THE SPECTRA AND AXIAL ROTATIONAL VELOCITIES OF THE COMPONENTS OF 116 VISUAL DOUBLE-STAR SYSTEMS

Arne Slettebak
Perkins Observatory, Ohio State and Ohio Wesleyan Universities
Received January 26, 1963

Abstract

Spectral types, luminosity classes, and axial rotational velocities were estimated for the components of 116 physical visual double-star systems. H-R diagrams for the systems with normal components are compatible with current theories of stellar evolution No significant differences between the mean rotational velocities for double-star components and single stars were found, either for main-sequence or for giant stars Absolute magnitudes for normal B-type components of double stars appear to be somewhat higher than determined in earlier calibrations. Absolute magnitudes for 9 metallic-line stars and 9 peculiar A-type stars are consistent with earlier determinations. Absolute magnitudes were derived for a number of additional peculiar stars of interest

I. INTRODUCTION

The first systematic study of the spectra of visual double stars was carried out by F. C. Leonard, who was interested in obtaining information about stellar evolution. Leonard (1923) wrote: "If the components of a double star had a common origin, a knowledge of the spectral relationships existing in different systems, presumably at various stages in the evolutional course, might be expected to disclose the general trend and the comparative rates of development of these stars."

During more recent years, a renewed interest in double-star spectra has arisen, stimulated by the new theories of stellar evolution. Observations of star clusters have proved to be of very great importance to stellar evolutionary ideas and focused attention on double stars, which can be regarded as tiny star clusters for this purpose. Following the colorimetric work of Johnson (1953) on 40 physical pairs, a number of investigators initiated spectroscopic and photometric studies of visual binary stars. Of particular importance are the papers of Struve and Franklin (1955), Bidelman (1958), Bakos and Oke (1957, 1959), Stephenson (1960), and, most recently, Berger (1962).

The spectroscopic observations on which this investigation is based were started in 1957, with the aim of concentrating more heavily on the double-star components of early type than had been done up to that time, with particular emphasis on axial rotation characteristics. An additional objective was to determine absolute magnitudes of peculiar components in double-star systems, knowing the absolute magnitude of the normal component and the Δm for the system.

II. OBSERVATIONS

The observing program was originally defined to include all double-star systems in which both components were brighter than magnitude 7.5 , separated by at least 4 seconds of arc, declination greater than -20°, with Δm 's listed in the catalogue of Wallenquist (1954). Although the majority of systems observed meet these criteria, a number of interesting systems are included that fall outside this definition. On the other hand, many systems that qualify were not observed, particularly those in which both components are of spectral type F5 or later. The result is an observing program which defies definition but consists essentially of the brighter, northern, wide pairs of early type. A total of 235 stars in 116 physical systems was observed.

Nearly all the spectrograms were taken with the two-prism spectrograph attached to
the Perkins 69 -inch telescope in Delaware, Ohio, during the years 1957-1959. This spectrograph with its Pa camera gives a dispersion of $28 \mathrm{~A} / \mathrm{mm}$ at $\mathrm{H} \gamma$. The spectra were taken on Kodak 103a-O plates and widened to 1.5 mm on the plate whenever possible, in order to increase the accuracy of estimating the spectral types and axial rotational velocities. The slit width was held constant for all these observations. In addition, a few systems were photographed with the Yoder spectrograph attached to the Perkins 69 -inch telescope at its new site near Flagstaff, Arizona, in collaboration with the Lowell Observatory in the spring of 1962. These spectra and those of the corresponding standard stars were taken on baked Kodak II a-O plates with a dispersion of $20 \mathrm{~A} / \mathrm{mm}$.

III. SPECTRAL TYPES AND AXIAL ROTATIONAL VELOCITIES

The spectral types and luminosity classes for the double-star components were estimated with the help of a large number of standard-star spectra, taken with the same equipment. A total of 179 MK standards from the list by Johnson and Morgan (1953), including stars of all luminosity classes with spectral types between O9 and M2, was used. Every effort was made to disguise the identity of the stars being classified, so that a knowledge of the system with its observed Δm would not prejudice the classifications. This was not possible for a few of the brighter systems, however, and some observational bias may have crept into these classifications.

The axial rotational velocities were estimated visually by comparing absorption-line widths on spectrograms of double-star components with those of standard stars of measured rotational velocity, observed with the same equipment. Some 140 MK standard stars of spectral type O9-K0 for which rotational velocities had been measured earlier (Slettebak 1954, 1955, 1956; Slettebak and Howard 1955) were used as standards of rotational velocity. Since all plates were taken in the same way, using the same instrumentation, fairly reliable rotational velocities can be obtained by visual estimate if care is taken to obtain good density matches between spectrograms. The minimum value of v $\sin i$ that was just detectable on good-quality plates is near $25 \mathrm{~km} / \mathrm{sec}$.

The estimated spectral types and rotational velocities for the double-star components are listed in Table 1, which contains 116 systems that are probably physical. ADS numbers are listed in this table, except for a few systems with BDS numbers only, which are listed in parentheses. The Δm 's in the table are from the list of Wallenquist (1954). A few systems that are not in Wallenquist's catalogue have Δm 's, listed in parentheses, from other sources. Table 2 contains 12 pairs which were observed but which are almost certainly optical doubles. These are listed in the event that the spectral types and rotational velocities might prove useful at some later date and will not be discussed further in this paper.

