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ON THE DISTRIBUTION OF HIGH ENERGY STARS IN 

SPHERICAL STELLAR SYSTEMS 

Richard W. Michie 

(Received 1962 June 1)* 

Summary 

A distribution function / (r, v, ¡jb;t) for isolated spherical stellar systems 
is obtained from the Boltzmann equation with encounters described by the 
Fokker-Planck equation. The distribution function is believed to correspond 
rather closely to actual stellar systems since it is obtained from the Boltzmann 
equation, the potential is obtained from Poisson’s equation, and the stellar 
orbits are not assumed to be isotropic everywhere but rather are more radial 
at greater distances from the centre. The paper emphasizes the importance 
of a careful analysis in the region of phase space at and near the energy of 
escape. In this region it is shown that the velocity space flux vector is 
constant, and it is this constancy which allows a solution for /. The distri- 
bution of high energy stars is depopulated for (i) those stars whose mass is 
small compared to the average stellar mass, (ii) regions close to the centre 
of the system, and (iii) large values of the model parameter C. It is proposed 
that the method of analysis presented in this study may be used for obtaining 
a distribution function for rotating stellar systems. 

i. Introduction.—The purpose of this paper is to obtain a distribution 
function for spherical stellar systems, using a method of analysis which does not 
require the full solution of the Boltzmann equation for all values of the inde- 
pendent variables. The basic theoretical observation concerns the flux of 
representative points in phase space, for energies at and slightly less than the 
energy of escape. The analysis will include a range of masses for the individual 
stars, an increasing velocity space anisotropy at greater distances from the centre 
of the system, and a “smoothed out” potential consistent with the distribution 
function for all values of energy and angular momentum. Before beginning 
the theoretical development, it will be advantageous to review certain topics in 
the dynamics of spherical stellar systems. 

The total distribution function / for an isolated system can be written as a 
sum, 

/=2/<(r»v; 0» (i-o) 
i 

where each/* is the distribution of representative points in phase space for stars 

of mass m{. Each distribution function corresponding to a certain stellar mass 
must satisfy the Boltzmann equation, 

dJ> +v M 
dt + dt 

— V# — 
v *9v 

(1.1) 

The term on the right hand side gives the time rate of change off¡ due to encounters, 
and must be summed for encounters with the various masses ntj. On the left 
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side of equation (i.i) there occurs the gradient of the total potential ® which is 
obtained from Poisson’s equation, 

V2i> = \ttG 2 nij J fj dy=^7rG^pj. (i.z) 

Again, there must be a sum of the mass densities corresponding to mass 
For a spherical system we may write y|=^(r, v, ¡jl; t) with /¿ = cos0, and 6 the 
angle between the radius vector and velocity vector. Equation (i.i) now sim- 
plifies to 

^+f.«|í+(u.r|á+(.-^) 

where tfr= — |V®| is the force per unit mass which is in the radial direction. 
The encounter term involves second order derivatives with respect to ^ and v. 
But the essential complication is that it is non-linear in the dependent variable/-. 
Another difficulty, aside from the encounter term just mentioned, is that the 
non-linearity in / also occurs through equation (1.2). It certainly is clear that 

the above equations (1.2) and (1.3) which must be solved simultaneously, are 
very complex. Present day computers have storage capacities sufficiently large 
and machine-cycle times sufficiently short almost to allow an attempt at solving 
these non-linear integrodifferential equations. 

Until such computing facilities are available, we must be content with certain 
approximations which usually fall into three categories; (1) the field stars are 

often approximated by a Maxwellian velocity distribution; (2) a particular form 
for the potential is sometimes assumed; (3) a specific form for the distribution 
function may be chosen, usually in terms of E and J. The first type of approxi- 
mation is easily justified by the small value for the energy relaxation time in the 
inner portions of the system. Where the actual distribution function differs 
significantly from 

f=Aexp[-(jv)2] (1.4) 

