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ABSTRACT 
In this paper the oscillations and the stability of a rotating gaseous mass are considered on the basis of 

an appropriate tensor form of the virial theorem. On the assumption that the Lagrangian displacement £ 
can be expressed in the form 

¿y = Xjrxre
xt (Xjr constants ), 

a characteristic equation for X (of order eighteen) is derived from the nine integral relations provided by 
the virial theorem. An examination of the roots of this characteristic equation enables the enumeration 
of the properties of all the natural modes of oscillation belonging essentially to harmonics not higher than 
the second. It is shown that there are three principal groups among these modes: a group of three modes, 
each of which exhibits a doublet character; a group of two modes, one of which becomes neutral at a point 
where the condition for the occurrence of a point of bifurcation is satisfied and both of which become over- 
stable at a higher angular velocity; and a group which represents the coupling of two modes, one of which 
is purely radial and the other of which is purely non-radial in the absence of rotation. In addition to these 
modes, there are two “trivial” modes, one of which is neutral and the other of which has a characteristic 
frequency equal to the angular velocity. 

I. INTRODUCTION 

The stability of rotating incompressible fluid masses has been the subject of many 
investigations; and the role of the point of bifurcation (at which the Jacobi ellipsoids 
branch off from the sequence of the Maclaurin spheroids) in determining stability has 
attracted much attention. In a recent paper (Lebovitz 1961; this paper will be referred 
to hereafter as 4Taper I”) the principal results of the classical investigations bearing 
on the point of bifurcation were clarified by an explicit evaluation of the frequencies of 
all the normal modes belonging to the second harmonic. The relative simplicity of the 
methods used in Paper I has encouraged us to attempt, by similar methods, the more 
general problem of the stability of rotating gaseous masses. The importance of this 
general problem for the “wider aspects of cosmogony” requires no emphasis, but it has 
been emphasized by Ledoux (1951; see also Ledoux and Walraven 1958) that the same 
problem is relevant for certain specific and practical questions raised by variable 
stars which exhibit the phenomena of multiple periods and beats. In this paper we shall 
survey the fundamental problems; in later papers we shall return to detailed examina- 
tions of specific questions. 

II. THE VIRIAL THEOREM EOR SMALL PERTURBATIONS 
ABOUT EQUILIBRIUM OF ROTATING BODIES 

In a frame of reference rotating with a constant angular velocity Û, the virial theorem 
takes the form (Chandrasekhar 1960, 1961a, b; and Paper I) 

A 
Tt 

where 

/* pdx-\-Q2Iij—7¿¿í2jí2y + 2 f pXi€jimMiQmdx, U) 
«/ V J V 

(2) 

(3) 
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ROTATING GASEOUS MASSES 249 

and 

lij— I pXiXjdx (4) 
J y 

are the kinetic energy, the potential energy, and the moment of inertia tensors, respec- 
tively. In equation (3) is the tensor potential discussed at length in the preceding 
paper (Chandrasekhar and Lebovitz 1962; this paper will be referred to hereafter as 
“Paper 11”) > and the remaining symbols have their usual meanings. 

Before we write down the form which equation (1) takes for infinitesimal perturba- 
tions about equilibrium, we may note the relations that obtain in equilibrium. They 
are (since Ui is now zero) 

2Biy + O2/« - /¿¡OA = - tilfjdx ■ (5> 

If the x 3-axis is chosen in the direction of Q, 

fíy = Í2 bjz , (O 

and equation (5) gives 

SBn + Q2/n = 2B22 + 02/22 = SB33 = — f pdx • (U Jv 

It has been shown in a different connection (Chandrasekhar 19616) how we can deduce 
from equations (7) explicit expressions for the different components of the potential 
energy tensor in case the equation of state is poly tropic. 

