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Secular perturbations of asteroids with high inclination and eccentricity moving under the attraction of 
the sun and Jupiter are studied on the assumption that Jupiter’s orbit is circular. After short-periodic terms 
in the Hamiltonian are eliminated, the degree of freedom for the canonical equations of motion can be 
reduced to 1. 

Since there is an energy integral, the equations can be solved by quadrature. When the ratio of the semi- 
major axes of the asteroid and Jupiter takes a very small value, the solutions are expressed by elliptic 
functions. 

When the z component of the angular momentum (that is, Delaunay’s H) of the asteroid is smaller than 
a certain limiting value, there are both a stationary solution and solutions corresponding to libration cases. 
The limiting value of H increases as the ratio of the semimajor axes increases, i.e., the corresponding limiting 
inclination drops from 39?2 to 1?8 as the ratio of the axes increases from 0.0 to 0.95. 

I. INTRODUCTION 

THE stability of the solar system has been proved 
in the sense that no secular change occurs in the 

semimajor axes of planetary orbits, and that secular 
changes of the eccentricities and inclinations are limited 
within certain small domains. However, the classical 
theory of secular perturbations for the eccentricity 
and inclination is based on the assumption that the 
squares of the eccentricity and inclination are negligible. 
Although this assumption may be reasonable for major 
planets, it may not be for some asteroids. 

The assumption in the classical theory means that a 
term such as Be2 sin2f cos2g is negligibly small as com- 
pared with the principal term H(e2—sin2¿) in the 
secular part of the disturbing function. However, as 
the value of B increases much more rapidly than does 
that of A with the ratio of the semimajor axes of the 
asteroid and the disturbing planet, the B term cannot 
be neglected when the eccentricity and inclination 
assume large values. For example, the rate of change 
of the argument of perihelion, which is proportional to 
AA-B sinH cos2g, may vanish at a certain point when 
the inclination of the asteroid takes a reasonably large 
value. 

In the case of a close artificial satellite moving 
around the oblate earth, B vanishes in the first-order 
disturbing function. Therefore, we could rather easily 
solve the equations of motion for arbitrary values of 
the eccentricity and inclination. However, as the semi- 
major axis of the satellite becomes larger, the gravita- 
tional effects of the moon become more important and 
perturbations due to the moon become large and com- 
plicated, as has been discussed by Musen (1962), who 
used high-speed computing machines. A lunar problem 
with high inclination was similarly studied by Lidov 
(1962). Secular perturbations of meteors and comets 
have been investigated by Hamid (1962). 

The present paper treats an analytical theory on 
secular perturbations of asteroids with high inclination 
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and eccentricity by assuming that only Jupiter, moving 
in a circular orbit, is the disturbing body. This theory 
may, of course, be applied also to comets or satellites 
disturbed by the sun. 

The conventional technique for developing the dis- 
turbing function cannot be adopted here, since neither 
the eccentricity nor the inclination is considered small. 
Nor can numerical harmonic analysis be adopted, since 
variations of orbital elements may not be regarded as 
small quantities. Therefore, the disturbing function has 
to be developed into a power series of a, the ratio of 
the semimajor axes of the asteroid and Jupiter, although 
convergence of the series may be slow. 

Short-periodic terms depending on the two mean 
anomalies can be eliminated from the disturbing func- 
tion by Delaunay’s transformations. The longitudes of 
the ascending nodes of Jupiter and the asteroid dis- 
appear by the theorem on elimination of nodes. 
Therefore, the equations of motion for the asteroid are 
reduced to canonical equations of one degree of freedom 
with a time-independent Hamiltonian. Therefore, the 
equations can be solved by a quadrature. 

In fact, the solutions can be expressed by elliptic 
functions approximately when a takes a very small 
value. For this case there are both one stationary and 
some libration solutions when (1 — e2) cosH, which is 
constant, is smaller than 0.6. 

As a increases, the upper limit of (1 — e2) cos2i for 
the existence of a stationary solution increases. When 
a is 0.85, the limit is as large as 0.90. 

