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ABSTRACT 

The pre-main-sequence evolution of a rotating non-magnetic star is investigated. Stars forming out of 
interstellar gas clouds are shown to have sufficient angular momentum to cause centrifugal force to 
balance gravity before reaching the stable Hayashi phase, so that during subsequent evolution matter 
must be left behind from the equatorial regions. During contraction through the fully convective Hayashi 
phase the coupling of central and surface regions by convection determines a definite rotation law which 
we take to be uniform rotation. With continued contraction the star develops a radiative core and the 
*‘viscosity” effect of the turbulence is no longer operative; each element of the growing core therefore 
conserves its angular momentum causing an inward increase in angular velocity. It is shown that the 
ratio of centrifugal force to gravity increases in the central regions and that for stars with mass >0.8 M® 
rotational instability is likely to occur. This is imagined to cause the splitting of the original star into two 
components and so form a binary system. Assuming conservation of angular momentum on fission it is 
shown that stars with mass < 4 M® can form a contact binary system whereas more massive stars will 
produce separated binaries. The theoretical limits of 0.8 M® and 4 M® for the total mass of contact 
binaries are in good agreement with observations of W Ursae Majoris systems, as is the distribution of 
total angular momentum with mass. 

I. INTRODUCTION 

This paper is concerned with one of the oldest hypotheses in stellar-evolution theory, 
namely, that a binary system originates from the splitting of a single star into two 
components due to rotational instability during the contraction of the star. In spite 
of many attempts, no satisfactory theory of this process has been developed (see 
Struve 1950 for an account of previous work), and for reasons of mathematical sim- 
plicity the case that has received most attention is that of an incompressible liquid 
with gradually increasing angular velocity, this being formally equivalent to constant 
angular momentum and increasing density. An account of these investigations has 
been given by Lyttleton (1953), where he criticizes Jeans’s (1929) conclusion that a 
rotating liquid will split to form a binary system. However, although Jeans’s analysis 
includes many errors, this does not necessarily mean that his conclusions were wrong. 
Lyttleton argues that, as the Jacobi ellipsoid becomes both dynamically and secularily 
unstable at the same point, then the subsequent development of the system can be 
examined without considering the effect of friction. This means that the equations 
must be time-reversible. But reversing the arrow of time in a binary system just makes 
the two stars go around each other in the opposite direction and not coalesce to form a 
single rapidly rotating star. Therefore Lyttleton argues that a single rotating star can- 
not form a binary system due to rotational instability. 

We may criticize Lyttleton’s conclusion since, even though the system becomes 
dynamically unstable, its subsequent development will depend on friction and the 
equations are not time-reversible. This is of particular importance to the theory devel- 
oped here, as the rotational instability occurs in the central regions which are sur- 
rounded by a large part of the star. Again, if some material is expelled to infinity during 
the rotational breakup, then on reversing the arrow of time we must bring back this 
material, and this could be sufficient to make the whole configuration coalesce to form 
a single rotating object. 

However, even if Lyttleton’s objections can be overcome there is a much more serious 
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objection to the fission theory of the origin of close binary stars. Whereas a liquid be- 
comes unstable and breaks up either into two stars or a collection of smaller objects, a 
compressible object does not become unstable, provided that it is uniformly rotating 
and has an effective polytropic index greater than 0.8 (Jeans 1929; James 1964), and, 
with increasing angular velocity, centrifugal force balances gravity at the equator and 
during contraction the star will leave behind a disk in the equatorial plane. 

The two different forms of behavior, rotational instability and equatorial mass loss, 
are correlated with the ratio of centrifugal force to gravity over the bulk of the star. 
With only a low degree of central condensation the major part of the star is influenced 
by rotation, whereas for a highly centrally condensed star, even though centrifugal 
force may balance gravity at the equator, its effect is very slight over the bulk of the 
star. One way of increasing the effect of rotation over the bulk of the star is to have a 
higher angular velocity in the central regions than in the surface layers, thus increasing 
the effect of rotation over the major part of the star while still keeping centrifugal 
force less or equal to gravity at the equator. We shall show that during the pre-main- 
sequence of a rotating star, this does indeed occur. 

