THE FREQUENCY OF SPECTROSCOPIC BINARIES IN THE PLEIADES*

Helmut A. Abt, Ronnie C. Barnes, \dagger Eleanor S. Biggs, and Patrick S. Osmer \ddagger

Kitt Peak National Observatory§
Received June 4, 1965

Abstract

From 585 radial-velocity measures of the forty-seven brightest Pleiades stars and from measures published previously, orbital elements are derived for five newly discovered spectroscopic binaries. Among the thirteen B6-B9 stars no short-period ($P<100$ days) binaries were found, and it is suggested that the unusually rapid rotational velocities in these stars are due to an absence of tidal interaction in close binaries. Among the twenty B9.5 V-A3 V stars the frequency of short-period binaries seems normal and the rotational velocities are normal compared to similar field stars. Among the fourteen A4 V-A9 V stars no good examples of metallic-line (Am) stars are known and no short-period binaries have been found. It is suggested that, since Am stars are generally members of close binary systems and the Pleiades has none in that spectral range, the cluster will never have Am stars.

I. INTRODUCTION

Data in a paper by Abt and Hunter (1962) showed that galactic clusters differ from each other in the mean axial rotational velocities of stars of the same spectral type and, probably, in the frequencies of spectroscopic binaries among those stars. Furthermore, there seemed to be a correlation between these characteristics in the sense that the larger the mean rotational velocity, the smaller the binary frequency. Such a correlation is understandable if tidal interaction, particularly during the slower contracting phases of stars, is effective in slowing the rotational speeds in close binaries, whereas such a mechanism is not present in single stars, leaving them to rotate rapidly.

The above-mentioned paper presented or quoted rotational velocities for numerous stars in nine clusters or associations, but the results on the frequencies of spectroscopic binaries depended only on a survey of published radial velocities; those velocities were insufficient in number to instil confidence in the tentative conclusion. Projects were therefore initiated to make intensive surveys of the frequencies of spectroscopic binaries in at least two extreme groups, namely, the Pleiades and the I Orion association. This paper presents the data and results of the first of these projects. In addition, a study (Abt and Snowden 1964) of the galactic cluster IC 4665 showed the existence of a somewhat high binary frequency and a somewhat low mean rotational velocity.

In the Pleiades the brightest star have a mean rotational velocity that is unusually large compared with that of field stars of the same spectral types or, for that matter, with any known group of stars having those types, whereas the fainter stars have a normal or nearly normal mean rotational velocity. The data given below on the binary frequencies are accordingly discussed separately for these two categories of stars.

The Pleiades cluster has another peculiarity, namely, the absence of any metallic-line stars, that is probably relevant to the frequency of spectroscopic binaries in that cluster. Recent work on field stars (Abt 1961, 1965) has shown that among the normal A4-F2 IV,

* Contributions from the Kitt Peak National Observatory, No. 116.
\dagger Summer Research Assistant, 1963; now at the Indiana University.
\ddagger Summer Research Assistant, 1963, 1964; now at the California Institute of Technology.
§ Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

V and the metallic-line (Am) stars, which occupy the same region of the color-magnitude diagram of population I stars, the Am stars are usually or always members of spectroscopic binaries with a most frequent period of 4 days whereas the normal stars seem never to occur in binaries with periods less than 100 days. The explanation advanced for this odd correlation is that members of binaries with periods less than 100 days would have encountered sufficient tidal interaction to have slowed their equatorial rotational speeds to less than $100 \mathrm{~km} / \mathrm{sec}$, and that for reasons not yet understood, it is the slowly rotating stars that have abnormal spectra. There are hopes of understanding the latter correlation in terms of a lack of convective mixing inward of abnormal surface material in slowly rotating stars or in the destruction in rapidly rotating stars of an atmospheric magnetic field, which might cause abnormal spectra through a magnetic support of an extended atmosphere.

