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ABSTRACT 

The formal theory underlying existing techniques for representing the superadiabatic layers in con- 
vective envelopes is re-examined. Particular emphasis is placed on the discussion of points of uncertainty 
and possible controversy. The analysis has been carried out in a form which permits the formulation of 
certain constants, the arbitrariness of whose values represents the inherent uncertainty in the theory. 
Parallel calculations based on different values of these constants lead to a quantitative evaluation of 
their effect upon evolutionary tracks in the Hertzsprung-Russell diagram. Marked effects result from 
uncertainties in the ratio of mixing length to scale height and possibly from inadequate knowledge con- 
cerning opacities at low temperatures. 

I. INTRODUCTION 

In an earlier paper (Henyey, Forbes, and Gould 1964) an elaboration of a technique 
for the calculation of evolutionary sequences was presented. That paper described the 
formal method of coupling the surface boundary conditions to the over-all solution for 
the stellar interior. However, the physical theory and method of calculation involved in 
obtaining these boundary conditions, through construction of model atmospheres, was 
not treated in detail. The present paper reviews the equations that are in use in the 
atmosphere calculation, discusses the approximations that are involved, and examines 
the influence of various numerical assumptions that are made in the theory. 

Recent developments in the theory of stellar evolution have indicated that the struc- 
ture of late-type giants and pre-main-sequence stars, which have deep convective en- 
velopes, is strongly affected by the surface boundary conditions. Hence it is particularly 
important to have an understanding of the structure of the atmospheric layers of such 
stars. The work of Mrs. Böhm-Vitense and others has emphasized the importance of 
superadiabatic regions in convective envelopes, and it is the theoretical treatment of 
these regions that turns out to influence the entire structure of theoretical models so 
sensitively. Unfortunately, since this is also the region where modern atmospheric theory 
is far from satisfactory, the only available method of treating turbulent convection in 
superadiabatic layers is, at best, a rough approximation. The difficulty of the treatment 
of the convection zone occurs simultaneously with other problems affecting the atmos- 
phere as a whole. Line blanketing, sphericity—which is important in the extended at- 
mospheres of late-type stars—and sources of opacity, particularly at low temperatures, 
are examples of effects that require further approximations and, in some instances, ad hoc 
assumptions in the theory. A more rigorous and complete theory of the outer layers of 
stars is, of course, highly desirable, and it is hoped that vigorous research activities in 
the near future will greatly improve the situation. The use of the present theory in 
stellar-evolution calculations can be justified to some extent, however, if it is clearly 
understood to what degree the assumptions involved in the atmospheric calculation in- 
fluence the evolutionary tracks. Therefore, in the following outline of the atmospheric 
equations we indicate where arbitrary parameters have been introduced, and in the final 
section we present the results of some calculations of evolutionary sequences that have 
been designed to test how critical these assumptions are in the evolutionary phases that 
involve deep convection zones. 

* Presently at Joint Institute for Laboratory Astrophysics, Boulder, Colorado. 

841 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
65

A
pJ

. 
. .

14
2 

. .
 8

41
H

 

842 LOUIS HENYEY, M. S. VARDYA, AND PETER BODENHEIMER Vol. 142 

II. DISCUSSION or THE METHOD 

The model atmospheres that we construct are divided into two types of regions, radia- 
tive layers, and superadiabatic convection zones, which require considerably different 
approaches. However, the equation of state, thermodynamic quantities, and the radia- 
tive opacity can be calculated in the same manner in both types of zones. The calculation 
of these quantities is carried out in some detail. The equation of state and the adiabatic 
gradient are treated along the lines of Vardya’s (1965) work. Hydrogen has been con- 
sidered in five states, H2, H2

+, H~, H, and H+; helium has been considered in all of its 
ionization states; and eight representative metallic elements have been included in the 
neutral and first ionization states, with provision for including higher states. Molecular 
hydrogen is not considered if the surface temperature Tf (defined below) exceeds 6000° K. 
When H2 is considered, it is cut off below a given depth in the atmosphere if any one of 
the following conditions is satisfied at that depth: (1) the temperature exceeds 20000° K; 
(2) n ^ 10~5, where n is the fraction of hydrogen nuclei in the form of H2; (3) n shows 
a spurious inward increase, for optical depths r ^ 0.09. H~ and H2

+ are cut off at the 
same point as H2. All effects arising from radiation are included in the pressure and in- 
ternal-energy equations. 

