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Summary 

The background radiation density in an isotropic homogeneous universe 
is determined using a differential equation approach rather than the usual 
integral equation method. For the class of models obeying Æ oc it is found 
for n> —1 that the radiation density is E— €pt¡{n-{- i) after sufficient time 
has elapsed following the initial conditions. In this equation p is the density 
of luminous matter (the stars) and e is the rate radiation energy produced 
per unit time per unit mass of luminous matter. (In the static model 
considered by Olbers, n — o and t is the time for which the stars have emitted 
radiation ; in the steady-state model ‘.i — \ and t—\T0 where TV1 is Hubble's 
constant.) Olbers’ paradox is that the sky is dark at night, whereas in an 
infinite universe the sky should be as bright as the surface of a star. But in a 
static universe the stars must radiate for io23 years in order that the radia- 
tion level is raised to that at the surface of the stars. However, radiation 
from the stars at the present rate for such a vast period of time violates the 
conservation of energy principle. It is shown that Olbers’ original assump- 
tions account satisfactorily for the present radiation level provided the stars 
have only a finite radiation lifetime of £~io10 years. In any model of an 
isotropic homogeneous universe of > — i the background radiation level is 
less than the average radiation level at the surface of the stars when t<{n+i)r 
where r is the “ mean collision time ” of a photon between emission and 
absorption. The present value of r is of the order io23 years. The expansion 
(n > o) or contraction {n < o) of the universe has surprisingly little effect on the 
present radiation level. Thermodynamic arguments allow us to estimate 
the present mean density of luminous matter and this is compared with the 
total density deduced from general relativity theory for simple models. 

i. Introduction. In an infinite static universe, uniformly populated with stars, 
the background radiation density everywhere should equal the radiation density 
at the surface of the stars. This contradiction between theory and fact is known 
as Olbers’ paradox (1826). In many ways Olbers’ paradox is a relic of the physics 
of earlier days; nevertheless it remains a subject of absorbing interest and of 
considerable importance in cosmology. 

Bondi (i960) has examined and discussed the main assumptions underlying 
Olbers’ argument. These assumptions are : (i) the average density of stars and 
their average luminosity do not vary throughout space ; (ii) the same quantities 
do not vary with time ; (iii) there are no large systematic movement of the stars ; 
(iv) space is Euclidean ; (v) the known laws of physics apply. Bondi, and more 
recently Whitrow and Yallop (1964), have shown that in an isotropic 

* Received in original form 1964 September 24. 
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homogeneous universe (iv) is unnecessary and the radiation density is independent 
of the curvature index. Assumption (iii) is no longer in accord with modern belief, 
and it is generally supposed that the existence of the extragalactic red-shift is 
a sufficient condition for the resolution of Olbers’ paradox and for ensuring a low 
density of the background radiation. Surprisingly enough, it turns out that this 

is not so. As we shall show, neither the existence of the extragalactic red-shift 
nor the youth of the universe are in general the necessary or sufficient conditions 
for ensuring a low radiation density. The presence of a red-shift, or even a 
blue-shift, plays a relatively minor role in determining the radiation level in a 
variety of non-static models. The principal exception to this rule is the steady- 
state model of Bondi and Gold (1948) in which the expansion of the universe 
ensures that the radiation level remains constant ; whether the actual value of the 
radiation level is high or low however depends on the nature of the sources and 

sinks of the radiation field. In general, the effect of the red-shift on the radiation 
level is of such minor importance that within the framework of Gibers’ assumptions 
it is possible to calculate for a static model a value for the radiation level which is 
in agreement with present-day estimates. The only reservation necessary is that 
assumption (ii) is acceptable so long as it does not violate assumption (v). Within 

this framework it follows that a static universe may be of infinite age, but by the 
conservation of energy principle the radiating stars have existed only for a finite 
time. 

A moment’s reflection shows that it is quite impossible under the present 
circumstances for the universe to be filled with radiation at a density equal to 
that at the surface of the stars. Shapley’s (1933) value for the mean density of 
luminous matter (the stars) in the universe is io~30gcm“3. If we imagine 
that this luminous matter is converted entirely into radiation, the radiation density 

is pc2 ~ 10“9 erg cm-3. This is comparable with the radiation density of moonlight 
at the Earth’s surface. The main source of the radiation field is the conversion 

of hydrogen into helium and therefore if all luminous matter were converted into 
helium the radiation density would be less than one per cent of pc2. In this case 

the background radiation would not affect profoundly the present brightness of the 
night-sky. One might therefore claim that the night-sky is dark, at least in a 
static universe, because the star density is low. It turns out that this is also 
true for a variety of non-static models. In the following discussion we use 
elementary thermodynamics to determine the background radiation density in 
static and non-static models of an isotropic homogeneous universe. 