the effects of encounters are negligible. The type (2) approximation has been 
employed by Spitzer and Härm (1958) and also by King (1958 a, b, i960). 
Spitzer and Härm used a square-well potential, and King used polytropes of 
index 3 and 5 as well as a constant potential. Both Oort and van Herk (1959) 
and Michie (1961) assumed a specific form for/(J?, J) and used a truncated 
Maxwellian (field star) velocity distribution. They then found the density 
consistent with the chosen distribution function. Other authors have studied 
particular regions of the system ; the distribution function for stars in the outer 
regions of a cluster has been studied by Woolley and Robertson (1956) and also 

by von Hoerner (1957). These authors recognized the problem of populating 
the outer regions by stars suffering encounters near the centre and being thrown 
into orbits of high energy and low angular momentum. 

It is evident that from these studies a great deal has been learned concerning the 
structure of spherical stellar systems. But the basic problem is yet to be solved ; 
obtaining the total distribution function/(r, v, /x; t) by simultaneously solving 

the Boltzmann equation and Poisson’s equation. The only available solutions of 
these equations employ a constant potential which reduces the problem to 
solving the Boltzmann equation alone for/(^; t). Nevertheless, the use of a 
square-well potential by Spitzer and Härm (1958) gave important information 
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No. 2, 1963 High energy star distribution in spherical stellar systems 129 

concerning the high energy tail of the distribution function for stars moving in 
a constant potential. King, also using a square-well potential (i960), allowed 
the stars to encounter each other instead of a Maxwelhan distribution, and 
obtained/(î; ; t) similar to the results just mentioned ; but he found a somewhat 
greater rate of mass loss. 

A simple time-scale comparison gives (qualitatively) some information 
concerning the dependence of / upon energy. As we look at stars with pro- 
gressively higher energies, the distribution function will tend toward zero, and 
it will become very small at the energy of escape. In the inner regions of a 
globular cluster the escape velocity is of the order 10-20 km/sec, the exact value 
depending on the total mass and degree of central concentration. In 107 years, 
a star with sufficient energy to escape may travel a distance well beyond the 
‘ ‘ radius ’ ’ i?, and is therefore effectively gone from the system. But this ‘f escape 
time ” is at least an order of magnitude less than the relaxation time in the regions 
where the stars suffer the greater rate of encounters. Therefore a star, having 
obtained through encounters sufficient energy to escape, can be considered im- 
mediately gone on the dynamical time scale; from these considerations, we 
expect the actual distribution function to exhibit a strong depopulation of high 
energy stars as compared to an equilibrium distribution. In their analysis using 
a square-well potential, Spitzer and Härm obtained the energy cut-off function 
for various masses, with the depopulation of high energy stars being greater, the 
smaller the mass. 

Aside from the intrinsic theoretical interest in the distribution of high energy 
stars, there are two reasons why such a knowledge of this distribution is important 
in stellar dynamics. First, for an isolated system, the cutoff has little effect on 
the space density in the inner regions. At larger distances from the centre, 
certainly beyond the sphere containing half the total mass, the cutoff does become 
important in determining the space density ; and therefore it is necessary to have 
a realistic distribution of high energy stars in the outer regions. Secondly, the 
rate of escape of stars depends on df/dv evaluated at the escape velocity. Since 
most of the stars leave the system as a result of encounters in the inner regions, 
it is necessary to have knowledge of the distribution of high velocity stars close to 
the centre. Throughout then, it is important to know the distribution function 
for energy at and slightly less than the escape energy. In this article, a distri- 
bution function for spherical systems will be obtained which does not include any 
approximation of the potential; will give increasingly radial orbits at larger 
distances from the centre ; will include a range of stellar masses ; and will satisfy 
the Boltzmann equation for large and small values of the total energy E. 