At the present state of the theory it is difficult to give any reliable criterion for 
fission rather than equatorial mass loss. It is known that a rotating liquid reaches a 
point of bifurcation when 

Q2 
a = -^~- = 0-187, (i-i) 

where 0 is the angular velocity and p the density, and then with increasing ti the 
liquid evolves along the Jacobi series until a = 0.142, at which stage the liquid 
becomes unstable and fission may occur; a decreases along the Jacobi series so that 
its maximum value is 0.187 where the Maclaurin series becomes unstable. If we are 
to take a as a stability parameter we must conclude that instability will occur when a 
exceeds the value 0.187. For a uniformly rotating polytrope of index 1.5, centrifugal 
force balances gravity at the equator before instability can set in, and then (Monaghan 
and Roxburgh 1965) 

Q2 
a = -—„-- = 0.04, (1.2) 

¿irCrpc 

where pc is the density at the center. Now in the central regions of a star the density 
is approximately constant (the density gradient is zero at the center), so we may sup- 
pose that such regions behave like a liquid. Consequently in the subsequent work we 
shall suppose that a star becomes rotationally unstable and splits into two, when 

O2 

a = W~r<— = 0.187. (1.3) ZTrCrpc 

For a polytrope of index 1.5 this corresponds to an inward increase in angular velocity 
by a factor of 2. This is in fair agreement with the results of Stoeckly (1965). An upper 
bound on a is given by the condition that centrifugal force balances gravity in the 
central regions, and this gives 

a 
122 

2wGpc 
<0.667. (1.4) 

Fortunately the results of the theory given here are not that sensitive to the value 
of a, and the other uncertainties in the theory are greater than an error of 2 in the 
value of a. Consequently we shall use condition (1.3) as our condition for rotation to 
cause fission of the central regions. 

Of the close binary systems that we may hope to form by fission by far the most 
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numerous are contact systems of the W Ursae Majoris type. These systems are ob- 
served to form a very compact group of stars, with spectral types lying between FO 
and G9. Of the systems that have been well determined (Kopal and Shapley 1956) it 
is found that the total mass of the systems lies between 0.74 and 3.8 Mo and the mass 
ratio is of order of 0.5. The mass ratio and detailed structure of such configurations will 
be considered in a separate communication as this is a problem of the structure of 
main-sequence contact binaries rather than one of formation of such systems, but a 
theory of the origin of close binary stars should aim at explaining the mass range and 
the angular momentum of such systems, and this will be the testing ground for our 

Fig. 1.—Pre-main-sequence evolution of non-rotating and rotating stars 

theory. The predominance of W Ursae Majoris systems over other types of binary 
systems is due to the preferential formation of stars with masses from 0.5 to 4 Mo, and 
is a property of the original dynamical collapse of the gas cloud from which the stars 
were formed. 

II. PRE-MAIN-SEQUENCE CONTRACTION OP SPHERICAL STARS 

The dynamical collapse of a gas cloud ceases when the internal pressure has increased 
sufficiently to halt the motion and the star will then oscillate about a position of hydro- 
static equilibrium; at this stage the star has a radius of order 50 times its main-sequence 
value, point B on the track in Figure 1. Subsequent contraction is then only necessary 
to release the energy that is radiated away from the surface. When the star has such 
large dimensions, the surface conditions force the star to be fully convective and have 
a high luminosity (Hayashi 1961). Contraction continues releasing energy to be radi- 
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ated away, and the star moves almost vertically in the H-R diagram (section BC in 
Fig. 1) during which period it is fully convective. 

With continued contraction and decreasing luminosity it will eventually be possible 
to transport the energy with a subadiabatic temperature gradient, at which stage the 
convection begins to die away. This first starts at the center of the star. Point C on 
the track in Figure 1 is where the radiative core starts to develop. 

The star continues to contract with a growing radiative core until almost all the 
star is in radiative equilibrium. As the star approaches the main sequence, the more 
massive stars will develop a convective core. Section CD of the track in Figure 1 is the 
stage during which the radiative core is growing, and section DE is the stage of ad- 
justment to the main-sequence configuration during which the convective core begins 
to grow. 

Results of computations on this stage of evolution are given in Table 1, where the 
numbers are taken from Iben (1965). The central density at point C in Figure 1 is 
Pch, Pcm is the central density in the main-sequence configuration, Rh the radius at 
point C, and Rms the main-sequence radius of the star. 

