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The spectral method is applied to turbulence of a conducting fluid in a strong magnetic field, the
presence of which implies that turbulent flow of a fairly fine-scale nature is a system of weakly
interacting plane traveling waves, It is shown that the interaction of the waves is due in the main
to the compressibility of the gas. The interaction of waves of vastly different scales is described
by the method of adiabatic invariants, and waves of roughly the same scale (local interaction) are
described by means of the transport coefficient, which is similar to the diffusion coefficient. It is
assumed that the energy flux through a hierarchy of eddies is proportional to the square of the spec-
tral energy density. A nonlinear equation in partial derivatives describing homogeneous turbulence
under stationary external conditions is derived. The spectrum of stationary turbulence is obtained
with account taken of viscous dissipation, The stationary turbulence spectrum is obtained with
viscous forces ignored (i.e., similar to the Kolmogorov spectrum), and without resorting to the lo-
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cal-interaction approximation.

Introduction

The problem of the intensification of an initially
weak magnetic field frozen into an ideally conducting
incompressible turbulent fluid, and the effect of the
field on turbulence, are fascinating questions. The
initial magnetic field H may be due to noise pheno-
mena (see [1], for example), Light must be shed onthe
ultimate behavior of a magnetic field varying in re-
sponse to the tangling of magnetic lines of force and
dissipation of magnetic energy through Joule losses [2,
31. '

A paper by Batchelor [2, 3] dealt with this problem
as early as 1950, This author treated the evolution of
a magnetic field so weak that its countereffect on tur-
bulence could be neglected, while assuming that at any
moment H = const- curl v, where v is the velocity of
the fluid flow. Then, wken the conventional viscosity
v and the magnetic viscosity vy, are equal, the magni-
tude |H| of the field will be stationary on the average.
On the other hand, the distance between two arbitrarily
selected elements of the fluid will clearly increase with-
out bound with time on the average (the average being
taken over the infinite volume occupied by the fluid).
In the region of the Kolmogorov spectrum [4, 5] (where
the dissipative terms in the equations for v and H are
negligibly small compared to the remaining terms), the
magnetic field is frozen into the fluid, so that it must

also grow without bound. Hence, clearly, the solution
presented by Batchelor is that rare particular case of
flow where the mechanism responsible for tangling up
the field H is not operative. This becomes particularly
clear in the case of two-dimensional (planar) turbulence:
the field H is perpendicular to the plane in which flow
occurs — there is no tangling of the magnetic field,

To be sure, the most popular view holds that when
conductivity is high the magnetic field becomes increas-
ingly stronger and of larger scale with the passage of
time; there exists a characteristic scale A ((t) at which
equipartition of the kinetic and magnetic energy occurs;
at finer scales, the magnetic field suppresses turbulence,
and at larger scales, the field has virtually no effect
on turbulence, However no correct calculations of this
model were provided,

Chandrasekhar [6] and S. A, Kaplan [7] solved sys~-
tems of equations describing the behavior of the spec-
tral functions of the kinetic and magnetic energy. In
constructing the equations, a priori and physically un-
justified assumptions were made to the effect that the
presence of the magnetic field did not alter the mode
of interaction between eddies of different scales.

A. Ya. Kipper [8] poses the possible existence of a
completely tangled stationary magnetic field, with the
spectrum of the field in effect dependent on the same
parameters as the spectrum of ordinary turbulence, The
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Kolmogorov spectrum is naturally derived as a corollary,
and unambiguously.

Schluter and Biermann [9] calculated the time
variation of the growth of the magnetic field at those
scales where the field would exert no countereffect on
the turbulence.

However, it is apparently of greatest interest to ob-
tain the turbulence spectrum in the region of those
scales where the effect of the magnetic field is too sig-
nificant to be neglected.

This region of the spectrum may be broken up into
two parts, First, a comparatively restricted portion of
the specttum to which correspond flows on the maximal
turbulence scale. This portion of the spectrum presents
the greatest difficulties for exact calculations.

