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New observations make it possible to re-examine the question of the density distribution in globular 
clusters. Jeans’ r-4 law is based on insufficient observations and on an incorrect theory. On Palomar Schmidt 
plates the densities can be followed far enough out to define a limit to a globular cluster. The observed loca- 
tion of this limit agrees with the limit to be expected as a result of galactic tidal forces. The central regions 
of all globular clusters are similar, except for the effect of the tidal cutoff. An empirical formula has been 
found that represents the density from center to edge in globular clusters of all degrees of central concen- 
tration. The formula has three parameters, which is the minimum number permitted by the physical circum- 
stances. Globular clusters are therefore as similar in structure as they could possibly be. Galactic clusters 
and Sculptor-type dwarf galaxies also appear to follow the same density law. From dynamical considerations 
it would appear that all these stellar systems are subject to two types of relaxation, which produce nearly 
identical effects. The first relaxation is produced by the initial mixing of the system. Thereupon stellar 
encounters slowly change the density parameters without affecting the basic law. Relative to globular 
clusters, giant elliptical galaxies have an excess of brightness near the center. This difference can be explained 
as a result of relaxation, equipartition, and an excess of dwarf stars. 

I. INTRODUCTION 

BECAUSE of their richness and symmetry, globular 
clusters have always presented an intriguing held 

for dynamical study. Yet the theory of their structure 
is still in a far from satisfactory state. A physically 
realistic model presents mathematical complexities too 
great to unravel, while models simple enough to handle 
lead to results that reflect mathematical simplifications 
rather than physical realities. 

The present situation seems to be as follows: The 
theory of stellar encounters shows ^Chandrasekhar 
1942, Eq. (5.227)] that the mean free path in a star 
cluster is many times the radius of the cluster. Spatial 
mixing is therefore much more effective than relaxation 
through encounters ; one may expect the structure of a 
star cluster to be closely represented by a solution of 
the encounterless Liouville equation, with encounters 
producing a slow evolution from one such solution to 
another. Unfortunately, a very wide range of solutions 
is possible ; the problem is to decide which of them will 
give a realistic representation of a star cluster. Here 
the theory has not yet produced an answer. The 
irreversible nature of relaxation processes suggests that 
a cluster should reach a quasi-equilibrium in which it 

changes “as slowly as possible,’’ but this condition has 
never been precisely formulated, and the general 
problem remains unsolved. 

In its present impasse the theory can derive con- 
siderable benefit from an observational study of the 
distribution of stars in clusters. Even though velocity 
distributions are not directly observable, a determina- 
tion of the spatial density law will so severely restrict 
the range of possible models that it may then be 
possible to set fairly narrow guide lines for the theory. 
Various studies of star distributions have been made 
in the past, but the availability today of photoelectric 
photometers and large Schmidt cameras suggests that 
a new attack on the problem should be profitable. 
The writer has therefore undertaken an extensive study 
of the distribution of stars in globular clusters, based 
chiefly on new observations made at the Mount Wilson 
and Palomar Observatories. Partial results are now 
available in about fifteen clusters. The results will be 
published in a series of papers, as the study of each 
cluster is completed. A general law is already evident, 
however, and the purpose of the present paper is to 
present this law, illustrate it with a selection of the 
data, and discuss some of its dynamical consequences. 
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472 IVAN KING 

Fig. 1. Star counts in M15. Maximum-exposure 48-inch Schmidt 
plate. Mean errors are indicated above and below last two points. 
Arrow indicates value of n ; dotted line indicates backgrount count. 

II. A RE-EXAMINATION OE JEANS5 LAW 

A frequently cited density law for globular clusters 
was derived by Jeans (1916). He showed theoretically 
that the outer parts of a globular cluster should have a 
star density that varies as r-4, where r is the distance 
from the cluster center. In projection this becomes an 
r~z law. To support his conclusion Jeans cited the 
star counts of Bailey (1915). Unfortunately Jeans’ 
proof is incorrect, and Bailey’s observations support 
the law only weakly. 

Jeans’ theoretical result depends on two unjustified 
assumptions. First, he assumes that the velocity dis- 
tribution is isotropic at every point in the cluster. This 
is an arbitrary and unjustified restriction. Second—and 
more serious—he assumes that at large r the potential 
V can be represented by the power series 

(GMA)(l+i;1A+<;2A
2+- • •), (1) 

with Jeans’ r-4 law follows from the nonvanishing 
of Ci, for which no proof is given. 

As for the observational test, an examination of 
Bailey’s counts shows that in the outer parts of a 
cluster so few stars are included that the densities are 
quite uncertain. Even so, the counts, when plotted on 
logarithmic scales, suggest that the exponent of r in- 
creases with increasing r. Furthermore, Jeans concedes 
that two of Bailey’s 10 clusters do not fit his law. 

III. LIMITS OE A GLOBULAR CLUSTER 

When counts are extended to the more numerous 
faint stars, the densities become more reliable and can 
also be followed farther from the cluster center. As an 
example, Fig. 1 shows the result of a count made on a 
photograph of M15 taken with the 48-inch Schmidt 
camera of the Palomar Observatory. The densities 
have been corrected for the background (or more 
properly, foreground) density, which is easily deter- 
mined on the wide-angle Schmidt plates. The vertical 

lines through the points have half-lengths corresponding 
to the square root of the counted number of stars, in 
accordance with the Poisson distribution. The smooth 
curve is computed from a density formula that is 
discussed in Sec. IV. 

Both scales in Fig. 1 are logarithmic. On such a plot 
any simple power law would be a straight line. Far 
from straightening out, however, these points plunge 
more and more steeply with increasing r, suggesting 
that the surface density / actually drops to zero at some 
finite value of r. As for the nature of the drop to zero, 
a little experimentation with this and similar sets of 
data in other clusters led to the form 

/=/i(iA-iAi)2, (2) 

where /i is a constant and is the value of r at which 
/ reaches zero. This formulais easily~tested by plotting 
A against 1A> as in Fig. 2. The points should lie on a 
straight line, whose intercept on the 1A axis is 1A¿- 
Figure 3 is a similar plot for three other clusters. The 
data for co Centauri and 47 Tucanae are photoelectric 
surface brightnesses measured by Gascoigne and Burr 
(1956), while the M13 data come from counts on 
another photograph made with the 48-inch Schmidt. 
The fit is good in the outer parts of all four clusters. 

