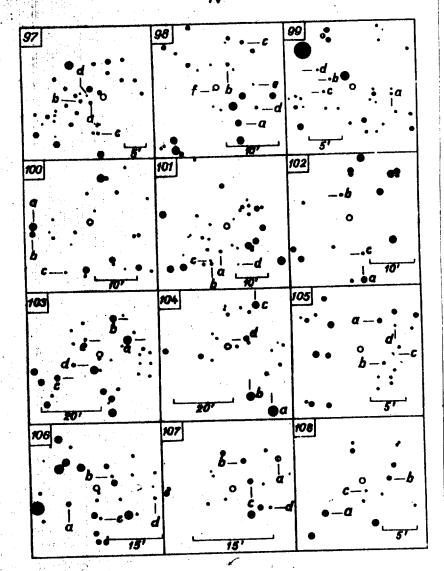
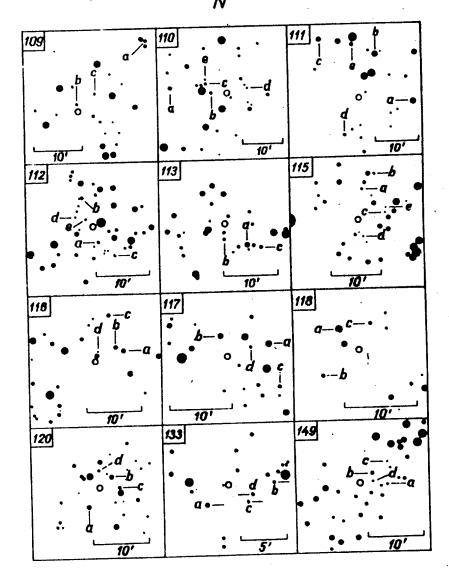
Commission 27 of the I.A.U. Information Bulletin on Variable Stars Number 6

Konkoly Observatory Budapest 4 February 1962

NOUVELLES ETOILES VARIABLES


Wr		AR	/1900	D,0/		max	m _o min	type	nombre d'observ,
97 *	τ'n	12 ^m	08 ^s	+ 50°	08,	12,9	14,0	C	35
98 *	1	18	5 5	+ 51	30	12,2	13,8		40
3 9	6	21	40	+ 30	27	12,0	13,1	E	40
100	8	34	48	+ 23	39	11,7	12,4		44
101	8	43	50	+ 25	39	12,8	13,6		43
102	8	47	00	+ 24	11	12,1	13,3		45
103	15	53	30	+ 28	55	11,6	12,7		125
104 [*]	16	02	46	+ 27	32	10,5	11,3		103
105	8	19	52	+ 26	04	11,8	13,0	RR	40
106	8	20	24	+ 23	37	12,2	13,0		43
107	15	39	39	+ 28	54	12,0	12,7		51
108	1	20	35	+ 44	24	12,7	13,5	E	35
109	19	13	44	+ 17	29	12,3	13,0	E /?	/ 82
110 [*]	19	02	07	+ 13	12	12,3	14,5	E	90
111 *	19	03	11	+ 18	48	11,9	12,8	E	88
112	20	03	31	+ 42	46	12,8	14,3	RW	44
113	20	04	26	+ 40	25	11,7	12,6	E	44
115	18	44	42	+ 43	36	12,8	14,3	E	47
116	23	17	27	+ 38	30	12,8	13,7	E	32
117 *	23	14	41	+ 45	23	12,7	13,5	E	55
118 ^{*}	23	43	10	+ 44	10	11,2	12,0	I ou 8	3R 71
120 [*]	23	22	05	+ 48	58	10,8	3 11,8	I	72
133	19	27	33	+ 47	12	12,4	13,3	C	21
149**	23	15	24	+ 46	42	12,8	3 14,2	${ m LP}$	40

N.B. Les étoiles marquées du signe /*/ font l'objet de remarques mentionnées ci-après.


REMARQUES

- Wr 97. Variabilité confirmée par Romano /communication privée/.
- Wr 98. Variabilité confirmée par Romano /communication privée/.
- $Wr 104. = BD + 27^{\circ}2585.$
- Wr 110. = BD + 13^o3908. Éléments provisoires de Weber : Min. hél. = JJ 2437159,415 + 1^J1654 E.
- Wr lll. = BD + $18^{\circ}3960$. Éléments provisoires de Weber : Min. hél. = JJ 2437099,465 + $0^{\circ}8573$ E.
- Wr 117. Le type EB peut être suggéré. La variabilité est estimée par Romano comme très probable.
- Wr 118. = BD + 43⁰4549. Sp Ma d'après la Bergedorfer Spektral Durchmusterung. Variabilité confirmée par Romano.
- Wr 120. = BD + $48^{\circ}4051$ = HD 220870. sp Nb.
- Zinner a signalé le caractère suspecte d'une étoile voisine, BD + 48°4048 qui figure dans le Catalogue des Étoiles Variables Suspectes sous le nº 102258 = Z 2141, sp N. Une plaque panchromatique ne montrant pas de coloration particulière pour l'étoile désignée par Zinner l'identification par cet auteur de l'étoile variable rouge avec BD + 48°4048 paraît erronée.
- Wr 149. Étoile rouge, d'après une plaque panchromatique. Variabilité confirmée par Romano/communication privée/.

R. WEBER 8, Rue Blomet, 8 PARIS N

A /

ÉTOILES DE COMPARAISON

d'après S a = 1	A.21 S. 2,6 1	.1,1	Wr 99 mp 5.A.50 12,2	Wr 100 m _p S.A.76 11,4
b = 1 c = 1 d = 1 e = -	3,5 1 4,2 1	2,6 3,0 3,5 3,9 4,2	12,6 12,8 13,2	12,0 12,6 - -
1	mp q	7r 102 ^m p A.76	Wr 103 mp S.A.60	Wr 104 mm p S.A.60
a = 1; b = 1; c = 1; d = 1; e = -	3,1 1 3,5 1 3,9	2,3 2,9 3,3 -	11,2 11,5 12,0 12,4 12,7	10,1 10,8 11,1 11,4
1	m _D	#r 106 ^m p 5. A. 76	Wr 107 mp s.A.60	Wr 108 mp s.A.21
a = 1: b = 1: c = 1: d = 1:	2,2 1 2,4 1	.2,0 .2,3 .2,7 .2,9	11,5 12,0 12,3 12,7	12,6 13,0 13,5

Wr 109 mp d'après S.A.87 a = 12,0 b = 12,5 c = 13,2 d = - e = -	Wr 110 mp S.A.87 12,2 12,9 13,5 14,0 14,5	Wr 111 mp S.A.87 11,7 12,0 12,4 12,6 13,1	Wr 112 Mp S.A.39 12,1 12,6 14,2 14,0 14,4
Wr 113 mp S.A.39 a = 11,4 b = 12,1 c = 12,7 d = - e = -	Wr 115 mp S.A.38 12,6 13,3 13,7 14,0 14,5	Wr 116 mp s.A.43 12,3 12,7 13,1 13,7	Wr 117 mp S.A.43 12,3 12,6 13,0 13,7
Wr 118 mp S.A.43 a = 10,8 b = 11,6 c = 12,5 d = -	Wr 120 mp S.A.43 10,3 11,0 11,4 11,9	Wr 133 mp s.A.39 12,1 12,4 12,9 13,4	Wr 149 mp S.A.42 12,8 13,3 13,7 14,2