2. Theory.—For a cluster with (say) 105 stars, approximately one percent is 
lost during a relaxation time which gives a “production rate ” of about one star 
in 106 years. Since the ‘ ‘ escape time ’ ’ is of the order io6-io7 years, the expected 
number of stars with escape energy is of the order 10 or fewer. Evidently it is 
quite valid to put 

f{r,vy¡x\ t)no9 (2.0) 

for stars with v^ve (the velocity of escape). Furthermore, a star with escape 
energy has little chance of suffering a significant number of encounters while 
leaving the system. For stars with escape energy, the mean-free-path is at 
least three orders of magnitude greater than die “size” of the system 
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(Chandrasekhar 1942). Therefore, we can safely neglect any “ back ” diffusion 

of representative points in phase space with speeds v^ve. For a boundary 
condition at ve, we may equate the distribution function to zero, and this should 

be quite adequate. But the object in this study is not to make any definite state- 
ment about the value of / at and near ve (except to say that it is quite small), but 
to study the derivative of / with respect to v at this boundary in phase space. 
We shall later impose equation (2.0), but it must be stressed that it is df/dv at ve 

which is of primary physical interest, and not / itself. 
Now the distribution function for stars at (r, ve, ¡jl) at time t + 8t is related to 

f(r,ve-8v,[i-Sn; t) by 

f(r,ve,fi; t + 8t)= (* ¡f(r,ve-8v,n~8n; í)T (we- 8v, 8v, 8¡x) d(8v) d(8i¿), 
JJ (2.1) 

and the integration is extended over the region o^v^ve. We must insure that, 
8t is sufficiently large compared to the time interval of the force fluctuations, but 
short enough so that 8^ and Sju, are small compared to % and ¡jl. In equation (2.1 ), 
Y is the transition probability that v suffers an increment 8v in time 8t due to 
encounters. If we expand the functions under the integral sign in Taylor 
series, there results 

f(r,veyli; i + Si)= 

On the right hand side we will get, among other terms involving derivatives, the 
term 

JJ/(r, ve, ft; ty¥(vef ¡i; 8v, S/x) d{8v) d{8¡x) =f (r, ve, ju; t). (2.3) 

Can we equate / identically to zero at the escape boundary in phase space 
for all time /? If so, then obviously (3//3i)ENC is zero for all £, and this 
would impose certain conditions on the various derivatives of / at ve. It is not 
entirely obvious that this would lead to correct results during (say) the later 
stages of evolution when the evolutionary rate may be rather high. If during 
some time of evolution there is a significant divergence of representative points 

at the escape boundary, then (3//3^)ire wiU be affected, and this, in turn, will 
affect the rate of escape of stars from the system. To see this, let us write the 
encounter term in the form 

(2-4) 

which defines the flux vector F. For an isotropic distribution of field stars we 
find using (2.0), 

(3.5) 

where F is a constant, and (d2g/dv2)iVe is a function of r (cf. equations (2.8), (2.9) 

and (2.12)). The number of stars leaving the system per unit volume and per 
unit time now follows directly from the above : 

- J = J Vv.Fdv— J F.dSv= (2.6) 
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As an illustration, suppose there were a negative flux divergence at ve. Then 
{df¡dv)Xve would increase, and so would \dnjdt\. All this again illustrates the 
fact that it is critical to obtain accurately the shape of/at high energies, while the 
‘ ‘ exact ’ ’ value of / is of less concern. So, if we should consider / and . F as 
strictly zero at ve> we might possibly commit an error during some part of the 
evolution of the system. The only way to answer the question is to look at the 
kinematical and dynamical terms in the Boltzmann equation. At the energy of 
escape, the dominant term is (3//3JB)(30/3i). Hence, if we can be assured 
that for all r and during all time t this term is negligible when compared to the 
corresponding term in equation (2.4), then we could expect little error by 
putting/ V,,. F equal to zero at the ve boundary in phase space. In Sections 3 
and 4, an estimate of this error will be made ; for the time being we will write, 

<2-7) 

and proceed in the development of the necessary equations. 
With a Maxwellian distribution of field star velocities (equation (1.4)) 

truncated at ve, the Fokker-Planck equation has been put into the following 
form by Michie (1961): 

<2-8> 
where 

r-4,,G%0» 108,(1^), (2.9) 