A program for computing atmospheric Rosseland mean opacities (Vardya 1964) has 
been prepared. The sources of opacity included are H2~, H~, H, H2+, He, and He+ in 
the form of continuous absorption, and H, H2 and e~ in the form of scattering. A two- 
dimensional table in temperature T and electron pressure Pe of atmospheric Rosseland 
mean opacity is read into the electronic computer for use in the computation of model 
envelopes. Because the opacity program for the interior calculation (cf. Bodenheimer, 
Forbes, Gould, and Henyey 1965, Appendix B) is slightly incompatible with that for 
the atmosphere, we interpolate between 75000° and 100000° K such that we pass linearly 
in T between complete atmospheric opacities at the lower temperature to complete in- 
terior opacities at the upper value. 

a) The Outer Radiative Layers 

Regardless of the extent of the convective regions, the very outermost layers are in- 
variably stable against convection. It is true that convection is present in some cases as 
a result of overshooting (cf. Böhm 1963), but it is also an unfortunate fact that allow- 
ance for this effect is extremely difficult on the present level of treatment. The simplest 
possibility is to consider these layers as being in strict radiative equilibrium. Indeed it 
is likely that in many cases the effect of overshooting may not be important. Further- 
more, in the outermost superadiabatic regions the efficiency of convective transport is 
so low that the actual gradient is close to the radiative. 

In the event that such an equilibrium prevails to great depths one may use the tem- 
perature distribution given by Böhm-Vitense (1958): 

T4 = tre
4(r + 0.727 - 0.1406e~2 54') . (i) 

In her work she has modified this expression to take account of the blanketing by spec- 
tral lines. This is done by replacing the effective temperature by a quantity TJ given 
by (Baker and Kippenhahn 1962) 

and by adding a term 

1.17(10-4r,- 1.1 )4+ 1.047 

- Be~z(iT 
1 

(2) 

(3) 
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where the coefficient B is given by 

843 

with 
B = 0.4398(7Y)4 - (T0)4 

— 2.0872V 10“4 + 5.465 

2.687V 10-4 + 0.79 

for Te< 9800° K 

for r,^9800oK. 

(4) 

(5) 

We feel that these formulae need modifications for several reasons. In the first place 
the linear term in r in equation (1) should not be modified for arbitrarily large depths 
in the manner indicated. Its coefficient must approach no other than fTV itself. Line 
effects, if present, must at large depths be included only in the opacity used to calculate r. 
The principal effect of blanketing on the form of the right-hand side of equation (1) is 
to modify the term arising from 0.727. Thus we feel that a preferable expression is ob- 
tained by allowing the blanketing corrections to taper off over unit optical depth as 
follows : 

T* = J7e
4(r - 0.1406<r2 54t) + î X 0.727(7y)4 - Be~^ . (6) 

However, further modifications are essential. The expressions (2) and (5) cannot be 
valid for arbitrarily high effective temperatures. For Te> 15000° K we have chosen 
to keep the values of TJ and TQ equal to their values at Te = 15000° K. 

Another significant alteration must be made to include the effect of sphericity, which 
becomes increasingly important as a star passes over to the red-giant phase. The theory 
of extended photospheres has been considered by Kosirev (1934) and by Chandrasekhar 
(1934, 1950). The results for the two-stream approximation of Chandrasekhar may be 
summarized by the statement that the true optical depth must be replaced by the effec- 
tive optical depth 

(7) 

In this expression R0 is the radius at which we regard the depth to be effectively zero. 
While it is true that the level of approximation implied by equation (1) is strictly speak- 
ing beyond the scope of the theory underlying equation (7), we adopt it since it correctly 
allows for the variation of the radiative flux with the inverse square of the radius. The 
substitution of t' for r in equation (6) must also be accompanied by a replacement of 
Te by a temperature which measures the radiative flux at radius R0 in accordance with 
the definition 

T/ 
^TrcrRç? 

