information from galaxy counts.

Crude maps of interstellar reddening may be made from even the small sample of stars in this survey. Figures 13 and 14 are such maps of the northern and southern galactic hemispheres.The galactic poles are in the center and the numbers are the E_{B-V} 's in hundredths of a magnitude. Underlined numbers are from the southern survey of

Fig. 12.-The $U-B, B-V$ diagram for the comparison stars with $|b|>30^{\circ}$. The solid line is the relation for the Hyades. The dashed line is the main sequence of nearby stars (Johnson and Morgan 1953).

Kinman. Attention is called to the four circled stars in Taurus and Ophiuchus which are reddened about 0.1 mag. more than any other stars at comparable latitudes. It will also be noticed that the southern stars observed by Kinman show smaller color excesses than those southern stars observed from the northern hemisphere. This could well be a longitudinal effect in the distribution of the dust or it could be due to systematic differences in observing and analysis. Line-blanketing estimates for the southern stars were based on Kinman's ΔS values instead of $\delta(U-B)$'s. However, the color excesses derived for RX Eri, the one star in common between the two surveys, agree within 0.01 mag.

Dr. C. D. Shane has kindly permitted me to examine a list of corrected and smoothed galaxy counts divided into small galactic areas. The absorption, derived from these data using the equation

$$
\begin{equation*}
A_{\mathrm{pg}}=1.95-\log N / 0.5 \csc b, \tag{16}
\end{equation*}
$$

agrees in general with the color excess in this survey in the sense that increased absorption is accompanied by increased reddening. However, the amount of absorption found by Shane is much greater than would be expected from the reddening found in this survey. Shane (1964) finds $A_{\mathrm{pg}}=0.48 \mathrm{mag}$. at the galactic poles, which would lead to $E_{B-V}=0.12$ mag. if the commonly accepted ratio of total to selective absorption is used.

While a comparatively large value for the total absorption has been found, there is

Fig. 13.-The color excess, E_{B-v}, in hundredths of a magnitude for stars in the north galactic hemisphere. The north galactic pole is at the center of the diagram. Latitudes $60^{\circ}, 30^{\circ}$, and 0° are indicated by concentric circles.

Fig. 14.-The color excess, E_{B-v}, in hundredths of a magnitude for stars in the south galactic hemisphere. The south galactic pole is at the center of the diagram. Latitudes $-60^{\circ},-30^{\circ}$, and 0° are indicated by concentric circles.
mounting evidence that the reddening at the galactic poles is very small. Kron and Mayall (1960) found from two solutions for the color excess at the galactic poles that $E_{P-V}=0.052$ and $E_{P-V}=0.063 \mathrm{mag}$. Considering the errors and assumptions involved, these authors felt that their data were in good agreement with the earlier results of Stebbins (1933) and Stebbins and Whitford (1936, 1937) determined from colors of cluster and galaxies. These gave $E_{P-V}=0.064$ and 0.024 mag. Holmberg (1957) found $E_{B . I}=0.062$ from the colors of galaxies. These values may be compared to E_{B-V} from the relation

$$
\begin{equation*}
E_{P-V}=E_{\mathrm{C} . \mathrm{I}} \simeq 0.8 E_{B-V} \tag{17}
\end{equation*}
$$

(Kron and Mayall 1960; Morgan, Harris and Johnson 1953). Harris and Upgren (1964) have found an excess of 0.08 mag . in $B-V$ from G stars near the north galactic pole. Klemola (1962), in a study of faint blue stars in this region, found the E_{B-V} could be as large as 0.03 mag. Westerlund (1963) observed bright B and A stars and decided that practically no reddening occurs in the north galactic pole direction, while parts of the southern cap are reddened. Bok and Basinski (1964) have recently found the interstellar reddening in the southern galactic cap to be very small. The value adopted in this paper, $E_{B-V}=0.03$ mag., seems to be in accordance with the above results.