Without the aid of a high-speed computer, it is 
rather difficult to estimate the effects of Jupiter’s eccen- 
tricity and of other disturbing planets for general cases. 
However, the results of the present analysis may serve 
as a guide for future research in numerical integration. 

II. EQUATIONS OF MOTION 

Consider an asteroid moving under the attraction of 
the sun and Jupiter. The mass of the asteroid m is 
negligibly small compared with Jupiter’s mass and the 
solar mass, which is taken as the unit. 
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Differential equations of motion for the asteroid 
are written in canonical form with Delaunay’s 
variables : 

L = l = mean anomaly, 
G = L ( 1 — e2) g = argument of perihelion, ( 1 ) 
H=G cosi, longitude of ascending node, 

where k2 is the gravity constant of Gauss. 
Jupiter’s canonical elements are expressed by primes 

and kr such as 

k,2=¥m-2m,2l (l+m/) = ^2w_2/x,2(l+w/), (2) 

where y! is the reduced mass of Jupiter. 
Coordinates of Jupiter are referred to the center of 

the sun, and those of the asteroids to the center of 
gravity of the sun and Jupiter. The Hamiltonian for 
this system is written as follows : 

k* k'* 
F= t-w/-1  

2Z2 2L'2 

r2—2rr 
s 

1+m' 

Relation (5) is known as an integral of elimination of 
nodes in the three-body problem. Since the inclination 
of Jupiter’s orbit is of the order of m/fx' by relation (6), 
the invariable plane coincides almost with Jupiter’s 
orbital plane. 

As the Hamiltonian F depends on h and hf as a 
combination h—h\ the variables h and h' can be 
eliminated from F by the relation (5). Therefore, H 
and Hf are constant. 

As the inclination of Jupiter can be regarded as zero, 
the expression of s takes the following form: 

i=cos(/+g) cosC/'+g') 
H”cosí sin(/+g) sm(f'+g'), (7) 

where / and f are true anomalies. 
The variables l and V can be eliminated from the 

Hamiltonian by either Delaunay’s or von Zeipel’s 
method, that is, by a canonical transformation 

(L,G,L',G',l,g,r,g') ^ (L*,G*,L'*,G'*,l*,g*,r*,g'*). 

Since the new Hamiltonian F* does not depend on 
/* and /'*, L* and L'* are constant. The Hamiltonian 
takes the following form when terms with m'2 as a 
factor are neglected : 

where 
r'2 l+w' J 

(3) with 

s= (xx'+yy'+zz')/rrf. (4) 

F*= (¿4/2L*2)+mW*, 

¿,2 r2x r2ir I 
W=— f [   dldl'. 

4tt2 Jo Jo (/2—2r/i+r2)i 

(8) 

(9) 

When we adopt the invariable plane as (x,y) plane, 
the following relations hold : 

h=h', (5) 

m2(G2-H2)=n,2(G'2-H'2). (6) 

Table I. Limiting value of (Bq/L*)2 and io. 

io 
cl (Hq/L*)2 ¿o approx 

0.00 0.60 000 
0.05 0.60 116 
0.10 0.60 464 
0.15 0.61 043 
0.20 0.61 849 

0.25 0.61 880 
0.30 0.64 133 
0.35 0.65 599 
0.40 0.67 274 
0.45 0.69 154 

0.50 0.71 230 
0.55 0.73 495 
0.60 0.75 940 
0.65 0.78 556 
0.70 0.81 330 

0.75 0.84 252 
0.80 0.87 305 
0.85 0.90 488 
0.90 0.94 581 
0.95 0.99 900 

39?231 39?231 
39.164 39.164 
38.960 38.960 
38.620 38.620 
38.146 38.146 

37.536 37.535 
36.791 36.790 
35.911 35.905 
34.894 34.875 
33.738 33.694 

32.437 32.355 
30.986 30.860 
29.374 29.239 
27.586 27.566 
25.600 25.925 

23.380 24.410 
20.874 23.078 
17.964 21.926 
13.460 20.963 

1.811 

The last term in (3) has been dropped, since it does not 
produce any secular term. 

