THE GALACTIC CLUSTER IC 4665*

Helmut A. Аbt and Michael S. Snowden \dagger
Kitt Peak National Observatory \ddagger
Received January 7, 1964

Abstract

This cluster contains about thirty-five visual members with spectral types from B4 V to F0 V. Star counts in the cluster region and in a nearby control region indicate that there are no fainter members and that the late-type giant stars in the cluster region are probably not members. Radial velocities by the authors and by Trumpler show an unusually high fraction of spectroscopic binaries. The rotational velocities by Deutsch for cluster members are low for their spectral types. These three properties (short main sequence, high binary frequency, and low rotational velocities) are the reverse of the characteristics of the Pleiades.

I. INTRODUCTION

IC 4665 is a nearby galactic cluster approximately as old as the Pleiades, with which it has often been compared. According to Trumpler's (1930) classification, the cluster is poor in number of members and shows little concentration toward a nucleus. Its position in Ophiuchus and apart from the Milky Way (cluster center: $l^{\mathrm{II}}=30^{\circ} 6, b^{\mathrm{II}}=17 \circ 1$) makes it a convenient object to study. In addition to numerous early photographic studies, the cluster has been observed photoelectrically by Johnson (1954) and Hogg and Kron (1955). Vasilevskis (1955) has published an excellent astrometric study; the proper motions determined therein provide the principal criteria for cluster membership despite their small and non-unique values, which average -0 ". 0081 and -0 ". 0047 annually in right ascension and declination, respectively.

It was thought by the authors that radial velocities and MK spectral types might aid materially in separating cluster members from field stars; except for a few extreme cases, this hope was not fulfilled because the radial velocities and spectral types are not drastically different from those of the interspersed field stars. A second aim was to determine certain characteristics such as binary frequency, velocity dispersion, and luminosity function for comparison with the Pleiades.

The next section gives results, based on star counts, on the extent of the main sequence and on possible giant members. Section III describes the spectroscopic techniques and basic data; the spectroscopic results are given and described in the last section.

II. STAR COUNTS

Before discussing the stars individually, it is profitable to see what star counts indicate about the richness and faint magnitude limit of the cluster. A convenient source of stellar positions and approximate magnitudes for this region of the sky is the Observatoire de Toulouse volumes of the Catalogue photographique du ciel. The total numbers of stars within certain magnitude ranges and in a 1°-square region centered on the cluster (1900 position: $17^{\mathrm{h}} 41^{\mathrm{m}} \cdot 4,+5^{\circ} 42^{\prime}$) are listed in Table 1. One square degree closely approximates the area of IC 4665 . For comparison, a neighboring 4 -square-degree region centered (1900 position: $17^{\mathrm{h}} 44^{\mathrm{m}},+8^{\circ}$) at the same galactic latitude was counted; the numbers of stars per square degree in the same magnitude ranges are also listed in

* Contribution from the Kitt Peak National Observatory, No. 53.
\dagger Summer Research Assistant, 1961, 1963; currently at the Harvard College Observatory.
\ddagger Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Table 1. The excess of the IC 4665 counts over the control-region counts gives the expected number of cluster members provided (1) the foreground and background star counts do not vary rapidly with galactic longitude, (2) interstellar absorption associated with the cluster does not seriously affect the brightness of the background stars, and (3) the magnitude calibrations for the two regions do not differ seriously. In regard to the first two reservations, the Palomar Sky Survey prints and plates do not show any nebulosity in the vicinity of the cluster or obscurations more numerous or dense than in the control region. In regard to the third reservation, stellar magnitudes in overlapping regions of adjacent Catalogue photographique du ciel zones yield mean differences of as much as 0.5 mag.; the mean differences near plate centers are likely to be less than this amount because of the known difficulty of obtaining accurate magnitudes near the edges of plates. We conclude that systematic errors in the magnitudes may produce a vertical shift between the second and third columns of Table 1 by roughly $\frac{1}{4}$ of an interval.