Fig. 2. Test of Eq. (2) in M15. Dots are mean of several plates; 
crosses come from Fig. 1. Upper right section is an enlargement of 
dashed rectangle. 

Ordinates-. Vsurf.br. on arbitrary scale. 
Abscissae: l/r in (min)-1 

Data: cj Cen and 47 Tue from 
Gascoigne and Burr 
M 13 from unpublished star counts 

Fig. 3. Test of Eq. (2) in three more clusters. 
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STRUCTURE OF STAR CLUSTERS.I 473 

Naturally the central parts cannot be expected to fit 
Eq. (2), since it predicts an infinite density at the 
center. 

It thus appears that globular clusters are limited in 
size—exactly as one should expect as a result of galactic 
tidal forces. The existence of a tidal cutoff has been 
pointed out theoretically by von Hoerner (1957), who 
gives for the limiting radius of a cluster the formula 

rt = R(M/2Mg)\ (3) 

where R is the distance of the cluster from the galactic 
center and M and Mg are the masses of cluster and 
galaxy, respectively. [Through a typographical error 
the 2 was printed in the numerator instead of the 
denominator of von Hoerner’s Eq. (33).] This formula 
actually gives the instantaneous limiting radius of a 
cluster moving in a straight-line orbit toward or away 
from the galactic center. For the effective limiting 
radius, von Hoerner points out, however, one should 
choose not the instantaneous value at the cluster’s 
present location but rather the value of the limiting 
radius at the perigalactic point of the cluster’s orbit. 
The reason is that the cluster is cut back most severely 
at that time, and internal relaxation is too slow to 
increase the size of the cluster between successive 
perigalactic passages. 

The limiting radius is not hard to estimate for the 
perigalactic on of an elliptic orbit around the galactic 
center. Let R and B be polar coordinates of the cluster 
with respect to the galactic center, and let a system of 
rotating coordinates (x,y) be defined with origin at the 
cluster center and the x axis always pointing away from 
the galactic center. 

If a cluster follows a noncircular orbit around the 
galactic center, its limiting radius cannot be rigorously 
defined, since the Jacobi integral of the restricted 
three-body problem does not then apply. However, a 
tidal limit can be estimated as follows. As the cluster 
passes its perigalacticon, a star at a large distance from 
the cluster center will be detached by galactic tidal 
forces whereas a star at a small distance will not. We 
can then define the limit as that point, on the line 
connecting the center of the cluster with the galactic 
center, at which a star can remain on the line of centers 
with an acceleration along that line that is zero with 
respect to the cluster center. That is, at the moment 
of perigalactic passage that star is pulled neither 
toward nor away from the cluster. The acceleration of 
the cluster with respect to the galactic center at that 
time is 

d?R/dP = Ro?—dV/dR, (4) 

where w is its angular velocity and V {R) is the potential 
of the galaxy. The acceleration of the star at the same 
moment is 

d?Rs /dV\ GM{R-R) 
 =Rs^-( — ) , 
dt2 \dR/rs \RS-R\Z (5) 

and the relative acceleration is 

cP 
—(,R-R)={R-RW- 
df 

/dV\ dV 

\ dR/R, dR 

GM(RS-R) 

\RS-R\3 

dW 

dR2 

GM y 
 -KRs-R). 
Rs-Ry 

(6) 

This will be zero when Rs—R has the magnitude riim, 
given by 

GM 
r\un= • (7) 

rf-dW/dR2 

If we represent the force field of the galaxy by an 
inverse-square force due to a mass Mg, then 

d2V/ dR2 = — 2GMg/R
z. (8) 

The cluster’s orbit about the galactic center will be an 
ellipse, with the angular velocity at any point given by 

œ2=GMga(l-e^)/R\ (9) 

At the perigalactic point R takes the value 

Rp=a(l-e), (10) 

and Eq. (7) then simplifies to 

rlim=RPÍM/Mg(3+e)J. (11) 

Since it appears that most globular clusters move in 
rather elongated orbits (Kinman 1959), a good com- 
promise formula is 

rnm=RAM/S.SMg)K (12) 

Because of the presence of the exponent |, none of the 
quantities in the parentheses needs to be known very 
accurately. 

The weakness of this dependence on the force field 
seems especially fortunate when one considers the 
inaccuracy of the inverse-square-force approximation 
for the galactic field. Because of the wide distribution 
of the attracting mass, the tidal force will generally be 
weaker than that given by Eq. (8), and riim will be 
somewhat larger than the value given by Eq. (12). 
This is especially true for clusters whose orbits dip 
close to the galactic center. However, in the one-third 
power the approximation used is probably adequate 
for the present purpose, which is simply to verify that 
the observed limiting radii are of the order of magnitude 
to be expected as a result of galactic tidal forces. A 
more detailed discussion of tidal forces can be postponed 
until enough limiting radii have been determined to 
make possible a general discussion of the shapes of 
cluster orbits. 
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474 IVAN 

Fig. 4. Test of Eq. (13). Upper left is an enlargement 
of dashed square. 

Before comparing fiim with observed values of rt, 
two more complicating factors deserve mention. First, 
at a given perigalactic passage a cluster will lose only 
a fraction of the stars that are capable of reaching the 
distance fiim, since most such stars will not be in 
position to be pulled away at that time. Thus the 
effective limit will be somewhat larger than Eq. (12) 
suggests. The second effect, however, works in the 
opposite direction. If under the influence of tidal forces 
a star can reach a certain maximum distance from the 
cluster center, then without tidal forces it will not 
travel so far from the center. Consequently a cluster 

K I N G 

will shrink somewhat as it recedes from perigalacticon. 
These two effects tend to cancel each other, so that 
Eq. (12) probably gives a realistic value for riim. 