Although variations of G'* are negligibly small, those 
of g'* and relative variation of Gr*—Hf appearing in 
the equation of g'* as this combination are of the order 
of m', since Jupiter’s inclination (Gr*—![')% is of the 
order of m/mr. Therefore, the canonical equations of 
two degrees of freedom with an energy integral should 
be solved simultaneously. 

When we assume that Jupiter’s eccentricity is 
negligibly small, g'* and G'* disappear in i7*. Then the 
degree of freedom is reduced to one, and the equations 
of motion for the asteroid are written as 

¿G* dTF* ¿g* dlT* 
 =w/ , —=—mr- , (10) 
dt dg* dt dG* 

with an integral 
IT* = const. (11) 

Equations (10) can be solved by a quadrature. 

III. STATIONARY POINT 

When Jupiter’s eccentricity is assumed to be zero, 
PF* takes the following form : 

^*=Z^(a,GV7)cos2ig*, (12) 
7=0 
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SECULAR PERTURBATIONS OF ASTEROIDS 593 

where 
a= (k,L*/kL,*y. (13) 

Therefore, dg*/dt vanishes when sin2g* is zero. 
System (10) has a stationary solution, when one of the 
following equations has a solution G* that satisfies an 
inequality (16) : 

dAj 
L =0 (cos2g*= 1) (14) 
,=<> dG* 

dAj 
—;=0 (cos2g*= — 1), (15) y=o aG* 

H<G*<L*. (16) 

It has been proved numerically that Eq. (14) does not 
have such a solution except for H=G* = 0 and the 
equation dg*/dt=0 has no meaningful solution other 
than sin2g* = 0, at least when a is less than 0.8. 

Equation (15) has a solution when H is equal to or 
smaller than a limiting value Hq. When H is equal to 
So, the stationary solution appears at G*=l. As H 
decreases, Eq. (14) has a smaller value of G* as the 
root, and when H is zero, G*=0 corresponds to the 
stationary value. When H is equal to So, the cor- 
responding inclination is derived by 

So=L*cosi0. (17) 

Both S0 and f0 depend on a and are derived by 
numerical harmonic analysis of dW*/SG*. The results 
are given in Table I and as a solid line in Fig. 1. Besides 
the numerical harmonic analysis, values of io are 
derived analytically by developing the disturbing 
function into power series of a up to the eighth degree, 
shown in the last column of Table I and as a broken 
line in Fig. 1. Comparison of the two lines in Fig. 1 
shows that the analytical method can provide rather 
good values for i0 up to a=0.7. 

In the first approximation, i0 and S0 do not depend 
on Jupiter’s mass mf. The value of io drops from 39? 2 
to 1?8 as a increases from 0.0 to 0.95. However, there 
are few asteroids that have H smaller than Ho. When 
a is larger than 0.95, there may be a stationary solution 
for any value of H. 

IV. DISTURBING FUNCTION 

Fig.. 1. Limiting value of © (or i). Solid line is computed by 
numerical harmonic analysis and broken line by power series, 
where © =(#/!,)2. 

1 r2ir k2m' oo / r\23 

£i=— / (R)e^odl' = E^i) . (19) 
2w J o a' 2=o \ar / 

Expressions of ^i2î' and i^yCri) are given below: 

Si2=i[l+cos2f+sin2i cos2(/+g)], 
Si4= (3/64) [3+2 cos2i+3 cos4i+4 sin2f(l-f-cosV) 

Xcos2(/+ g)+sin4i cos4(/+g)], 
Si6= (5/512) [2 (5+3 cos2f+3 cos4f+5 cos6/) 

+3(5+6 cos2i+5 cos4/) sin2i cos2(/+g) 
+6(1+cos2/) sin4i cos4(/+g) 