According to the spectral classification work of Pleiades stars by Mendoza (1956) and Morgan (Abt 1963), there are no good examples of Am stars in that cluster, whereas numerous such stars exist in older groups such as the Hyades, Praesepe, and Coma clusters. This evident correlation between the occurrence of Am stars and age has led some observers (Jaschek and Jaschek 1959) to suggest that this spectral peculiarity will develop only at a certain age, which happens to be greater than the age of the Pleiades. We now have a chance to test this suggestion because it is very unlikely that single stars or widely spaced binaries can change into relatively closely spaced binaries in intervals of approximately the age of the Hyades. In other words, if there are no late A-type spectroscopic binaries with periods less than 100 days in the Pleiades now, we will conclude that that cluster never will have Am stars, while if such binaries are found, we will conclude that they will eventually develop the spectral characteristics of Am stars.

II. SPECTROSCOPIC DATA

The brighter Pleiades B-type stars were included in the extensive radial-velocity programs of the Lick, Dominion Astrophysical, and Mount Wilson Observatories in the interval 1900-1940, but the radial velocities of the remaining B- and A-type stars have generally been measured only by Smith and Struve (1944). Those authors obtained 237 spectra, generally of $55-\AA / \mathrm{mm}$ dispersion, of 71 stars, using the McDonald Observatory's 82 -inch Cassegrain spectrograph. Most of those stars are now recognized as cluster members. After measuring those spectra they wrote: "The scarcity in the Pleiades of binaries with large amplitudes in the principal conclusion of our investigation." For only five members of types B or A was possible evidence found for velocity variations; those stars are HD 23157, 23512, 23629, 23642, and 23964. The fourth of these was found independently by Pearce (1957) and Abt (1958) to be a double-lined spectroscopic binary and those two astronomers obtained similar orbital elements.

The stars observed in the present study are listed in order of spectral type in Table 1, whose successive columns give the (1) serial number in this study, (2) Henry Draper number, (3) Hertzsprung number, " Hz " (Hertzsprung 1923), (4) Trumpler number, "Tr" (Trumpler 1921), (5) spectral type by Mendoza (1956), (6) projected rotational velocity by Abt and Hunter (1962), (7) number, n, of new radial velocities, (8) mean radial velocity from the present measures only, except γ-velocities are given in the cases of binaries with orbital elements, (9) the scatter in the present velocities only, expressed as a probable error per spectrum, (10) the mean internal probable error per spectrum, and (11) references, " R," to remarks in the footnotes and identifications of spectroscopic binaries. The stars are separated into three groups for convenient discussion below.

The results here are based on 585 spectra of the 47 B - and A-type members of the Pleiades, although no additional spectra of HD 23642 were obtained. Of these spectra, 564 were obtained with the Meinel spectrograph of the Kitt Peak 36 -inch reflector, using Bausch \& Lomb gratings giving dispersions of $63 \AA / \mathrm{mm}(269$ spectra) or $128 \AA / \mathrm{mm}(295$ spectra). That spectrograph was generally used on the 36 -inch telescope, for which it