2. Equation for the radiation density. We consider an isotropic radiation field 
of uniform energy density in a cavity of volume V which has perfectly reflecting 
walls. Hence 

d(EV)+pdV=8Q (1) 

where p = \E is the pressure and 8Q is an incremental change in the energy 
produced by a uniform distribution of sources and sinks. At this stage the 
metric is assumed to be Euclidean. We suppose that T is a macroscopic element 

of volume sufficiently large to contain and represent the average conditions of an 
isotropic homogeneous universe. The universe can be imagined as consisting 

of a large number of such elements of volume, each expanding or contracting in an 
identical fashion, and each containing identical conditions at every instant. The 
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perfectly reflecting walls of each element of volume can therefore be removed and 
the conditions will remain unchanged owing to their uniformity. We therefore 
use equation (1) forjan arbitrary element of volume of the universe which has its 
boundaries defined by the positions of specified galaxies. 

If e8 is the radiation density at the surface of a given star, the total rate at which 
energy is radiated into V is 

2 lc f e8dS=lcE8S (2a) 
stars in F J 

surface 
of star 

where S is the total surface area of the stars in V and E8 is their average surface 
radiation density. One might also write 

\cE8S = n VL=peV (zb) 

where n is the number of stars per unit volume and L is their average luminosity, 
or p is the density of luminous matter and e is the average rate at which radiation is 
produced per unit mass of luminous matter (that is, the average luminosity/ 
average mass ratio). If there is no non-luminous matter then radiation energy 

is lost from F at a rate 
— \cES. (2 c) 

From equation (1) and the expressions (2a>c) it follows 

WiiJt(VmE)=icS(B--E)- (3) 

A more general form of equation (3) is 

~jt(V«E)=icS(^.-ßE) (4) 

which takes into account absorbtion by non-luminous matter. Thus for diffuse 
intergalactic matter jS > 1, and for absorbing matter distributed within the galaxies 

a<i. In general, we have oc<i, ß^i. To avoid complications of a minor 
nature we suppose that there is no non-luminous matter anda=i, /3=i*. 

It can be shown that for an isotropic homogeneous universe equation (3), or 
(4), is quite general provided T is a proper element of volume and all densities are 
proper densities. Let the components of the energy-momentum tensor in 
a co-moving coordinate system be 

Tl = Tl=Tl=-pm-\E, T\=p0+E 

where pm is the pressure due to the random motions of matter of proper density 

Po = + 3Ai> and pm 1S th6 density found from the rest mass of matter. Using 
the line element 

ds2 = dt2 — ■ ^ iT^oxö (^2 + r^dd2 + r2 sin2 6 dcf)2) 
(1 + \hr2)2 

* Bonner (1964) has recently considered in more detail the problem of intragalactic absorbtion. 
He uses galaxies instead of stars as radiating units. 

I* 
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and T'.v = o, with /x = 4, we obtain the relativistic adiabatic energy equation 

jt{(p,+E)n+(p,+m^ 

-7, w)* w> j,w> j,(5«) 

where F is a proper element of volume 

R3(t)r2 sind 
= (1 + Pr2)3 SrSdSr 

and k=iyOy — i, is the curvature index. Any decrease inpmVy because of nuclear 
transformations for example, must equal the energy radiated and also the increase 
in the energy of random motions, that is 

Jt (pmV)= - IcS(ixEs—ßE)— -A-3 I {pmv^). (5¿) 

Combining equations (5 ay b) yields the previous equation (4). 

Since VocR?{i)y equation (3) can be written as 

V0jt{WE) = lcRRlS{Es-E) (6) 

where 2?0 is R(tQ) and £0 denotes the present epoch. 
Whitrow and Yallop (1964) (who give references to previous work on this 

subject) have recently derived an integral equation using a spectral distribution 
function, which takes account of both the effect of recession and the change in 
density in the time elapsed since emission ; they also show that the radiation flux 

is independent of the curvature index. With \cEsS — nLVy they find 

f*0 R 
E = 1to) t,

L Ro
dt- (7) 

This equation gives the same results as (6) provided £ = o at time t = f and there is 

no absorption of any kind. If the intragalactic and intergalactic absorptions are 
zero and the stars are point sources of radiation then a = 1, ß = o. This means that 
in a static universe radiation equilibrium of E = ES as conceived by Olbers is 
ruled out. Also in a variety of non-static models it is possible to deduce from 
equation (7) an impossibly large value of E such that real stars would receive more 
radiation than they emit. Whilst it is reasonable to suppose that the stars are 
capable of radiating for long periods of time when E<^Esit is quite another matter 

to suppose that they can continue to exist in an unchanged state when E > Es. 
The advantage of a differential equation such as (6) is that it contains Es explicitly 
and can be integrated over the period of time during which the physically reasonable 
condition oï E<ES exists. 