For a given globular cluster Rp is of course unknown, 
but an upper limit is the cluster’s present distance 
from the galactic center. M15, for instance, is now 
about 10 kpc from the galactic center. Its absolute 
magnitude (Hogg 1959) is 0T7 brighter than that of 
M92, whose mass has been estimated by Schwarzschild 
and Bernstein (1955) as 1.4X105O; thus the mass of 
M15 must be about 2.7X105O. If the mass of the 
galaxy is 10uO, then Eq. (12) gives rum= 92 pc. The 
distance to M15 is 10 to 12 kpc, depending on the 
absolute magnitude assigned to the RR Lyrae stars; 
at 11 kpc rt subtends 29 minutes of arc. The value of 
rt found from Fig. 3 is 21 minutes. For M13 the cor- 
responding figures are fiim = 38' and rt=22'. Since the 
true values of riim, calculated from the true values of 
Rp rather than from the present values of R, will be 
somewhat smaller, it is quite clear that in the outer 
parts of globular clusters we are observing the cutoff 
imposed by galactic tidal forces. 

IV. OVER-ALL DENSITY LAW 

In the central regions of a globular cluster Eq. (2) 
is completely inadequate, and another formula must be 
found. Here a brief examination of the available data 
showed that the surface density in the inner parts of 
a concentrated cluster can be represented by the 

Table la. Values of logf(r)//(0) for standard curves. Subtract 10 from all entries. 

logr/rc 

logrt/rc 
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 

-1.25 
-1.00 
-0.75 
-0.50 
-0.25 

0.00 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 

9.998 
9.993 
9.979 
9.940 
9.828 
9.527 
8.861 

9.998 
9.994 
9.983 
9.949 
9.857 
9.619 
9.163 
8.371 

9.998 
9.995 
9.984 
9.954 
9.870 
9.659 
9.274 
8.702 
7.847 

9.998 
9.996 
9.985 
9.956 
9.876 
9.678 
9.325 
8.864 
8.200 
7.324 

9.998 
9.996 
9.986 
9.957 
9.879 
9.687 
9.350 
8.890 
8.341 
7.692 
6.808 

9.998 
9.996 
9.986 
9.958 
9.882 
9.693 
9.364 
8.922 
8.410 
7.840 
7.184 
6.297 

9.998 
9.996 
9.986 
9.958 
9.883 
9.696 
9.371 
8.938 
8.444 
7.913 
7.338 
6.678 
5.791 

9.998 
9.996 
9.986 
9.958 
9.884 
9.698 
9.378 
8.952 
8.473 
7.970 
7.452 
6.911 
6.333 
5.673 
4.785 

9.998 
9.996 
9.986 
9.958 
9.884 
9.699 
9.380 
8.958 
8.486 
7.996 
7.499 
6.999 
6.500 
6.000 
5.500 
5.000 

Table lb. Values of \og(r?f/r?k) for standard curves. Subtract 10 from all entries. 

logrt/rc 
logr/n 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 
-0.25 9.549 9.704 
-0.15 9.053 9.171 
-0.10 8.670 8.775 
-0.05 8.034 8.128 

9.756 9.774 
9.213 9.223 
8.810 8.819 
8.158 8.164 

9.780 
9.229 
8.825 
8.173 

9.781 
9.230 
8.826 
8.173 

9.782 
9.230 
8.827 
8.173 

9.782 
9.231 
8.818 
8.178 
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STRUCTURE OF STAR CLUSTERS. I 

formula 

/= 

Fig. 5. Standard curves 
calculated from Eq. (14), 
plotted so as to osculate at 
left. These may be used 
directly with inch graph 
paper. 

Fig. 6. Same curves as 
in Fig. 5 but shifted so as 
to osculate at right. 

fo 

l+(r/rc)
2 

475 

where fo is the central surface d/ensity and rc is a scalq/ 
factor that may be called the corkradius. The adequacy 

(13) of this formula is illustrated in Figr^T-whrclrTnakes 
use of the data of Gascoigne and Burr (1956) in 47 
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476 IVAN KING 

Table II. Values of 2.5 logw/7rrc
2/(0) for standard curves. Subtract 10 from all entries. 

log/'Ac 0.50 0.75 1.00 1.25 
\ogrt/rc 

1.50 1.75 2.00 2.50 
-1.00 
-0.80 
-0.60 
-0.40 
-0.20 

0.00 
0.20 
0.40 
0.50 
0.60 
0.75 
0.80 
1.00 
1.25 
1.50 
1.75 
2.00 
2.50 

4.992 
5.981 
6.952 
7.884 
8.728 
9.414 
9.864 

10.044 
10.055 

4.993 
5.984 
6.960 
7.902 
8.772 
9.511 

10.063 
10.406 

10.556 
10.574 

4.993 
5.984 
6.962 
7.910 
8.791 
9.555 

10.153 
10.572 

10.832 

10.957 
10.982 

4.994 
5.985 
6.964 
7.915 
8.802 
9.577 

10.197 
10.654 

10.970 

11.173 
11.281 
11.311 

4.994 
5.986 
6.966 
7.917 
8.807 
9.588 

10.210 
10.696 

11.042 

11.287 
11.452 
11.561 
11.584 

4.994 
5.986 
6.966 
7.917 
8.809 
9.594 

10.233 
10.719 

11.080 

11.348 
11.545 
11.711 
11.796 
11.814 

4.994 
5.986 
6.966 
7.918 
8.811 
9.598 

10.240 
10.731 

11.101 

11.381 
11.596 
11.795 
11.927 
11.997 
12.012 

4.995 
5.986 
6.967 
7.918 
8.812 
9.601 

10.246 
10.742 

11.119 

11.410 
11.640 
11.868 
12.044 
12.179 
12.272 
12.334 

4.995 
5.986 
6.967 
7.919 
8.813 
9.602 

10.248 
10.747 

11.127 

11.423 
11.660 
11.901 
12.099 
12.266 
12.411 
12.653 

Tucanae. The coordinates of Fig. 4 are 1// and r2, so 
that Eq. (13) is represented by a straight line. The fit 
is good out to 5 minutes from the center. Since the 
edge formula (2) was shown in Fig. 3 to fit 47 Tucanae 
inward to 2 minutes from thexenter, it is evident that 
the two formulas fietweeirthem fit the entire cluster. 