TABLE 1
Summary of Data on Pleiades Stars

No.	HD	Hz	Tr	Spectral Type	$V \sin i$	n	Mean Radial Velocity (km/sec)	pe	$\begin{aligned} & \text { Mean } \\ & \text { Int } \\ & \text { pe } \end{aligned}$	Remarks
6	23302	126	148	B6 III	230	14	-03	74	24	Spec. binary; $P=$ 100 46; R
19	23480	323	286	B6 IV	320	12	+ 03	60	54	
9	23338	156	170	B6 V	140	12	+ 59	55	42	Spec. binary; $P=$ 1313.; R
13.	23408	242	231	B7 III	35	11	+ 73	67	38	R
28	23630	542	414	B7 III	215	11	+ 09	36	36	
5	23288	117	139	B7 IV	235	12	- 15	59	56	
37.	23850	870	594	B8 III	185	13	-04	72	32	Spec. binary; $P=$ 1254 68; R
7	23324	150	166	B8 V	235	11	+ 03	75	53	
16	23432	255	240	B8 V	210	12	+ 02	56	53	
34	23753	722	506	B8 V	305	10	00	41	56	
38	23862	878	602	B8 p	380:	9	-25	51	52	
17	23441	265	247	B9 V	295	13	-03	62	51	
43	23923	977	671	B9 V	300:	11	- 35	62	68	
23	23568	436	354	B9 5 V	280	16	-77	51	30	
41	23873	910	622	B9 5 V	85	11	+24	39	49	
15	23410	248	234	A0 V	185	13	-230	248	.	$\begin{aligned} & \text { Spec. binary; } P= \\ & 71538 ; R \end{aligned}$
21	23512	371	311	A0 V	155	11	-44	69	43	
27	23629	508	395	A0 V	155	10	-11	77	59	R
31	23642	540	413	A0 V	30:	0	+ 499			$\begin{aligned} & \text { Spec. binary; } P= \\ & 246113 ; R \end{aligned}$
46	23964	1003	697	A0 V	20	11	+17	158	30	Spec. binary; $P=$ 16 7258; R
12	23387	216	215	A1 V	20	16	+107	98	50	R
30	23632	510	397	A1 V	$260:$	13	-73	76	64	
35	23763	742	518	A1 V	100	15	-76	92	49	R
14	23409	251	235	A2 V		12	-87	59	46	
20	23489	341	295	A2 V		15	- 06	79	37	R
29	23631	520	402	A2 V		13	- 58	89	48	
40	23872	891	613	A2 V		16	- 60	84	61	
45	23948	996	688	A2 V		16	+12	59	45	
47	24076	1129	791	A2 V		16	+ 73	113	63	
10	23361	187	195	A3 V		12	+93	97	68	
18	23479	313	281	A3 V		10	-137	62	60	
32	23643	534	410	A3 V	.	12	-116	98	56	
42	23886	924	629	A3 V		14	- 55	84	48	
26	23628	513	399							
3	23194	43	74	A5 V		14	+117	78	43	R
1	23156	28	51	A7 V		12	- 47	64	46	
25	23607	501	390	A7 V	.	12	+23	75	42	
39	23863	885	607	A7 V		12	-81	96	40	R
44	23924	975	670	A7 V	\ldots	15	- 44	57	38	
4	23246	92	121	A8 V		14	+14	62	47	
36	23791	792	551	A8 V	.	13	- 70	71	48	
2	23157	27	50	A9 V		13	+27	68	49	R
11	23375	206	208	A9 V		12	- 66	45	55	
22.	23567	447	359	A9 V		13	-92	70	61	
24	23585	457	365	A9 V		11	-10 1	67	36	
33	23733	693	493	A9 V		13	-19 6	87	7.2	R
8	23325	146	162	Am ?		14	-03	68	50	

NOTES TO TABLE 1

2 HD 23157 Although Smith and Struve suspected this star to be variable in velocity, the present measures do not confirm this suspicion.

3 HD 23194. The velocity may vary slowly with time.
6. HD 23302 $=17$ Tauri = Electra. The orbit is based on four 1925-1926 Lick velocities (Campbell and Moore 1928), three 1941-1942 McDonald velocities (Smith and Struve 1944), three 1957 McDonald coudé velocities, and eleven 1962-1964 Kitt Peak velocities The orbit is not well determined.
7. HD 23324. Double lines are suspected to be present but not measurable at two times (JD 2436142, 2438006).
9. HD $23338=19$ Tauri $=$ Taygeta This small amplitude binary orbit is based on four 1925-1926 Lick velocities (Campbell and Moore 1928), two 1921-1922 Victoria velocities (Plaskett and Pearce 1931), three 1941-1942 McDonald velocities (Smith and Struve 1944), one 1957 McDonald coudé velocity, and eleven 1962-1964 Kitt Peak velocities The velocity variation, which is not completely convincing, undoubtedly is not due to the 8th mag. companion at $69^{\prime \prime}$ (Jeffers, van den Bos, and Greeby 1963).
12. HD 23387. The scatter in the present velocities is unusually large but no periodic variation could be found.

13 HD $23408=20$ Tauri $=$ Maia. There have been reports (Struve 1945) of rapid velocity variations with a possible period of 4 hours, due undoubtedly to pulsation, but no evidence of binary motion. This pulsation may account for the large scatter in the present velocities
15. HD 23410. In this A0 V star only the K -line is seen to be double and the orbital elements are based on measures of that line alone. The components are of nearly the same intensity, leading to confusion and uncertainty in deriving the orbital elements. If these orbital elements are approximately correct, the system is not quite an eclipsing one.