TABLE 1
Star Counts in IC 4665 and in a Neighboring Control Region

$m_{\text {pg }}$	Stars per Square Degree			
	IC 4665	Control	Excess	Cluster Members
60-69	2	0.00	200	1
70-79	6	025	5.75	5
80-89	9	1.75	725	4
90-99	6	350	250	4
10 0-10 9	12	725	475	5
11 0-119	37	3250	450	7
12.0-129	74	74.50	-0.50	1
Total.			2625	27

The final column in Table 1 lists the number of stars within the 1°-square region centered on IC 4665 that have proper motions indicating "probable" or "possible" cluster membership (Vasilevskis 1955). Close visual pairs were counted as single stars because similar pairs would not have been resolved in the Catalogue photographique du ciel zones. The individual entries in, as well as the totals of, the last two columns in Table 1 agree remarkably well; from their agreement we conclude: (1) that most or all of the stars labeled by Vasilevskis as "probable" or "possible" members are, in fact, cluster members, and (2) that the lower end of the cluster main sequence terminates at about $m_{\mathrm{pg}}=12$.

Another question that may be partially answered by this type of statistical method is whether the late-type stars present in the region of IC 4665 are cluster members. To the limit of the Henry Draper Catalogue, namely, photoelectrically $B=10.2$ in this part of the sky, there are only two $\mathrm{G} 0-\mathrm{M}$ stars in the square degree centered on the cluster and an average of $3.0 \mathrm{G} 0-\mathrm{M}$ stars per square degree in the 4 -square-degree zone used for control. Therefore, there is no excess of late-type stars brighter than $B=10.2$ in the cluster region. Of the forty-three late-type stars too faint to be in the Henry Draper Catalogue and with proper motions measured by Vasilevskis, only nine stars have proper motions indicating that they could be members; this is about the fraction of field stars for which one would expect their proper motions to fall within the broad limits of the cluster proper motions. We conclude that most or all of the late-type stars in the field of IC 4665 are not cluster members.

III. SPECTROSCOPIC OBSERVATIONS

At least two spectra were obtained for every early-type cluster member (according to the proper-motion criteria) brighter than $B=11.0$ except for two stars (Nos. 72 and 76B). The 167 spectra of 33 stars were obtained with the Kitt Peak 36 -inch telescope's Cassegrain spectrograph; their dispersion is $128 \AA / \mathrm{mm}$ and the slit dimensions, projected on the plate, are 10μ by 0.29 mm . The spectra were measured for radial velocities on an oscilloscope-type profile comparator manufactured by Grant Instruments, Oakland, California; the digitized output was reduced on the observatory's CDC 160A computer. Most of the measures were made by the junior author (MSS), but the two authors agreed in their measurements of the same spectra.

A calibration of the radial velocities has been determined from sixty-two spectra of Vega, Procyon, or 9 Aurigae (a single-lined spectroscopic binary with an unpublished orbit) obtained nightly during the course of the IC 4665 observations; these standard stars yielded an instrumental correction (standard - observed) of $+10.6 \pm 6.4$ (p.e. per spectrum) $\mathrm{km} / \mathrm{sec}$. The systematic correction, adopted as $+10.0 \mathrm{~km} / \mathrm{sec}$, corresponds to 1.1μ per spectrum; the random error of 0.67μ per spectrum is reasonable for the measurement of about five stellar lines per spectrum. The stellar lines used almost exclusively were the hydrogen Balmer lines and the Ca in K-line (when it greatly exceeded in strength the weak interstellar line).

The accuracy of the IC 4665 radial velocities, as judged by the consistency of the measures from various lines on each plate, corresponds to a mean probable error per spectrum of $\pm 5.9 \mathrm{~km} / \mathrm{sec}$. This accuracy depends only slightly on the stellar-line widths for spectra measured with the Grant comparator; the range was from ± 5.3 to ± 6.9 $\mathrm{km} / \mathrm{sec}$ for stars measured at least five times.