Second, a region of finer-scale pulsations, where
turbulence is suppressed by a strong externally applied
(external with respect to these pulsations) magnetic
field. This region is the one we shall discuss in this
paper.

Indeed, let there be a random flow of the conduct-
ing fluid in a strong uniform external magnetic field Hy.

The presence of a strong (stronger than the random)
externally applied magnetic field results in any flow
being decomposed into a sum of weakly interacting
waves [1, 3] with different wave vectors k. The term
"weak interaction” used here means that the character-
istic time of deformation of the waves is much longer
than their periods.

According to the virial theorem, the densities of the
potential and kinetic energy are equal in a weak wave;
in an Alfvén wave, for example:

ov? H?

= @

Here p is the density of the medium, v is the velocity
of flow, H_, is a perturbation of the magnetic field.
Hence, we need not introduce the spectral densities of
the kinetic and magnetic energy separately, as has been
the practice up to the present [7], but instead we shall
determine the spectral density of the total energy:
Ep(k)dk is the energy density per unit mass of the me-
dium, concentrated in flows with absolute values of the
wave numbers falling in the interval from k to k + dk

[10]
Ey (k) = 2F (k)

20 kd 2‘1 3
=5z Q\ S} Qs (x) sin (kr) (k) sin 0 d0 dg dr, (2)
000 i=1

where F(k) is the spectral density of the kinetic energy;
k and k are the wave vector and its modulus; r, 6, and
¢ are spherical coordinates in geometrical space; Qj;
is the tensor correlating the velocity and the magnetic
field:
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Qi; = viv;. (3)

In the case of an intense external magnetic field
there will be no spherical symmetwry, but we can av-
erage over both angles ¢ and 6. Taking asphericity
into account would greatly complicate the problem,
since refraction of the waves occurs in the case of tur-
bulent flow, on any twists of the field H,.

The problem consists in constructing an equation
for the function Ep(k).

1. The Role of Compressibility in a Weak

Interaction between Magnetohydrodynam-
ic Waves

In this section, it will be shown that a weak inter-
action between Alfvén waves in an incompressible fluid
is very specific, and that interaction between waves is
therefore governed primarily by the compressibility.

The general solution of the linearized equations of
motion of an infinitely conducting inviscid incompres-
sible fluid in a strong magnetic field is a superposition
of transverse plane waves:

v=v 4 v,

E—'V-—lln‘p——m-_uo—v — Vv, (4)
vE— Sai’eﬂ""*m”dk, ()
(kay) = O. (6)

Here v is the flow vector of the fluid, H is the magnetic
field vector, p is the density of the fluid, ai are the
complex amplitudes of the aves, k is the wave vector.

In the case of an asymptotically weak interaction
of waves, the general solution will be represented, as
earlier, by formulas (4) to (6), but the complex ampli-
tudes alf will vary slowly (as compared to the periods
of the waves) with time. Their rate of change is deter-
mined by the nonlinear terms in the equations of mo-
tion:

ov
(E->nonlin= —vw)v+ (hV) b,

oh
(% )non11n= (hy) v — (vy) h. %)
From Egs. (7) and (4) we have
ovt _
(W)nonlin__' —2(vy) v,
ov- + —
(%)nonlin= —2 (v V) V. (3)

Clearly, from these formulas, the Alfvén waves of
the same group velocity will not interact mutually.
From formulas (5) and (8) we infer
+

- dat
S a;‘ eik(ruh) Jk

C e F ko o~
= —2i {(ea_ ;) aZeteicionidkde  (9)
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or

dat R s + ., - -

——a'l‘ = —2i S(xa:_;’) age—tEx—Kldy,  (10)
such that

(aZk) = 0. (11
“

Formula (10) reveals tha; the "dissipative” (i.e.,
aperiodic) contribution to daj/at will yield interactions
of only those waves for which

- k4
[oe—k)uo | =57, 12)
where T is the characteristic time of the variation of
31::' Because of the weakness of the interaction, this

time will be much longer than the periods T =2m/w of
the interacting waves, so that

- i 4 1
1oe—ER) ooy =~ o7 <57

L k= k)| .