(8) 

The allowance for blanketing is based on calculations using solar abundances for the 
heavy elements. In order to take into account the variation of blanketing with chemical 
composition we assume that a considerable amount of saturation is present in the features 
affecting the temperature distribution, and that therefore the deviations from the non- 
blanketing case vary as the square root of the metal-to-hydrogen ratio in the star 
(M/Hy)* (by number). Let 

= r (ilf/Hy ) » ~|1/2 

* L(ilf/Hy)oJ * 
(9) 

The final expression, incorporating all the modifications and replacing equation (6), is 
therefore 

T4 = fr/V' + 0.727 - 0.1406e~2 54V + Ç(A - Be-™*'), (io) 
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844 LOUIS HENYEY, M. S. VARDYA, AND PETER BODENHEIMER Vol. 142 

where 
A = [0.6379(10-4rf - l.l)4 + 0.02565]774, 

B = [0.5146(10-477 - l.l)4 + 0.4605 - Cjr/ . 
(ii) 

As before we regard the parenthetical expressions as reaching a limiting value of 0.4 at 
temperatures above 15000° K. The last term in the second equation is a modification of 
equation (5): 

C = 
( - 2.087 Xl0-4r/+5.465)-1 for T/<9800oK 

(2.68X10-4r/+0.79)-] for Tf ^ 9800° K . 
(12) 

As indicated above, the formulae which we have devised strictly apply to a semi- 
infinite atmosphere. Although previous investigations have used them in the presence 
of an underlying convective region it must be emphasized that the temperature gradient 
as modified by convection must alter, to some extent, the properties of the radiative 
layer. 

The complete treatment of the radiative layer must, of course, also include applica- 
tion of the equation of hydrostatic equilibrium : 

dP 

Tr=-gp- 
(13) 

As discussed later the position of the photosphere is defined as the layer where r = f 
using the true optical depth. It is necessary to integrate the relation, supplementary to 
equation (7) for r': 

(14) 

where k is the volume Rosseland mean opacity. In order to provide for the eventuality 
of a deep envelope, we integrate for mass and radius, and thus allow for a variable value 
of the acceleration of gravity g. 

The above equations have been written in difference form for the purpose of numerical 
integration. Let us divide the whole envelope into spherical shells, and let the subscripts 
j and j + 1 designate physical quantities evaluated at the outer and inner edge, respec- 
tively, of the^th shell. The mean value of a quantity over the width of the shell is desig- 
nated by the subscript 7 + §. These means are linear unless noted otherwise. Note that 
Mj represents the total mass of the star interior to pointy and that the radius rj is meas- 
ured from the center of the star. We write 

Ar = rj+i - Tj, 

Ar' = t'j+i — t/ , 

mj+i = Mj + 47rpy+i/2f
2y+i/2Ar , 

gj+1/2 = Gnij+iß/r2j+i¡2. 

Then the difference form of equations (13) and (14) is 

Pj+i = Pj — &+i/2/>y+i/2Ar, 

A _ 2i?o2 Ky+i/2Ar 
At “TwfT?-- 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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No. 3, 1965 STELLAR EVOLUTION 845 

The solution of these equations is carried out through iteration of the electron pres- 
sure Pe,j+\ for the forward mesh pointy + 1. To proceed from pointy to pointy + 1 we 
first increase r' by an arbitrary small increment to define the location of y + 1. The 
temperature Ty+i then is fixed by equation (10) and need not be iterated. The first guess 
for Pe,y+i is obtained by extrapolation from the converged values of this quantity at 
points y and y — 1, if available. Using the temperature and the provisional electron pres- 
sure, we enter the equation-of-state and opacity calculations to obtain P, p, and k for 
y + 1. We then obtain ry+i from equation (20), treated as a quadratic equation in that 
variable, after which it is possible to calculate Wy+i/2 and gy+1/2 from equations (17) 
and (18), respectively. The pressure Py+i is recalculated from equation (19) and the pro- 
cedure is repeated, after modification of P6, until the pressures obtained from the equa- 
tion of state and from expression (19) agree to within a given tolerance. 

b) Convective Layers 

Our treatment of convective regions is based on the formalism developed by Mrs. 
Böhm-Vitense (1958; also Vitense 1953). For completeness we list all of the important 
equations but describe in detail only the modifications which we have introduced. If no 
explanation or derivation accompanies an expression, it may be found in her papers. 