20 HD 23489. See note for 12 HD 23387.
21. HD 23512 See note for 2. HD 23157.
27. HD 23629. See note for 2 HD 23157.
29. HD 23631. See note for 12 HD 23387.
31. HD 23642. Smith and Struve suspected this star to be variable in velocity but they did not detect its double lines. Pearce (1957) and Abt (1958) derived similar elements; Abt found a detectable eccentricity. The period and epoch of periastron from the combined material with other orbital elements by Abt are given in Table 3
33. HD 23733. The present mean velocity ($-196 \mathrm{~km} / \mathrm{sec}$) is very different than the mean $(+7.8$ $\mathrm{km} / \mathrm{sec}$) obtained by Smith and Struve.
35. HD 23763 See note for 12 HD 23387.
37. HD $23850=27$ Tauri $=$ Atlas $=$ ADS 2786. The orbital elements are based on four 1903-1904 Yerkes velocities (Frost, Barrett, and Struve 1926), five 1921-1924 Lick velocities (Campbell and Moore 1928), two 1942 McDonald velocities (Smith and Struve 1944), one 1957 McDonald coudé velocity, and twelve 1962-1965 Kitt Peak velocities. The observations are not well distributed in phase. There are scattered reports of a companion 4 mag fainter at about 0.4 (Aitken 1932). However, this separation is 10 times the maximum separation in this spectroscopic binary.
39. HD 23863. See note for 12. HD 23387.
46. HD 23964. This star was suspected by Smith and Struve to be variable in velocity. The orbital elements are based on five 1941-1943 McDonald measures (Smith and Struve 1944), one 1957 McDonald coudé measure, and ten 1962-1963 Kitt Peak measures The velocity-curve is fairly well determined considering that the amplitude corresponds to only 7.5μ on the Kitt Peak spectra of highest dispersion.
was designed, but pending the completion of the Kitt Peak 84-inch Cassegrain spectrograph, the spectrograph was used on the 84 -inch telescope with a negative lens before the slit to change the Cassegrain $\mathrm{f} / 7.5$ beam to match the $\mathrm{f} / 13.6$ spectrograph collimator. The 96 spectra obtained on JD 2438368, 393, 397, 404, 411, and 778 were obtained with the 84 -inch telescope. In addition, 21 spectra of 18 stars were obtained in 1957 with the C camera ($18 \AA / \mathrm{mm}$) of the McDonald Observatory's 82 -inch coude spectrograph; these were the spectra Abt and Hunter used to measure rotational velocities of Pleiades stars. Eastman Kodak IIa-O emulsions were used throughout. The Kitt Peak observations generally spanned an interval of 2 years.

The spectrograms were measured on an oscilloscope-type comparator made by Grant Instruments, Inc., of Oakland, California and the digitized output was reduced on the Observatory's CDC 160-A computer. The stellar lines used were $\mathrm{H} \gamma, \mathrm{H} \delta, \mathrm{H} 8, \mathrm{H} 9, \mathrm{H} 10$, and, among the A-type stars, the Ca II K and Mg II $\lambda 4481$ lines. Table 2 gives the individual velocities and their internal probable errors.
radial velocities uf pleiades stars