IV. RESULTS AND DISCUSSION

a) H-R Diagrams for Systems with Normal Components

Figures 1 and 2 show the $\mathrm{H}-\mathrm{R}$ diagrams for binaries with components which were both judged to have normal spectra. Systems in which one component is on the main sequence, while the other component was classified as above the main sequence, are shown in Figure 1. The main-sequence components are plotted on the Keenan (1963) main sequence, and the observed Δm 's are applied to the more luminous components to locate them above the main sequence. The resulting diagram is similar to those published by Struve and Franklin (1955) and by Bidelman (1958), although the observational material is different, and again shows the tendency for the primaries to lie above the main sequence. As the aforementioned authors have pointed out, these results are compatible with the hypothesis that the locations of the primaries in the $\mathrm{H}-\mathrm{R}$ diagram are the result of nuclear evolution, which proceeds more rapidly in the primaries than in the secondaries.

Systems in which both components were classified as main-sequence stars are shown in Figure 2. The two components are located symmetrically around the Keenan (1963)

$$
\text { Table } 1
$$

SPECTRAL TYPES AND AXIAL ROTATIONAL VELOCITIES FOR THE COMPONENTS OF 116 PHYSICAL DOUBLE STAR SYSTEMS

亮頜

Table 1 (Cont.)

			$\begin{aligned} & \dot{0} \\ & \dot{\circ} \\ & \ddot{\sim} \\ & \dot{r} \end{aligned}$								\pm $\stackrel{+}{*}$ $\ddot{+}$ i
											－
	䔍	¢			$\begin{aligned} & \dot{\oplus} \\ & \stackrel{y}{山} \\ & \stackrel{\text { a }}{2} \end{aligned}$	＋	$\begin{aligned} & \dot{\text { D }} \\ & \text { む̈ } \\ & \text { O} \end{aligned}$		¢	＋	$\stackrel{\text {－}}{\text { ¢ }}$
	$\stackrel{\otimes}{\otimes}$	๗	$\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\text { ® }}{\text { ® }}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\Downarrow}{凶 ゙}$	ジ	\＆	$\stackrel{\otimes}{\otimes}$	－

Table 1 (Cont.)											
$\begin{gathered} \text { ADS } 0 \\ \text { (BDS } \end{gathered}$		Design.	α (1950)	8(1950)	m	$\Delta \mathrm{m}$	Sep.	Sp. Type	$\begin{aligned} & v \sin 1 \\ & (\mathrm{~km} / \mathrm{sec}) \end{aligned}$	Ref.	Remarks
9258		HR 5397	$14^{\text {h }} 22 .{ }^{\text {m }} 7$	$-19^{\circ} 45^{\prime}$	$\begin{aligned} & 6.4 \\ & 7.0 \end{aligned}$	0.55	35"	$\begin{aligned} & \mathrm{A} 2 \mathrm{~V} \\ & \mathrm{~A} 4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \end{aligned}$		See notes.
9277		HR 5415	1426.4	+28 31	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	0.49	25"	$\begin{aligned} & \text { AOV } \\ & \text { AOV } \end{aligned}$	$\begin{array}{r} 100 \\ 80 \end{array}$		
9338	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	π Boo	1438.4	+16 38	$\begin{aligned} & 4.9 \\ & 5.8 \end{aligned}$	0.92	6"	$\begin{aligned} & \text { B9p } \\ & \text { A5V } \end{aligned}$	$\begin{aligned} & <25 \\ & 150 \end{aligned}$	L	Pec-A of Mn type. Could be mild Am star.
		$\begin{aligned} & 9 \propto \text { Lib } \\ & 8 \alpha \text { Lib } \end{aligned}$	1448.1	-15 50	$\begin{aligned} & 2.9 \\ & 5.3 \end{aligned}$	(2.4)	231"	$\begin{aligned} & \text { A3V } \\ & \text { F2V } \end{aligned}$	$\begin{array}{r} 80 \\ \leq 25 \end{array}$		
9474	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	HD 132910	1458.1	+54 4	$\begin{aligned} & 6.8 \\ & 7.6 \end{aligned}$	0.77	41"	$\begin{aligned} & \text { FOIV } \\ & \text { F2IV } \end{aligned}$	$\begin{array}{r} 80 \\ \leq 30 \end{array}$	Be	
9494	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	44 Boo	$15 \quad 2.1$	+47 51	$\begin{aligned} & 5.3 \\ & 6.0 \mathrm{v} \end{aligned}$	0.70	3"	$\begin{aligned} & \text { G2V } \\ & \text { G, 2sp. } \end{aligned}$	$\underset{\text { Large }}{\leq 30}$	L	See notes.
9626	$\begin{aligned} & \text { A } \\ & \text { BC } \end{aligned}$	$\boldsymbol{\mu} \mathbf{B o o}$	1522.6	+37 31	$\begin{aligned} & 4.5 \\ & 6.8 \end{aligned}$	2.27	108"	$\begin{aligned} & \text { FOIV } \\ & \text { GIV } \end{aligned}$	$\begin{array}{r} 90 \\ \leq 25 \end{array}$	J	Close visual binary, 7.2:7.8.
9701	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	δ Ser	1532.4	+10 42	$\begin{aligned} & 4.2 \\ & 5.3 \end{aligned}$	1.09	4"	$\begin{aligned} & \text { FOIV } \\ & \text { FOIV-V } \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	L	
9728	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	HR 5816	1536.0	- 838	$\begin{aligned} & 6.5 \\ & 6.6 \end{aligned}$	0.09	12"	$\begin{aligned} & \text { F7V } \\ & \text { F7V } \end{aligned}$	$\begin{aligned} & \leq 25 \\ & \leq 25 \end{aligned}$	L, SF	
9737	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\zeta \mathbf{C r B}$	1537.5	+36 48	$\begin{aligned} & 5.1 \\ & 6.0 \end{aligned}$	0.95	6"	$\begin{aligned} & \text { B6V, 2sp. } \\ & \text { B7V } \end{aligned}$	$\begin{aligned} & 100: ; 100: \\ & \leq 25 \end{aligned}$	L, Be	
9913	$\begin{aligned} & \mathbf{A} \\ & \mathbf{C} \end{aligned}$	B Sco	162.5	-19 40	$\begin{aligned} & 2.9 \\ & 5.1 \end{aligned}$	2.25	14"	$\underset{\text { B2. }}{\substack{\text { BO } \\ \text { * }}}$	$\begin{aligned} & 85 \text { (br) } \\ & 85 \end{aligned}$	L	
9951	$\begin{aligned} & \mathbf{A} \\ & \mathbf{C} \end{aligned}$	ν Sco	169.1	-19 21	$\begin{aligned} & 4.3 \\ & 6.6 \end{aligned}$	2.28	41"	$\begin{aligned} & \text { B2V } \\ & \text { B9Vp } \end{aligned}$	$\begin{array}{r} 200 \\ 70: \end{array}$		See notes.
9979	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	σ CrB	1612.8	+33 59	$\begin{aligned} & 5.8 \\ & 6.8 \end{aligned}$	1.01	5"	$\begin{aligned} & \text { F8V, 2sp. } \\ & \text { G1V } \end{aligned}$	$\begin{aligned} & \leq 25 ; \leq 25 \\ & \leq 30 \end{aligned}$	L	See notes.
10129	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	17 Dra 16 Dra	1635.0	+53 1	$\begin{aligned} & 5.6 \\ & 6.6 \\ & 5.7 \end{aligned}$	$\begin{aligned} & A B=1.03 \\ & A C=0.10 \end{aligned}$	$\begin{aligned} & A B=4^{\prime \prime} \\ & A C=91^{\prime \prime} \end{aligned}$	B9V AOV B9. 5 V	$\begin{array}{r} 220 \\ 250 \\ 75 \end{array}$		
10149	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	37 Her 36 Her	1638.2	+419	$\begin{aligned} & 5.7 \\ & 6.8 \end{aligned}$	1.08	70"	$\begin{aligned} & \text { AOV } \\ & \text { ASV } \end{aligned}$	$\begin{array}{r} 140 \\ 80 \end{array}$	Be	Could be a mild Am star.
10526		ρ Her	1722.0	+37 11	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	0.95	4"	$\begin{aligned} & \text { AOp } \\ & \text { B9. } 5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 80 \\ 200 \end{array}$	L	Pec-A of Si type.