Now suppose that the equilibrium is disturbed and that, as a result, each element 
of mass dm ( = pdx) suffers a Lagrangian displacement £(*, t). Let 5/#, and 

8 f pdx 
Jy 

be the first-order changes in the respective quantities caused by the perturbation; 
then, equation (1) gives 

^ f^pxiüjdx = (ôf^dx^ + WSI t3 

d r 
81ifiliQ/j 2 J pXi6jim í¿iQimdx • 

(8) 

The required first-order changes in /¿y, etc., are given by (cf. Chandrasekhar 1961a, 
§ 118, and Paper I, § III) 

81 a j p(.%i^ij~\~ dx i 
J V 

(9) 

ma^-fp^^dx, (10) 
J V o Xi 

and 

8 J pdx = f à pdx = — ( y — 1) y* p div %dx, di) 

where 7 denotes the ratio of the specific heats. In deriving the last of the foregoing 
equations, the assumption has been made that the perturbation is accompanied by 
adiabatic changes, so that 

8p 8 p 
— = 7 — = — 7 div £ . (12) 
P P * 
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250 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ 

Inserting the results (9)-(ll) in equation (8), we obtain the desired equation: 

i =-fYP^^
dx-^-V ^fYP div ldx 

(13)1 

“f“ f p( %i"f" dx &j£li J P (%i H” %i%i) dx 2 -yr j pXi£jim i;i£lmdx • ./ v •'v dt J y 

III. THE METHOD OP APPROXIMATION 

Equation (13) is an exact integral relation which must be satisfied in all cases of 
infinitesimal perturbations; in particular, it must be satisfied by the proper solutions 
belonging to the natural modes of oscillation of the system. Since the solutions belonging 
to the natural modes will have a time dependence of the form 

ext , (H) 

it would appear that, by inserting for £ in equation (13) a “trial function” with a space 
dependence which one might use, for example, in a variational treatment of the problem 
(i.e., if the problem should allow one), we should obtain an equation which would 
enable us to determine the frequencies of oscillation2 with some precision. Clearly, this 
method has no “absolute” basis such as those which are derived from a strict minimal 
(or maximal) principle. And, moreover, when basing on equation (13), we cannot use 
“trial” functions with as many variational parameters as we like. In the present instance, 
since equation (13) provides nine equations, a “trial” function which we may wish to 
insert cannot involve more than nine constants. And the simplest “trial” function that 
suggests itself in the present connection is (cf. Chandrasekhar 1961a) 

£j = Xjrxre
u; (is) 

and the nine coefficients of this linear transformation play, in the present treatment, 
the role of the variational parameters in a proper variational treatment. 

In assuming a “trial” function of the form (15), we have been guided by two considera- 
tions: first, it is known from the investigations of Ledoux (1945) that the purely radial 
oscillations of a non-rotating gas sphere treated on the basis of the usual contracted 
version of the virial theorem and the simple substitution, 

= Constant Xj eXi , (i<5) 

1 In this equation it is customary (cf. Chandrasekhar 1961a) to transform the integral 

by an integration by parts to 

— f Ç * grad pdx ; 
J V 

then, after substitution for grad p from the equation of hydrostatic equilibrium, express the integral in 
terms of equilibrium quantities. However, in the present connection it is more convenient to leave the 
term as it is. 

2 For reasons which have been explained in Paper I, by the use of the virial theorem in the form of eq. 
(13), we are, in the case of a configuration of uniform density, limited to the modes of oscillation that 
belong to the second harmonic. 
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ROTATING GASEOUS MASSES 251 

leads to a formula for X2 (eq. [44] below) which agrees exactly with what follows from 
a strict variational treatment based on the same trial function (cf. Ledoux and Pekeris 
1941); and, second, the substitution (15), in fact, corresponds to the exact solution in 
case the density is uniform. For these reasons the results to be derived on the basis of 
the substitution (15) are not likely to be seriously in error: certainly, the qualitative 
features of the theory should be trustworthy. 