It is useful to express equation (6) in terms of a “mean collision time ” of a 
photon : r= (wco-)-1, where a is the average cross-section of the stars. In traversing 
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a proper distance of / units, where / < r, Ijr is the probability that a photon is 

intercepted. Clearly, 
t = iV¡Sc (8) 

or alternatively, r = Es/nL = Eslp€f and therefore equation (6) becomes 

d i?4 

-(R*E)=-(ES-E) (9) 

since tÍ?-3 = t0í?-3. If ps and r3 are the density and radius of a representative 
star, T0 = 4psrs/3€p0, and for stars such as the Sun it follows t0~ io23 light years. 
We observe from equation (8) that if 

i dR i 

Rlt= T 

( Tq 1 is Hubble’s constant) the radiation density increases, is constant, or decreases, 
according to 

idE Es-E t 
— —go when —-— g 4 — . ( 1 
Edt E T v 

We commenced by supposing that a macroscopic element of volume had 
perfectly reflecting walls, that is, the walls were non-absorbing and did not alter 
the isotropy and uniformity of the radiation. By supposing that the universe is 
isotropic and homogeneous we are postulating that the radiation conditions within 
each such macroscopic element of volume are identical at each instant of cosmic 
time t. Hence it is possible to dispense with the reflecting walls without disturbing 
in any way the radiation conditions. Let us now imagine that a single given 
element of volume V is actually enclosed within walls, which are perfectly reflecting 
from both inside and outside during the entire history of the universe. It follows 
that an observer inside V will find exactly the same background radiation density 
as an observer outside F, and furthermore both observers will discover identical 
spectral distribution functions. The observer outside Vfinds that the background 
radiation contains contributions from distant stars which, in an expanding 
universe, are red-shifted and were emitted at a time when the star density was 
larger; whereas an observer inside V finds the background radiation contains 
contributions which were emitted in the past by neighbouring stars and are red- 
shifted owing to successive reflections from the expanding and co-moving walls. 
The observer outside V will tend to evaluate the radiation density or flux by inte- 
grating the various contributions from distant regions as Olbers and others have 
since done, and might be surprised to find that his results offer no clue as to the 
nature of the curvature index. The observer inside V will tend however to evaluate 

the radiation density or flux by using the differential equations of classical thermo- 
dynamics, and because his confined region is relatively small he will not be in the 
least surprised that his results are independent of the curvature index*. 

3. Static universe. In a static universe R is constant and therefore equation 
(9), on integration, gives 

E = Es(i — exp ( —i/r0)) (ii) 

* After this paper was written the author’s attention was drawn to Davidson’s (1962) paper in 
which a differential equation treatment is used for calculating the rate of emission of radiation per 
unit volume. Various features of Davidson’s work are similar to and anticipate the work of both 
Whitrow and Yallop (1964) and the present author. 
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for E = o at t — o. The mean collision time r0 is also the characteristic time 
required for the background radiation to attain Olbers’ equilibrium condition of 
E~ Es. In a static universe t in equation (i i ) is the time for which the stars have 
emitted radiation, assuming that this has been at a constant rate, and it would be 
wrong to suppose that it is the age of a static universe unless there were unlimited 
resources of energy. If e is the mean rate at which radiant energy is produced 
per unit of mass then necessarily et<c2

9 and for i ergg_1s_1, then 
t/T0< ~3 io-10. Therefore equation (n) becomes 

E=E,- (12) 
To 

or E = ept. Since £ <^r0 it follows E<^ES and the night-sky is always dark in a 
static universe having a star density similar to our own. With e~i ergg^s-1, 

io_30gcm~3, and using Bondi’s (i960) estimate of £ = 3 10“13 erg cm-3, it 
follows that the stars have emitted radiation for a time t ~ 1010 years, which is not 
an unreasonable result. Thus Gibers’ original assumptions (i)-(v), with the 
modification to (ii) that t is not infinitely large but is of the order 1010 years, 
account for the present background radiation density in a surprisingly satisfactory 
way. 