The Kitt Peak radial velocities are listed in Table 2, whose columns give (1) the identification number by Kopff (1943), (2) the mid-exposure Julian Date from JD 2430000, and (3) the radial velocity corrected to the Sun and with an instrumental correction of $+10.0 \mathrm{~km} / \mathrm{sec}$.

Trumpler had also obtained many radial velocities (81 measures on 19 stars) of stars in the IC 4665 region, with a dispersion of $80 \AA / \mathrm{mm}$; Dr. H. F. Weaver has kindly made Trumpler's results available to us before publication. The Kitt Peak velocities average $+2.3 \mathrm{~km} / \mathrm{sec}$ larger than Trumpler's velocities for six constant-velocity stars measured by both him and us. Trumpler's measures indicate a mean scatter about a star's mean velocity of ± 4.9 (p.e. per spectrum) $\mathrm{km} / \mathrm{sec}$.

Summaries of the radial velocity measures in the present study plus Trumpler's measures are given in Tables 3 and 4. These tables give the mean radial velocities, the number of measures (n), and the dispersion of the measures per star, expressed as a probable error per spectrum. Not included in this summary are a few published measures or means listed primarily by Wilson (1953).

The same spectra used for radial velocities were also used for spectral classification by means of a comparison with MK standards (Johnson and Morgan 1953) that were photographed with the same equipment and techniques, and with reference to a preliminary edition of an atlas of MK standards being prepared by A. B. Meinel. The principal standards used were λ Cyg (B5 V), 19 Tau (B6 V), a Leo (B7 V), ξ Peg (B8 V), a Del (B9 V), 4 Aur (A0 V), HR 875 (A1 V), θ And (A2 V), a PsA (A3 V), β Ari (A5 V), τ Her (B5 IV), 16 Tau (B7 IV), and $\gamma \mathrm{Gem}$ (A0 IV). In addition, approximate spectral types, based on the assumption of location on the main sequence, were estimated for a few faint stars on two objective-prism plates of the IC 4665 region taken at the Warner and Swasey Observatory; these types are labeled "OP" in Tables 3 and 4. Additional spectral types from other sources are as noted in these tables.

TABLE 2
Radial Velocities

$\begin{aligned} & \text { Kopff } \\ & \text { No } \end{aligned}$	JD 2430000	Radial Velocity (km/sec)	$\begin{gathered} \text { Kopff } \\ \text { No } \end{gathered}$	JD 2430000	Radial Velocity (km/sec)
20	8217735	+48		7421851	-16
				7488710	- 3
	- 7421777	+24		7494705	-8
	7493904	-2		7524703	+21
22	$\left\{\begin{array}{l}8189719 \\ 8191\end{array}\right.$	-38		7597638	$+30$
	8191871	-19		7598563	+20
	8193835	- 3		8189754	+ 2
	(7420 782	+36	49	8190826 8191917	-53 -37
$23(\mathrm{~A}+\mathrm{B})$	$\left\{\begin{array}{l}7487640\end{array}\right.$	+36	4	8193855	-11
	7456573	- 5		8217824	+32
				8266710	-57
	$\left\{\begin{array}{l}8189729 \\ 8217\end{array}\right.$	-25		8273724	-31
23A	\{8217751	-18		8301597	+29 +30
	\{ 8189737	-11		8301602 8302592	+30
23B	$\left\{\begin{array}{l}818977764 \\ 8217\end{array}\right.$	-11		8302592 8302602	+21 +16
	(7420812	-18		(7421870	+ 4
27	$\{7512854$	+22	50	$\{7458916$	+26
	¢524 751	+12	50	7488874	-2
				8190812	+11
	[$\begin{aligned} & 7429810 \\ & 7458 \\ & 748\end{aligned}$	+2 -15		$\left\{\begin{array}{l}7429833\end{array}\right.$	0
	7488699	-8	51	$\left\{\begin{array}{l}7458883\end{array}\right.$	0 +6
	8189746	+1		[7489 792	-17
32	8190821	- 5			
	8191888	- 3		(7421879	-16
	8193848	-4		7488717	-29
	8217819	-17		7494715	+9
	8266719	+10		7514661	-1
	(7458812		58	7523823 8189 760	-20
35	$\left\{\begin{array}{l}7515839\end{array}\right.$	+24		8190844	- 4
	¢301648	-24		8191922	+16
				8193861	-27
	$\int 7494918$	+ 2		8217828	-17
36	$\{7598596$	-8		8273732	- 8
	8301742	-49			
	(7458767		61	$\left\{\begin{array}{l}7523633 \\ 7556660\end{array}\right.$	-30 +11
39	$\{7487746$	+15		(7556 660	+11
	8193952	-7		7421884	- 3
				7488962	-31
	(7421808	-32		7494725	+4
41	$\left\{\begin{array}{l}7488805\end{array}\right.$	-29		7514656	-5
	7514729	-36	62	8189764	+ 6
				8190848	-18
	(7421841	+ 3		8191931	-23
43	\{ 7488857	-8		8193865	-33
	$\{7493936$	-8		8217842	- 3
	8191906	+34			