$\triangle m$	Sep.	Sp. Type	$v \sin i$ (km/sec)	Ref.	Remarks
0.83	62"	${ }_{\mathrm{B} 1 \mathrm{~V}}^{\mathrm{BO} .5 \mathrm{~V}}$	$\begin{aligned} & 300 \\ & 140 \end{aligned}$		See notes.
0.45	11"	$\begin{aligned} & \text { Am } \\ & \text { F2V } \end{aligned}$	$\begin{array}{r} 60 \\ 120 \end{array}$		See notes.
0.47	14"	$\begin{aligned} & \text { F7V } \\ & \text { G5V, 2sp. } \end{aligned}$	30	J	$v \sin 1$ estimate impossible.
2.03	$7{ }^{\prime \prime}$	$\begin{aligned} & \text { Am } \\ & \text { F7V } \end{aligned}$	$\begin{array}{r} 50 \\ \leq 25 \end{array}$		See notes.
(2.5)	41"	$\begin{aligned} & \text { Ceph } \\ & \text { B8V } \end{aligned}$	$\overline{140}$	L, Be	
0.73	22"	$\begin{aligned} & \mathrm{B} 1(\mathrm{~V}) \mathrm{e} \\ & \mathrm{~B} 2 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 350 \\ 50 \end{array}$	Be	See notes.

$$
\begin{aligned}
& \text { ó } \\
& \text { 员苞 }
\end{aligned}
$$

15434 A

15600 A
15987 A
16095 A
Spectral types designated by an asterisk are MK types from the list of Johnson and Morgan (1953). Those designated by a double asterisk
are from the list of Morgan, Code and Whitford (1955). All others are estimated by the writer, except as noted.
The $\Delta \mathrm{m}$'s are from the catalogue of Wallenquist (1954), except for those in parentheses.
References given in the 10th column are to the following authors:

$$
\begin{aligned}
\mathrm{L} & =\text { Leonard (1923). } \\
\mathrm{S} & =\text { Stephenson (196). } \\
\mathrm{SF} & =\text { Struve and Frankiin (1955). }
\end{aligned}
$$