4. Steady-state universe. The concept of a steady-state expanding universe, 
as proposed by Bondi and Gold (1948), requires that proper densities such as 
/>, n9 and E are constant. If we are given the background radiation density and the 
rate at which radiation is emitted then, clearly we also know the rate at which 
proper space is expanding for a steady-state condition. From either equation 
(9) or (10) it follows 

i dR _ E8-E 

R dt 4t0£ 
and since E<^E89 we have 

T 
E=\ES- 

or E=z\epT. For T = 1*3 1010 years (Sandage 1958) this result is approximately 
the same as equation (12) for the static model. It is remarkable that two such 
entirely different models, the static model in which the radiation density is propor- 
tional to the emission life-time of the stars, and the steady-state model in which 
the radiation is proportional to T, should give reasonably similar results. It is 
important to notice that the extragalactic red-shift in the steady-state model 
merely ensures that the radiation level is constant, it does not by itself ensure 
that the radiation level is low. The condition for a low radiation level is that 

£<^4t0, and this depends on the density of the stars. 

Os) 

04) 

5. Expanding and contracting models. We consider briefly the radiation density 
in a range of isotropic homogeneous non-static models which have a variation 
index n : 

t dR 
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that is, Rozt71 and t = nT. The models which have n>o expand from i? = o at 
/ = o, and those characterized by n<o contract from i?=ooat£ = o. Forn^^ 
equation (9) is 

(tin exp ( — x) E) = tin exp ( — 

I t 

Zn-i t 

(n*\) 

and for n=\ 

d E 
_ (tVWolToE) = t^iWolro _s

9 1) 
dt x t 

(16) 

(17) 

where rt\n = T0t?n and as before the zero subscript denotes the present epoch. 
We assume that it is physically reasonable to integrate equations (16) and (17), 

with Es constant, only in the range of t for which E ^ Es. Also, at time ^ when the 
stars begin to radiate, the initial radiation density is Ev Let us suppose 
provisionally that tjr is small if i? < Es. In that case equations (16) and (17) are of 
the same form and can be integrated to give 

E 

for all values of n except w = — 1, when 

471 ^ t , t 
+ Es - In —, 

(18) 

(19) 

By definition Ex depends on the radiation conditions prior to tx and it may have any 
value between zero and Es. Of the many possibilities we shall suppose, mainly 
for the sake of illustration, that the initial condition is either ^ = o or = Es. 

A. Expanding models, n>o 

(i) J. For £^ = 0 the radiation level first increases, reaches a maximum, 
and then decreases. For E1 = ES the radiation level diminishes monotonically. 
Provided ^ > tcy where 

fit 3^\ 

V«+I T0/ 
(2D) 

then E<Es{ort> tv Owing to the uncertainty o ^ ^ in our initial condition 
the stars must originate at a time later than the critical epoch tc in order that the 
radiation level remains less than £s. For Vptx the radiation diminishes as 

Es t** _ Es t 

ft + I T0t^
n~1 ft + I T ’ 

(n>i) (21) 

as shown in Fig. i (a). Because t^t1>tcit foUows from equations (16) and (20) 
that x< (w +1)/(3«— 1), thus justifying to a large extent the neglect of exp (x) 
in the integration. 
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E 

Fig. i. (a) n> J; (b) n = \; (c) n<\. Curve shows how the radiation density varies ivith time. 
Stars commence radiating at time tx and cease at time t2. For the curves marked (i) the radiation 
level is initially zero and for the (ii) curves the radiation level is initially Ex = Es. 

(ii) n=\. The radiation level increases monotonically for ^ = o and decreases 
monotonically for E± = Es, and in both cases approaches asymptotically the constant 
value 

E = 3*0^ 

4To + 3*o 
í¿?3i°= -, (« = i) 

To To 
(22) 

as shown in Fig. i (b). 
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(iii) o<n<\. For Z?! = o the radiation level increases monotonically and for 
E1 = ES it first diminishes and then increases, as in Fig. i (c). For the 
radiation increases as 

E = 
Et 

« +1 

f 3n 
_0  ¿1 ~3n _ E, 

n + i T 
- (o<n<i). (23) 

In these models the expansion is sufficiently slow for the radiation to increase. 
The critical epoch tc given by equation (20), at which E = ES now lies in the future : 
tc > tQ. For t<tcwe observe that \x\ is again reasonably small. 