Inserting, then, in equation (13) the form (15) for Ç, we obtain 

\2XjiIu — Xiilij) 
(17) 

— ti2 djsiXziI Xiilis) — Xi$!&ri;ijJXrr8ij , 

where the choice of the co-ordinates appropriate for the direction of il to coincide 
with the ^3-axis has been made. Moreover, in equation (17), 

%&rlUl= Í PXr^dx (18) 

is the super-matrix considered in Paper II, Xrr is the trace of X, and 

J = — (y — 1) Jpdx . (19) 

If use is made of the last of the three equilibrium conditions given in equations (7), 
we can write 

/= (7-1)2033 . (20) 

In our further considerations, we shall suppose that the equilibrium configuration 
has axial symmetry about the æ3-axis (i.e., the axis of rotation) and also that the (xi, 
£2)-plane is a plane of symmetry. Under these circumstances the tensors and $8pQ-,ij 
have the symmetries listed in Paper II (§6); and the moment-of-inertia tensor is, of 
course, also diagonal with In = 722. With the simplifications introduced by these various 
symmetries, the nine equations which equation (17) represents take the following explicit 
forms: 

X2X11711 = + 2XOX217n+ 2fi2X11711 + /Xrr 
(21) 

— (Xii2ßii;n + X222B22;il+ XssSBssjh) , 

X2X22Jii = - 2Xí2X12Jn + 2fí2X22/ii + /Xrr 
(22) 

- ( X113ß22;ii + X223B11;1i+ X332B33;11) , 

X2X33/33 = JXrr — ( Xn+ X^SBssîu — X332ö33;33 , (23) 

X2X21 Jn = - 2XaXnIn + ( Í22Jn - 2B12;i2) (X21 + X12 ), (24) 

X2Xi2 Jn = + 2XfíX22/11 + ( Win - 3B12;i2) (X12 + X21 ), (25) 

X2X3i/n = ~ Xi32B3i;13 — X3i2Bi3;i3 , (26) 

X2X32/n = — X23SB3i;i3 — X322Bi3;i3 , (27) 

X2Xi3/33 = + 2XfíX23733+ (Í22 733 — S2S3i;i3)Xi3+ (Í227ii —SBi3;i3)X3i , (28) 

X2X23/33 = — 2XOXi3 733(02733--SB3i;i3)X23+ (i227ii— SBi3;i3)X32 . (29) 
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252 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ 

IV. THE MODES OP OSCILLATION OF A SPHERICAL 
MASS OF GAS IN THE ABSENCE OF ROTATION 

Before we proceed to a general consideration of equations (21)-(29), it will be instruc- 
tive to examine them in the special case when Í2 = 0 and the unperturbed configuration 
is spherical. Then 

/ii = Í22 = It* = -|/(say), (30) 
and 

^11=^22 =2033 = 1323; (3!) 

and there will be only three distinct components of the tensor The typical 
elements of are (cf. Paper II, eqs. [74]-[76]) 

SBii;n=-¿SB, SBn;22=¿3B, and 2B12;i2 =-¿SB. 02) 

The equations governing the non-diagonal elements of X (namely, eqs. [24]-[29]) 
now become 

1X2/X21 = ¿9B( X12 + X21 ) 03) 

and 

§\2/X12 = X21 + X12 ) ; (34) 

and two similar pairs which are obtained by cyclically permuting the indices. From 
equations (33) and (34) it follows that 

X2 = 0 ( if X21 Xi2 ) , (35) 
and 

( if X2i — Xi2 ) ; (36) 

and both these roots are repeated three times. 
Turning next to equations (21)-(23) we have 

iX2/Xn = JXrr + ¿mXn - £¡B( X22 + X33 ), (37) 

iX2/X22 = JXrr + ¿SBX22 - ¿SB ( X33 + Xn ) , (38) 

and 

iX2X33 = JXrr + ¿SBX33 - ASB( Xn + X22 ) , (39) 

where it may be recalled that now (cf. eqs. [20] and [31]) 

J = -Kt— 1)SB and Xrr = Xn +X22 + X33 . (40) 