+sin6i cos6(/+g)], (20) 

5i8= (35/16 384)[]35+20 cos2f+18 cos4i+20 cos6f 
+35 cos8f+8(7+2 cos2f+7 cos4/) (1+cos2/) 
Xsin2f cos2(/+g)+4(7+10 cos2f+7 cos4/) 
X sin4f cos4 (/+ g)+8 ( 1+cos2f) sin6f cos6 (/+ g) 

+sin8i cos8(/+g)], 

When a takes a small value, the principal part of the 
disturbing function is developed into a power series of 
rjrf by means of Legendre’s polynomials as 

R= k2m'- 
1 k2m' 

{r2~2rrf s-\-y'2y2 r' 
■ZPj(s) 
J-0 G)' 

(18) 

When V is eliminated, the Pi term vanishes, and after 
Jupiter’s eccentricity is neglected, all other odd-order 
terms are dropped from the disturbing function, that is, 

P2(si) = i[— (1 — 3 cos2/)+3 sin2i cos2(/+g)], 
P4(ii)= (3/512)[3(3-30 cos2f+35 cos4f) 

— 20 sin2i(l —7 cos2/) cos2(/+g) 
+35 sin4f cos4 (/+ g) ], 

P6(^i)= (5/8192) 
X[-10(5-105 cos2f+315 cos4f-231 cos6f) 
+ 105 sin2f(l —18 cos2f+33 cos4f) cos2(/+g) 
—126 sin4f( 1 — 11 cos2f) cos4(/+g) 

+ 231 sin6i cos6(/+g)], (21) 
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594 YOSHIHIDE K O Z A I 

ft Cl) =(35/2 097 152) 
X[35(35—1260 cos2i+6930 cosH 
—12 012 cos6¿+6435 cos8/) — 2520 sin2¿ 
X (1 — 33 cos2¿+143 cos4i—143 cos6i) 
Xcos2(/+g)+2772 sin4¿(l —26 cos2i+65 cos4i) 
Xcos4(/+g)—3432 sin6i(l —15 cos2/) 

Xcos6(/+g)+6435 sin8i cos8(/+g)]. 

Finally, by using the following formula (Tisserand 
1889), 

1 r2T fry 

2t Jo \a/ 

= (-!)- 

cospfdf 

(q+2)(q+3)- • • (p+q+1)f e\p 

XF 

1-2-•-p 

fp-q-1 p-q 
, Í+1 (22) 

(F being a hypergeometric function), TF* is derived as 
follows : 

w*= (^2A'V{A[- (1 —3Ö2) (5—3?72) 
+ 15(1—02)(1-+) cos2g*]+ (9/21V 
X [(3-3O02+3504) (63- 70++15+) 
- 14O(l-02)(1 -702)(1 -+)(3—+) cos2g* 
+ 735(1—02)2(1—+)2 cos4g*]+(5/21>4 

X[—10(5 —1O502+31504—23106) 
X(429-693++315+-35+)+315(l-02) 
X (1 -1802+3304) (1 -+) (143-110++15+) 
Xcos2g*-4158(l-02)2(l-1102)(l-+)2 

X (13—3+) cos4g*+99 099 ( 1—02)3 ( 1—+)3 cos6g*] 
+ (175/228)o:6[7 (35 — 126002+693O04—12 O1206 

+64350s)(12 155-25 740++18 018+-4620+ 
+315+) - 27720 (1 -02) (1 - 3302+143(94_ 
X (1—+) (221 —273++91+—7t?6) cos2g* 
+396 396(l-02)2(l-2602+6504)(l-+)2 
X (17—10+++) cos4^*—490 776(l-02)3 

X (1 — 1502)(1—+)3(17 — 3+) cos6g* 
+ 15 643 485(1—02)4(1—+)4 cos8g*]}, (23) 

where 
d=H/G*, 
V=G*/L*. (24) 

The limiting value of H is derived from the equation 

(dIF7dG*W=_M=i=0, 

that is, 

—50+3+(15/32) (—4902+46©—S)«2 

+ (175/512) (-297©3+417©2-143©+7)a4 

+ (18 375/65 536) (—1573©4+2974©3 

-173802+3200 - 9)a6=0, (25) 

where 
®=(H/L*y. (26) 

Equation (25) gives the limiting value ©0 corresponding 
to Ho as a function of a. When a is zero, ©0 is equal 
to 0.6. 