Recent observations in the infrared have indicated that higher values of A / E than previously determined may be prevalent (Johnson 1965). If this is the case, the apparent disagreement between the absorption inferred from color excesses and that derived from galaxy counts may be resolved. When the relationship between total and selective absorption is understood, the color excesses of RR Lyrae stars can be used to correct their distances for absorption.

b) Stellar Populations

The RR Lyrae stars have long played a prominent role in the study of galactic structure as distance indicators. More recently their importance as population indicators has been recognized. Because of their galactic distribution the variation of chemical composition throughout the whole Galaxy can be studied from these objects.

Studies of this type may be carried out spectroscopically for the solar neighborhood. For the more distant RR Lyrae stars, differences in chemical composition have been inferred rather crudely from period distributions. Now a third means of discriminating population types is at our disposal: the $\delta(U-B)$ parameter.

With the nebular spectrograph of the Crossley reflector, Preston (1959) was able to obtain a spectrogram suitable for determining ΔS in a little less than 1 hour for a star of $m_{\mathrm{pg}}=13.0$. With the same telescope $U B V$ photometry of the same star can be obtained in 5 min . Thus, by employing wide-band photometry we have gained a factor of 10 in speed with little or no loss in precision.

One immediate result from the $\delta(U-B)$ parameter is obtained in Figure 15 where $\delta(U-B)$ is plotted against period for the stars in this survey. This diagram resembles that of ΔS versus period. Weak-lined stars are noticeably absent shortward of 0 d 44 . The one exception is BK Eri which was discussed earlier. There is a large dispersion in $\delta(U-B)$ at periods slightly longer than 0 d 44 . Small $\delta(U-B)$ values predominate beyond $P=0 \mathrm{~d} 50$.

Period-frequency distributions, on a percentage basis, are shown in Figure 16 for various ranges of $\delta(U-B)$. The samples are biased in that stars with $P<0 \mathrm{~d} 36$ have been omitted and those with $P \simeq 0$ d 5 were often not observed because it was difficult to obtain observations that were well distributed in phase. The distributions for $\delta(U-$ $B)=0.00-0.06$ and $\delta(U-B)=0.06-0.12$ resemble respectively Oosterhoff's Type II and Type I cluster-variable distributions (Oosterhoff 1939). This further confirms evidence that Type I clusters tend to have stronger metallic lines than Type II (Morgan 1956).

Fig. 15.-The correlation of $\delta(U-B)$ with period

Fig. 16.-Period-frequency diagrams for type a, b variables. a, the distribution for M3; b, c, d, and e, the field stars in this survey having $\delta(U-B)$ values of $0.00-0.06,0.06-0.12,0.12-0.18$, and $0.18-0.24$ mag., respectively. The histograms show the percentage of stars found in period intervals of 0 d 04 .

c) Globular Clusters

When only $B-V$ colors are known for certain fields or clusters, $\delta(U-B)$ values can be estimated from the period-frequency distribution. The distribution for M3, shown in Figure 16, is taken from Sawyer's (1955) catalogue. It best matches the $\delta(U-B)=$ 0.06-0.12 group.

Dr. A. Sandage has kindly made available to me his $B-V$ color-index-curves for the RR Lyrae stars in M3. The $B-V$'s near minimum light obtained from these data average 0.09 mag . redder than the $(B-V)_{c}$'s of the field RR Lyrae stars in the galactic cap. If we assume the same color excess for the field stars and M3 $\left(b=+79^{\circ}\right)$, the difference in color index would be due to line blanketing. The corresponding value of $\delta(U-B)$ for $\Delta(B-V)=0.09$ is 0.12 mag .

Both color excess and $\delta(U-B)$ can be obtained directly from the mean $U-B$'s of these variables reported by Sandage (1959). As seen from Figure 2, the mean value of $U-B$ should approximate the value of $U-B$ at minimum light. If this approximation is made, the average $\delta(U-B)$ for the M3 variables is 0.06 and $E_{B-V}=0.07 \mathrm{mag}$. This value is 0.04 mag. larger than the color excess found for the variables in the field.

There is much scatter in these photographic data; the ultraviolet light-curves were obtained by Baker and Baker (1956) at a later epoch. Photoelectric UBV photometry of these variables is needed in order to determine precise values of the blanketing and color excess of M3. Only after the color excess is known with accuracy can the age of a globular cluster be determined with accuracy, so such a program for M3 and other clusters with RR Lyrae stars would be of significance.