The pressure scale height is 
TT P H = —. (21) 

gp 

In our calculation P is the sum of the thermodynamic pressure Pth (gas plus radiation) 
and the turbulent pressure, given as a function of density, p, and mean turbulent speed, v: 

Pturb = ßpV2 = P<fl2> . (22) 

This expression is based upon the assumption of isotropic turbulence. Here <2;2>1/2 is the 
rms speed; we consider only the radial component of the motion. Unsold (1955) 
recommends a value of | for the constant ß, a value used by most investigators. How- 
ever, the mean value of the square of the speed is invariably larger than the square of 
the mean speed, so ß must be larger than unity. For example, a normal distribution of 
velocity leads to 

ß = 
00 

x e 
7T 
2‘ 

(23) 

A rectangular distribution gives ß = §, while a two-stream model gives precisely ß = 1. 
Although we prefer the value 7r/2, we will consider various test calculations devised to 
verify the importance of the value of ß. 

To describe the actual temperature versus pressure gradient in a given layer of the 
atmosphere, we use the usual notation 

dlnT 
V d\nP' 

(24) 

Various other aspects of this derivative are designated by subscripts or superscripts. 
The radiative net flux is 

Frad = 16aT4y/3KHf. (25) 

This expression contains a factor / devised to represent the same type of correction to 
the radiative diffusion approximation which appears in the radiative T-t relation (6). 
As a matter of fact, we calculate/ as if radiative transport prevails in order to eliminate 
an annoying discontinuity in the condition for radiative instability which might other- 
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846 LOUIS HENYEY, M. S. VARDYA, AND PETER BODENHEIMER Vol. 142 

wise appear at the radiative-convective boundary, particularly when it appears at a 
shallow depth. The factor/, which is close to unity for optical depths greater than 1, is 
given by 

/ 
4 d 

37>4 d r 
liT*) (26) 

and is calculated by differentiation of equation (10). 
In terms of the total net flux F, the definition of the so-called radiative gradient Vrad is 

F = lÓorJ^Vrad/dKiJ . (27) 

The convective net flux, Fconv, is 

Fconv = iCppflaT/V - v') , (28) 

where Cv is the specific heat per unit mass at constant pressure, v/ is the gradient de- 
scribing the internal changes in convective bubbles as they move, and 

a = l/H (29) 

is the ratio of mixing length to scale height. 
The mean speed can be written in terms of the difference of the gradients v “ as 

with 
v2 = gHQa?(y - v')A 

Q 
T 

P 

(30) 

(31) 

the derivative taken at constant thermodynamic pressure. Following Biermann (1948), 
Mrs. Böhm-Vitense uses a value of 8 for the constant v. It is possible to argue that its 
value is somewhat larger if more than half of the acquired kinetic energy is dissipated 
by turbulent viscosity. Test calculations, which verify the sensitivity of the results on 
the value used for v, are discussed later in the report. 

The efficiency factor y for convection is given by 

v-v' 
7 V' - Vad' ' 

(32) 

We here depart from the treatment of Mrs. Böhm-Vitense by introducing the modified 
adiabatic gradient Vad': 

/ <Hn T \ fd In Pth\ = d In Ah 

\d ln PtJad W ln P / ^ din P 1 
(33) 

which involves a conversion to the variation of temperature with total pressure, includ- 
ing Pturb* This is necessary since the unmodified adiabatic gradient Vad is referred to 
thermodynamic pressure while all other gradients in equation (32) are referred to the 
total pressure (however, see below, § He). 

For the limiting case of a transparent bubble, 

where 
7 = Cppv/8<rTzœ , 

œ = h, 

(34) 

(35) 

the optical thickness of the bubble. Our expression differs from equation (55.37) of Un- 
sold (1955) in that the factor 16 given by him has been replaced by 8. The point is that 
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No. 3, 1965 STELLAR EVOLUTION 847 

the total energy emitted is given by JAT1, which is the average temperature difference. 
Therefore his equation (55.36) should contain an extra factor of 

The situation for 7 in the opaque case is subject to some controversy. This case may 
be expressed in a general form : 

7 = CpP^coy/S^T3, (36) 

where y is a constant depending on the particular model for a bubble. Mrs. Böhm-Vitense 
uses y = I, a value derived from a linear temperature distribution. On the other hand 
a parabolic law gives y = -ÿô* Perhaps a more plausible model results from the assump- 
tion that inside a bubble 

r4 = r14+ (tv-jv) , 07) 
ar 

with T\ the average environmental temperature and r0 the central temperature. This 
expression satisfies a diffusion equation for T4 with a constant diffusion parameter. 
Here, 

at = 2ir (38) 

since 1/2 is the radius of the bubble. A similar approach has been considered by Spiegel 
(1957). For this model y = 3/47T2. The effects of the use of different values of y are dis- 
cussed, using test calculations, in the last section of this report. 