V. CASE FOR SMALL a 

When a is small enough so that we can neglect a2 in 
the braces { } in IF* (23), Eqs. (10) can be integrated 
by using an elliptic function of Weierstrauss. 

For this case the energy integral (11) is written as 

— (1 — 3©æ~1) (5 — 3x) 
+ 15(l-©x-1)(l-o;) cos2g*=C, (27) 

where C is a modified energy constant, 0 is the constant 
defined in (26), and 

x=+. (28) 

The constant C is expressed by #o, the value of x at 
^*=0, as follows: 

C= 10-12xo+60. (29) 

Since cos2g* can be solved as a function of x by 
using the integral (27), the first equation of (10), dG*/dt, 
can be transformed to the equation containing x as the 
only dependent variable, that is, 

¿x/^= T§^a;W[2(x—xo)y]^, (30) 

where n is the mean motion which is constant and 

y=3x2—x(5+5@—2xo)+50. (31) 

In Eq. (30) the minus sign corresponds to positive 
values of sin2g*, and the plus sign corresponds to 
negative values. And x should be between 1 and 0, 
which is itself between 1 and zero. 

The solutions of the equation are classified into the 
following four types, according to the value of Xo : 

(1) When xo= 0, the equation y = 0 has the following 
two roots : 

x= 0, and x=5/3. (32) 

Since x cannot reach 5/3, x is always equal to 0 and g* 
makes a complete revolution. For this case, the in- 
clination of the asteroid is always zero. 

(2) When xo=l, the roots of the equation y = 0 are 

x=l, and x= (5/3)0. (33) 

Therefore, either x is always equal to 1 (circular orbit) 
or x changes between 1 and 50/3 when 0 is less than 
©o( = 0.6). For © = 0o, the stationary solution exists at 

x = 1, and cos2g* = — 1. (34) 
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SECULAR PERTURBATIONS OF ASTEROIDS 595 

When 0 is less than @0, g* cannot make one 
revolution. 

(3) When xo is between 1 and 0, one of the roots of 
3^ = 0 is between 1 and 0, and the other is larger than 1. 
For this case g* makes a complete revolution, and # 
decreases from xo as 2g* proceeds from 0° to 180°, 
where # takes a minimum value. The value of x in- 
creases again as 2g* goes from 180° to 360°. 

There is no reasonable solution when xo is less than 0. 
(4) When xo is larger than 1, 2g* cannot reach 0°. 

The equation ^ = 0 has two roots, both of which are 
between 1 and (5/3)0. Therefore, the solution exists 
only if © is less than 0O. The motion of g* is of libration 
for this case. The largest amplitude of æ is [1— (5/3)0], 
which corresponds to Xo=l. 

However, there is an upper limit of xo for the existence 
of the libration solution. For the limiting value of x0, 
the equation y = 0 has a double root, and Eqs. (10) 
have the stationary solution, 

2g*= 180°, x2= (5/3)0. (35) 

The value of C (29) takes a minimum value, since Xo is 
at the maximum. Therefore, the stationary solution is 
stable. 

For the libration case, dg*/di vanishes at 

cos2g*= (50—æ2)/[5(@—æ2)]. (36) 

Therefore, cos2g* oscillates between — 1 and the value 
given in (36). The maximum amplitude of 2g* is 
computed from 

2{180°—cos-1[(50—1)/5(0—1)]}. (37) 

In each case Eq. (30) can be solved by an elliptic 

function of Weierstrauss After the variables from x 
and t are transformed to z and by 

z=x— (5/9)(l+@)+(l/9)a;o, , 

¿*= — (3X6y4)^w'a3^, 

the equation, 

dz/dt*— ±[4(2— Zq) (z— zi) (z— 22)]% (39) 

is solved as 
z=p(t*), (40) 

where 

— 2o= 2i+Z2= (5/9)(l + 0)—(8/9)rro, 
sl2;2== _ (50/81) (l+©)2+ (5/81)*o(l+0) (41) 

+ (7/81)æo2+ (5/3)0. 