It remains to find a^single formula that embodies 
the cjiáracteristics of both Eq. (2) and Eq. (13). Such> 
a Wmula is 

}=k 
1 

(14) 
i [1 + OtVc)

2]} [ 1 + (»Vf c)
2]i I 

ín a typical globular cluster ri/rc is of the order of 30, 
sdvthat for small to moderate values of r[rc Eq. (14) 
differs only slightly from Eq. (13) with 

/o=¿]l- 
[1+ (fiAc)2]* 

(15) 

For E^>rc, on the other hand, Eq. (14) comes very 
close to Eq. (2) with 

/i = ^c
2. (16) 

Note that the second term in brackets in Eq. (14) 
could be replaced by a single constant ; it is written in 
this more complicated form in order to show the role 
of rt. 

The crucial test, of course, is to compare Eq. (14) 
directly with observations. This can be done most 
easily by computing standard curves of log/ against 
logr, so that scale factors can be removed by sliding 
the curves horizontally and vertically. The curves are 
tabulated in Table I and plotted in Figs. 5 and 6. 
The individual curves are labeled by values of the 
logarithm of the parameter 

c=r,/rc, (17) 

which may be referred to simply as the concentration 
ratio. Interpolation between the plotted curves is 
greatly simplified by using Fig. 5 for the central region 
of a cluster and Fig. 6 for the outer parts. If an ob- 
served curve is fitted to the two figures alternately, 
the process of determining c converges rapidly. 

Another useful sort of curve gives the total number 
of stars in projection within a distance r of the center. 
This function can be found by integrating / with 
Vpqnprt to iTrrdr ; the result is /espect 

n (x) = irrc
2k ln(l+F) —4- 

(l+x)*-l 

(l + ^i)* 1+Xi. 
(18) 

where 
x=(r/rcy\ (19) 

xt=(rt/rc)\ (20) 

Since these curves are most useful for discussing results 
of surface photometry, the values of n are given in 
Table II in magnitudes. Figures 7 and 8 show the 
curves, which for convenience are again plotted with 
osculation first at one end and then at the other. The 
total number of stars in each cluster model is given by 

n (xt) = Trc
2k ! In (1+£¿) 

[3(1+Xí)^—lX(l"ff^¿)*~  1 (21) 
1+^i 

When xt»l, this is approximately 

n (xt) = 7itc
2& In (ft2/ 20rc

2). (22) 

Through the kind cooperation of the Editor, Figs. 
5-8 have been printed on such a scale that they can be 
used directly with inch-scale graph paper. The hori- 
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STRUCTURE OF STAR CLUSTERS. I 477 

zontal and vertical units are 1.25 inches and 0.5 inch, 
respectively. 

The empirical density law expressed in Eqs. (14) 
and (18) can now be compared with observation. 

Figures 9 and 10 show the surface brightnesses measured 
by Gascoigne and Burr (1956) in 47 Tucanae and a> 
Centauri. Each figure is divided into two parts, because 
of the reduction procedure used by Gascoigne and 

Fig. 7. Integral-magni- 
tude curves calculated from 
Eq. (14), plotted so as to 
osculate at left. May be 
used directly with inch 
graph paper. 

Fig. 8. Same curves as 
in Fig. 7 but shifted so as 
to coincide at r—rt. 
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478 IVAN KING 

(a) 

Fig. 9. Test of Eq. (14) in 47 Tucanae (Gascoigne and Burr) : 
(a) outer parts, (b) central region. 

Burr. Outside r—V they used direct measures of 
surface brightness, but inside a one-minute radius 
their surface brightnesses come from numerical differen- 
tiation of the total brightness observed through con- 
centric apertures of various sizes. In the central regions 
it is therefore more meaningful to compare directly 
with their concentric-aperture measures, using the 
curves of Figs. 7 and 8. The solid curves in Figs. 9 and 
10 are all traced by interpolation from the curves in 
Figs. 5-8, and in each case the curves of parts a and b 
have identical parameters. The vertical lines through 
the observed points are sampling mean errors, due to 
the fact that the observed brightness is due to a finite 
number of stars. The calculation of these mean errors, 
which takes the luminosity function into account, will 
be described in a later paper of this series, dealing with 
surface photometry. 

The values of the parameters derived in Figs. 9 and 
10 are as follows : 

k rcrt 

47 Tue 51.2 0Í47 56Í2 
Cen 6.68 2Í45 43Í7 

The unit of Æ is F =10 mag. per square minute. The 
values of rt are not well determined ; star counts can be 
expected to give a much stronger result in the outer 
parts. 

In Fig. 1, which gives star counts in M15, the 
smooth curve was traced from Fig. 6. Similarly, Fig. 11 
shows the M13 counts referred to in Sec. Ill, with a 
curve taken from Fig. 6. In both these cases the fit is 
almost independent of the choice of rc, since the counts 
do not reach into the dense central regions. Separate 
measurements of surface brightnesses confirm that the 
ratio rtlrc is large in both clusters. 

It is unfortunate that most clusters cannot be 
covered from center to edge in a single star count. 
Short-exposure photographs show too few stars in the 
outer parts, while on a long-exposure plate the star 
images are hopelessly crowded in the center. Only in 
clusters of very low central concentration can counts 
of faint stars be extended from the center of the cluster 
to the edge. An example is shown in Fig. 12, which 
illustrates counts made on a 48-inch Schmidt photo- 
graph of NGC 5053. 

(a) 

-0.4 0.0 0.4 0.8 

Fig. 10. Test of Eq. 
(14) in co Centauri 
(Gascoigne and Burr): 
(a) outer parts, (b) 
central region. 

(b) 
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STRUCTURE OF STAR CLUSTERS. I 479 

In all five of these clusters the empirical law 
expressed by Eq. (14) agrees quite satisfactorily with 
the observational data. Additional data have now been 
accumulated in a dozen more clusters, and no significant 
disagreements with this law have been found. The 
observational data presented in the present paper are 
chosen for their breadth and quality, not for their 
agreement with the chosen law. 