+

[

~—|kuy|= (13)

4
The line above denotes averaging with respect to the
direction of wave mavel.

We infer from Eq. (13) that only a small fraction of
the interacting pairs are effective from the standpoint of
"dissipativity,”

Since the Alfvén velocity is close to the speed of
sound in a plasma in cases of practical interest, it is
evident that the energy flow relative to the hierarchy
of eddies will be governed chiefly by the compressibility,
The magnetic field is important as the force suppressing
conventional turbulence and leading to the weakness of
the interactions between waves,

2. Interaction of Waves of Essentially

Distinct Scales

First consider interaction between waves of essent-
ially different wavelengths. For our crudest estimate of
the interaction, we may assume that the long-wave os~
cillation slowly alters the parameters of the short-wave
oscillation, and we may apply the theory of adiabatic
invariants to the purpose [11].

The propagation of any weak plane wave isdescribed
by the linear wave equation [1]

a2y 2 %P
arr T U0 g2

(14)

where the x axis lies parallel to the wave vector k, ug
is the speed of ransmission of the signal,¥ characterizes
perturbations of the velocity v, of the magnetic field H,
and of the density p of the fluid,

We must find out how the energy associated with the
wave varies as the parameter uy changes slowly, The
slowness of this change means that the characteristic

IROSHNIKOV

time T of the characteristic dimension L of any essent-
ial change experienced by u, is much less than the period
T or, correspondingly, the wavelength A,

Since Eq. (14) describes the propagation of any
plane waves, it is obvious that the solution of the prob-
lem posed is independent on the concrete wave form.
We therefore proceed to consider longitudinal sound
waves,

The idea underlying the solution consists in find-
ing a canonically conjugate coordinate £ and moment-
um T pair describing the collective wave motion [12].
The wave motion then reduces to the motion ofa quasi-
particle in phase space (&, 7). Adiabatic invariants are
indeed applicable to such motion of one "particle.”

Since we may learn how to find a pair of collec-
tive coordinates for longitudinal waves by consulting
ter Haar's review [12], we need not make a presentation
of that theory here, and now cite only the result: if we
consider collective motion of a system of N bodies
(N> 1), then the motion corresponding to the wave
vector +k will be described by the coordinates

= N1 Tikx;)
Sxk = (VR) 23

N
Rop = 57 S (kpy) 0% (15)
i

The time dependence is

Eak(f) = Eux (0) @iml"{, (16)
where wy, is the frequency of oscillation, x;, pj are the
coordinate and momentum of the j-th particle in Carte-
sian space.

The Hamiltonian of the entire system in the case
of collective motion in the space (§, 1?) has the form

E=H=T-10U = Nm7Ayfg— Vmoiy g,

amn

where m is the mass of « single particle, and E is the
energy associated with the wave., Hence the phase tra-
jectory of the quasi-particle is an ellipse of semiaxes
YNmH and YH/Nmw?, so that the adiabatic invariant is

Iy = (&deh = —% = const. (18)

A continuous medium is arrived at by proceeding
to the limit N - o, with p = Nm/V = const (V is the
volume of the system).

Summarizing, for slow changes of the parameters,
E o« w,

We see from formula (18) that the adiabatic inter-
action lacks a dissipative character, The oscillations
of the parameters due to turbulence need not be taken
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into account, then, and as a consequence we infer that
only a systematic change in the parameters governing
the maximum turbulence scale (i.e., external velocity
field, density, pressure, magnetic field) will be import-
ant. The frequency w of weak oscillations may vary in
a different manner depending on the wave form and on
the direction of the wave from and on the direction of
the wave vector k. ‘

The case of a stationary flow field need not be con-
sidered apart. Here small oscillations are described by
linear equations with time-invariant coefficients, and
hence we see readily that w = const.