A convenient interpolation between the transparent and opaque cases is given by 

7 = (Cpp/8crTzd)v = y0v , (39) 

where 70 is so defined and where 
03 

1 + yco2 (40) 

The quantities F, v, and vr may be eliminated by combining equations (25)-(28) 
(30), (32), and (39) and by making use of the equation 

F = F conv + F rad (41) 

to derive the cubic equation in 7 : 

7 + 72 + ¿ 73 = ( /Vrad _ Va/ ) ; 

where 
(j) = fco0/. 

In effect this is a cubic equation for v, in view of the outer members of equation (39). 
Also it should be noted that, in addition to the cubic part, the velocity is also contained 
in Vad' because of the second pair of parentheses in equation (33) ; however, this is not 
true if Vadr = Vad. From equations (30), (32), (39), and (42) we may obtain the true 
gradient: 

_ ( 1 +7)/Vrad + 072Vad' , . 
V = 7-7- -T—-2 . (44> 

1 +7 + <¿>72 

The solution of the equations for the convective region is somewhat more compli- 
cated than it is for the radiative region. The scheme of solution is based on an iterative 
cycle involving three independent variables—the electron pressure Pe, the actual gradi- 
ent Vj and the dimensionless quantity 7 defined by equation (32). We define the size of 
the step from pointy to pointy + 1 by fixing Tj+i at a value about 3 or 4 per cent higher 
than Tj. Then first approximations for the variables Pe,j+i, Vy+i> and yj+i are provided 

(42) 

(43) 
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848 LOUIS HENYEY, M. S. VARDYA, AND PETER BODENHEIMER Vol. 142 

by extrapolation. We obtain the total pressure, including gas pressure, radiation pres- 
sure, and turbulent pressure, from the estimated gradient by expressing equation (24) 
in difference form : 

Vy+i/2 = (Tj+i — T3)(Pj+i + Pj)/(Tj+i + Tj){Pj+i — Pj), (45) 

and solving for Py+i: 

p = p r 1 + ( 1 /W+1/2)(Tj+, -7y )/ (Tj+l + Tj)l 
3+1 + 

Given the fixed value of T3+i and the provisional value of Pe,j+h the equation of state 
provides py+i, Vad,y+i, Qy+i, CVij+i, after which equations (17)-(19) are solved for Mj+i 
and ry+i. The quantities ¿Ty+i, 0y+i, 0y+i, and Yo,y+i follow from equations (21), (40), (43), 
and (39), respectively. We now find that a Newton-Raphson technique (Henyey, Wilets, 
Böhm, LeLevier, and Levée 1959) may be used successfully for the simultaneous solu- 
tion of three equations of condition in the three basic variables Pe, V, and 7. One of 
these is equation (42) and a second is equation (44) with all quantities evaluated at the 
pointy + 1- Finally the condition 

Py+i ^ Pth,y+i “f" Pturb,y+i (^7) 

is applied, with Py+i determined by equation (46), Pth calculated from the equation of 
state, and Pturb expressed in terms of 7 through equations (22) and (39). The basic 
variables are adjusted after each iteration, and the whole cycle, starting with equation 
(46), is repeated until conditions (42), (44), and (47) are all satisfied to within 0.1 per 
cent. If the atmospheric calculation extends to sufficient depth so that radiative equilib- 
rium is restored, we set 7 = 0, and the equations reduce to the radiative case. The 
scheme is such that more than one convective zone can be taken into account. 

c) Miscellaneous Considerations 

A basic result to be derived from the calculations is the radius of the photosphere and, 
where sphericity is important, the effective temperature. We have adopted the conven- 
tion that the photosphere occurs at r = § and that the radius at this depth in conjunction 
with the luminosity determines the effective temperature: 

L — 47rP2/32ö'Fe4 . (48) 

For thin atmospheric layers the derived values of Te are insensitive to the value adopted 
for r at the photosphere. For extended atmospheres that exist in red giants and super- 
giants, the value may be more critical. In fact, it is possible that stars exist whose photo- 
sphere is not sharply defined. Integrations carried tangentially across the atmosphere 
would be helpful in clarifying this question. 

In starting an integration it is convenient to place r = 0 at a finite radius Rq rather 
than at infinity. The first radiative zone is taken at a small preassigned optical depth. A 
certain amount of arbitrariness is clearly present in the choice of the exact value adopted, 
although the effect on the radius at the photosphere and on the physical quantities at 
the layer of contact with the interior calculation should be negligible. 