G is the gravitational constant, and D is an upper limit to the impact parameter* 
necessary to avoid the well known divergence. For stars of mass m encountering 
stars of average mass and number density w0, 

dh 

dv 

and 

V”\ ”k>/Lp v* J 

e‘w+FiW (2'7^)+i ’ 

3| _ % f- 
dv* v7rL 3 Jv* J 

Fi(x) = re-t‘dt=^erf(x). 
Jo 2 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

We immediately see how complicated the problem is if we allow the stars to 
encounter each other. If this were mathematically allowed, then the resulting 
partial differential equation would be non-linear in the dependent variable /. 
To avoid this, some sort of assumption must be made concerning the field star 
velocity distribution ; in this study we shall use a truncated Maxwellian distri- 
bution, and the equations just presented. A fuller discussion of this approxi- 
mation and its restrictive consequences will be given in Section 4. But before 
turning to the analysis of a spherical stellar system with a varying potential, it is 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

3M
N

R
A

S.
12

5.
 .1

27
M

 

132 Richard W. Michie Vol. 125 

worth while to illustrate these ideas by working a simple problem—one which 
does not have the complications of a varying potential nor an anisotropic velocity 
distribution. 

3. The distribution function for a square-well potential.—Let us apply equation 
(2.8) to the simple case of stars moving in a constant potential, and suffering 
encounters with field stars represented by a Maxwellian velocity distribution. 
Now we obtain, with x=jv, 

^)} 

(3-°) 

The equilibrium function for this isotropic velocity distribution is the Maxwellian 
distribution, 

f=Ae-mlm*xi (3.1) 

which obviously satisfies the Boltzmann equation. But this equilibrium 
distribution cannot be valid for all x ; for if it were, there would be no diffusion 

of representative points past the boundary at xe. For sufficiently small x how- 
ever, the actual distribution will deviate but slightly from equation (3.1), and we 
expect the equilibrium distribution to be closely valid over a larger range in xy 

the larger the mass ratio. For stars with mlm0 « o, their large velocity dispersion 
will produce strong deviations from equilibrium. Accordingly, for these stars, 
equation (3.1) will closely approximate the true distribution only for x near zero. 
Let us therefore confine our discussion to mass ratios which are not too small, 
put 

/= A(t) e-nl^'Qix), (3.2) 
and require Q(xe)&o. We may also normalize, and put Q(o) equal to unity. 
Substitution of the above into equation (3.0) produces the following relation 
between the first and second derivatives of Q : 

¿2. [±(Fi-xFi\ -2hl X + 
n0pTA dx x / \ x / J dx? \ x / 

(3-3) 
For the very small mass stars, all we can obtain is the above relation between 
dQjdx and d2Q/dx2 at xe. If we know the value of Q at some x very near to xe9 

then the two boundary values would allow a solution for Q(x) in the region near 
the escape boundary. But to get this information would require the solution of 
the Boltzmann equation. The situation, however, is more favourable for the 
more massive stars. If the mass ratio is not too small, then Q will be close to 
unity over a rather large range of xy and only near xe will Q start decreasing to 
zero. Also, for these more massive stars,/itself drops faster to zero as x increases 
towards xe. With/and df/dx both small at and near the escape boundary, we 
can expect Vv. F « o, and hence e to be near zero in this region. Therefore, we 
may apply equation (3.3) with eæo not only at xey but in the neighbourhood of 
xe as well. Now as we begin the solution, Q(x) rapidly rises from zero at xe and 
approaches unity rather soon. For the second boundary value, if the mass ratio 

is large enough, it will be sufficient to put 

0(o) = i-o. (3.4) 

This boundary value, together with 

ô(*e)=o-o, (3-5) 
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will allow a solution for Q in the neighbourhood of xe. To summarize this 
discussion, the stars with a small mass ratio show strong deviations from the 
equilibrium distribution over nearly the whole range of x, and so at xe we can 
only obtain a relation between the first and second derivatives of Q (or/) ; our 
lack of information allows only one boundary value [equation (3.5)] to be apphed. 
For more massive stars, the significant deviation from equilibrium occurs only 
in the neighbourhood of xe, where / is small and slowly varying. Accordingly, 
we may integrate equation (3.3) over a region near xe, and use the two boundary 
values given above to solve for Q itself. If w//w0 is not too small, we can expect 
to obtain/ near xe rather accurately, with a greater accuracy the larger the mass 
ratio. 