$\begin{gathered} \mathrm{JD} \\ 2430000+ \end{gathered}$	Radial Velocity (km/sec)	$\begin{gathered} \text { Internal } \\ \text { pe } \\ \text { (km/sec) } \end{gathered}$	$\begin{gathered} \text { JD } \\ 2430000+ \end{gathered}$	Radial Velocity (km/sec)	$\begin{gathered} \text { Internal } \\ \text { pe } \\ (\mathrm{km} / \mathrm{sec}) \end{gathered}$	$\begin{gathered} \mathrm{JD} \\ 2430000+ \end{gathered}$	Radial Velocity (km/sec)	$\begin{gathered} \text { Internal } \\ \text { p.e } \\ (\mathrm{km} / \mathrm{sec}) \end{gathered}$
43. HD 23923								
6169677	- 3	± 37	8397604	- 3	± 21	7951892	- 3	± 18
7684767	- 5	87	8411810	- 3	19	7984902	- 4	32
7950965	+ 14	74				8006654	+ 40	28
7951887	- 4	62		5. HD 23948		8011824	- 23	15
7984892	+ 1	100				8048654	- 30	26
8006651	- 13	31	7684772	- 4	58	8273835	+ 37	27
8011772	- 14	62	7947994	0	48	8342912	+ 27	49
8048651	- 21	61	7949922	- 11	23	8357768	+ 32	26
8273840	+ 3	128	7951993	- 5	54			
8342907	+ 5	37	8012816	+ 13	46		. HD 2407	
8357781	- 1	73	8013827	+ 21	47		. HD	
			8045800	+ 7	23	7684780	+ 12	39
44. HD 23924			8046622	- 5	72	7947999	- 26	68
			8266894	+ 14	58	7949927	- 18	34
7948003	- 3	40	8273871	+ 5	35	7952000	- 40	67
7949886	- 14	48	8301910	+ 4	43	8012835	- 25	73
8012782	- 30	30	8302954	- 2	68	8013830	+ 6	53
8013780	+ 9	32	8368903	- 4	30	8045804	+ 2	93
8045769	- 15	53	8393719	+ 2	40	8046618	- 24	54
8046669	- 21	38	8397639	- 11	32	8266889	+ 30	90
8047830	+7	21	8404851	- 5	37	8273830	+ 2	
8266901	+ 18	54				8301906	- 5	78
8273886	+ 2	69		6. HD 2396		9302966	- 12	40
9301917	+ 1	30				8342958	+ 5	36
8302977	+ 6	26	6185650	+ 11	22	8368917	- 2	94
8368934	- 19	44	7684776	+ 20	60	8393703	- 20	57
8393675	+ 2	36	7950969	- 11		8397623	- 4	43

Each of the four authors measured many or all of the spectra of the radial velocity standard stars, which were generally observed twice nightly. The results of fifty-four such $63-\AA / \mathrm{mm}$ spectra of Procyon, Vega, and 9 Aurigae taken between October, 1962, and February, 1964, indicated a correction to the measured velocities of $+0.3 \pm 5.3$ (p.e. per spectrum) $\mathrm{km} / \mathrm{sec}$. Since this probable error does not greatly exceed the usual measuring error, we conclude that the correction was essentially constant with time. For fifty $128-\AA / \mathrm{mm}$ spectra of the same stars taken between January, 1962, and September, 1963, the mean correction was $+11.6 \pm 9.2$ (p.e. per spectrum) $\mathrm{km} / \mathrm{sec}$. Although this scatter significantly exceeds that usually obtained, namely, $\pm 4.2 \mathrm{~km} / \mathrm{sec}$,

Fig. 1.-Computed radial velocity-curves and measured velocities for four newly discovered spectroscopic binaries in the Pleiades. The sizes of the circles indicate approximately the number of measures (1-7) included in the mean radial velocities. Other names for the stars are Electra (upper left), Taygeta (upper right), and Atlas (lower left).
it is not clear how this correction varies with time, and a constant correction was assumed. It is also not known why the instrumental error should differ by a mere substitution of gratings. The velocities listed in Table 2 include these corrections. No corrections were applied to the McDonald Observatory coudé spectrograms.

The spectroscopic binaries are generally those stars in Table 1 in which the scatter in the velocity measures appreciably exceeds the mean internal probable error, or in which the present measures differ significantly from the older published measures. Orbital elements were derived for five newly discovered binaries. The velocity-curves are given in Figures 1 and 2, while the orbital elements are listed in Table 3. A few other stars, as indicated in the notes to Table 1, also appear to be variable in velocity but orbital elements were not found for them.

The orbital elements, as derived from these spectra of relatively low dispersions, are
not well defined, but the aim of this investigation is modest, namely, to determine whether short or long periods are present, rather than to determine definitive velocitycurves. An additional qualification is that the velocities reported here seem to be systematically low compared to those published by others.
III. DUPLICITY, ROTATION, AND METALLIC-LINE STARS
a) B-Type Stars

The first group (B6-B9) of stars in Table 1 has thirteen members. Although three of these stars are members of long-period ($P>100$ days) binaries, no short-period binaries were discovered.