In addition to the various approximations and ad hoc assumptions described above, a 
serious flaw may exist in our theory because of a complete lack of any reference to the 
energy in the field of turbulent velocities. It is possible that the energy given to this field 
is deposited non-locally and that there exists an additional flux term describing the 
transport of turbulent kinetic energy. We have not succeeded in finding a convincing 
treatment of this feature, although we attempted one crude scheme based on the velocity 
gradient, which produced inconclusive results. 
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STELLAR EVOLUTION 849 No. 3, 1965 

In our test calculations of the solution of the equations for the convective region, a 
substantial numerical, and therefore spurious, instability appeared, which we found to 
be associated with the second factor in the expression (33) for Vad'. This equation de- 
pends on the velocity in a manner that seems to cause considerable numerical difficulty 
for extended atmospheres of red-giant stars. For this reason we have arbitrarily ignored 
the troublesome factor and have set Vad' equal to Vad itself. We believe that this approxi- 
mation does not substantially affect the total structure of the atmosphere since in the 
layers where Vad7 differs significantly from Vad the actual gradient is generally closer to 
the radiative than to the adiabatic. 

III. COMPUTATIONAL RESULTS 

The theory as given in the preceding sections involves several features that are some- 
what indeterminate. These enter the calculation in the form of several constants whose 
values are imperfectly known. Using the techniques described by Henyey et al. (1964) 
in conjunction with investigations of post-main-sequence evolution, we have completed 
a number of calculations of sequences which are based on variations in the values of 
these constants. Here we describe only those aspects of the calculations which bear 
directly on the atmospheric problem and leave the discussion of the detailed structural 
and evolutionary aspects for a future report. The computational effort has been con- 
centrated on the red-giant phase for a configuration of 5 Mo and has been directed 
toward a study of the quantities ß, v, y, and l/H, which have been defined in the previous 
section. In addition, the influence of an artificial opacity contribution at low tempera- 
tures has been examined. Less detailed calculations are also described for 2.5 Mo 
and 30 Mo. 

The ratio l/H is probably the quantity whose behavior is most mysterious. A constant 
value causes the mixing length to vary in proportion to the pressure scale height. By 
properly varying the ratio with depth one can contrive other laws; for example, by so 
doing one can cause the mixing length to vary in proportion to the density scale height. 
The physically correct procedure is probably one in which a non-local mixing length is 
used, as in calculations by Ezer, Stein, and Cameron (1963) and by Hofmeister and 
Weigert (1964). These investigators detected some differences from the results which are 
obtained by using a local mixing length, but they concluded that these differences were 
small insofar as the over-all properties of the configuration are concerned. Since the 
theory, in more than one aspect, has not reached a high level of refinement, the intro- 
duction of the complexities that result from the use of the non-local concept seems to be 
premature for our purposes. 

Figure 1 describes the computed evolutionary track for the configuration of 5 Mo. 
We show it here for reference without any intention of discussing the evolutionary as- 
pects. We merely point out that it shows a short pre-main-sequence track {AB) which 
involves some of the complications discussed by Bodenheimer et al. (1965) relating to 
C12 abundance; the main-sequence band (BC); and the post-main-sequence track {CD) 
which has been carried to a point where the central He4 concentration has been reduced 
to 0.56 through conversion to O16. The atmospheric parameters have no influence what- 
soever during the greatest portion of this computed curve ; only in the extreme red-giant 
phase, to the right of the point log Te = 3.7, do the tracks based on different values of 
the parameters begin to separate. This same region is characterized by a deep convective 
envelope which, at its greatest extent, covers about two-thirds of the mass of the star. 
Of particular interest is the value of the lowest effective temperature for the star that 
can be achieved in the calculations and the corresponding values of the various arbi- 
trary constants. 

Figure 2 shows the effect of varying l/H through the values 1.5, 1.0, and 0.5 in the 
region of interest. All other constants have the same value as in Figure 1; therefore, the 
curve marked l/H = 1.5 is simply the extreme right-hand portion of Figure 1. The 
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curves for l/H =1.5 and 1.0 include portions of the evolutionary track which return in 
the direction of the main sequence. The calculation for l/H =0.5 was terminated before 
the minimum temperature was achieved. It is clear from Figure 2 that changes in l/H 
produce considerable variation in the effective temperatures of red-giant models. Similar 
conclusions result from an examination of Figure 3, wherein the red-giant phase for 
2.5 Mo is displayed for l/H = 1.5 and 1.0. As a matter of fact, in this case the effect 
takes hold even before the abrupt rise in luminosity begins. In the case of the curve 
for l/H =1.0 only a short portion of the vertical branch is shown. All other constants 
have the same values as in Figure 1. 