$\mathrm{J}=\mathrm{Johnson}$ (1953). \quad SF = Struve and Frankin (1955).
$\begin{aligned} B & =\text { Bidelman (1958) } . \\ B e & =\text { Berger (1962). }\end{aligned}$
Notes on individual stars:
ADS 1 B. The over-all type is A2v, but the Balmer lines have sharp and deep absorption cores with wide Stark-broadened wings, the K -1ine is sharp with some wings, and the Fe II lines at 4233 , 4351 , and 4549 A are sharp, while all other lines show considerable rotational
broadening. The spectrum is that of a shell star of rather late type (plate taken Sep., 1957).
ADS 671 B . The Ca II H- and K -1ines show sharp emission cores. The absorption spectrum is peculiar and suggests that of a late-type, metal-poor dwarf. Ca I 4226 has a rather sharp core and broad wings, and the G-band also has a peculiar appearance. The chromium-
iron ratio suggests a type near K 3 , according to P . C. Keenan.
ADS 1630. The spectral type for the primary is by P. C. Keenan, as quoted in the paper by Maestre and Wright (1960). The secondary consists of a close visual binary, the brighter component of which is a spectroscopic binary with two spectra visible. The latter
are of approximately the same type (B9. 5 V) with approximately the same v sin i ($70 \mathrm{~km} / \mathrm{sec}$).
 K-1ines, A7 Balmer lines, and F2 metalific lines, and both have apparently sharp lines on the Perkins plate.

ADS 2984. Morgan, Code and Whitford (1955) gave a combined type of BO II-III for the two components. The primary is SZ Cas, a 2.7 day eclipsing system
might also be double.

ADS 3317 A.
lines, and A7 metallic lines.
ADS 3910 . The metallic lines are somewhat weak for AO III. This could be a λ bootis-type star. The system is probably physical, but there is some doubt.

ADS 4186. Nebular emission complicates the classification of all four components. B is a spectroscopic binary with orbit computed. ADS 4188. Nebular emission complicates the classification of both components. A is a spectroscopic binary with orbit computed. ADS 4193 B. Helium lines too weak for this type. Balmer lines also somewhat weak relative to main-sequence star of this type.

ADS 4749 A. A plate taken in February, 1958 shows a shell spectrum almost identical with that of ADS 1 B, though of slightly earlier type. Another plate taken in March, 1959 shows the shell spectrum considerably weakened, although the Fe II lines are still sharp
and fairly prominent. and fairly prominent.

ADS 6175. Both components are spectroscopic binaries with orbits computed. B is a metallic-line star with Al $\mathrm{K}-1 \mathrm{ine}$, A3 Balmer lines, AS metallic lines.

ADS 7093. A is a metallic-line star with A3 K-1ine, A3 Balmer lines, and $F 2$ metallic lines. B is also a metallic-line star, with A4 K-line, A5 Balmer lines, and FO metallic lines.

ADS 7311. The system is probably physical but there is some doubt.
ADS 7627 C. Sr II 4077 is rather strong for this type.
ADS 7654 B. The star may be on the lower edge of the main sequence, according to P. C. Keenan. The Balmer lines and Sr II 4077,4216 are weak, and there is no trace of CN.

ADS 7705. Both components are metallic-1ine stars with very similar spectra on the Perkins plates: A9 K-line, A9 balmer lines, and F 5 metallic lines.

ADS 8568 b. A3 $\mathrm{K}-1 \mathrm{ine}, \mathrm{AS}$ balmer lines, and F 2 metallic lines.
8657. The system is probably physical but there is some doubt.

ADS 8682. The primary shows a shell spectrum on plates taken in April and July in 1958 and in June, 1960 which is similar to that of
ADS
lines and $\mathrm{K}-1$ ine seem somewhat stronger in 1960 than in 1958 . He I does not appear on any of the plates. A 103a-F plate taken in June, 1960 shows io as a strong absorption
apparently sharp lines on the Perkins plates.

ADS 8706 A. Spectroscopic binary with orbit computed. Also peculiar-A star and spectrum variable.
ADS 8891 B. A2 K-line, A2 Balmer lines, and A7 metallic lines. Spectroscopic binary with orbit computed.

ADS 9258 B. Close visual binary, 7.6:8.8. This could also be a mild Am star.
ADS 9494. Perkins spectrograms available only for the primary. The secondary is a W U M -type binary, which has been studied spectroscopically by Popper (1943).

ADS 9951. Both components are close visual binaries: A is a $4.4: 6.4$ pair while C has $6.8: 7.8$ components. The spectrum of C has the Si II 4128-4130 lines too strong for the assigned type of 89 V .
 v^{2} is a spectroscopic binary with orbit computed.

ADS 11046 A. Spectroscopic binary with orbit computed. Single weak and narrow emission components of Ca II H and K are visible. ADS 11639 A. A 4 K-1ine, A7 Balmer lines, and FO metallic lines. Also spectroscopic binary with orbit computed. ADS 11667. The primary has A2 K -1ine, A2 Balmer lines, and FO metallic lines, while the secondary has A5 K-line, A7 balmer lines, and F2 metallic lines. ADS $\underset{\text { Perkins }}{11745 \text { Alates. }}$ ADS 12540 A. Spectral component possible.