TABLE 1 

Summary of Results of Pre-Main-Sequence Models 

M/MO log PcH log PcM log Rh/RO log Rms/RO 

0.5. 
1.0. 
1.5. 
3.0. 
5.0. 

+0.95 
-0.27 
-1.09 
-2.53 
-3.5 

1.95 
1.95 
1.87 
1.67 
1.29 

-0.11 
+0.40 
+0.73 
+1.31 
+ 1.75 

-0.28 
- .06 
+ .07 
+ .24 
+0.38 

III. PRE-MAIN-SEQUENCE CONTRACTION OF ROTATING STARS 

If the star is rotating its evolutionary pattern will be different from that of a spherical 
star. If we try to form stars out of interstellar gas clouds of a density of lO“20 gm cm3 

rotating with the galactic angular velocity Ü ~ 10~15 sec _1, then the ratio of centrifugal 
force to gravity before collapse is 

Q2RZ 

GM 
^4.10“4 (3.1) 

with dynamical contraction (the track A'B' in Fig. 1) and conservation of angular 
momentum; then this ratio increases like R-1. By the time the star reaches point B\ 
where the collapse is stopped by the pressure force, the radius has decreased by a 
factor of 105 and the ratio of centrifugal force to gravity exceeds unity. This is clearly 
not possible and the star must leave behind some material, but on reaching the point 
of dynamical stability we may expect the star to be rapidly rotating, with centrifugal 
force balancing gravity at the equator. 

As in the spherical case, once the star becomes dynamically stable then the surface 
conditions are such as to make the star completely convective and to have a very high 
luminosity. The effect of the turbulence is not only to transport energy outward, but 
also to completely mix the star and create a very large “turbulent viscosity.” This 
coupling of the internal and external regions by convection will maintain the star in 
uniform rotation if the turbulence is approximately isotropic. The subsequent con- 
traction can then be investigated assuming uniform rotation (Roxburgh 1965). The 
star then contracts loosing matter from the equator, thus changing its angular momen- 
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tum. If the star has equatorial radius Re, angular velocity Í2, mass M, then the balance 
of gravity and centrifugal force at the equator gives 

Me
3 

GM 
(3.2) 

The angular momentum of the star is 

H = kMR?Q. = kGllmzl2Re
112, (3.3) 

where kl,2Re is the radius of gyration of the star. For a completely convective fully 
rotating star, the parameter k is 0.132 (Roxburgh 1965) and is even smaller for a radi- 
ative star, being of order 0.04. The rate of change of angular momentum is equal to the 
angular momentum carried away by the mass loss, so 

4( kGl/'lM'il2Re
llï ) = ~ i?e

1/2Gl/2M1/2, (3.4) 
at at 

which integrates to give 
M oc Rk/^-Zk) ? (3.S) 

so that the angular momentum 
H oc Rm-m # (3.6) 

With such a small value of k, the mass does not change very much and H oc R112, 
The star contracts down the track B'C in Figure 1, losing mass and angular mo- 

mentum until it reaches point C', where the energy can be transported by radiation 
and a radiative core begins to develop, just as in the spherical case. Since the centrifugal 
force is only a small perturbation over most of the star, we can take the results of 
the investigations of spherical stars to indicate when point C is reached. The develop- 
ment of the radiative core now produces a significant change in the star’s evolution. 
As long as the star was completely convective we could assume that the turbulence 
distributed the angular momentum throughout the star, so that uniform rotation was 
a valid approximation. With the growth of the radiative core the inner regions are no 
longer coupled to the outer regions and the star no longer rotates even approximately 
uniformly.1 Each element of the radiative core contracts conserving its angular mo- 
mentum, as the star continues to lose mass from the convective envelope. The star 
moves along the track CD' in Figure 1. 

As long as the star was in uniform rotation then centrifugal force balanced gravity 
at the equator causing matter to be left behind in a disk, and a was too small to cause 
rotational instability. However with the uncoupling of the central regions from the 
surface by the development of the radiative core, the effect of rotation can be felt in 
the central regions, a prerequisite for fission of a fluid form. It is in the very central 
regions where the rotational effect first becomes significant. 