The early pre-main-sequence evolution is also characterized by the presence of deep 
convective envelopes and by a steep vertical track in the H-R diagram, except in this 
case the star evolves downward and to the left. Portions of the pre-main-sequence evo- 
lutionary path for a configuration of 5 Mo are illustrated in Figure 4 for l/H =1.5 and 

Fig. 1.—The complete evolutionary track in the (log Te} Mhoi) plane computed for 5 Mo. Indicated 
points are explained in the text. Appropriate parameters are hydrogen content X = 0.68; metal 
content Z = 0.03; l/H — 1.5; y = 0.076; ß = 0 5; *> = 8. 

Fig. 2 —Portions of the post-main-sequence evolutionary track for 5 Mo, indicating the influence 
of l/H upon calculated effective temperatures. The three branches correspond to l/H = 1.5,1.0, and 0.5, 
respectively; all other parameters have the same values as in Fig 1. 
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1.0. Internally, there are important differences in the structures of pre- and post-main- 
sequence models. Yet the influence of l/H on the calculated effective temperatures is ap- 
proximately the same. To the left of log Te = 3.7 the convective envelope no longer has 
great influence on the structure of the star, and the curves corresponding to different 
values of l/H quickly merge. 

The use of a value for l/H that varies according to depth must also be considered. 
For example, constant proportionality of the mixing length to the density scale height 
may thus be achieved. In the red-giant phase for very high masses, substantial density 
gradient inversions are predicted in the hydrogen-ionization region. For example, a cal- 
culation of a model atmosphere made for 30 ilf o in the strongly convective pre-main- 
sequence phase (with a radius of 700 Ro) indicated a drop in density by a factor of 4 
between temperatures 5000° and 22000° K. It might be argued that the use of the den- 
sity scale height for l might eliminate the inversion. Our provisional impression, not 
conclusively demonstrated as yet, is that such is the case, but that the resulting com- 
puted value of the mixing length will be inadmissibly long. This conclusion follows 
primarily from the observation that the pressure scale height is already excessively long 

Fig. 3.—Portions of post-main-sequence evolutionary tracks for 2.5 X = 0 68, Z = 0 03. The 
effect of l/H in determining the point of turn-up in the H-R diagram is quite similar to that for the case 
of 5 Mo. 

Fig. 4.—Early pre-main-sequence evolutionary tracks for 5 Mo> covering the region of transition 
between fully convective and fully radiative configurations. The effect of varying l/H is shown; other 
parameters have the values y — 0.375, ß — 0.5, v = S. 
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in the extreme circumstances which lead to an inverted density gradient. Further work 
on this point is definitely needed. 

The parameter y is apparently directly involved in the degree of adiabaticity within 
the ascending and descending currents. Surprisingly, varying it over a considerable range 
produces comparatively little effect on the computed track. For 5 ilfo, with l/H = 
1.0, the effect of four widely divergent values of y is illustrated in Figure 5. Calculations 
were also carried out for the same mass but with l/H =1.5 for the cases y = 0.375 and 

Fig. 5.—Segments of post-main-sequence evolutionary tracks for 5 ikfo, indicating the effect of 
varying the parameter y through the four values 0.375, 0.2, 0.076, and 0.02; IIB. is held fixed at 1.0; all 
other parameters have the same values as in Fig. 1. 

LOG TE 

Fig. 6.—Pre-main-sequence evolutionary tracks for 5 Mo, indicating the effect of changing the 
parameter y from 0.375 to 0.076; l/H = 1.0; all other parameters have the same values as in Fig. 4. 

0.076. The separation of the curves for these two values of y was not affected by the 
change in l/H. Finally, the influence of y in pre-main-sequence computations is shown 
in Figure 6, for the case of 5 Mo and l/H = 1.0. As expected, the larger values of y, 
corresponding to better “insulation” of the moving elements, give the tracks with the 
higher effective temperatures. Since one might have expected the effect of changing y to 
be serious, we feel that the relative insensitivity to the value of y is an important result. 
Although the value of y = 0.076 appears to be the most reasonable one, we need not 
be concerned with the precise value while other larger uncertainties are present. 