In the globular clusters examined so far, the extreme 
values of the concentration c—rt¡rc are and 125. 
The values of rc are close to one-half the 0.5 core 
diameters given by Mowbray (1946), but the values 
of rt are considerably larger than the limiting radii 
previously quoted for globular clusters. The concen- 
trations correlate fairly well with the three concentra- 
tion classes given by Kron and Mayall (1960), but 
they correlate much less well with the concentration 
classes estimated by Shapley (1930) and by Mowbray. 
The latter two sets of eye estimates on photographs 
seem to be influenced by the absolute values of surface 

Fig. 11. Star counts in M13; maximum-exposure 
48-inch Schmidt plate. 

brightness and core radius and therefore do not express 
a scale-invariant property of the clusters. At present 
there is no evidence that the ellipticities observed in 
some clusters have any influence on the radial density 
law. 

One further complication is worthy of mention : in a 
given cluster the bright and faint stars do not have 
the same distribution. Any tendency toward equi- 
partition of energy will give higher velocities to the 
less-massive stars ; and these fainter stars will therefore 
remain, on the average, farther from the cluster center. 
Near the edge of the cluster the density distribution 
is dominated by the tidal cutoff, which operates 
equally on all stars regardless of mass; hence near the 
edge the distributions of bright and faint stars should 
be closely similar. Near the center, however, where the 
density distributions depend strongly on velocity dis- 
persions, bright and faint stars should have different 
distributions. Observationally it is quite unfortunate 

Fig. 12. Star counts in NGC 5053. Medium-exposure 
48-inch Schmidt plate. 

that these segregation effects are best studied near the 
cluster centers, for again we are restricted to the low- 
concentration clusters in which faint stars can be re- 
solved close to the center. Again NGC 5053 provides 
a good example, for its center is resolvable even at the 
limiting magnitude of the 200-inch reflector. Figure 13 
shows counts made on such a limiting-magnitude plate, 
which was taken by Dr. Allan R. Sandage. 

One difficulty immediately arises, which is char- 
acteristic of cluster star counts made on reflector plates. 
The coma-free field of the 200-inch reflector, used with 
the //3.7 corrector, has a radius of only 8 minutes of 
arc. Even on this slightly off-center plate the usable 
field did not extend beyond the limits of the cluster; 
as a result the background count cannot be directly 
determined. The outermost points in Fig. 13 are there- 
fore plotted twice. The open circles give the actual 
counts, while the filled circles have been corrected for 
an assumed background density, which was chosen so 
as to make the outermost points satisfy the empirical 
law of Eq. (14), with the same value of rt as in Fig. 12. 

Fig. 13. Star counts in NGC 5053. Maximum-exposure 200-inch 
plate. Open circles are original counts, without background 
correction. 
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(a) 

(b) 

Fig. 14. Star counts in rich galactic clusters, from data of van 
den Bergh and Sher. Arrows indicate/(0), rc, and rt. (a) NGC 7789. 
(b) M67. (c) NGC 188. 

The resulting background density, 1.33 stars per square 
minute, is of the order of magnitude to be expected at 
this magnitude and latitude; but these observations 
are clearly of little weight in checking the validity of 
Eq. (14) near the edge of the cluster. 

In the center of the cluster, however, the contribution 
of the background density is negligible. From the fit 
shown in Fig. 13 two conclusions can be drawn. First, 
these faint stars are more widely spread than the 
brighter stars whose distribution is shown in Fig. 12; 
the fainter stars have an rc that is larger by a factor of 
1.3. Second, the distribution of fainter stars can also 
be represented by Eq. (14). This single example 
therefore suggests the working hypothesis that Eq. (14) 

KING 

represents the distributions of both bright and faint 
stars, provided suitable values of & and rc are chosen 
in each case. 

V. OTHER SPHERICAL SYSTEMS 

The law expressed by Eq. (14) can also be tested in 
galactic clusters. Here the test would appear to be less 
sensitive, because of the smaller number of cluster 
stars and the richer background ; but two compensating 
factors strengthen the test. First, in a galactic cluster 
stars can be counted in the central regions as well as 
near the edge ; and second, the tidal limit of a galactic 
cluster can be calculated with some degree of certainty. 
Unlike globular clusters, which move in elongated orbits 
with unknown perigalactic distances, galactic clusters 
travel about the galactic center in nearly circular orbits, 
so that the limiting radius can be safely calculated 
from the cluster’s present location. In terms of the 
local galactic rotation field the denominator of Eq. (7) 
can be written 

a>2-d2V/dR2=4œA, (23) 

where A is the first Oort constant. Thus the limiting 
radius is 

nim=(GM/4cod)*, (24) 

and this should be the value of rt for a galactic cluster 
in a constant tidal field. 

As a test, data on three rich galactic clusters were 
taken from the luminosity-function study of van den 
Bergh and Sher (1960). In Fig. 14 the data are shown 
fitted to standard curves taken from Figs. 5 and 6. 
This fitting differs from the fittings in Sec. IV in that 
here rt was calculated rather than determined from the 
observations. For this purpose A and o> were taken to 
be 18 and 29 km/sec kpc, respectively. The assumed 
masses and distances are given in Table III, along with 
the calculated values of rt. 

In M67 and NGC 7789 the fit is good. In NGC 188 
the standard curve fits the points less well, but the fit 
would be greatly improved if the background density 
were assumed to be 5% higher—a change that lies well 
within the range of uncertainty. Considering this and 
the other uncertainties involved in making star counts 
in galactic clusters, Eq. (14) appears to be an adequate 
representation of the star densities in these three 
clusters. 

A very different sort of stellar system is a Sculptor- 
type dwarf elliptical galaxy. Hodge (1961a, b, 1962) has 
recently published star-count data for three of these. 

Table III. Calculated limiting radii of galactic clusters. 

mass distance rt dist. source 

M67 8000 9.58 825 pc 49Í3 Sandage (1962) 
NGC 188 900 10.95 1550 27.3 Sandage (1962) 
NGC 7789 5500 11.24 1770 43.7 Rohlfs (1961) 
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Figure 15, based on Hodge’s data, shows that Sculptor- 
type galaxies also fit Eq. (14). Hodge has shown that 
the observed limiting radii are in agreement with those 
to be expected as a result of the tidal force of the 
Milky Way. 

The concentration ratios of the systems shown in 
Figs. 14 and 15 are low, ranging from 3 to 8. 