TABLE 2-Continued

\begin{tabular}{|c|c|c|c|c|c|}
\hline Kopff No \& JD 2430000 \& Radial Velocity (km/sec) \& $$
\begin{gathered}
\text { Kopff } \\
\text { No }
\end{gathered}
$$ \& JD 2430000 \& Radial Velocity ($\mathrm{km} / \mathrm{sec}$)

\hline \multirow[t]{7}{*}{63

64} \& $\{7429877$ \& - 6 \& \multirow{4}{*}{81} \& (7421912 \& - 3

\hline \& $\{7597606$ \& -10 \& \& $\left\{\begin{array}{l}7489 \\ 7505 \\ 729\end{array}\right.$ \& -9

\hline \& \& \& \& \{ 7505831 \& +13

\hline \& $\left(\begin{array}{ll}7421888 \\ 7498\end{array}\right.$ \& +2
+5 \& \& (7557 746 \& +16

\hline \& 7498808
7515877 \& +5
-22 \& \multirow{7}{*}{82} \& (7422860 \& +13

\hline \& 8189777 \& -50 \& \& 7457731 \& +13
-9

\hline \& \{ 8190851 \& -12 \& \& 8189847 \& -17

\hline \multirow[t]{5}{*}{64} \& \{ 8191937 \& -14 \& \& $\{8190870$ \& + 2

\hline \& 8192833 \& -32 \& \& 8192902 \& -2

\hline \& 8193890 \& -30 \& \& 8193926 \& -26

\hline \& 8217832 \& -13 \& \& 8217859 \& - 4

\hline \& 8281861 \& -31 \& \multirow[b]{2}{*}{83} \& \{ 7422881 \& $+4$

\hline 65 \& 7523651 \& -13 \& \& $\{7457754$ \& - 5

\hline \multirow[t]{3}{*}{66} \& \{ 7457854 \& +13 \& \multirow{3}{*}{89} \& (7422922 \& -24

\hline \& $\{7577692$ \& +12 \& \& $\{7489753$ \& -13

\hline \& \& \& \& ¢512882 \& + 7

\hline \multirow{7}{*}{67 N} \& (7429916 \& -9 \& \multirow{6}{*}{102} \& \&

\hline \& 7489821 \& -16 \& \& (7457906 \& +19

\hline \& 7499884 \& -46 \& \& $\{7512771$ \& - 1

\hline \& 7505882 \& -21 \& \& (7557679 \& - 2

\hline \& 8189792 \& -20 \& \& \&

\hline \& 8192844
8273748 \& -20 \& \& $\left(\begin{array}{l}7422904 \\ 7505814\end{array}\right.$ \& -5