Averaging with respect to wave form and direction
of wavel of the waves, we have

® = Uk = const. 19)
Here uy is the average absolute value of the wave veloc-
ity. From (18) and (19), we have that the energy of the
oscillation referred to a region of the spectrum from w
to w + dw or from k to k+ dk is constant and equal to

E =FE,do = E,dk = const, (20)

where

dw = ug dh. (21)

Since we are dealing with a model of an isotropic
and homogeneous turbulence, there is no point in taking
into account the effect of spatial gradients of the exter-
nal parameters on the adiabatic interaction, We infer
then from Egs. (18) to (21) nothing more than that for
homogeneous turbulence with external conditions sta-
tionary, we have

9E,, "
dE, " ,
( k) =0 (23)

3. Interaction between Waves of Approx-
imately the Same Scale

Now consider interaction between waves of approx-
imately the same values of the modulus of the wave
vector k., This interaction will be known as the local
interaction, An equation describing this local interac-
tion will be constructed by analogy with the theory of
thermal conductivity or diffusion. The assumption on
which this analogy rests is apprently the most dubious
of all the assumptions entertained in this paper. Strictly
speaking, the method of transport coefficients is applic-
able only when there is a slight deviation of the spec-
tral function from its equilibrium value. However, one
justificaticn for this approach is the fact that we are
talking only about a local interaction,

Note from the start that the problem discussed be-
low of the stationary turbulence spectrum, similar to

the Kolmogorov spectrum, will not be needed in this
assumption,

We shall rely on quantum theory, Instead of waves,
let us here introduce "quasi-particles” analogous to pho-
nons [13]. The energy and momentum of the "quasi-
particle” are specified by

h
25"

e ="Fho, p = Rk, = (24)

The velocity of the particle is equal to the velocity of
the wave,

A gas composed of these quasi-particles obeys Bose
statistics, Since the number of particles does not re-
main constant, the chemical potential vanishes and the
average number of particles in a given quantum state
is determined by Planck's formula

R S (25)

where 6 = kT,
Bearing Eq. (24) in mind, we derive the approximate
equality

(DR 10) 1
2 (ug)e 1o
e —1

Ndo =~ (26)

by averaging over angles and modes of waves.
What interests us is the case of very low frequencies
(fiw < 0), so that

Bdo
nmd(l) = W . (27)
Hence, at thermal equilibrium
pE, = hon, =~ fo® (28)

RE: & (u0)3 -

A local interaction complies with the continuity

equation
oE as
(T, =0
loc ©

where S, is the flow of energy in w space, At thermal
equilibrium, Sy = 0, and from formula (28)

(29)

2 (o-2E,) = 0.

[0

We therefore assume that

\ 0 2
Su) = "‘Dwéa(ﬁ)—‘ m)- (30)
Here D, is a coefficient similar to the diffusion and
thermal conductivity coefficients. It is dependentsolely

on the following parameters: p, w, E,, ug, N. In the
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quantum-theoretical representation D, = Dy, {p, w, Dy,
ug, i, N). Here, N = uacoustic/ UAlfvén.

Since the interaction of "quasi-particles” is a weak
interaction, we suppose that only binary "collisions”
occur, Hence

OE .
(——t) 20 na. 31
0t Jloc

Bearing in mind formulas (28) to (30), we infer that

-Du) = "m"\p (Paw'l Uyg, ﬁ: ‘N) (32)
or
PE,
Dw: o ¢(91w7u0akaN)1 (33)

with N~ 1in all cases of practical interest. Since D,
depends solely on p, w, E,, ug, N and since the dimen-
sionality [Dy] = sec™®, we arrive at

D, = B' (N} @%u;’E,, (34)

where B'(N) is a dimensionless function, and B'(1) ~ 1.
Utilizing formulas (29) and (30), we get

aEm ,..—2 2 0 —9

(W)loc =B Uy m |:(06Em —(;- ((1) Em):l R (35)
oL, -1 9 | 0 7.0
(_at )loc — By 2 [AGEk O (kEy) ] ,