Only in the more luminous elliptical galaxies does 
Eq. (14) fail. It represents their brightness distributions 
adequately in the outer parts, but none of the curves 
of Fig. 5 can represent the sharp central peak of 
brightness in a giant elliptical galaxy. This situation is 
illustrated in Fig. 16, which is based on de Vaucouleurs’ 
(1953) study of M32. The outermost points are quite 
uncertain, however, since they depend on estimates of 
the surface brightnesses that correspond to the limiting 
isophotes of various observers. If the data are taken 
at face value, then the limiting radius of M32 is 11.2 
minutes. At a distance of 600 kpc this corresponds to 
2.0 kpc. 

M32 should of course be limited in size by the tidal 
field of its large neighbor M31. If the mass of M32 is 
3.6X109O (Burbidge, Burbidge, and Fish 1961; King 
1961) and that of M31 is 3.7X10nO (Brandt 1960), 
then Eq. (12) shows that the limiting radius of M32 
would equal the observed 2.0 kpc if the spatial separa- 
tion of the two were 14 kpc. This suggests that the 
closest approach of M32 to the center of M31 is 14 
kpc. Since its present projected distance from the 
center of M31 is 23J minutes, or 4.1 kpc, it would 
appear that M32 is at least 13 kpc in front of or behind 
M31. The difference in distance, unfortunately, would 
still be too small to detect photometrically. In any 
case, it is well to remember that this discussion stands 
on rather uncertain observational data. 

The tidal limit can be expected to be reasonably 
small whenever an elliptical galaxy has a nearby, 
large companion. Another example is NGC 3379, 
where Dennison’s brightness curve (reproduced by de 

Dwarf Elliptical Galaxies 
(Hodge) 

log f 1 (stars/sq. min.) 

log r (minutes) 

Fig. 15. Star counts in Sculptor-type galaxies. Arrows indicate 
Hodge’s estimate of central densities. 

Fig. 16. Surface brightnesses in the elliptical galaxy M32 
(de Vaucouleurs). Open circles are derived from estimates of 
limiting isophotes. 

Vaucouleurs 1958) shows a distinct turndown that 
suggests a limiting radius of about 5 minutes of arc. 
The apparent separation of NGC 3379 from its neighbor 
NGC 3384 is 7 minutes. 

For an isolated elliptical galaxy the tidal cutoff 
should be very far from the center—if, indeed, a tidal 
cutoff exists at all. For such galaxies Hubble’s (1930) 
observations indicate that the surface brightness at 
large distances from the center goes as 1/r2. This is. 
exactly what Eq. (14) predicts when rt is very large.. 
It may therefore be suggested that the outer parts of 
elliptical galaxies differ from those of star clusters only 
in the absence, or near-absence, of a tidal limit. 

VI. SPACE DENSITY AND STRIP DENSITY 

From Eq. (14) formulas can be found for the spatial 
density 

cp{r) = 
1 

7T 

dx 
(x2—r2)* 

(25) 

and for the strip density 

f(x)xdx 

(x2—r2)% 
(26) 

The latter function gives the total number of stars in a 
strip of unit width running completely across the cluster 
and passing at a distance r from the center. The 
formulas for <p and g are 

<p(r) = 

gO)= 

Trc[\+(rt/rcyyz‘ 

2krc 

[1+(*V02]* 

- cos-1#— (1 —s;2)*j (27) 

fl 
XI - cos“1#— 

L# 
2 sech“1#+(l —s2)* L (28) 
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where 

rl+(V/rc)
2"|i 

Ll+Oi/rJ2- 

For comparison, Eq. (14) can be written 

/w= 
l+{rt/rc) 

(29) 

(30) 

VII. DISCUSSION 

The observational data presented in Secs. IV and V 
suggest that the single law expressed by Eq. (14) 
represents the distributions of projected density in 
globular clusters of high and low central concentration, 
in galactic clusters, and in Sculptor-type dwarf 
galaxies. What inferences are to be drawn from this 
similarity of structure? 

First, the exact mathematical form of Eq. (14) 
is almost certainly of no consequence. It should be 
regarded as merely a convenient fitting formula. 
Ultimately the shape of the curves can serve as a 
basis for a detailed theoretical discussion, but the 
present discussion will be confined to a much simpler 
problem: the number of parameters. Equation (14) 
describes an individual cluster by means of three 
parameters : a number factor &, a core radius rCj and a 
limiting radius rt. But the density distribution in a 
star cluster could not possibly be described by fewer 
than three parameters, because three separate condi- 
tions are imposed by circumstances quite independent 
of the cluster’s internal dynamics. First, the cluster 
has a certain total number of stars. Second, the cluster 
has a certain total energy. Third, the cluster finds 
itself in a tidal field of a certain strength. Thus the 
description of a cluster will require at least three 
parameters, unless one of the above quantities is 
determined by the other two—not merely correlated, 
but rigidly determined. Since such a restriction is 
highly implausible, it therefore appears that the density 
distributions in star clusters are all described by a 
single law containing the minimum number of parame- 
ters. In other words, star clusters are as similar in 
structure as they could possibly be. 

This similarity leads to some strong conclusions 
about the dynamical development of star clusters. 
First, consider the role of initial conditions. As pointed 
out in the preceding paragraph, the initial number of 
stars and the total energy must certainly leave their 
imprint on a cluster. On the other hand, the initial 
density and velocity distributions do not appear to 
make any difference; for if they did, then clusters 
would now differ in more than the minimum three 
parameters. 

Since it is most unlikely that such widely differing 
systems all originated under identical initial conditions, 
we may conclude that all of the systems under con- 

sideration have been subjected to some regularizing, 
or relaxing, tendency—or perhaps to two or more 
relaxation processes, all tending to produce the same 
result. What relaxation process, then, is responsible for 
the similarity of star clusters? The first that springs to 
mind is relaxation through stellar encounters. This 
process has been extensively studied, and estimates 
have been made of the time of relaxation in star 
clusters. The most reliable calculation is that made by 
Oort and van Herk (1959) for M3. They employ a 
density distribution that agrees with observation, a 
consistent velocity distribution, and a realistic distribu- 
tion function of stellar masses. For the massive stars 
that dominate the center of the cluster Oort and van 
Herk find a central time of relaxation of 1.5X108 yr. 
For less massive stars, and for regions of lower density, 
the relaxation time is somewhat longer: however, it is 
clear that during a lifetime of 1010 yr or more, stellar 
encounters have had time to exert a considerable effect 
on the central structure of the cluster. 