The distribution of binary periods in a random sample of B stars is not known. However, for the present we may combine the following evidence: (1) Petrie (1960) finds that

Fig. 2.-Computed radial velocity-curve and measured velocities for a double-lined A0 V binary in the Pleiades. The measures, all of single plates, are based on the Ca ir K-line only.

TABLE 3
Orbital Elements of Spectroscopic Binaries

No	HD	Period (days)	$\begin{gathered} T_{0} \\ 2400000+ \end{gathered}$	ω	e	$\underset{(\mathrm{km} / \mathrm{sec})}{K}$	$\underset{(\mathrm{km} / \mathrm{sec})}{\gamma}$	$\begin{gathered} a \sin i \\ \left(10^{6} \mathrm{~km}\right) \end{gathered}$	$\begin{gathered} f(\mathfrak{M}) \\ (\odot) \end{gathered}$	$\begin{gathered} \mathfrak{M} \\ \sin ^{3} i \\ (\odot) \end{gathered}$
6	23302	10046	2447286	00	0522	260	-03	3064	0114	
9	23338	1313	232684	2799	073	80	+ 59	1440	069	
15	23410	71538	3618197	228	631	$\left\{\begin{array}{rrr}86 & 2 \\ 144 & :\end{array}\right\}$	-23 0	$\begin{cases}6 & 58 \\ 12 & 3\end{cases}$		266 159
31	23642	246113	3104408	1077	018	$\left\{\begin{array}{rrr}98 & 1 \\ 140 & 6\end{array}\right\}$	+ 499	$\begin{cases}3 & 32 \\ 4 & 76\end{cases}$		205 143
37	23850	125468	158706	213	137	145	-04	2478	386	
46	23964	167258	302930	3090	0055	350	+17	804	0074	

51 per cent of field 09-B5 stars and 54 per cent of field A stars have variable velocities, usually due to binary motion. Therefore, up to 50 per cent of the field late B-type stars could be expected to be found to be members of binaries in a study similar to the present one. (2) The distribution of binary periods is not known for a random sample of B stars, but the data (Abt 1961) in the Fifth Catalogue of the Orbital Elements of Spectroscopic Binary Stars (Moore and Neubauer 1948) indicate that the distribution is similar to that for A stars with the maximum frequency shifted from 6 days for the A's to 3 days for the B's. (3) Among the metallic-line stars (Abt 1965) there are 1.8 short-period ($P<100$ days) binaries for every long-period binary. Therefore in a sample of thirteen

Fig. 3.-The frequencies of various radial velocity dispersions per star for a sample of fifty-five normal A-type field stars, twenty-five field Am stars, and the fourteen A4-A9 Pleiades members (three dots). The velocity dispersions for the Pleiades stars fit those of normal, rather than Am, field stars.
field B stars we would expect to detect approximately $13 \times 0.50 \times 1.8 /(1.8+1)=$ 4.2 short-period binaries and $13 \times 0.50 \times 1 /(1.8+1)=2.3$ long-period binaries. In comparison, among the Pleiades B stars we find no short-period binaries and three longperiod binaries. There appears to be a deficiency of short-period binaries and the consequent absence of appreciable tidal interaction is blamed for the large mean rotational velocity observed in these stars.
b) Early A-Type Stars

The second group (B9.5-A3) of stars in Table 1 has twenty members, of which three are short-period binary systems with known orbital elements and four additional stars (Nos. 12, 35, 20, 29) are probably also binaries of unknown periods. By the same reasoning as above, we would have expected 6.4 short-period and 3.6 long-period binaries in this group, for a total of 10 binaries. The deficiency of three binaries may well be explained by the fact that the dispersions used here are somewhat lower than those used in
the data leading to Petrie's conclusions of about 50 per cent detectable binaries. The mean projected rotational velocity, $V \sin i$, for the first ten stars (B9.5 V-A1 V) in this group is $129 \mathrm{~km} / \mathrm{sec}$, whereas for eighty-seven field stars of types B8 V-A2 V Slettebak (1955) finds a mean velocity of $139 \mathrm{~km} / \mathrm{sec}$. We conclude that the stars in this Pleiades group have an approximately normal binary frequency and normal mean rotational velocity. In contrast to the previous group, the occurrence of numerous short-period binaries evidentally has, by tidal interaction, reduced the mean rotational velocity to the normally observed value.