By subtracting equation (38) from equation (37), we have 

AX2/ ( Xn - X22 ) = ¿9B( Xn - X22 ). (4i) 

The same equation governs X22 — X33 and X33 — Xn; but, of these three equations, 
only two are linearly independent. Therefore, the root 

X3=fÇ {Xn^Xn), <«> 
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ROTATING GASEOUS MASSES 253 

which follows from these equations, is of multiplicity 2. 
Finally, adding all three equations (37)-(39), we obtain 

iX2/Xrr= (3/ + ^2B-f20)Xrr= (7~f)2BXrr; (43) 

and this equation leads to the root 

2Ö 
X2= (37_4)Ç. (44) 

This last root represents a purely radial mode of oscillation; and the formula for X2 

agrees with the one first derived by Ledoux (1945). 
The foregoing discussion has shown that a spherical mass of gas in equilibrium under 

its own gravitation has two fundamental frequencies of oscillation corresponding to the 
two roots X2 = and X2 = (3y — 4)SB//; the former root is of multiplicity 5 
and represents all the non-radial modes belonging to the second harmonic; and the 
latter root is non-degenerate and represents the fundamental of the purely radial modes. 
In addition, we have three neutral modes belonging to X2 = 0; the existence of three 
such neutral modes corresponds to the possibility of arbitrary rotations about three 
perpendicular axes. And, finally, it should be noted that when 7 = 1.6 the two non- 
vanishing roots coincide and a case of accidental degeneracy arises.3 

V. THE TRANSVERSE SHEAR MODES 

Returning to equations (21)-(29), we observe that equations (26)-(29) involving 
X3i, X32, Xizy and X23 are independent of the others; we have, therefore, four modes 
of oscillation in which all the elements of the transformation (15), except these four, 
vanish. The transformation appropriate to these modes is 

£1 = .X13Æ3 , £2 — AT23#3 , and £3 = XziOC\-\~ -^32^2 > (4S) 

where we have suppressed the time-dependent factor eXt. The predominant feature of 
these modes is the relative shearing of the northern and the southern hemispheres. For 
this reason, we shall call them the transverse shear modes, where the qualification “trans- 
verse” is with respect to the direction of Û. 

The four equations governing X31, X32, X13, and X23 can be written in the matrix form 

X2/n+ ÏBi3;i3 0 SBsias 

0 X2/ii + 9Bi3;i3 0 

—-fí2/n-|-2Bi3;i3 0 ( X2 — Í22) I33+ 9ß3i;i3 

0 -i22/n + 2Bi3;i3 + 2Xß/ 33 

0 

äÖ3i;i3 

— 2 Xfí/33 

(X2-û2)/33+2031 ;i3 

•^31 

X32 

x13 

X23 

= 0 .(46) 

The determinant of the matrix on the right-hand side of equation (46) must vanish; 
and the characteristic equation which follows is 

((T27ii — SBisjis) [ ((T + fí2 ) 733 “ S®3i;i3] + ( ß27n ■—SBi3;i3 )SB3i; ;i3 
(47) 

— 4(7 0 Izz ( <7 111 — SBl3;i3 ) 

3 This occurrence of accidental degeneracy has been deduced on the basis of the present approximative 
treatment An exact treatment should reveal the same phenomenon; but the value of 7 at which it will 
occur will probably differ from 7 = 1.6. 
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254 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ 

where we have written 
<T2 = — A2 ; (48) 

so that, for stable oscillations, a should be real. Equation (47) factorizes to give 

( er2 — Z) (cr2 + i22 — ikf ) + (O2 — L)M — ± 2<rO(<r2-Z,), (49) 

where, for the sake of brevity, we have written 

L = 2Bi3U3 and m = SSW3_ (S0) 

-«11 133 

The occurrence of two signs on the right-hand side of equation (49) means that these 
modes have a doublet character, with +fí and —fí playing equivalent roles (as in the 
normal Zeeman effect; cf. Pekeris, Alterman, and Jarosch 1961). 