(36)

where B(1) »# 1. The indeterminates in functions B(N)
and B'(N) are due to the averaging with respect to the
directions of the vector k and with respect to the mode
of the waves, as well as to the use of dimensionality
theory,

The total rate of change of the spectral energy den-
sity of the waves is determined by the adiabatic, local,
and viscous terms:

oE, oE, ‘aEk\ oF,
e () (), + (),
at 0t Jaq 9t J1oc ot Jyis

Arriving at the viscous term does not entail any
severe difficulties, since that term is linear with respect
to Ep. The dissipation of the kinetic and magnetic en-
ergies is usually treated separately [7]. However, since
we are dealing with trbulence aswitha system of slowly
(compared to the periods of the waves) varying waves,
it is sufficient to discuss only the viscous dissipation of
the total energy Ek, Summing the dissipation of the
kinetic and magnetic energies, we have

oE, Y .
(—at—)vjs = (’V + d’Vm) k Ek- (38)

Here v and v are the conventional and the magnetic
viscosity, respectively, & < 1 is a coefficient intro-
duced to comply with the fact that the potential energy
of the wave is built up not only by the magnetic field,
but also by the gas pressure field.

Finally, by using Eqgs. (37), (23), (36), and (38), we
obtain

oF 40

T a = —(
o= BO) ' g [KB g ()]

— (v + avp) K2E,. (39)

This equation is valid in describing turbulence in a
strong magnetic field under stationary external condi-
tions, and then in that region of the spectrum where the
characteristic time of deformation of the waves is much
longer than the periods of the waves. Clearly, from the
derivation of the equation, this idea is applicable to
any random wave motions of weak nonlinearity (e.g.,
in a solid).

4, Stationary Hydromagnetic Turbulence

The simplest problem is the case of stationary tur-
bulence in a constant (on the average) magnetic field
|Hol characterized by the modulus ky of the wave vec-
tor, Usually, the acoustic speed is close to the Alfvén
velocity, i.e.,

. Hy |
N1, 1l vy ~u,
" Viamp o 2T
We begin by finding the spectrum analogous to the
Kolmogorov spectrum, without relying on the local in-
teraction hypothesis. From the hypothesis dealing with
a “"paired” interaction, we find

Sutk) =" { K (o, k.5 m) B (9) Ee (n) ddm,
00
(40)

Here Sy (k) is the flow of energy through a hierarchy of
eddies, K(uy, k, £, 1) is the kernel of an integral equa-
tion describing the contribution to the flux Sy (k) ascrib-
able to interaction between waves lying in the £ and 1
regions of the spectrum,

Let us introduce the dimensionless variables x and

y:
r==, y=-t. (41)
Then
Se(®) =\ \ BK (o, &, 2. y) Eu (k2) By (ky) dzdy.
3o

(42)
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Hence, the dimensionality [K] = [SkER?k 2] = [kug'], and This is of course useful only in that region of the
hence specttum where the first term is much larger than the
second,
K = kug'f (z, y), (43) In concluding, the author would like to express his

gratitude to S. A, Kaplan and particularly to S. B. Pi-
where f(x, y) is a dimensionless function. Consequently kel'ner for their kind and helpful discussion of the prob-

oo lem at hand.
Se () = 15" \ { 1 (2, v) Ex (ko) B (hy) dady. LITERA TURE CITED
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The solution of Eq. (48) now takes on the form All abbreviations of periodicals in the above bibliography
are letter-by-letter transliterations of the abbreviations as
E, = E‘l)c -+ OEy given in the original Russian journal. Some or all of this
periodical literature may well be available in English transla-
tion. A complete list of the cover-to-cover English translations

_2- 1 s ~—3/a 4“0
— = _g'ls _—
- V7B ehut k 33B (‘V + (I’Vm)- (30) appears at the bagk of this issue.
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