\hline \& \& \& \multirow{6}{*}{105} \& 7512814 \& +11

\hline \multirow{5}{*}{67 S .} \& 7429933 \& $+1$ \& \& 8189853 \& -16

\hline \& 7489862 \& -32 \& \& 8190875 \& -5

\hline \& 7523789 \& -68 \& \& 8192908 \& -32

\hline \& 8189822 \& -10 \& \& 8193931 \& -22

\hline \& 8192859 \& - 8 \& \& 8217866 \& +17

\hline \multirow{8}{*}{73} \& 7421896 \& -14 \& \multirow{3}{*}{118} \& (7458949 \& +16

\hline \& 7457701 \& -14 \& \& 7495814 \& -4

\hline \& 7489949 \& -26 \& \& 8266764 \& -20

\hline \& 7524806 \& -37 \& \& \&

\hline \& 8189833 \& -43 \& \& \&

\hline \& 8190859 \& -19 \& \& \&

\hline \& 8192886
8193895 \& -16 \& \& \&

\hline \& 8217848 \& - 6 \& \& \&

\hline \multirow{14}{*}{76} \& 7421903 \& +18 \& \& \&

\hline \& 7457715 \& -7 \& \& \&

\hline \& 7556760 \& -10 \& \& \&

\hline \& 7597648 \& +11 \& \& \&

\hline \& 7598630 \& +2 \& \& \&

\hline \& 8189840 \& -15 \& \& \&

\hline \& 8190862 \& -11 \& \& \&

\hline \& 8192894 \& -15 \& \& \&

\hline \& 8193903 \& -10 \& \& \&

\hline \& 8217853 \& -10 \& \& \&

\hline \& 8219867 \& $+3$ \& \& \&

\hline \& 8273760 \& $+6$ \& \& \&

\hline \& 8301608
8302625 \& +6
-55 \& \& \&

\hline \& 8302625 \& \& \& \&

\hline
\end{tabular}

IV. DISCUSSION

a) Cluster Members and the Luminosity Function

The separation of the non-members investigated and listed in Table 3 from the cluster members listed in Table 4 was made on the basis of the following criteria:

1. Stars designated "probable" or "possible" members on the basis of the proper motions determined by Vasilevskis were considered members unless other criteria conflicted with this assignment, such as in the case of Kopff Nos. 61, 36, 103, 95, 17, 120, 86, $31,41,59,19,35,38$, and 101. Stars designated "non-members" by Vasilevskis were generally not observed, except in the case of Nos. 56, 72, 68, and 90; other criteria subsequently showed that these stars are, in fact, not members.

TABLE 3
Data on Non-Members

$\begin{gathered} \text { Kopfr } \\ \text { No. } \end{gathered}$	HD or BD	V	Spectral Type	Radial Velocity ($\mathrm{km} / \mathrm{sec}$)		
				Mean	n	pe
56	161542	751	A1*	-27.0	4	± 19
68	161622	794	F3*	-76	3	± 45
90	161820	832	gK2*	+128	2	± 22
61	161552	947	F0 V	-96	2	± 140
36	+ $5^{\circ} 3472$	964	G8 III	-181	3	± 148
103	+603534	98	G9 \dagger			
95	+69351	988	K $5 \dagger$			
17	$+5^{\circ} 3462$	99	K3 \dagger			
120	+5 3514	1016	G7 \dagger			
86	$+6^{\circ} 3529$	1039	F8t			
31	+5 ${ }^{\circ} 3470$	104	K1 \dagger			
41	+693518	104	F2 III:	-327	3	20
59		104	$\mathrm{K} 5 \dagger$			
19						
35	$+6^{\circ} 3516$	1056 1073	A2 V F0 Op	+ 31	3	± 136
101		1076	${ }_{\text {G3 }}+$			

* Spectral type by Trumpler (unpublished)
\dagger Spectral type by Kopff (1943).