On further simplification, equation (49) reduces to the form 

((r + i2)[(ir2 —L)(ö- + i])--Af((r±ß)] =0. (si) 

Therefore, 
O'2 = O2 (52) 

is an allowed characteristic root. The remaining roots are given by 

(o'2 — Z/)((r + fí)—Af(a- + Í2)=0 (53) 

and, expanding this equation, we have 

o'3 + o-2fl — (TH + ÜV = Q , (54) 

where we have introduced the abbreviations 

¡x=L-\-M and v = L — M . (55) 

With the substitution 
o- = f ± , (56) 

equation (54) becomes 

f3-(lß2 + /x)r + 22
Tß[fi2 + f(M-“3^)] =0. (57) 

The necessary and sufficient conditions for the reality of the roots of this cubic equation 
are 

Íti2+p>0 (58) 
and 

4(lß2 + /x)3>^ß2[ß2 + |(M-3v)]2. (59) 

On expanding this last inequality and simplifying, we are left with 

Ü4v + Í22 [ M2 ~ f ( M 3? )2] + At3 > 0 . (6°) 

Sufficient conditions for the reality of the roots of ëquàtion (51) are, therefore, 

M ^ 0 , and 4^At3> [m2 î ( M ~ 3^)2]2 

or (6i) 

— [M2_ __ 3„)2] + !(M -- di»)2}2 — 4Z/JU3]]1/2} < 0 . 
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ROTATING GASEOUS MASSES 255 

It can be verified that when ß > 0 and v > 0, the last inequalities in (61) will be satis- 
fied if 

(62) 

In terms of L and M, sufficient conditions for the stability of these modes are 

L>0, M>0, and M<L<8M. 

According to the results of Paper II (§6), the conditions enumerated in (63) imply 

S5Bi3;i3 =:C — SBn — 0 , SBsj ns — SEB33 — 0 , 
and 

C — SBu^C — SBss 

In I33 

By making use of the equilibrium condition 

(63) 

(64) 

(65) 

SBii + fí2/n — SB33, (66) 

the inequality (65) can be brought to the form 

ß2/n + ( /sa - /n) (C - SBU ) > 0 . (67) 

It is evident that in the limit of zero angular velocity (when 2Bn— 
and C —» ^2B) conditions (64) and (67) are fulfilled. Therefore, these modes certainly 
start being stable. 

Finally, we may note that when ß —> 0, the roots of equation (54) have the limiting 
behaviors : 

= + Vm ± ö2 = — Vm ± iß and as = ± Í2 — . (68) 

These formulae exhibit in a striking manner the “doublet” character of these modes. 

VI. THE TOROIDAL MODES 

Returning to the remaining equations (21)-(25), we obtain, on subtracting equation 
(22) from equation (21), 

\2/n ( Xn - X22 ) = 2 Xfí/u ( X21 + X12 Í + 2£22/11 ( Xn ~ X22 ) 
(69) 

-miv,n-$S22;n)(X11-X22). 

By making use of the relation (cf. Paper II, eq. [60]) 

SBii;h “"SSfeíii = 22Bi2;i2 j (7o) 

we can rewrite equation (69) in the form 

[\2In — 2 (02/u — Sßi2;i2) ] (Xu — X22) — 2Xi2/n(X21 + X12) =0 . (7i) 

Next, by the addition of equations (24) and (25), we obtain 

X2/n( Xi2 + X2i) = — 2XO/n( Xu “ X22) + 2 (fí2/n —•Sßi2;i2) (X21 +X12) , (72) 

or 

[X2/n — 2 (fí2/n — 2B12;12) ] (X12 + X2i) + 2X£2/n( Xn — X22) = 0 . (73) 
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256 S. CHANDRASEKHAR AND NORMAN R. LEBOVTTZ 

Equations (71) and (73) can be treated together, and they lead to the characteristic 
equation 