I wish to express my thanks to Dr. George W. Preston, who suggested this problem and whose ideas and criticisms have been incorporated into all parts of this research. I am indebted to Dr. Charles Perry who allowed me to use his computer program for the reduction of the photoelectric data, and to Dr. Shane and Dr. Sandage for use of their unpublished data. I am grateful to the directors of Lick Observatory and Kitt Peak National Observatory for the observing time, and I also acknowledge the Science and Lick Fellowships of the University of California, held during the course of this study.

REFERENCES

Abt, H. A., and Golson, J. C. 1962, Ap. J., 136, 363.
Arp, H. С. 1962, Ap. J., 135, 971.

- 1965, ibid., 141, 43.

Baade, W. 1953, Symposium on Astrophysics (Ann Arbor: University of Michigan), p. 23.
Baker, R. H., and Baker, H. V. 1956, A.J., 61, 283.
Bok, B. J., and Basinski, J. 1964, Mem. Mount Stromlo Obs., No. 16.
Eggen, O. J., and Sandage, A. R. 1964, Ap. J., 140, 130.
Fernie, J. D. 1963, A.J., 68, 780.
Hardie, R. H. 1955, Ap. J., 122, 256.
Harris, D. L., and Upgren, A. R. 1964, Ap. J., 140, 151.
Holmberg, E. 1957, Medd. Lund Obs., ser. 2, No. 136.
Johnson, H.L. 1965, Ap.J., 141, 923.
Johnson, H. L., and Morgan, W. W. 1953, Ap. J., 117, 313.
Kinman, T. D. 1961, Roy. Obs. Bull., No. 37, 151.'
-_. 1963, Ap. J., 137698.
Klemola, A. R. 1962, A. J., 67, 740.
Kron, G. E., and Mayall, Ñ. U. 1960, A. J., 65, 581.
Morgan, W. W. 1956, Pub. A.S.P., 68, 509.
Morgan, W. W., Harris, D. L., and Johnson, H. L. 1953, Ap. J., 118, 92.
Oke, J. B., Giver, L. P., and Searle, L. 1962, Ap. J., 136, 393.
Oosterhoff, P. T. 1939, Observatory, 62, 104.
Paczynski, B. 1963, Pub. A.S.P., 75, 400.
Plaut, L. 1963, Galactic Coordinates liI ${ }^{I I I}$ of 15504 Variable Stars (Moscow: Academy of Sciences of the USSR).

Preston, G. W. 1959, Ap. J., 130, 507.
——. 1961, ibid., 134, 633 .
-- 1964, Ann. Rev. Astr. and Ap., 2, 23.
Preston, G. W., and Paczynski, B. 1964, Ap. J., 140, 181.
Sandage, A. R. 1959, Ap. J., 129, 596.
Sandage, A. R., and Eggen, O. J. 1959, M.N., 119, 278.
Sawyer, H. B. 1955, Pub. David Dunlap Obs. 2, 35.
Searle, L., and Oke, J. B. 1962, Ap. J., 135, 790.
Shane, C. D. 1964, private communication.
Slettebak, A., Bahner, K., and Stock, J. 1961, Ap. J., 134, 195.
Spinrad, H. 1961, Ap. J., 133, 479.
Stebbins, J. 1933, Proc. Nat. Acad. Sci. U.S., 19, 222.
Stebbins, J., and Whitford, A. E. 1936, Ap. J., 84, 132.

- . 1937, ibid., 86, 247.

Stibbs, D. W. N. 1955, M.N., 115, 323.
Strömgren, B. 1963, Basic Astronomical Data, ed. K. Aa. Strand (Chicago: University of Chicago Press), chap. ix.
Sturch, C. R. 1963, unpublished.
Wampler, E. J. 1961, Ap. J., 134, 861.
Webb, C. J. 1964, A.J., 69, 442.
Westerlund, B. E. 1963, M.N., 127, 83.
Williams, E. T. R. 1934, Ap. J., 79, 404.