$$
\text { Table } 2
$$

	$\hat{\theta}_{1} \tilde{\theta}_{1}$	$\tilde{\theta}_{1} \tilde{\theta}_{1}$	$8 \stackrel{n}{V}_{1}$	$\tilde{N}_{1}{ }_{0}$	$\underset{\sim}{\sim} \tilde{N}_{1}$	$8 \tilde{N}_{1}$	$\tilde{V}_{1} \tilde{v}_{1}$	O익	$\tilde{N}_{1} \tilde{\sigma}_{1}$	요육	$\overbrace{1}{ }^{\circ}$	유ํ ํ.
$\begin{aligned} & \Perp \\ & \underset{\sim}{0} \\ & \dot{\infty} \end{aligned}$	学总	$\begin{aligned} & \text { Hy } \\ & \text { 봆 } \end{aligned}$		$\begin{aligned} & \text { * } \\ & \text { 合品 } \\ & \text { R } \end{aligned}$		居䓵		萿品	$\begin{aligned} & \text { 思思 } \\ & \stackrel{y}{*} \end{aligned}$	芯灾	足号	号思
E	$\stackrel{+}{\sim}$	$\begin{array}{ll} \infty & -1 \\ i n \\ i n \end{array}$	\hat{i}	$\begin{aligned} & \text { No } \\ & \text { fin } \end{aligned}$	$\begin{gathered} \text { ni } \\ \text { in } \end{gathered}$	$$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$		$\stackrel{n}{n} \stackrel{r}{n}$	n t	$\begin{aligned} & \infty \quad 0 \\ & \dot{f} \dot{0} \end{aligned}$	M
$\begin{aligned} & \text { oे } \\ & \text { Ǹ } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { 아 } \\ & 0 \\ & 0 \\ & + \end{aligned}$	$\xrightarrow{+}$	® 	N O +	＋ m +	9 4 +	-7 - +	\sim 0 \sim		＋ ＋ +	$\begin{aligned} & \text { in } \\ & \text { on } \\ & + \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { n } \\ & + \end{aligned}$
$\begin{aligned} & \text { O} \\ & \text { No } \\ & \underset{甘}{0} \end{aligned}$	$\begin{gathered} \text { E. } \\ \substack{+ \\ \\ \\ \hline} \end{gathered}$	$\begin{aligned} & N \\ & \text { Ni } \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \bullet \\ & \dot{f} \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \infty \\ & i \\ & i \\ & n \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \\ & \text { N } \end{aligned}$	∞ \sim \sim	\circ \sim \sim	m i a	$\begin{aligned} & n \\ & \text { ñ } \\ & \text { N } \end{aligned}$	a － －	$\begin{aligned} & o \\ & \dot{n} \\ & \text { N } \end{aligned}$
	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{1} \\ & \text { 年 } \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \text { 星 } \end{aligned}$	$\begin{aligned} & \text { 㐓 } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 息 } \\ & \text { 慁 } \end{aligned}$		$\begin{aligned} & \underset{y}{4} \\ & \underset{y}{4} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { ĥ } \\ & \text { N̂ } \\ & \text { م阝 } \end{aligned}$	－1 n \sim		$\begin{aligned} & \text { 召䓵 } \\ & \text { 人 } \end{aligned}$	
	$\begin{aligned} & \text { «ゅ } \\ & \text { N} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \varangle \infty \\ & \text { N } \\ & \text { ñ } \end{aligned}$	$\begin{aligned} & 4 \infty \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & 4 \infty \\ & n \\ & 0 \end{aligned}$	（2480）A	$\begin{aligned} & \varangle \infty \\ & \text { on } \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 4 \infty \\ & \tilde{N} \\ & \text { ू} \end{aligned}$	$\begin{aligned} & \text { 4ゅ } \\ & \text { N} \\ & \stackrel{0}{-1} \end{aligned}$	$\begin{aligned} & \text { «m } \\ & \hat{0} \\ & \text { 억 } \end{aligned}$		$\begin{aligned} & 4 \sim \\ & \sim \\ & \stackrel{1}{\circ} \\ & \underset{-1}{-1} \end{aligned}$	

main sequence, using the observed Δm to separate them in absolute magnitude. Figure 3 shows those systems in which both components were classified as normal stars above the main sequence, again using the observed Δm 's to separate the components in absolute magnitude. The figures are essentially self-explanatory and show the distribution of spectral types selected for investigation.

b) Axial Rotation in Double-Star Components with Normal Spectra

Average values of $v \sin i$ for double-star components of various spectral types and luminosity classes are listed in Table 3. For comparison purposes, the corresponding val-

Fig. 1.-H-R diagram for binaries with normal spectra for both components, one being judged to be on the main sequence and the other above the main sequence.

Fig. 2 -H-R diagram for binaries in which both components were classified as normal main-sequence stars.
ues for single stars are also listed. The comparison is expressed in graphical form in Figure 4. The average values for single stars were obtained from the writer's earlier papers on stellar axial rotation by removing visual binaries and spectroscopic binaries with computed orbits or two spectra visible from the statistical discussion.

There appear to be no significant differences in the mean rotational velocities for double-star components and single stars. Both classes of stars show the same general dependence of axial rotation on spectral type, including the greater rotation in F-type giant stars as against main-sequence stars of corresponding type.

Struve and Franklin (1955) state a general rule for the double-star components that they investigated: the rotation, unless it is zero in both components, is larger in the one of earlier type. The stars included in this study do not strictly obey such a rule, although,

Fig. 3.-H-R diagram for binaries in which both components were classified as normal stars, above the main sequence.
statistically, their rotational velocities show the same trend across the H-R diagram as do single stars. The difference between the present results and those of Struve and Franklin probably lies largely in the selection of stars. Struve and Franklin considered primarily stars of type F0 and later, where axial rotation is falling off very rapidly with spectral type, as shown in Figure 4, while this investigation includes large numbers of A- and Btype stars as well. The rule of Struve and Franklin, then, may hold for the stars of late A and F type but does not appear to be valid across the entire H-R diagram.

c) Absolute Magnitudes of Double-Star Components

One of the original objectives in undertaking this spectroscopic study of double-star components was to derive absolute magnitudes for certain peculiar stars of special interest. At the same time, it was hoped that an independent calibration of the MorganKeenan luminosity classes might be achieved for some classes of normal stars. The results of such analyses of the data in Table 1 have been somewhat disappointing, in that the uncertainties in the derived absolute magnitudes are considerable. Although some of this uncertainty can be attributed to the Δm 's, relatively few of which were determined pho-

Fig 4 -Comparison of axial rotational velocities of double-star components with those of single stars of corresponding type.