[X2/11-2(ß2/n-2ß12il2)]
2 + 4X!!ß2/n = 0 . (74) 

On simplification, equation (74) becomes 

^ll^4H-4/ii2Bi2;i2X2+4(i22/ii — 2Bi2;i2)2 == 0 . (7s) 

The roots of this equation are 

\2=-2^Ü?±2í2(2^^-02y/2. (76) 
ill \ ill / 

From equation (76) it now follows that 

X2 = 0 is a root when Í22 = ^2 ■- . (77) 
i il 

But we have already seen in Paper II, § VII, that if the sequence of axially symmetric 
configurations should have a point of bifurcation at which objects with genuine triplanar 
symmetry branch off, then at such a point the equality, i22/n = $Bi2;i2, must obtain. 
Therefore, in analogy with what happens along the sequence of the Maclaurin spheroids 
at the point of bifurcation where the Jacobi ellipsoids branch off (cf. Paper I, § VII 
[d]), we may now conclude that the occurrence of a neutral mode at fl2 = 20i2;i2//n 
means only that, at the point of bifurcation (should one occur), the associated neutral 
mode simply carries the axially symmetric configuration over into a neighboring equilib- 
rium configuration of genuine triplanar symmetry. 

In the limit Í22 = 0, 933i2;i2 has a finite positive limit, so that in this limit the modes 
are definitely stable. Should 2Si2;i2 continue to be positive, then, when 

fí2/n ^ 29B12;i2 > (78) 

the configuration becomes unstable. Also, it can be verified that, should these unstable 
modes occur, the real part of the frequencies will be fí, so that instability occurs as 
overstability. 

VII. THE PULSATION MODES 

Of the five equations (21)-(25), we have considered in Section VI two linear combina- 
tions of them. It remains to consider three other linear combinations; and we shall select 
them in the following manner. 

We have already considered in Section VI the equation resulting from the addition of 
equations (24) and (25). Now, by the subtraction of one from the other, we obtain 

X2(X2i-X12)/ii= — 2M2/n( Xn + X22 ). (79) 

Next, adding equations (21) and (22) and subtracting from the result equation (23) 
twice, we obtain 

X2 l(Xn + X22)/n - 2X33/33] = 2Xfí/n(Z2i - X12) + 2fí2Jn(Xn + X22) 
(80) 

— 2 (SBsSîll •“SBsSÎSs) A’ss — (2Bli;n+SB22;n 22B33;ii) (X11 + X22) . 

And we shall retain equation (23) as it is: 

X2/33X33 — / [ ( Xu + X22 ) “h-Vss] — 2B33;il( ^11 + A^) — • (81) 
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Fig. 3.—Identification chart for stars in rings II and III whose data are given in Table 2. The diameters of the circles 
are the same as in Fig. 1. 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
62

A
pJ

. 
. .

13
5.

 .
24

8C
 

ROTATING GASEOUS MASSES 257 

First, we observe that, according to equation (79), 

A2 = 0 is a root if X219^ X12 , Xu X22 — X33 = 0 . (82) 

This neutral mode is, in fact, the same one that occurred, under the same circumstances, 
in the absence of rotation (Sec. IV, eq. [35]); its continued existence in the presence 
of rotation is clearly to be expected on symmetry grounds. 

If we ignore the root A2 = 0, we can eliminate (X12 — X2i) in equation (80) by 
making use of equation (79); and the equations we must now consider are 

[A2/n + 2i22/ii + (2Bn;ii+2B22;ii — 22033;ii) ] (Xn + X22 ) 
(83) 

— 2 [A2jT33 — (SBssîii “SBssîss)] Xz3 = 0 
and 

( A2/33—* /+2Ö33;33) X33 + (SBssîii — J) (Xu + X22 ) = 0 . (84) 

In the notation of Paper II, § VI, 

SBasîii and SBssîss = D ; (85) 

and, making use of the various relations listed in the same section, as well as equation 
(66), we verify that 

— 2fí2/u — (2ön;ii+ 2B22;ii 22Bii;33) = — 2í22/u — (A -\~B “ 2C) 
(86) 

= -fí2/n + C- D . 