2. Spectral types or colors showed some stars to be too early (No.35) or too late (Nos. $56,68,61,86,41$, and 38) to be cluster main-sequence stars; this decision is based on current evolutionary concepts, not on independent data. In addition, all the G and K stars were rejected because of the statistical argument of Section II.
3. One $3^{\prime \prime}$ visual binary (Nos. $67 \mathrm{~N}, 67 \mathrm{~S}$) of components nearly equal in magnitude gives every indication of membership, although non-realization of its duplicity led previous observers to reject it from membership because its combined magnitude placed it nearly a magnitude above the main sequence for its color.

A bright K2 III star, β Ophiuchi, near IC 4665 in the sky, has a proper motion that differs greatly from that of the cluster.

There are thirty-five visible members in IC 4665 plus at least thirteen spectroscopically detectable companions. Using Hogg and Kron's determination of the cluster distance (430 pc), we find that the cluster main sequence extends from $M_{v}=-1.8$ to +2.9 . In comparison, the Pleiades main sequence (Mitchell and Johnson 1957; Pesch 1961; Herbig 1962) extends from $M_{v}=-2.7$ to at least +9.7 . The Pleiades luminosity function has a peak at $M_{v}=+5$, whereas that of IC 4665 is relatively flat from -1 to +2 .

TABLE 4
Data on Cluster Members

$\begin{aligned} & \text { Kopfr } \\ & \text { No. } \end{aligned}$	HD, BD, or ADS	V	SpectralType	Radial Velocity (km/sec)			
				Mean	n	pe.	Character
62	161573	686	B4 V	-129	13	± 81	Constant
73	161677	713	B6 V	-190	14	± 78	Constant
64	161603	736	B5 V	-19 3	15	± 93	Variable
105	162028	749	B6 V	-68	8	± 103	Variable
58	161572	759	B6 V	-117	17	± 85	Variable
49	161480	770	B5 V	-88	26	± 21.4	Variable
72	161660	776	B8s*	-13 5	4	± 40	Constant
82	161733	799	B6 V	-130	13	± 84	Constant
23A	$\left\{\begin{array}{l}161184 \\ \text { ADS } 10741 \mathrm{~A}\end{array}\right\}$	80	B8 V	-214	2	± 23	(Constant)
76A	$\left\{\begin{array}{l}161698 \\ \text { ADS10783A }\end{array}\right\}$	821	B8 V	-84	18	± 115	Variable
32	161261	833	shell	- 51	13	± 51	Constant
22	161165	878	B9 V	-78	5	± 142	Variable
23B	$\left\{\begin{array}{l}161184 \\ \text { ADS10741B }\end{array}\right\}$	88	B9 V	-14 6	2	± 25	(Constant)
81	161734	886	B9 V	-16	10	± 111	Variable
43	161426	909	A0 V	- 56	8	± 112	Variable
50	161481	909	A0 V	- 13	8	± 89	Variable
102	161940	929	A1 V	+ 51	3	± 66	Constant
39	161370	938	A2 V	- 60	7	± 102	Variable
67S	$\left\{\begin{array}{l}161621 \\ \text { ADS10779A }\end{array}\right\}$	96	A2 V	-19 4	10	± 138	Variable
76B	$\left\{\begin{array}{l} 161698 \\ \text { ADS10783B } \end{array}\right\}$	98					
89	161786	984	A2 V	-101	3	± 88	Variable
51	161482	985	A2 V	-37	3	± 64	Constant
67 N	$\left\{\begin{array}{l} 161621 \\ \text { ADS10779B }\} \end{array}\right.$	99	A3 V	-245	10	± 83	Constant \dagger
83		1021	A3 V	-82	5	± 67	Constant
27		1032	A3 V	+ 55	3	± 112	Variable
118		1032	A3 V	- 29	3	± 98	Variable
66	$+5^{\circ} 3486$	1041	A3 V	+122	2	± 04	(Constant)
63		1056	A5 V	-80	2	± 17	(Constant)
65	$+5^{\circ} 3485$	1060	A5 V	-130	1		
88		1087	$\mathrm{A}^{\text {or }}$				
34		110	F 0 op				
57		1113	A^{*}				
37		1136	$\mathrm{F}_{0}{ }_{\text {or }}$				
53		1141	$\mathrm{F}_{0} \mathrm{or}$				
48		1158	F 0 or				