TABLE 3
Comparison of Axial Rotational Velocities of DoubleStar Components with Those of Single Stars
of Corresponding Type

Spectral Type	Double-Star Components		Single Stars	
	$\begin{gathered} \langle v \sin i\rangle \\ (\mathrm{km} / \mathrm{sec}) \end{gathered}$	No of Stars	$\begin{aligned} & \langle v \sin i\rangle \\ & (\mathrm{km} / \mathrm{sec}) \end{aligned}$	No of Stars
B1-3 $\left\{\begin{array}{l}\text { V } \\ \text { III, IV }\end{array}\right.$	172	10	150 96	$\begin{aligned} & 54 \\ & 17 \end{aligned}$
B5-7 $\left\{\begin{array}{l}\text { V } \\ \text { III, IV }\end{array}\right.$	149 133	11 3	208 128	30 28
B8-2 $\left\{\begin{array}{l}\text { V } \\ \text { III, IV }\end{array}\right.$	175	45	147 77	$\begin{aligned} & 70 \\ & 20 \end{aligned}$
A3-7 \{ V III, IV	154 179	15 8	136 170	32 20
F0-2 $\left\{\begin{array}{l}\text { V } \\ \text { III, IV }\end{array}\right.$	41 121	9 8	74 106	12 22
F3-6 $\left\{\begin{array}{l}\text { V } \\ \text { III, IV }\end{array}\right.$	≤ 25 36	4 2	$\leq \begin{aligned} & 25 \\ & 54\end{aligned}$	8 10
F7-G0 $\left\{\begin{array}{l}\text { V } \\ \text { III, IV }\end{array}\right.$	≤ 25	8	≤ 25 44	16 4

toelectrically, the largest part is probably due to the spectral classification. A large number of A-type stars are included in Table 1, for example, and luminosity classes of A-type stars near the main sequence are very difficult to estimate. An error of up to a magnitude is entirely possible in the luminosity classification of one of the components, and the full error is then thrown into the absolute magnitude derived for the other component. The following results are presented in the hope that they may have some intrinsic interest, even though uncertainties exist.

The visual absolute magnitude calibration by Keenan (1963) was used throughout for the normal components. Unless otherwise noted, values of Δm were taken from the Wallenquist (1954) catalogue whenever possible. Whenever appropriate, corrections for multiplicity of the components were made.

Normal main-sequence stars of early type.-The method of Lundmark and Luyten (1923), rediscussed by Luyten in 1957, was applied to the systems in Table 1 in which

Fig. 5.-The difference in magnitude per tenth of a whole spectral class along the main sequence, as a function of spectral type, for 31 systems.
both components were estimated to be normal main-sequence stars. Values of $\Delta m / \Delta s p$, the difference in magnitude per tenth of a whole spectral class along the main sequence, are plotted against spectral type in Figure 5 for 31 systems. Despite the large scatter, a curve was drawn through the points and visual absolute magnitudes computed for mainsequence stars of types B2-A7, using the Keenan (1963) value of $M_{v}=+0.6$ for A0 V stars. The results are tabulated in Table 4. Individual values are not too meaningful, particularly for the earliest types, but it is interesting to note that, while the calibration from double-star components agrees fairly well for the A- and late B-type stars, the early and middle B-type stars are more luminous than indicated in the Keenan calibration.

Metallic-line stars.-Nine of the systems in Table 1 were found to consist of a metallicline star plus a star with normal spectrum, four systems contain pairs of metallic-line stars, and one system consists of a metallic-line star with a companion peculiar A-type star. The afore-mentioned nine systems are listed in Table 5, with the visual absolute magnitudes derived for the metallic-line star components.

The range of visual absolute magnitudes in Table 5 is large, and there is no apparent correlation between M_{v} and the K-line types, Balmer-line types, metallic-line types, or "metallicity" for individual stars. The average visual absolute magnitude for the nine stars is +1.7 for a meean Balmer-line type of A6, whic̣ falls approximately in the middlẹ
of previous determinations by a number of authors. The paper by the Jascheks (1959) summarizes the earlier work. It is interesting to note that the present determination would place the metallic-line stars, on the average, about $\frac{1}{2}$ mag. above the main sequence for their Balmer-line types, but there is considerable variation, as shown in Figure 6. Because the Balmer lines come to a rather flat maximum in intensity in the A-type stars, visual estimates of the Balmer-line types for metallic-line stars are not of high precision. Rather large differences exist, for example, between the Balmer-line types in the present paper and those of Roman, Morgan, and Eggen (1948) for some of the stars in common. In view of the correlation between Balmer-line type and $B-V$ colors for the metallicline stars (Jascheks 1959; Slettebak, Bahner, and Stock 1961), the latter would be preferable in locating these stars accurately on the H-R diagram.