A completely null result followed when ß, which measures the departure of the rms 
speed from the mean speed, was varied. Two tracks based on ß = 0.5 and 1.0, for 5 Mo 
and l/H = 1.5, differed by such a small amount that we were not able to construct a 
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diagram that revealed the differences. However, in models characterized by larger tur- 
bulent pressures the differences may be more significant. 

Changing the value of v produces the results given in Figure 7. The values 8.0, corre- 
sponding to the dissipation of half the turbulent kinetic energy generated, and 16.0, 
corresponding to dissipation of three-fourths of the energy, are considered. The differ- 
ences in the computed tracks are significant but not excessive. Since the lower value 

Fig. 7.—Segments of post-main-sequence evolutionary tracks for 5 Mo, indicating the effect of 
changing the parameter v from 8 to 16. Other parameters have the same values as in Fig. 1. 

Fig 8.—Segments of post-main-sequence evolutionary tracks for 5 Mo; values of parameters are 
l/H = 1 0; y = 0 076; ß = 0.5; v = 8. The curve labeled ^modified opacity” illustrates the effect of the 
inclusion of a significant artificial increase in the opacity in the outer layers of the star. 

leads to more vigorous convection, it produces the track with the higher effective tem- 
perature during the phase of increasing luminosity. The tracks in Figure 7 represent the 
red-giant phase, again for 5 Mo. 

One source of uncertainty in the calculations may result from an inadequate knowl- 
edge of atmospheric opacities at low temperatures. Faulkner, Griffiths, and Hoyle (1963) 
have speculated on this point with reference to the pre-main-sequence Hayashi track 
for the Sun. We have therefore compared the results obtained with and without the in- 
clusion of an artificial factor which increases the opacity obtained from the table at 
temperatures below 4500° K. We assume that in this temperature range the artificial 
factor varies linearly with the temperature, being unity at 4500° K and increasing to a 
value of 45 at 2500° K. The resulting track is exhibited in Figure 8 where it is compared 
with the one based on an unmodified opacity; in both cases l/H = 1.0. The tempera- 
ture of 2500° K is the lowest reached in the outermost layers of the atmosphere at the 
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last point given for the modified track. Obviously any result may be obtained by such 
an ad äöc modification; however, that which we give does provide a measure of the im- 
portance of the effect. 

The general conclusions that may be drawn from these test calculations cannot be 
definitely stated since they highlight uncertainties rather than verities. Although the 
ranges of the modifications that have been introduced may be rather larger than ac- 
ceptable, they are not overly so with reference to our present level of uncertainty in the 
theory. There seems little doubt that significant variations result. 

We hope that comparison with observations may provide a key to the solution of some 
of these problems. In this connection the occurrence of red supergiants in h and x Persei 
should be a fruitful point of departure for calibrating the theory. This cluster possesses 
the best available data for so doing. 

Note added in proof: The relationship between the temperature T and the optical 
depth r, which is described in Section II and summarized in equation (10), has proved 
(Krishna Swamy 1965) to be quite unsatisfactory in accounting for details of various 
solar absorption lines. The limb-darkening measurements of Pierce (unpublished) as 
analyzed by Mitchell (1959) have been used to derive a numerical relationship between 
T and r by Cayrel and Jugaku (1963). Krishna Swamy has represented these numerical 
values by the following interpolation formula: 

T4 = î2V(r + 1.4 - 0.825e-2 54' - 0.25e-30") . (49) 

He has found that the wings of several strong lines can be represented in a satisfactory 
manner by line-profile calculations based in part on this expression. We have adopted 
equation (49) in our calculations in place of equation (10) and the auxiliary equations 
(11) and (12). Also, r must still be replaced by r' as defined in equation (7). Moreover, an 
attempt to derive a general non-gray correction throughout the entire temperature 
scale from existing published models has proved unsuccessful. It appears that most of 
these models have not been iterated sufficiently to provide a clear basis for such a 
program. 1 

The authors take pleasure in acknowledging the assistance of J. E. Forbes, N. L. 
Gould, Frans Over, and Roger Ulrich in performing the calculations reported here. This 
research was almost wholly supported by Air Force Office of Scientific Research Grant 
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