* Spectral type by Trumpler (unpublished)
$\dagger 67 \mathrm{~N}$: Trumpler suggested that the velocity of this star is "probably variable," but it is possible that scattered light from its nearby variable-velocity companion (67S), $3^{\prime \prime}$ distant, may have containmated his spectra of 67 N

b) Spectroscopic Binaries and Rotational Velocities

Experience on more extensive spectrographic material with the Kitt Peak equipment has shown that, on the average, the scatter of measures on a constant-velocity star is given with high precision by the internal probable error, i.e., by the probable error per spectrum determined from the scatter of the velocities derived from various spectral lines. The mean internal probable error for the Kitt Peak spectra is $\pm 5.9 \mathrm{~km} / \mathrm{sec}$; for Trumpler's spectra it is probably $\frac{3}{4}$ of that, and for the combined material it is about $\pm 5.4 \mathrm{~km} / \mathrm{sec}$. If the stars are arranged in order of increasing probable error in their measured velocities, it is found that the first thirteen stars (through $\pm 8.4 \mathrm{~km} / \mathrm{sec}$) have a mean probable error $\sim \pm 5.4 \mathrm{~km} / \mathrm{sec}$. Therefore, these thirteen stars are assumed to be the constant-velocity stars, and the remaining well-observed stars to be the spectroscopic binaries.

Of the twenty-three members with three or more observations each, at least fourteen, or 61 per cent, have variable velocities. This fraction is somewhat higher than the 51 and 54 per cent variable-velocity stars that Petrie (1960) found to be the mean for B- and A-type stars, respectively. We conclude that the frequency of spectroscopic binaries in IC 4665 is probably slightly high, unlike that of the Pleiades B stars for which the binary frequency is probably very low (Abt and Hunter 1962).

Deutsch (1955) has estimated the rotational velocities of 19 stars in the region of IC 4665 on spectra of $35-70 \AA / \mathrm{mm}$ dispersion. He estimates (private communication) these rotational velocities to have probable errors of $\pm 75 \mathrm{~km} / \mathrm{sec}$. The mean rotational velocity and spectral type for sixteen B4-A3 cluster members is $V \sin i=108 \mathrm{~km} / \mathrm{sec}$ and B8 V, respectively. For main-sequence field stars of the same spectral types, the mean rotational velocity (Slettebak 1955) is $165 \mathrm{~km} / \mathrm{sec}$. Even after consideration of the large uncertainty in the estimated rotational velocities, we conclude that the rotational velocities in IC 4665 are probably low, unlike the Pleiades B stars for which the rotational velocities are unusually high (Abt and Hunter 1962).

c) Velocity Dispersion

The mean radial velocity (weighted by the number of measures) for the thirteen con-stant-velocity cluster members is $-12.4 \mathrm{~km} / \mathrm{sec}$. This motion is due primarily to the peculiar motion of the Sun, namely, $19.4 \mathrm{~km} / \mathrm{sec}$ toward $l^{\mathrm{I}}=24^{\circ}$ and $b^{\mathrm{I}}=21^{\circ}$ (Allen 1955). The cluster radial velocity with respect to the local standard of rest is only +5.1 $\mathrm{km} / \mathrm{sec}$.