The Jascheks (1959) have suggested that the "metallicity" (the difference between the metallic-line type and the Balmer-line type of an object) is very probably a luminosity effect and that this point can be checked in double stars in which both components are metallic-line stars. In the four such systems in Table 1, the brighter component does

TABLE 4
Visual Absolute Magnitudes of Main-
Sequence Double-Star Components of Spectral Types B2-A7

	M_{v} Spectral Type	M_{v} from Double-Star Components
Keenan (1963)		

TABLE 5
Visual Absolute Magnitudes of Metallic-Line Stars with Normal Companions in Double-Star Systems

ADS or (BDS)	K-Line Type	Balmer- Line Type	Metallic- Line Type	M_{v}
(1094) B	A3	A7	F2	$+16$
3317 A	A3	A3	A7	+05
6175 B	A1	A3	A5	+22
8600 B	A5	A7	F2	+23
8891 B	A2	A2	A7	+23
11639 A	A4	A7	F0	+03
(9705) B	A7	A7	F2	+14
15493 A	A3	A4	F2	+25
15600 A	A3	F0	F5	+18
Mean	A3	A6	F0	+17

indeed have metallicity greater than, or equal to, that of the fainter component in each case. The Balmer-line types suffer from the uncertainty already mentioned, however, and one could better test the Jascheks' suggestion if $B-V$ photoelectric colors were available for these objects.

For the metallic-line stars with normal companions, Table 1 shows that the Am star may be either the secondary or the primary and that it may be earlier or later than its companion. The normal companion stars include A- and F-type stars, and even a K2 giant star, but no B-type stars, suggesting that metallic-line stars are probably not extremely young objects from the evolutionary point of view.

Fig. 6.-Visual absolute magnitudes of metallic-line stars, plotted against their Balmer-line types
Peculiar A-type stars.-Nine systems which are made up of a peculiar A-type star with a normal companion are listed in Table 6. A tenth system contains a peculiar A-type star with a metallic-line star companion. Visual absolute magnitudes for the peculiar components in Table 6 were again derived from the spectroscopic absolute magnitudes of their normal companions plus the observed Δm 's for the systems. These are listed in Table 6 and plotted in Figure 7 against the corresponding spectral types. Four kinds of peculiar A-type stars are represented: silicon stars, a manganese star, a strontium star, and a β CrB-type star. Only the silicon stars are present in sufficient number to yield a meaningful absolute magnitude for the group. The mean M_{v} for six silicon stars of mean type A0p is 0.0 , which would locate these stars about $\frac{1}{2} \mathrm{mag}$. above the main sequence for their mean type. This result is in general agreement with earlier results (Eggen 1957).

Just as for the metallic-line stars, Table 1 shows that peculiar A-type components of double-star systems may be the primaries or the secondaries and may be earlier or later in type than their companions. They keep about the same company as do the metallic-line stars (with a possible slight preference for companions of earlier type) and probably represent about the same phase of evolution. Indeed, the system 17 Comae contains a
peculiar A-type star together with a metallic-line star, and each is a fine example of its type.

Additional stars of interest.-A number of systems in Table 1 include stars which are peculiar or of special interest for one reason or another. These systems are listed in Table 7 together with the visual absolute magnitudes of the components of interest, determined as described in preceding sections. A brief discussion of some of these stars follows:

1. Shell stars: The three shell stars (ADS 1B, 4749A, and 8682A) have a mean visual absolute magnitude of +0.2 , which would place them about 1 mag. above the main

TABLE 6
Visual Absolute Magnitudes of Peculiar A-Type Stars with Normal Companions in Double-Star Systems

ADS	Spectral Type	Peculiarity	M_{v}
1507 A	A1p	Silicon-chromium	+03
8347 B	A2p	Strontium-chromium	+21
8706 A	A0p	Silicon-chromium	00
9338 A	B9p	Manganese	+12
9951 C	B9Vp	Silicon	-0 2
10526 A	A0p	Silicon	-0 5
11056 B	A8p	β CrB type	+17
12893 A	B9p	Silicon	-01
15405 B	A1p	Silicon-strontium	+03

Fig. 7.-Visual absolute magnitudes of peculiar A-type stars, plotted against their spectral types
sequence for their mean spectral type. There is the possibility that the underlying stars are earlier than the spectral types in Table 7 would indicate, but they cannot be as early as B9, since He I lines are not visible in the spectra of any of these stars and the shells are not optically thick. It seems probable that these objects are indeed located somewhat above the main sequence. The rotational velocity is large for all three objects ($v \sin i=$ $250 \mathrm{~km} / \mathrm{sec}$), as would be expected for shell stars, but not so large as that of some nonshell stars of corresponding type.
2. Cepheids: Two classical cepheid variable stars are listed in Table 7. Although the visual absolute magnitude derived for δ Cephei is approximately consistent with its period, a Ursa Minoris is too luminous. A portion, but not all, of the discrepancy may arise from the fact that the spectrogram of the companion star was not of the highest quality.