Fig. i.—The cut-off function for a spherical cluster with constant gravitational potential. 
The full drawn curves are plots of equation (3.7) for different values of the stellar mass ratio. 
Points labelled with # are from the solution of the Boltzmann equationy obtained by Spitzer and 
Härm (1958). 

Since by the Virial Theorem *e2 = 6, keeping the dominant terms in equation 
(3.3) results in 

e mim9x
% _ x d Q 

-( 

, m , 
1+2 — x 

n0j
zrA dx2 

For € = o, the above equation is easily integrated to 

! e -m/mo W-7?) 

yo. 
) dx 

£(*)= j 0 —mfm0 Xe* 

(3-6) 

(3-7) 

and this clearly satisfies the boundary values at #=o and x = xe. It should be 
noted that in the numerator there occurs an energy difference, while in the 
denominator, the term exp ( —m/m0#e

2). Thus the result for £)(#) is rather 
insensitive to the exact place where the boundary values are applied. Figure 1 
shows the comparison between this Q(x) and the exact cut-off obtained by 
solving the Boltzmann equation for ail x. We may draw attention to the fact 
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that the results are virtually identical with the solution of the Boltzmann equation 
for o*5, and also the wide range over which agreement is obtained. The 
exact calculations are slightly above the full curves for x less than 0-95^ but even 
for 7w/m0 = o-6 there is only about 1 per cent deviation at 0-90^. The agreement 
becomes worse as the mass ratio decreases, for the reasons just discussed. Also, 
we notice a more severe depopulation of high energy stars with the smaller mass. 
This analysis of the square-well potential seems to indicate that a similar cal- 
culation for the distribution of high energy stars may be applied to an actual 
system with a varying potential, provided we restrict ourselves to stellar masses 
at least greater than one-half the average mass. 

It is an easy matter to estimate the effect of e. With a reference time TR 

defined by Spitzer and Härm (1958), 

(rfi)-i = 2^</3«ologe , (3-8) 

the left hand side of equation (3.6) now becomes 

e 5 gi çmlmi,x‘ 
A (3-9) 

(3-io) 

We may approximate A by writing, 

where Nm is the total number of stars of mass m. Now for e, let us take k times 
the mean divergence over all velocity space, or 

H=Ä 
11 4-s- TRfrv? !7TV< 

Ñm is the rate of escape of stars of mass m from the system. 
mlm0 & i, 

[e] 10k, 

(S-n) 

We now find, for 

(3-12) 

and we see that for k equal to one per-cent of the mean divergence, the terms on 
the right hand side of equation (3.6) are about three orders of magnitude larger 
than the divergence term on the left. A small divergence of the flux at and near 
the phase space boundary affects the slope, but the amount is not important for 
this study. Even including the possibility of a small divergence of F at this 
region of phase space, which might occur in the later stages of evolution when the 
over-all escape rate is relatively large, it would seem that only a very slight error 
is introduced by using V,,. F = o at and near xe. 

4. The distribution of high energy stars in a spherical system.—A comparison of 
the calculations in the previous section with the solution of the Boltzmann 
equation indicated a very small difference between the two over the whole range 
of energy, provided the mass ratio was (say) greater than one-half. Furthermore, 
the results were insensitive to the exact place where the boundary values were 
applied; the “exact” value of/at ve\ and finally, a small divergence of flux of 
representative points at and near ve. This analysis was done, however, for an 
isotropic velocity distribution and constant potential, and we now wish to relax 
these restrictions to study a more realistic system. But an inadequacy is 
immediately evident if we use a Maxwellian distribution of field star velocities ; 
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the “interaction functions’’ h and g in the Fokker-Planck equation are now 
independent of and hence derivatives such as 