The period of one revolution of the argument of 
perihelion or of the libration is evaluated from Eq. (39) 
as the order of w'-1. 

The motion of the argument of perigee is derived 
from (27) and (29) as 

cos2g*=(2(o;)/5(x—0)(1 —x), (42) 
where 

Ç(x) = x2+[]5(1+©)—4xo]#—50. (43) 

The variation of i is determined from 

i= cos-1 (H/G*). (44) 

The equations for the mean anomaly and the 
longitude of the ascending node are given below : 

dP 3 r Q(x)~] 
 =n-\—nm'c^rfA x—30 I, (45) 
dt 8 L 1 — xJ 

Fig. 2. Trajectories for 
a = 0 and 0 = 0.8. 
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Fig. 5. Trajectories for 
a = 0 and 0 = 0.3. 

dh* 3 
 = —nm'o?drrl[5—3x—5(\ — x) cos2g*] 
dt 8 

(46) 
3 r Q(o¿) i 

= —nmrazdrrl\ 5 — 3x I. 
8 L x—©J 

From these equations we conclude that, with a few 
exceptions, dl*/di and dh*/di do not vanish. If 6 is 
zero, that is, if i0 is 90°, dh*/dt vanishes. When 6 is 
zero at any time, it remains zero unless G* is zero at 
the same time. When G* is zero, that is, the motion is 
in parabola, dh*/di vanishes. However, in this paper, it 
can be assumed that G* is not zero. 

VI. TRAJECTORY 

Trajectories of Eqs. (10) can be plotted on the 
(2g*,%) plane by using the energy integral IF* (23). In 
Figs. 2 through 5 the trajectories are shown for a=0. 

Figure 2 corresponds to a case 0 = 0.8. There is no 
stationary point, and variations of % are limited within 
narrow regions. On the right-hand side the value of i 
corresponding to that of # is given. Near 2g*= 180° the 
velocity of g* is slow for the upper part of the figure 
and fast for the lower. 

In Fig. 3, © takes a limiting value of 0.6. There is a 
stationary point at #=1 and cos2g*= —1. However, 
there is no closed trajectory. 

In Fig. 4, © is 0.5. There are closed trajectories 
besides a stationary point. Two bifurcation points on 
a line x=l are not actual singularities since they 
disappear when the coordinates are transformed into 
polar ones (e,g*). In fact, for #=1, the circular orbit, 
g* cannot be defined. At the bifurcation points dg*/dt 
vanishes. 

Figure 5 shows trajectories for © = 0.3. The position 
of the stationary point is in the lower part of the 
figure, and amplitudes of ^ are usually very large for 
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SECULAR PERTURBATIONS OF ASTEROIDS 597 

this case. The speed of g* is very fast, near 2g*=180° 
for small values of In Figs. 4 and 5 broken lines 
indicate positions where vanishes. 

Usually the velocity of g* is greater at a point where 
the density of trajectories is high. Therefore, the 
distribution of the argument of perihelion for the high- 
inclination asteroids cannot be evaluated easily from 
the present theory. 

As the value of © decreases, the libration region 
becomes wide. Even when 0 is zero, there are trajector- 
ies of both libration and complete revolution. For an 
extreme case the orbit oscillates between a circular 
perpendicular one and a parabolic one of zero inclina- 
tion. Although the assumption a = 0 may not be valid 
for this case, the results may confirm Lidov’s numerical 
work (1962). 

As the value of a increases, for a fixed value of ©, 
amplitudes of x become large and the libration region 
expands as is expected. 