(iv) n = o. This is the static model previously considered. The only reason- 
able initial condition is E1 = o at 1 = ^ = 0 and therefore E = E8t/r0 as given by 
equation (12). So long as Z< r0 it is seen that |x| is also small. 

B. Contracting models, n<o 

(v) —i<n<o. It would be absurd to suppose that the stars originated at 
Z = o in an infinitely dispersed universe of i?= 00, and therefore we suppose that 
they were formed at time > o when the mean density of matter had a finite 
value. Also we suppose that prior to tx there was no radiation and hence Ex = o. 
The radiation level increases monotonically as given by equation (18) and for 

Es t1-^ _ Es t 

ft+l t0£0
-3'1 W+I t 

( — i <n<o). (24) 

There is again a critical epoch of tc > at which E = Es, and \x\ is small for t < tc. 
(vi) n= — i. (vii) n< — i. The radiation level is given by equations (18) 

and (19), respectively, and the critical epochs of tc are readily found. Again 

\x\ is small for t<tc. 
In general, after a sufficient period of time has elapsed, the radiation level 

diminishes for /z > J and increases for n<^. For all models fulfilling the condition 
n> — i we have 

n+i t 

i 

n+ i 
ept = 

n 

n+i 
epT. (25) 

The static model corresponds to n = o and the steady-state model to n = ^. 
(Whitrow and Yallop’s results are in agreement with equation (25). Their 
equation (7) however appears to require modification in order that the initial 
conditions can be taken fully into account.) For this range of models the present 
background radiation level is low compared with the radiation level at the surface 
of the stars provided 

t<^(n+i)r0. (26) 

Very approximately, this is the same condition Z<^t0 as for a static model. The 
existence of a red-shift (?z > o) or a blue-shift (/z < o) has on the whole a surprisingly 
small effect on the radiation level. For the zz< — 1 models the radiation level 
increases at a more rapid rate than the i/r law and i < r is now a necessary condition 

to ensure E < Es. 
If at some time t2 the stars cease to radiate the radiation level will thereafter 

vary as t~in. We have seen that for ft > ^ the stars must commence radiating at 
> tc in order that E<ES ; but it also follows that for ft < J the stars must cease 

radiating at t2 < tc if the condition E<Esis to apply during their radiation lifetime. 
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Some values of tc (using tQ~ io23 years, tQ~ io10 years) are \n=i (Milne’s model), 
¿c~3io3 years; w=f (Einstein-de Sitter model), tc~i day; n=\ (steady-state 
and Dirac’s models), tc= oo; n = o (static model), tc~ io23 years ; n = — i, io13 

years; and n= —2, tc~ io12 years. The corresponding densities at these critical 
epochs are pc=p0(t0ltcf

n or: io2%(w= i), io2Vo(«= I), Po(w = o). i°Vo(w= “ I)» 
and io12p0(n= —2). 

6. Density of luminous matter and total density of matter. From the luminosity 
distribution function for stars in the solar neighbourhood it is found that € is 
approximately 2*5 times that of the Sun, or e = 5 erg g-1 s_1 (Schwarzschild 1958). 
Using Bondi’s estimate of £’=3 io-13 erg cm-1 and 7"= 1-3 io10years (Sandage 
1958), it follows that p = i*5 io~31(n + 1 )/fl g cm-3. Even if we accept a value for 
T of approximately io10 years there remains considerable uncertainty in p owing 
to our meagre knowledge of e and E. 

Kiang (1961) estimates that ep is 7*6 io_31i/ergcm~3 s-1^-1 near430oA, 
where His Hubble’s constant in km s-1 Mpc-1. Van den Bergh’s (1961 ) estimate 
is in agreement within a factor of 2. Hence, epT= 1 io~14ergcm“3 (#=75) 
and for n> — 1, nj^o, 

E =  i io~14ergcm“3. 
n+i 6 (27) 

If we assume that the main source of radiation is the conversion of hydrogen into 
helium then e£ = 7 io“5Vc2, where X is the fractional burn-up of luminous matter, 
and therefore 

£=7 io~spc2 X 

n+i' 
From (27) and (28) it follows 

(28) 

P=I 10-33 n 

X' (29) 

On the basis of observations of the solar neighbourhood V> 10 per cent. If 
therefore we suppose that in general X> 1 per cent then we have p < io-31 « g cm-3 

and e>o*2«“1ergg“1s~1. Hoyle, Fowler, Burbidge and Burbidge (1964) 
estimate that the light-to-mass ratio of the galaxies is of the order 0-3. 