dh d*g_ d2f 

dfju ’ dvdfji9 dvdjj, ’ 

which normally would be present in the encounter term are now absent. A more 
exact discussion would have the stars interacting with each other, but if we 
remember that encounters are only important in the inner region, then it would 
seem that little error will be committed by making this field star approximation. 
In a previous study (Michie, 1961) the velocity space anisotropy was found to 
become important only beyond the sphere containing approximately half the 
mass of the system. For a globular cluster such as 47 Tue, this corresponds to a 
distance of about 14 parsecs from the centre. We feel then some justification 
for using a Maxwellian field star distribution of velocities within a rather large 
region of the system. So although this approximation can be justified on these 
grounds, it is important to realize that by neglecting the small velocity anisotropy 
in the inner regions, we pay the price of not obtaining conditions which in part 
determine the dependence of / upon ¡1. 

The more modest problem now is this : what is the distribution of energy 
consistent with an assumed velocity space anisotropy ? If we pose this simpler 
question, then we can obtain information concerning the high energy stars in a 
set of clusters or galaxies, but must forego any attempt to obtain an accurate 
velocity anisotropy at very large distances from the centre. However, we will 
be able to get the information which, for example, is important for discussing 
the loss of stars of different mass from systems with a varying potential, systems 
which are self-supporting with different central concentration of stars, and 
built on different models. 

We start this analysis by writing for /, 

/(r, v, t) = A e-mlm*(«E+ßj')Q(r> v, fj, ; t), (4.0) 
where 

E=&2 + <!>(r), (4.1) 

J2 = rV(i-^2), (4.2) 

and 0(o) = o-o. (4.3) 

A, öl and ß are functions of time. By requiring 

Q^E—O ~ I’°> (4*4) 

it is clear that / approaches the equilibrium distribution exp ( — w/7W0olB) as E 
tends toward zero. Also, the assumed form of the anisotropy (the J2 term) 
represents a depopulation of stars in the more circular orbits at large distances 
from the centre; the J2 term produces an increasingly radial distribution of 
velocities at increasing distances from the centre. If we substitute (4.0) into 
equation (2.8) we obtain, 

= g2gpi(/*0 _ 1 e-W 2 •t,e-w'L 
»»T'A a»1 L OC > i1 1 

+ S{2Si?I</e’)“ (>)2 

- i _ jLe-ü»)1 - , (4.5) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

3M
N

R
A

S.
12

5.
 .1

27
M

 

I3Ó 

where 

Richard W. Michie 

k= — fi+2^r2(i-/x2)l, 
m0L a J 

Vol. 125 

and, of course, the above equation is written for v<ve. (In the complete 
equation (4.5) the coefficient of Q is extremely small at and near the phase space 
boundary at ve. This, combined with the fact that Q itself is very small and is 
zero at ve> allows the terms in Q and 30/3/x to be safely neglected.) Because 
spatially there is a central concentration of stars, (jve)

2 at the centre is greater 
than which, by the Virial Theorem, approximately equals 6-o. Now 
in the filed star velocity distribution, it is necessary for the field stars to have the 
same ‘4 kinetic temperature ’ ’ as the test stars. Hencey2 is an increasing function 
of r, for the velocity dispersion decreases monotonically from the centre. Since 
ve decreases from the centre, (/^e)2 = xe2 is a rather slowly varying function. The 
result is that xe does not decrease very rapidly and remains large at large distances 
from the centre of the system. The dominant terms in equation (4.5) are there- 
fore those containing and we may make the approximation of keeping 
only F1 over an extensive region. Equation (4.5) now reduces with (x—jv) to, 

2€<V^ /•«UT-Lom ^ y< vvr/ . ot\ ^ ^ m/m, 
n0fFA 

.(aE+ßJ1) _ x (l +2X2k), 
OX ox 

and k is given by 

7 a m m ( af t ß * , 
(4-7) 