Equations (83) and (84) can now be written in the matrix form 

A2/n + Û2/u - C + P - 2 A2/33 + 2 (C - D ) 

-J + C WI33-J+D 

Xn + X22 

X33 

= 0 (87) 

The determinant of the matrix on the left-hand side of equation (87) must vanish, 
and we find that this leads to the characteristic equation 

/11/33A4- [^/ii+(^ + a)/33-ß2/n/33] A2-ß2/n/3+(^ + 2a)(^~a) =0 , (88) 

where we have introduced the abbreviations 

a = J — C and ß =J — D . (89) 

Note that, with the foregoing definition of a and ß (cf. eq. [20] and Paper II, eq. [70]), 

2a + /3 = 3/- (2C+J9) = (3y - 4:)$&3z «*>) 
and 

ß — a =C — D . (9i) 

The roots of equation (88) can be readily written down; but greater interest attaches 
to the coupling between the radial and the non-radial modes of oscillation which equation 
(88) predicts. The nature of this coupling is best clarified by considering the limit ß2 —» 0. 

When fí2 = 0, 

/n = /33=-|/, 2033 =-|3B, andC-D = (92) 

and equation (88) becomes 

172A4 - 1 ( 2/3° + a° ) /A2 + ( j80 + 2 a°) (ß0 - a° ) = 0, (93) 
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258 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ 

where the superscript “0” distinguishes the value of the quantity in the spherically sym- 
metric state. The roots of equation (93) are 

X2 = 3 
j3° + 2 a0 

and X2 = 3 
ß° — a0 

(94) 

or, making use of equations (90), (91), and (92), we have 

X2= (37 —4)y = X2(say) 

and 

X2==^T = x^say); 

(95) 

these agree with the results for the radial and the non-radial modes derived in Section 
IV (eqs. [42] and [44]). We now see that rotation couples these modes. An important aspect 
of this coupling is that the non-radial mode, which in the absence of rotation is volume- 
conserving, is no longer so in the presence of rotation. This fact is apparent from the 
incompatibility of the equations (87) with the condition Xrr = 0 if Í2 5^ 0. 

We shall now determine the extent of the coupling between the radial and the non- 
radial modes in the limit Í22 —> 0. For this purpose we shall first rewrite equation (88) 
in the form 

/11/33X4 - [ ( 0 - a ) /n + (0 + 2 a ) /33 + a ( /u - J33 ) - X2 

(96) 

— Q,2Inß 4" (ß + 2a)(ß — a) =0 , 

or 

[X2 Jn - ( 0 + 2 a) ] [X2J33 - (/3-a)] =X2(aAJ - £22IiiJ33 ) + m11ß , (97) 

where 
A/ — /n — /33 (98) 

is the change in the components of the moment of inertia caused by the rotation; AI 
is clearly of order Í22. 

Now the terms on the right-hand side of equation (97) are all of order O2; therefore, 
to this order, we can replace the various coefficients (such as In, a, etc.,) by their 
values in the absence of rotation, namely, 

a° = /°-Co = 1 (7= 57-8)28, 
(99) 

j3o = 70 — Z>) = -|(7 — ! )3B + iyB = yg-( 57 —4)323, 

and 
7-°   T°   I7- 

-Í 11 — -Í33 — 3 ^ • 

Substituting the foregoing values on the right-hand side of equation (97), we obtain 

( X2- xy (X2 - X2) = I( 57 - 8)y ^ X2- iß2[5X2- ( Sy - 4)®] +0(ß4), (100) 

where 
ß + 2a 

I 
and 

ß — a 

133 
(101) 
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(Note that the values of and X| differ from their zero-order values, namely, X? and 
Xf given by equations (95), by quantities of order £22, i.e., by the same order as those 
retained in the present calculations.) 