At the end of the fully convective phase we find 

02 
a =—-7V“ = 0.04 (3.7) 

2d TTkj p c 

(Monaghan and Roxburgh 1965). If we consider a small volume surrounding the center, 
then this contracts conserving its angular momentum so that £2 oc R-2. The density 
p oc R~s so that 

(3.8) 

1 Assuming there is no other coupling mechanism such as a magnetic field. 
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where pc is the central density at any stage and pCH is the value at the end of the com- 
pletely convective phase. The parameter a can then be calculated at any stage during 
the subsequent contraction, and if it becomes larger than the limit for stability 0.187, 
the central region will become unstable and split into two. 

In Table 2 we give the values of a when the star reaches its point of maximum 
central density before the growth of any convective core. This exceeds the critical 
value 0.187 for stars with M > 0.8 if o. Also in Table 2 we give the radius of the star 
at the point where a = 0.187, Ri, using Iben’s (1965) results for the variation of central 
density with radius. We deduce that stars of mass greater than 0.8 Mo will become 
unstable in the central regions and will possibly split into two stars. The agreement 
between the lower limit and the observed lower limit of W Ursae Majoris stars ~ 
0.74 Mo (Kopal and Shapley 1956) is remarkable. 

TABLE 2 

Critical Values during 
Contraction 

M/MO (SI2 /2irGpc) ms log (Rj/RO) 

0.5. 
1.0. 
1.5. 
3.0. 
5.0. 

0.093 
0.24 
0.40 
0.93 
1.65 

0.05 
0.33 
0.86 
1.30 

TABLE 3 

Angular Momentum at Different Stages of Collapse 

M/MO log Eu log Eh log Eu log Ej log Ed 

1.0. 
1.5. 
3.0. 
5.0. 

51.10 
51.52 
52.27 
52.82 

50.92 
51.32 
52.04 
52.59 

51.03 
51.43 
52.16 
52.71 

50.98 
51.38 
52.10 
52.65 

51.28 
51.60 
52.17 
52.56 

IV. ANGULAR MOMENTUM OF THE BINARY SYSTEM 

A question of considerable interest is how much angular momentum does the system 
have at the onset of instability? With the radius at the end of the Hayashi phase given 
in Table 1 we can compute the angular momentum of the star, Hh, using equation 
(3.3) with k = 0.132; this is given in Table 3. However, this is not equal to the angular 
momentum at the onset of instability Hi since the star continues to contract, losing 
matter and angular momentum from a decreasing outer convective zone until it reaches 
the unstable state. A lower limit on the angular momentum at the onset of instability, 

is given by assuming the star to remain completely convective and hence uniformly 
rotating since this would correspond to complete convection, and then by equation 
(3.6) we have 

log(f£MIog(ê)' 

The values oi Hl computed using this formula are given in Table 3. 
An upper limit on the angular momentum at the onset of instability, Hu, can be 
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computed by assuming conservation of angular momentum by each element during the 
contraction from the end of the Hayashi phase to the onset of fission al instability, 
since this would be the correct assumption if the star were completely radiative. With 
this assumption there will be a distance Rc from the center of the fully convective star, 
such that on contraction with angular momentum conservation the material originally 
at Rc is at the surface of the star at the onset of instability. Material originally outside 
the distance Rc would have too large an angular velocity to be part of the star and is 
therefore lost from the system. Rc is given by the condition 

SIhRc2 = Oj£i2 , (4.2) 

where Üh and ßj are the angular velocity at the end of the fully convective stage and 
at the surface of the star at the onset of fissional instability, respectively. With cen- 
trifugal force balancing gravity at the equator, this gives 

G1/2M1/2 

Rh*12 
Rc

2 = Gll2Mll2R!112, (4.3) 

provided the mass loss is small. Hence 

Rc = (Rtf3/2iy/2)l/2 # (4.4) 