TABLE 7
Visual Absolute Magnitudes of Some Component Stars of Special Interest in Double-Star Systems

ADS	Name	Spectral Type or Peculiarity	M_{v}
1 B		A2 V shell	+15
4749 A		A1 V shell	-0 6
8682 A		A2 V shell	-0 3
1477 A	a UMi A	Cepheid	-4 3
15987 A	δ Cep A	Cepheid	-27
1073 A	ϕ Cas A	F0 I a	-77
1630 A	γ And A	K2 II	-35
4134 A	δ Ori A	09.5 II	-63
10966 A	67 Oph A	B5 Ib	-60
4179 A	λ Ori A	08	-61
4186 C	θ^{1} Ori C	06	-60
671 B	${ }_{\eta}$ Cas B	K3p	+82
11336 B	39 Dra B	A5p	+40
9494 B	44 Boo B	W UMa type	+59 and +65
11745 A	β Lyr A	Variable spectrum (B6 I, IIp-B8 Iap)	-47
12540 A	β Cyg A	Composite spectrum (K3 II: + B:)	-2 3
13554 A	31 Cyg A	Composite spectrum (K2 II + B3 V)	-42
15032 A	β Cep A	Variable star (B2 III)	-3 4
.	3 Cen A	Peculiar spectrum (B5 Vp)	-13

3. Supergiant and luminous giant stars: The four supergiant and luminous giant stars listed in Table 7 are all somewhat more luminous than the Keenan (1963) calibration would indicate is average for the type.
4. Stars earlier than 09: An O6 (θ^{1} Ori C) and an 08 (λ Ori) star are included. The photometric data of Sharpless (1952) for the θ^{1} Ori system was used to derive the visual absolute magnitude of θ^{1} Ori C.
5. Stars below the main sequence: Two stars, η Cas B and 39 Dra B, appear to be located below the main sequence for the spectral types which best describe their spectra, by about 1 and 2 mag., respectively. The spectra are peculiar, with the metallic lines weak in both cases.
6. Miscellaneous: Table 7 also lists visual absolute magnitudes for the following peculiar components of binary systems:

ADS $9494 \mathrm{~B}=44 \mathrm{Boo} \mathrm{B}$. The luminosity ratio for the components of B of 0.6 by

Popper (1943) was used to derive the individual visual absolute magnitudes for this W UMa-type system.

ADS 11745 A $=\beta$ Lyr A. The photometric data by Abt, Jeffers, Gibson, and Sandage (1962) were used to derive the visual absolute magnitude of this star. The spectral type of B6 V for component B leads to a value of M_{v} for component A that is somewhat brighter than that found by these investigators.

ADS $12540 \mathrm{~A}=\beta$ Cyg A. The visual absolute magnitude derived suggests that the K-type component of this composite may not be quite so luminous as class II.

ADS $13554 \mathrm{~A}=31$ Cyg A. The absolute magnitude determination is consistent with the estimated spectral type for this system.

ADS $15032 \mathrm{~A}=\beta$ Cep A. The value $M_{v}=-3.4$ derived for this β CMa-type variable is consistent with its spectral type of B2 III.

3 Cen A. The absolute magnitude found for this very peculiar object (see notes to Table 1) is consistent with the B5 V classification, which best describes its spectrum.

I am grateful to Messrs. L. Maestre and J. Wright for obtaining a number of the spectrograms. Thanks are also due Dr. W. P. Bidelman for his help in separating the optical from the physical systems and to Dr. P. C. Keenan for providing spectral classifications for some of the later-type components.

REFERENCES

Abt, H. A. 1961, Ap. J., 133, 910.
Abt, H. A., Jeffers, H. M., Gibson, J., and Sandage, A. R. 1962, Ap. J., 135, 429.
Bakos, G. A. 1959, A.J., 64, 323.
Bakos, G. A., and Oke, J. B. 1957, A.J., 62, 242.
Berger, J. 1962, Ann. d'ap., 25, 1, 77, 184.
Bidelman, W. P. 1951, Ap. J., 113, 604.
———. 1958, Pub. A S.P., 70, 168.
--. 1960, ibid., 72, 24.
Eggen, O. 1957, A.J., 62, 45.
Jaschek, C. and M. 1959, Zs. f. Ap., 47, 29.
Johnson, H L. 1953, Ap. J., 117, 361.
Johnson, H. L , and Morgan, W. W. 1953, Ap. J., 117, 313.
Keenan, P. C. 1963, chap. 6 of Vol. 3 of "Stars and Stellar Systems," ed. G. P. Kuiper (Chicago: University of Chicago Press). This is a revision by Keenan of the luminosity calibration by Keenan and Morgan in chap. 1 of Astrophysics, ed. J. A. Hynek (New York: McGraw-Hill Book Co., 1951).
Leonard, F. C. 1923, Lick Obs. Bull., 10, 169 (No. 343).
Lundmark, K, and Luyten, W. J. 1923, A.J., 35, 93.
Luyten, W. J 1957, J.R.A.S.C , 51, 41.
Maestre, L. A., and Wright, J. A. 1960, Ap. J, 131, 119.
Morgan, W. W., Code, A. D., and Whitford, A. E. 1955, Ap. J. Suppl., 2, 41.
Popper, D. M. 1943, A p. J., 97, 394.
Roman, N. G , Morgan, W. W., and Eggen, O. J. 1948, Ap. J., 107, 107.
Sargent, W. L. W , and Jugaku, J. 1961, Ap. J., 134, 777.
Sharpless, S 1952, Ap. J., 116, 251.
Slettebak, A. 1954, Ap. J., 119, 146.
——. 1955, ibid, 121, 653.

- 1956, ibid, 124, 173.

Slettebak, A , Bahner, K., and Stock, J. 1961, Ap J, 134, 195.
Slettebak, A., and Howard, R. F. 1955, Ap. J, 121, 102.
Stebbins, J., and Kron, G E. 1956, Ap. J., 123, 440.
Stephenson, C. B. 1960, A.J., 65, 60.
Struve, O., and Franklin, K. L. 1955, Ap J., 121, 337.
Wallenquist, A. 1954, Ann. Uppsala Astr. Obs., Vol. 4, No. 2.