In Figs. 6 and 7 trajectories are shown for the actual 
values of a and © of two asteroids. For these figures 
only a half of each trajectory is given. 

Figure 6 corresponds to an asteroid (1036), that is, 
«=0.5123 and 0 = 0.5979. The present values of x and 
2g* are, respectively, 0.7510 and 246°, and this position 
is marked in the figure. It is not in the libration region. 
The eccentricity and inclination oscillate, respectively, 
between 0.3 and 0.55 and between 23° and 48°, whereas 
the present values are 0.5 and 27°. 

Figure 7 corresponds to an asteroid (1373), «=0.6569 
and © = 0.5325. The present position of the asteroid, 
x= 0.9184 and 2g*=207°, is marked in the libration 
region. The present values of the eccentricity and 
inclination are, respectively, 0.29 and 42°. and they 

 ,-2g* 
0° 30° 60° 90° 120o 150o 180° 

Fig. 6. Trajectories for a = 0.5123 and © = 0.5979. The 
asterisk shows the present position of asteroid (1036). 

 >-2g* 

Fig. 7. Trajectories for a = 0.6569 and © = 0.5325. The 
asterisk shows the present position of asteroid (1373). 

oscillate between 0.25 and 0.6 and between 25° and 42°. 
The motion of the argument of perihelion is limited 
between 60° and 120°. 

VII. REMARKS 

A similar investigation was made by Brouwer (1947) 
by starting from similar equations of motion in connec- 

Fig. 8. Trajectories for 
a = 0 and © = 0.05. 
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tion with secular perturbations of Encke’s comet. He 
developed the disturbing function by numerical har- 
monic analysis adopting a constant value for the eccen- 
tricity of the comet’s orbit. This is a good approximation 
for this orbit since its trajectory in the (2g*,x)-plane 
corresponds to a lower one in the figures of the present 
paper. 

The theory discussed in the present paper can be 
applied to the actual asteroid motion with some restric- 
tions, as Jupiter’s eccentricity and other disturbing 
planets have been ignored. 

The effects of Jupiter’s eccentricity may be small 
for a case of small a and high eccentricity, since the 
Pi{si) term in i?i(19) vanishes and ee'sin(g—g') ap- 
pears after the Ps^i) term.When Jupiter’s eccentricity 
is included, the canonical equations with two degrees 
of freedom must be solved, whereas H is still constant 
and there is an energy integral, tlowever, it may be 
very difficult to find any meaningful stationary solution 
because of an apparent rapid motion of g'* due to a 
very small inclination. And /+g+/¿, g+Ä, and h should 
be adopted instead of l, g, h. Then Jupiter’s orbit can 
be regarded as known, although there is no integral 
corresponding to #= const for this case. 

When indirect perturbations due to other planets are 
considered, the integral of the elimination of nodes 
does not hold in the form h=hf. However, since 
Jupiter’s orbital plane deviates very little from the 
invariable plane, H may be regarded as a stable 
constant, especially when the inclination of the asteroid 

is high. Of course there is no energy integral in the 
form IT* = const. 

When the motion of a satellite around an oblate 
planet is considered, the perturbations due to the sun 
and the oblateness should be taken into consideration. 
When the equator of the planet coincides with the 
ecliptic, the present theory can be applied with little 
modification, since both H and TT* are constant. 
However, since a term of cos2g does not appear in the 
first-order disturbing function due to the oblateness, the 
limiting value of H for the existence of a stationary 
solution becomes smaller or even disappears according 
to the ratio of the disturbing forces of the sun and the 
oblateness. 

Sometimes, in the case of a satellite for which the 
period of one revolution of the sun may not be regarded 
as short, the solar mean anomaly V may not be dropped. 
It is impossible, therefore, to make an exact study of a 
general case. If, however, only the principal terms are 
taken in the disturbing function, stationary solutions 
can be derived. Lunar orbits provide us with especially 
interesting problems. 
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