Not surprisingly, equation (4.6) is similar in form to equation (3.6) derived for 
<[> = constant. But the boundary conditions now must be with respect to E and 
not v, for / must approach the equilibrium distribution as E (and therefore r) 
tend toward zero. Since 2j2Ee = xe

2 at r = o, it is an easy matter to verify that 
the following expression for Q(r, /¿; i), 

T _ e-Tcxe'mi-E¡Ee) 

g- - !_e-^(0) » (4-8) 

satisfies the differential equation (4.6) with 6 = 0 as well as the boundary conditions, 

Q\e=0 = i-o. (4-9) 

Ô'æ=^ = 0-°- (4-10) 
The differential equation for Q contained derivatives with respect to v only. We 
may therefore consider A = A(r, fju; t), 0L = <x(t)i ß = ß(t). However, by a direct 
substitution into the Boltzmann equation it is an easy matter to see that the 
dependence of A upon r and ¡jl is extremely slight. This calculation (which is 
quite lengthy) indicates that by putting A = A(t) only, the error is very small—of 
the order o*oi per cent over an extremely wide range in z (defined in equation 5.5). 
Beyond # = 500, the error is of the order o*i per cent. 

Can we justify putting € = o? To answer whether or not this would be 
consistent is not difficult, for we notice that/(r, v, fi; t) can now be expressed in 
terms of (r, E, J2 ; £), and at large values of E the dominant term in € is 

e = ^ ^4 e-m/m^+A/«). (4.11 ) 
oE dt 

The left hand side of equation (4.6) now becomes 
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and we need to comparey VT,
JR3í>/3¿ with 1 + At and very near the centre, 

the situation is obviously favourable. At the distance which inside there is 
about one-half the total mass, an estimate of 71

jft30/3i = AO indicates the co- 
efficient of dQjdx in (4.12) is of the order 10“2. It would seem fair to conclude 
that just as in the analysis of the square-well potential problem, the small diver- 
gence of flux of representative points near the phase space boundary Ee introduces 
little error in the solution for Q. 

5. Discussion.—The distribution function just obtained is 

where 
J 

(r, v,fi;t) = A e-^^+W') 
! _ e-kxe\o)a-ElEe) 

(5-°) 

(5-1) 

and A, a, ß are functions of time. In principle the time dependence and the 
implicit r dependence are not too difficult to obtain. For the latter, at any given 
time we solve 

V20 = /(r, Vy fju ; t)27rv2 dfjidv, (S-2) 

for the potential. For the time dependence, Michie (1961) used three moments 
of the Boltzmann equation and found A and a to increase and ß to decrease as 
evolution proceeds. All this requires a great amount of computation, but 
certainly a good deal less than a direct solution of the Boltzmann equation would 
require. It must be stressed however, that the above expression for / is in no 
way an exact solution of the Boltzmann equation. In the first place, we have 
assumed a particular distribution of J2; although the chosen form is quite 
plausible physically, there is no real guarantee for this distribution because our 
approximation for h and g eliminated any dependence on the independent 
variable ¡jl. Secondly, the analysis was made only at the high energy tail of the 
distribution function. What we have obtained is a distribution function which 
accurately satisfies the Boltzmann equation for large and small E consistent with 
an assumed velocity space anisotropy. But for reasons already discussed, the 
dependence of / upon E may be fairly accurate for all values of E provided we 
restrict our discussion to stellar masses for which m/w0^o*5 ; and for an actual 
stellar system this is not a serious restriction. 