For other clusters it is easily shown (Chandrasekhar 
1942, p. 202) that the time of relaxation at the center 
is proportional to where n is the number of 
stars in the cluster and R is its radius. Unpublished 
calculations by the writer show that in the models of 
Eq. (14) the effective radius R is to be closely identified 
with the core radius. The data of Table III and Fig. 
14 then show that the times of relaxation in the three 
galactic clusters previously discussed are of the order 
of a tenth of that in M3. Here even more emphatically, 
stellar encounters have had ample time to operate. In 
the dwarf elliptical galaxies of Fig. 15, on the other 
hand, n is perhaps 10 times as large as in M3 (Hodge 
1961a, b, 1962) while I? is a hundred times as large. 
Therefore even at the centers of those systems the 
time of relaxation is over 1011 years, and stellar en- 
counters cannot have had any serious effect during the 
commonly accepted cosmic time scale. Yet these galac- 
tic clusters and dwarf elliptical galaxies have very 
similar density distributions, even to the values of the 
concentration ratios. 

Consider first the systems whose times of relaxation 
are very long. Stellar encounters cannot have produced 
any appreciable relaxation; yet, as has been argued 
above, relaxation has nevertheless taken place. Some 
other relaxation mechanism has therefore been effective. 
The nature of this mechanism is by no means obvious, 
but a likely possibility is the initial mixing at the 
time of formation of the system. When the stars 
condense out of a parent gas cloud, they have density 
and velocity distributions characteristic of the gas. It 
is most unlikely that these distributions will satisfy 
the virial theorem for gravitational forces alone ; hence 
some readjustment is necessary. During the period of 
readjustment each star finds itself moving in a time- 
dependent potential field, in which the energy of an 
individual star does not remain constant. The total 
energy change that a star experiences during this 
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settling-down period will depend not only on its 
position and speed but also on the direction of its 
motion, so that the net effect is a strong randomizing 
effect on the energies of individual stars—in other 
words, a relaxation. The characteristic time for this 
process is the circulation time of a star through the 
system—generally 106 to 108 yr. 

As for the systems in which stellar encounters produce 
a rapid relaxation, they have also been subjected to 
initial mixing but have thereafter been acted upon by 
stellar encounters. Yet they have the same density law 
as systems unaffected by stellar encounters. It would 
therefore appear that the relaxation produced by 
stellar encounters has the same effect as that produced 
by initial mixing. Furthermore, successive relaxation 
times produce no further change other than changes 
of the parameters in Eq. (14). In short, the models 
described by Eq. (14) seem to constitute a unique 
evolutionary sequence. Initially a cluster evolves 
rapidly during the mixing stage, until it reaches the 
basic sequence. Thereafter its development is much 
slower and consists of a quasi-stationary evolution 
along the sequence. 

An unhappy corollary is that a cluster no longer 
bears any indication of the point at which it joined the 
basic sequence. The cluster’s structure therefore offers 
no clue to its age. 

The data on which the above conclusions are based 
cover stellar systems of a wide range of characteristics, 
but at the same time it is well to be aware of their 
limitations. One serious restriction is that all these 
systems are old, according to the estimates provided 
by the theory of stellar evolution. This raises the 
possibility that their similarity is due neither to initial 
mixing nor to stellar encounters but is due instead to 
some other regularizing tendency that operates over 
the billions of years. Such an effect might arise, for 
instance, from the mass loss attendant upon the rapid 
evolution of massive stars. Von Hoerner (1958) and 
Oort and van Herk (1959) have shown that such a 
loss of mass should result in a proportional increase in 
the cluster radius. The clusters considered in the 
present paper have lost from a third to half of their 
original mass in this way, and the consequent re- 
adjustment in radius might conceivably produce a 
relaxation. Whether its effect is great enough, however, 
remains to be seen. Even so, the galactic clusters 
would still pose a difficulty, because their times of 
relaxation through stellar encounters are too short to 
be ignored. As before, it would be necessary to 
postulate that both relaxation mechanisms produce 
identical effects. 

In any case it is desirable to study the density 
distributions in some young galactic clusters. Un- 
fortunately the young clusters tend to lie at low galactic 
latitudes, where the cluster stars are diluted by a rich 
background and where patchy interstellar absorption 
makes the results unreliable. Among the clusters for 

Fig. 17. Star counts in the galactic cluster M37 
(van den Bergh and Sher). 

which counts have been published by van den Bergh 
and Sher (1960) the best case is M37 (NGC 2099), in 
which the earliest spectral type is B9 (Trumpler 1930). 
According to Johnson et al. (1961) the reddening is 0T3 
and the corrected distance of the cluster is 1280 pc. 
The cluster is rich, but so is the background. In the 
counts given by van den Bergh and Sher the best 
separation of cluster and background seems to occur 
at intermediate magnitudes. Figure 17 is derived from, 
their count to limiting magnitude 15.55. As in Fig. 14, 
rt has been computed rather than derived from the 
data. The agreement with Eq. (14) seems adequate. 

Even M37 has an age greater than 108 yr, however, 
and it would be desirable to check Eq. (14) for still 
younger clusters. Unfortunately the extensive data 
collected by Wallenquist (1959) do not seem adequate 
for this purpose. Wallenquist appears to have under- 
estimated the radii of the clusters and consequently 
chosen incorrect values for the background densities. 
In M37, for instance, Wallenquist chooses a limiting 
radius of 17', a distance at which the data of Fig. 17 
indicate that the density is 15 or 20% above that of 
the true background. In Mil Wallenquist chooses a 
limiting radius of 6', whereas Johnson, Sandage, and 
Walquist (1956) state that their photometric study 
includes all yellow giants lying within 10 minutes of 
the center. 

To sum up the arguments about mass loss, on the 
theoretical side it is by no means clear that stellar 
mass loss ought to produce a relaxation, while on the 
observational side there is some indication that relax- 
ation takes place even before there is any major mass 
loss. We may therefore tentatively fall back on the 
interpretation already given—that relaxation is first 
produced by the initial mixing and is then continued 
by stellar encounters in a quasi-stationary fashion. 