If the terms on the right-hand side of equation (100) are ignored (which we may not!) 
the roots of the equation are, of course, X| and X|. Therefore, to the first order in Ü2, 
the change in the root Xl, for example, due to the presence of the terms on the right- 
hand side, is given by 

- Xf ) = §( 57 - & )j ^ Me - fÛ2[5X2
Â - ( 57 - 4 )Ç] . (102) 

In this equation we can clearly replace and X| by their zero-order values X? and Xf ; 
and we find 

«X2
Ä = 

3(57-8) SB/A/ 
r 

In the same way we find 

0X|^. 
3(57 — 8) 2B/A/ 

5(X2 — X2) I\I 

(103) 

(104) 

The foregoing formulae do not apply when 7 = 1.6; for, in this case, 

SB 
X2 = X2 = t^, (105) 

and the terms of order £22 on the right-hand side of equation (100) vanish identically. 
Therefore, in this case, the required roots are given by equations (101) correctly to the 
first order in fi2. Because a, ß, In, and /33 differ (on account of rotation) from their 
zero-order values, the two roots, Xl and X|, which are coincident in the absence of 
rotation, become separate. The accidental degeneracy which exists when 7 = 1.6 
is thus lifted by rotation. 

VIII. SUMMARY OF RESULTS 

The principal results of the preceding sections are summarized in Table 1, in which 
a comparison is further made with the corresponding results for incompressible fluids. 

IX. CONCLUDING REMARKS 

To some extent the theory presented in this paper is a formal one, since it presupposes 
a knowledge of the structure of the equilibrium configuration; and, except in the case 
of incompressible fluids, this knowledge is, in large measure, lacking. However, there 
is one case in which the formulae of this paper can be used to derive concrete results; 
this is the case of the rotationally distorted polytropes (Chandrasekhar 1933). In this 
theory of the distorted polytropes, the effect of rotation is treated by a perturbation 
method valid for small Û2. The first-order changes in the pressure, the density, and the 
gravitational potential have been evaluated and expressed in terms of two functions 
(V'o and fa in the theory) which have been tabulated. For our present purposes, this 
information will have to be further completed by determining the super-potential % 
to the same order as the other quantities; but this is a straightforward matter, and we 
shall return to it in another paper. 
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TABLE 1 

The Classification of the Modes 

Modes Parameters Non-rotating Mass Rotating Incom- 
pressible Mass 

Rotating Compres- 
sible Mass 

Transverse 
shear 
modes 

Toroidal 
modes 

Pulsation 
modes 

X12, X21 

Xl3 
x23 

x31 
X32 

X12+X21 

XU-X22 

X11+X22 
x33 

Xi2^X2i: X2=0 

Xi3^X3i: X2 = 0 
X23^X32: X2 = 0 
X13 = X31: X^m/I 
X23=X32: \2 = m/I 

X21—X12: x2=|SB// 

Xu= — X22: \
2 = m/I 

X22= -X33, Xn = 0: X2=|SG3// 
X11 = X22=X33: X2=(3T-4)2ß//* 
Xii+X22+X33 = 0; X2=0f 

X2 = 0 

x2= -a* 
x2=o 

Two stable modes 

Two modes, one of 
which becomes neu- 
tral at the point of 
bifurcation (e= 
0 81); both become 
unstable when e= 
0.95; real part of 
frequency beyond 
instability Í2 

Stable mode 

X2 = 0 

X2 = 0 

X2= -Í22 

Three coupled 
modes, each hav- 
ing a doublet char- 
acter; probably 
stable 

Two modes, one of 
which becomes 
neutral when Q,2In 
=20i2; 12; both be- 
come unstable 
when ti2In = 
22012; 12; real part 
of frequency be- 
yond instability Í2 

The radial and the 
non-radial modes 
are coupled 

* Compressible case 
f Incompressible case 
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