Evidently the distribution of E and J2 is no longer independent, since the 
expression for k may be rewritten as 

MoXfL a J 
(5-3) 

In this form, there is a slight 44 correction ” to the assumed distribution of J2, 
for a given value of E. We also note that for a fixed value of (E, J2), the cut- 
off becomes more abrupt at increasing distance from the centre, a result not 
surprising because of the lesser importance of encounters at greater distances 
from the inner regions. Let us now transform to the dimensionless variables, 

z2=r2[AoiG(4.iT)2(2loif2m0]y 

(5.4) 

(5-5) 

(5-6) 
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The expression for k now becomes 

while Poisson’s equation transforms to 

and C, the model parameter, is 

C= ß 
A{2x)WG(4ttY' 

(5-7) 

M) 

(5-9) 

The model is completely determined by a given value of C. In this form, the z 
dependence becomes important when For a globular cluster such as 
47 Tue, C« io-4 and the dependence on# is therefore important beyond # = 70, 
which is in the very extreme outer parts—this position corresponds to about 

20 parsecs. The indication is plain : if we write / in terms of 2?, J2, r and i, 
then the r dependence is negligible throughout most of the system, and it can be 
considered to evolve through a series of equilibrium states as was assumed by 
Michie (1961). As far as evolution is concerned, the outer parts of the cluster 
where the r dependence cannot be neglected (for an isolated system), is dynami- 
cally unimportant. Furthermore, as evolution proceeds, C decreases, and the 
dependence of/upon r becomes even less important. 

To summarize, the basic physical observation in this study is that if there is 
some method of obtaining rather accurately the distribution function at large 
energies, then there is reason for believing the resulting distribution over all 
energies will also be fairly accurate. The deviation from equilibrium occurs at 
large values of E, which is where the analysis was made for the determination of 
/(r, v, ¡i ; i). These statements and results hold only if the mass ratio is not too 
small. The study began by making a comparison of the “escape time ” to the 
dynamical time scale; and noting the very large mean-free-path for the high 
energy stars, it was seen that the distribution function must tend toward zero for 
large values of E. In phase space there is an effective absorbing wall at E=Ee> 

and /= o there ; this produces a condition on the various derivatives of /. By 
writing / as a product of the equilibrium distribution and an arbitrary function 
(and assuming a particular distribution of J2 for low and moderate energy) the 
Boltzmann equation can be approximately solved as far as the energy dependence 

is concerned, for the high energy tail of the distribution function. The limiting 
form of / for small and large E is now reasonably correct, and if the mass ratio 

is not too small we can expect a fairly accurate distribution of energy for all values 
of Ey consistent with the assumed velocity anisotropy. The results of this 
analysis for a system with a varying potential and particular distribution of 
angular momentum (squared) shows a certain similarity to the square-well 
potential calculation. Except for the weak and relatively unimportant depen- 
dence on r (or #), the function Q is of the same form as was obtained for 
3> = constant. But now x* is evaluated at the bottom of the potential well. 

Since #e2(°) increases as C becomes smaller (Michie 1961) the cut-off of energy 
in the inner regions is more abrupt the larger the mass ratio, the smaller the model 
parameter, and finally for the stars in more circular orbits. Conversely, we 

may say that a factor which produces a greater rate of energy exchange also 
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produces a more severe depopulation of high energy stars. Spherical stellar 
systems obtained by use of the distribution function derived in this paper should 
give a close representation to actual stellar systems, since a number of approxi- 
mations made in previous studies have been eliminated. First, the distribution 
function has been obtained from the Boltzmann equation ; in particular the cut- 
off has been derived and not assumed. Second, the systems obtained (corre- 
sponding to different values of the model parameter C) are all self-supporting, 
since the velocity distribution and potential are consistent by Poisson’s equation. 
Third, the stellar orbits are increasingly more radial at larger distances from the 
centre. (The importance of this has been discussed by Woolley and Robertson 
(1956), Oort and van Herk (1959), and Michie (1961). In particular, the last 
author found an increasingly radial velocity distribution with evolution of the 
system.) Fourth, the distribution function has been obtained for stars of 
different mass. In our opinion, the most important effect remaining to be 
included is the removal of the condition that the system be isolated. The 
inclusion of a realistic tidal effect, one that is not restricted to a weak-field approxi- 
mation, would be a very valuable extension. Finally, we wish to point out that 
this distribution function now allows an accurate calculation of the loss of low 
mass stars from spherical systems. Also, an analysis of the type presented here 
might prove promising for obtaining information concerning the distribution 
function for rotating systems. 
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