One further limitation should be mentioned. In 
most cases the data presented in this paper do not 
distinguish between bright and faint stars. Only in 
NGC 5053 (Figs. 12 and 13) has a difference been 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
62

A
J 

 6
7.

 . 
4 7

 IK
 

484 IVAN KING 

clearly shown. More specifically, no observational 
evidence has been cited to show a tendency toward 
equipartition of energy in a system that is younger 
than one time of relaxation. In NGC 5053, where faint 
stars are observed, the time of relaxation at the center 
is less than 109 years, while in the Sculptor-type 
galaxies, where the relaxation time is long, the less 
massive stars are too faint to observe. 

This question of equipartition in young systems is 
an important one, for here is a point at which initial 
mixing and stellar encounters can be expected to 
produce different effects. Stellar encounters lead to 
equipartition of energy, whereas the interaction be- 
tween a single star and a changing potential field does 
not depend on the mass of the star. Thus if equi- 
partition of energy were found to exist in systems 
whose ages are less than their times of relaxation 
through stellar encounters, we should have to conclude 
that equipartition already existed among the prestellar 
blobs in the gas clouds from which the systems were 
formed. 

Some indication of equipartition without encounters 
is shown at the opposite end of the size spectrum, 
among the giant elliptical galaxies. To see this it is 
necessary to examine in more detail the dynamical 
circumstances at the center of a stellar system. If we 
assume a particular form for the velocity distribution 
in a steady state, then integration leads to a relation 
between density and potential. Solution of Poisson’s 
equation gives the potential, and thence the density, 
as functions of distance from the center. In this fashion 
Woolley and Dickens (1961) have shown that a 
truncated Gaussian velocity distribution leads to models 
whose density distributions agree with the observed 
densities near the centers of globular clusters. Implicit 
in the argument is one additional assumption, whose 
role is crucial to the present discussion; it is assumed 
that the potential field is produced by the stars under 
consideration^—or at least by a group of stars having 
an identical density distribution. This assumption is 
satisfied if all types of stars have the same distribution, 
but it is also satisfied if the central density is almost 
completely due to stars of the type whose distribution 
is being studied. It is the latter condition that is 
satisfied in globular clusters. The massive stars that 
contribute most of the light account for only a small 
part of the total mass of the cluster, but their greater 
central concentration makes them predominate strongly 
near the cluster center. This phenomenon is shown 
clearly in Table 6 of Oort and van Herk (1959). 

In giant elliptical galaxies, on the other hand, the 
density distribution is different from that in globular 
clusters. The extended central rise shown in Fig. 16 is 
characteristic not only of intermediate-luminosity 
systems like M32 but also of high-luminosity giants 
like M87 (Hubble 1930; van Houten 1961), in which 
the time of relaxation is far too long for stellar en- 
counters to have had any appreciable effect. This 

peculiarity of giant ellipticals shows, according to the 
arguments just given, that either (1) the velocity 
distribution near the center is far from Gaussian or (2) 
the central density is due to stars having a different 
density distribution from that of the massive stars 
that contribute most of the light. The possibility of 
non-Gaussian velocity distributions can certainly not 
be excluded, but to the writer it seems much more 
likely that here too the initial mixing process will 
produce energy exchanges that lead to a near-Gaussian 
distribution of velocities. In that case it must be 
concluded that some considerable part of the central 
density comes from a differently distributed group 
of less luminous—and presumably less massive—stars. 
But the heaping up of light to the center of the system 
then shows that the bright stars have a lower velocity 
dispersion than the faint stars in whose potential field 
they move. This suggests equipartition of energy in 
giant elliptical galaxies. 

It remains to explain why equipartition produces one 
profile in a globular cluster and another profile in a 
giant elliptical galaxy. The answer lies in the relative 
number of dwarf stars. In a globular cluster the ratio 
of mass to luminosity is of the order of 1 (Feast and 
Thackeray 1960), while in a giant elliptical galaxy it is 
of the order of 100 (Page 1960). This wide difference 
indicates that giant ellipticals have a much larger 
number of dwarf stars, which contribute much mass 
but little luminosity. The predominance of dwarfs is 
apparently so great that even the heaping up of giants 
to the center fails to outweigh them. 

Turned in the other direction, this argument would 
say that the distribution of light in giant elliptical 
galaxies shows that they must contain large numbers 
of dwarf stars. 

Two other observations lend some support to this 
general interpretation. First, Spinrad (1961) has argued 
that the spectra of giant elliptical galaxies show the 
presence of large numbers of dwarf stars. Second, 
Prendergast and Miller (1962) have found that the 
central regions of the elliptical galaxy NGC 3379 are 
slightly redder than the envelope—exactly as one would 
expect from a heaping up of bright red stars at the 
center. It must be remembered, however, that the whole 
dynamical interpretation presented here for giant ellip- 
tical galaxies is based on qualitative arguments and 
needs to be confirmed by detailed calculations. 

VIII. SUMMARY OF CONCLUSIONS 

(1) The density distributions in globular clusters, 
galactic clusters, and Sculptor-type dwarf elliptical 
galaxies can all be represented by the same empirical 
law. 

(2) The density law has three parameters: a number 
factor, a core radius, and a limiting radius. The core 
radius is determined by the internal energy of the 
system, while the limiting radius is set by external 
tidal forces. Observed values of the limiting radius 
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agree with values calculated from the tidal force of 
the Milky Way. 

(3) The observed density law has the minimum 
number of parameters ; hence these stellar systems are 
as similar as they could possibly be. The similarity 
shows that all these systems have been subjected to 
some relaxation process. It is suggested that all have 
been relaxed by initial mixing and that stellar en- 
counters thereafter produce a slow change in the 
density parameters without changing the basic model. 
It does not seem likely that cluster expansion through 
stellar mass loss is a major factor in the relaxation. 

(4) The data considered do not include any young 
galactic clusters; nor do they establish whether equi- 
partition exists in a system whose age is less than its 
time of relaxation. 

(5) Relative to the other systems considered, giant 
elliptical galaxies have an excess of brightness near the 
center. It is suggested that this results from equi- 
par tition in a system dominated by dwarf stars. 
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