c) Late A-Type Stars

The third group (A4 V-A9 V) of stars in Table 1 has fourteen members of unknown rotational velocities. No spectroscopic binaries were discovered, and only two stars (Nos. 39 and 24) show excessive scatter in their velocities. The star HD 23325 (Am?), with estimated spectral types from the K-line, metallic lines, and hydrogen lines of A5, A6, and A4, respectively, is a borderline Am star of the kind discussed by Weaver (1952) in the Coma Cluster. The binary characteristics of such stars are not known; this star shows no evidence of duplicity.

Perhaps a more effective way to compare the binary frequency in this group with the distinctive binary frequencies in the normal A4-F2 main-sequence and Am stars is to compare velocity dispersions per star. The Am stars are often (about 56 per cent) members of short-period binary systems (Abt 1961) and therefore exhibit large velocity dispersions in the measures per star. The normal A-type stars are always single (constantvelocity) stars or members of long-period (small-amplitude) binaries (Abt 1965); their velocity dispersions per star are invariably small. Figure 3 shows the frequencies of velocity dispersions in $10-\mathrm{km} / \mathrm{sec}$ intervals for these two groups of field stars; the measured scatter in the velocities of each star has been reduced by the mean internal error, assuming both distributions to be Gaussian in shape. The data for the fourteen A4-A9 stars in the Pleiades have been treated in the same way, giving the three dots in Figure 3. The three dots fit, as well as can be expected, the curve for the normal field stars. We conclude that statistically the Pleiades has no short-period binaries among its A4-A9 stars and therefore in the future will have few or no Am stars.

REFERENCES

```
Abt, H. A. 1958, \(A p J, 128,139\); errata, ibid., 129, 524, 1959.
-—. 1961, Ap J. Suppl, 6, 37 (No. 52)
—— (ed ). 1963, ibid., 8, 99 (No 75); p 115.
——. 1965, ibid., 11, 429 (No 102).
Abt, H A., and Hunter, J H , Jr 1962, Ap J., 136, 381.
Abt, H. A, and Snowden, M S. 1964, A p J., 139, 1139.
Aitken, R. G. 1932, New General Catalogue of Double Stars ("Publications of the Carnegie Institution of Washington," No. 417).
Campbell, W. W., and Moore, J. H. 1928, Pub. Lick Obs., 16.
Frost, E. B , Barrett, S B., and Struve, O. 1926, Ap. J, 64, 1.
Hertzsprung, E. 1923. Effective Wavelengths of Stars in the Pleiades (Mém. Acad. R. Sci. Lettres de Danemark, Copenhague).
Jaschek, C., and Jaschek, M 1959, Zs f. Ap, 47, 29.
Jeffers, H. M., van den Bos, W. H., and Greeby, F. M 1963, Pub Lick Obs, 21.
Mendoza V, E. E. 1956, A p. J, 123, 54.
Moore, J H , and Neubauer, F. J. 1948, Lick Obs Bull, 20, 1 ( No 521).
Pearce, J. A. 1957, Pub Dom Ap Obs. Victoria, 10, 435 (No. 24).
Petrie, R. M. 1960, Ann d'ap., 23, 744.
Plaskett, J. S , and Pearce, J. A. 1931, Pub. Dom. A p., Obs. Victoria, 5, 1.
Slettebak, A. 1955, Ap J., 121, 653.
Smith, B., and Struve, O 1944, Ap. J., 100, 360.
Struve, O. 1945, Sky and Tel, 14, 461.
Trumpler, R. 1921, Lick Obs. Bull, 10, 110 (No. 333).
Weaver, H. F. 1952, Ap. J., 116, 612.
```