Since it is possible to deduce a reasonable upper limit for the density of luminous 
matter by thermodynamic arguments it is of interest to compare our results with 
the total density deduced for simple models from general relativity theory. In an 
isotropic homogeneous universe of negligible pressure and zero cosmological 
constant 

R(k* + k) = 87rGy3 = const (30) 
3c2 

(Tolman 1934) where k is the curvature index and pm is the total density of matter. 
If k = o, as in the Einstein-de Sitter model, then 

87rGPmT* = 3 (31) 

and rc=§. For T=i#3 io10 years this gives pm= 1 io~29gcm_3 and therefore 
pm/p> io2. For the steady-state theory Hoyle (1948) has derived a relation for 
pm which is the same as equation (31). 
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We are thus confronted with three possibilities: (a) The first is that 
/) < io“31gcm“3 and io-29gcm“3 are approximately correct and there is a 
large preponderance of non-himinous matter which is diffuse and also possibly 
in the form of bodies of low luminosity. Apart from the intriguing prospects 
which this possibility offers (see, for example, Hoyle, Fowler Burbidge and 
Burbidge 1964) it allows us to consider the formation of galaxies and the conden- 
sation into stars in a universe relatively rich in diffuse matter. (6) The second 
is that p~pm< io-30 g cm-3. In this case 87rGpmT2 <4 3 and it is evident that the 
curvature index must be negative and w = 1 at present. Agacy and McCrea (1962) 
have generalized Hoyle’s (1948) treatment of the steady-state model and have 
shown that pm need not necessarily be given by equation (31) but in actual fact 
it may have any desired value. If general relativity theory can tell us very little 
about the present mean density of matter then we must turn to thermodynamic 
theory for information on this subject, (d) The third is thatp~pm~ io-29 g cm“3. 
This possibility revives Olbers’ paradox in a slightly different guise: why is the 
background radiation level not two orders of magnitude higher ? 

These conclusions will obviously be modified to some extent if more appropriate 
values than unity are used in equation (4) for the intragalactic coefficient a and the 
intergalactic coefficient ß. 

7. Summary. The basic assumptions (i)-(v) lead to Olbers’ paradox if the 
stars have emitted radiation continuously at the present rate for a time of the order 
io23 years or longer. But radiation emitted at the present rate for such a vast 
period of time violates the conservation of energy principle and therefore the 
paradox arises from an inconsistency in the assumptions which was not apparent 
in pre-relativistic days. If however the stars have emitted radiation at their 

present rate for a finite period of time of the order io10 years, then Olbers’ assump- 
tions with (ii) only slightly modified lead to results in accord with present-day 
observations. 

It is often thought that Olbers ’ paradox can be resolved by rejecting assumption 

(iii) and the existence of the extragalactic red-shift is the sufficient condition for 
a low background radiation level. But it is clear that the existence of a red-shift 
cannot by itself guarantee that the radiation level is less than some arbitrary value. 
The situation is analogous to the radiation in a cavity of variable volume and having 
perfectly reflecting walls. The total energy of the radiation depends not only on 
the work done by varying the volume but also on the initial conditions and the 
nature of the sources of the radiation field. 

For the class of isotropic homgeneous models oí R^ctn the radiation density 
for n > — i is 

n+i T 

after a sufficient time has elapsed for the initial conditions to become relatively 
unimportant. The static model is given by n = o and the steady-state model by 
n = \ with t=\T. Thus the condition for E<E8 is that i<(w+i)r, where 
r1?Qn — Tt^n. For various reasons this condition may need modification; for 
example, our integrations are inexact and also we have assumed a = ß = 1 in equation 
(4). However, the essential physics of the problem in which we are mainly 
interested are contained in the condition i < (« + 1 )r. From this it is seen that the 
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background radiation level at present is low compared with that at stellar surfaces 
not so much because of the red-shift (when n >0) but primarily becauser0~ 1023 

years is so very large. In fact, the expansion {n>o) and the contraction {n<o) 
of the universe have surprisingly little effect on the radiation level, and the results 
deduced for the static model are sufficiently exact for most purposes. 

Finally, one might remark that the treatment outlined in this paper can be 
applied to the X-ray and radio regions of the spectrum provided care is taken in 
separating off a specific range of frequencies. For a non-degenerate background 
of neutrinos the same arguments apply as for photons except that a = 1 and 
jS ^ o owing to the small neutrino absorption cross-section. A fuller treatment 
is given by Weinberg (1962). 

6 Clifton Drive ^ 
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England: 

1964 October. 
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