For the eighty-six measures of the thirteen constant-velocity cluster members, the scatter of the measures corresponds to a probable error of $\pm 8.7 \mathrm{~km} / \mathrm{sec}$ per spectrum. This value is only slightly higher than the mean internal probable error of $\pm 6.7 \mathrm{~km} / \mathrm{sec}$ per spectrum for the same stars, and it indicates that most of the scatter is due to measuring errors, i.e., there is little velocity left for peculiar motions of the cluster stars. Probably most of the discrepancy between these two probable errors is due to the inclusion of several unrecognized binaries.

It is appropriate to ask whether we should expect any detectable peculiar motion of the cluster stars. The virial theorem has been applied to the cluster in a form similar to that given by Schwarzschild (1954), except that the integrals in strips were replaced by sums over individual stars. The stellar masses were assumed to obey the mass-luminosity relation derived by Strand (1957), and the spectroscopic companions were assumed to have one-third the mass of their primaries. The resulting total cluster mass is approximately $130 M_{\odot}$. With a cluster distance of 430 pc , the effective cluster radius is 10.3 pc . and the root-mean-square radial velocity is only $0.13 \mathrm{~km} / \mathrm{sec}$, which obviously would not be detectable with the much lower precision of the present measurements.

On the other hand, we can ask whether the cluster has had time to come into equilibrium, so that the virial theorem is applicable. An application of Chandrasekhar's (1942)
expression for the mean relaxation time in a cluster gives 440×10^{6} years for IC 4665 , whereas the cluster age, if similar to that of the Pleiades (Limber 1962), is only about 60×10^{6} years. Michie (1964) has pointed out that the Chandrasekhar expression for the relaxation time may give too large a value because only the encounters within the mean stellar separation are considered. However, even if the cluster is not quite in dynamical equilibrium, its peculiar stellar velocities are probably still not detectable in the present material.

Our thanks go to Dr. H. F. Weaver, for the use of Dr. R. J. Trumpler's material on IC 4665 before publication, to Dr. V. M. Blanco, for the loan of the Warner and Swasey Observatory objective-prism plates, and to Dr. A. J. Deutsch, for the use of his unpublished individual rotational velocities of IC 4665 stars.

REFERENCES

Abt, H. A., and Hunter, J. H., Jr. 1962, Ap. J., 136, 381.
Allen, C. W. 1955, Astrophysical Quantities (London: Athlone Press, University of London), p. 219. Chandrasekhar, S. 1942, Principles of Stellar Dynamics (Chicago: University of Chicago Press), p. 66. Deutsch, A. J, 1955, Principes fondamentaux de classification stellaire ("Colloq. internat. Centre Natl. Rech. Sci." [Paris, 1953]), p. 25.
Herbig, G. H. 1962, A p. J., 135, 736.
Hogg, A. R , and Kron, G. E. 1955, A.J., 60, 365.
Johnson, H, L. 1954, Ap. J., 119, 181.
Johnson, H. L., and Morgan, W. W. 1953, Ap. J., 117, 313.
Kopff, E. 1943, A.N., 274, 69.
Limber, D. N. 1962, Ap. J., 135, 16.
Michie, R. W. 1964, Annual Review of Astronomy and Astrophysics, Vol. 2, ed. L. Goldberg; in preparation.
Mitchell, R. I , and Johnson, H. L. 1957, Ap. J., 125, 414.
Pesch, P. 1961, Ap. J., 133, 1085.
Petrie, R. M. 1960, Ann. d'ap., 23, 744.
Schwarzschild, M. 1954, A.J., 59, 273.
Slettebak, A. 1955, Ap. J., 121, 653.
Strand, K. Aa. 1957, J.R.A.S. Canada, 51, 46.
Trumpler, R. J. 1930, Publ. Lick Obs., 14, 154.
Vasilevskis, S. 1955, A.J., 60, 384.
Wilson, R. E. 1953, General Catalogue of Stellar Radial Velocities (Carnegie Institution of Washington, Publ. No. 601).