TABLE 4 

Values of Radii during Collapse 

M/MO Rh/RO Ri/RO Rc/Rh Rm^/RQ 

1. . 
1.5, 
3.0, 
5.0 

2.51 
5.37 

20.42 
56.23 

1.12 
2.14 
7.24 

19.95 

0.818 
.794 
.772 

0.772 

2.987 
2.901 
2.820 
2.820 

0.525 
0.676 
1.17 
1.58 

With Ri and Rh given in Tables 1 and 2, the value of Rc/Rh is readily calculated and 
the results are given in Table 4. With Rc known we can now calculate the angular mo- 
mentum loss by assuming all the material exterior to Rc is lost to the system. This gives 

AH = Qh fRH^pr*dr. (4.5) 
JRC ó 

Since the convective star is approximately polytrope of index 1.5 we can express this as 

where 6 and £ are the ordinary poly tropic variables, £0 = 3.6538 the value of £ at which 
0 = 0, and £c = Rc^/Rh> The values of £c are given in Table 4. Since 0 is the Emden 
function of index 1.5, these integrals are readily evaluated and the upper limit on the 
angular momentum at the onset of instability, Hu = Hr — AH, is readily calculated. 
The results are shown in Table 3 (see above). 

The actual value of the angular momentum must be somewhere between the two 
values Hi and Hu and for simplicity we shall take 

Hi = Ev±]LL' (4.7) 
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and these values are given in Table 3 and illustrated in Figure 2. As the two determina- 
tions are so close, we may expect Hi to give an adequate estimate of the angular mo- 
mentum at the onset of instability. 

The evolution of the system after the onset of instability is, of course, difficult to 
discuss, and all we can do is to look for the final configuration. If we assume that after 
instability the star splits into two stars which continue to contract but do not eject 
matter and hence conserve total angular momentum, a tentative discussion is possible. 

Fig. 2.—Theoretical angular momentum for contracting and binary stars 

If the system is to form a pair of main-sequence stars then, assuming components of 
roughly equal mass, the total orbital angular momentum is 

Hd = JG1/2M3/2J1/2, (4.8) 

where d is the distance apart of the two stars. If the stars are to form a contact configu- 
ration then the diameter of each lobe will be approximately f Rm¡2 where Rm/2. is the 
main-sequence radius of a star of mass M/2 (see Fig. 3). The distance apart is there- 
fore 3 Rjif/2, and the angular momentum is 

Hd — G1,2M3/2Rm/21/2 (4.9) 

The values of Rm/2 are given in Table 4 and the resulting values of Hd are given in the 
final column of Table 3. This is the maximum amount of angular momentum that can 
be stored in a contact binary configuration. If the system has more angular momentum, 
it must consist of two separated stars while if it has less it must have a common envelope. 
The relation between angular momentum and mass given by equation (4.9) is illus- 
trated in Figure 2. 

An examination of Figure 2 brings out the fact that the curves for Hj and Hd inter- 
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sect at about M = 4 if o. Stars more massive than this have too much angular momen- 
tum at the onset of instability to form a contact configuration and, therefore, assuming 
angular momentum conservation, they must form a separated system. Stars with M 
< 4 lío can become contact configurations with a common envelope. The agreement 
between this limit and the observed maximum total mass of W Ursae Majoris stars of 
3.8 Mo (Kopal and Shapley 1956) is satisfactory. 

The resulting variation of angular momentum with mass is given in Figure 4 where 
it is compared with the observational values of W Ursae Majoris stars. (Observational 
results from Kopal and Shapley 1956.) The agreement is satisfactory. 

The main point of this discussion is to emphasize that there exist certain theoretical 
limits on the total mass of a contact binary system. The numbers 0.8 Mo and 4 Mo 
found here are at best only a crude estimate of these limits since the theory used is only 
approximate, but the fact that they are the right order of magnitude is at least en- 
couraging. The upper mass limit is the most difficult to determine since it depends on 
the assumption of conservation of angular momentum after the onset of instability. 

Fig. 3.—Contact binary configuration with maximum angular momentum for a given total mass 

Fig. 4.—Comparison of predicted angular momentum—mass relation with observations of W Ursae 
Majoris stars. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

6A
pJ

. 
. .

 1
43

 . 
. I

H
R

 

120 IAN W. ROXBURGH 

The next step in the refinement of the theory is to integrate accurate models of this 
pre-main-sequence stage of contraction of rotating stars, at each stage testing the star 
for stability. We hope to consider this problem in a subsequent publication. 
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