SPECTRAL AND LUMINOSITY CLASSIFICATIONS AND MEASUREMENTS OF THE STRENGTH OF CYANOGEN ABSORPTION FOR LATETYPE STARS FROM OBJECTIVE-PRISM SPECTRA

Kenneth M. Yoss
Astronomy Department, Mount Holyoke College
Received May 19, 1961; revised June 10, 1961

Abstract

Objective-prism spectra of 684 stars of spectral type G8-K2 have been classified for luminosity and cyanogen absorption. The spectra have been obtained with the Curtis Schmidt telescope of the University of Michigan, using the combined 4° and 6° prisms. The luminosity estimate is based on the strength of the $\lambda 4077$ line of ionized strontium, while the cyanogen absorption is measured by the break in density at the cyanogen band head at λ 4216. Ten per cent of the giants are classified as "weak CN" stars Slit spectrograms have been obtained for 37 program stars (including 29 weak and slightly weak CN giants) with the 60 -inch reflector of Mount Wilson Observatory. Absolute magnitudes were obtained from direct-intensity microphotometer tracings. Space velocities have been determined for over 200 stars, for which radial velocities are available. The frequency distribution of space velocities for the weak CN giants has a higher dispersion than the frequency distribution for giants with normal cyanogen absorption. The weak CN giants are also less concentrated toward the galactic plane than the giants with normal cyanogen absorption.

I. INTRODUCTION

Late-type stars can be classified into four spectroscopic groups, each characterized by distinct dynamical properties, as shown by the frequency distributions of their space velocities (Roman 1952). Miss Roman's samples are sufficiently large for two of the groups-the "strong-line" and the "weak-line" stars-to define well-determined frequency distributions for space velocity and to determine relative space densities. The samples for the other two groups-the " 4150 " and the "weak CN" stars-consist of 25 and 12 members, respectively, and therefore only approximately define the properties of these two groups. The present investigation is concerned primarily with the weak CN group, members of which can be detected spectroscopically on objective-prism plates.

A number of methods for measuring the strength of the cyanogen absorption band have been developed, notably the photographic method developed by Lindblad and others (e.g., Ramberg 1941) and more recently the photoelectric methods of Strömgren and Gyldenkerne (1955), Crawford (1960), and Griffin and Redman (1960). In none of these methods, however, is it possible to distinguish between giants with weak cyanogen absorption and normal subgiants or dwarfs.

The Curtis Schmidt telescope of the University of Michigan, with combined 4° and 6° prisms, gives a dispersion of $110 \mathrm{~A} / \mathrm{mm}$ at $\mathrm{H} \gamma$. With this dispersion it is possible to estimate luminosity classes visually from the strength of the $\lambda 4077$ line of ionized strontium relative to nearby iron lines, permitting statistical separation of giants and subgiants. Furthermore, the break at the $\lambda 4216$ band head of cyanogen is easily visible, and its strength is not greatly influenced by the blending of atomic lines, as is the case with the spectrophotometric cyanogen equivalent or the photoelectric CN measurements.

II. OBSERVATIONS

Using the combined prisms with the Curtis Schmidt, spectra have been obtained for 87 standard stars classified on the Morgan-Keenan system, from spectral type G5 through K3, and luminosity class $\mathrm{I} b$ through V. The plates, II a-O emulsion, have been developed in a fine-grain developer suggested by Morgan (1937). Three variable factors
influence classification of objective-prism spectra: seeing, which influences resolution; sky fog, which affects contrast; and image density, which also affects contrast. The standard star plates, which generally have short exposure times, are usually not heavily fogged. Appreciable systematic error in classification due to variable seeing or density is introduced only in the case of extremely poor plates. Comparison between the published spectral types and luminosity classes and those estimated from the Schmidt plates gives mean errors of one spectral subclass and one half-luminosity class, or, in terms of absolute magnitude, approximately 1 mag.

The measurement of cyanogen absorption consists of an estimate of the difference in density of the continuum on each side of the $\lambda 4216$ band head and is recorded in five steps, from 0 for equal density to 4 for the strongest differences measured. The CN estimates for the standard stars are given in Table 1. The MK classifications for the stars with asterisks are from Johnson and Morgan (1953) or Morgan and Roman (1950). The remainder are from Keenan and Keller (1953), Roman (1952, 1955), and Halliday (1955). In addition to the MK standards, 16 stars are included for which the spectral types are from Wilson's radial-velocity catalogue (1953). The CN measurements usually depend on one plate, occasionally on two or more, with two or three exposures of varying density per plate.

Seventy-four stars listed in Table 1 have been classified by Griffin and Redman (1960). A linear relationship exists between their measurements and the Schmidt values, notwithstanding the fact that different quantities are measured in the two methods. No noticeable variation with spectral types is evident. The least-squares line of regression is

$$
\mathrm{CN}(\text { Schmidt })=-17.81+8.95 \mathrm{CN}(\text { Cambridge })
$$

with a mean error in the Schmidt measurements $= \pm 0.5$ step. This value agrees with estimates of the internal mean error based on duplicate plates and reclassifications of the same plates. Thirty-seven of the program stars listed in Table 2 have also been classified by Griffin and Redman. The agreement with the regression line for the standard stars is satisfactory in most cases.

Six of the Schmidt standard stars are included in Keenan's list of CN standard stars (1958a), in which the measurement of cyanogen absorption refers to deviation from normal absorption. On the basis of the six stars in common, the Schmidt CN steps 2, 3, and 4 correspond approximately to Keenan's CN $-1,0$, and +2 , respectively, for luminosity class III. Thirty-one of the Schmidt standard stars are included in Miss Roman's list (1952), four falling in her weak CN group. All four of these giants show weaker than normal cyanogen absorption on the Schmidt spectra, two being classified as CN 1 and two as CN 2, while most, but not all, of the other 26 stars show normal cyanogen absorption, CN 3.

The distinction between giants with normal and weak cyanogen absorption is arbitrary, but, on the basis of the above comparisons, G8-K2 stars of luminosity class III with CN steps 0,1 , and 2 would be considered weak CN stars. An alternate method of defining "weak CN" stars is based on the frequency distribution of cyanogen absorption for a random sample of luminosity III stars. For the program stars listed in Table 2, the maximum in the frequency distribution for G8-K2 stars with luminosities II-III through III-IV varies from $2 \frac{1}{2}$ at G8 to 3 at K2. The distribution is relatively symmetrical for CN 2,3 , and 4, but about 10 per cent of the stars fall into an asymmetrical wing extending to CN 0 . Thus, for this spectral and luminosity range, stars with CN 0 and 1 are classified as weak CN stars. In addition, stars with CN $1 \frac{1}{2}$ have been included. These are stars for which more than one classification is available and the mean equals $1 \frac{1}{2}$. The frequency distribution for luminosity class IV extends from a maximum at CN 0 through CN 2 with little decrease, then drops quickly at CN 3. The majority of luminosity class V stars have been classified as CN 0 .

Figure 1 shows Schmidt spectra of several standard and program stars. The standard

TABLE 1
STANDARD STARS FOR SCHMIDT CLASSIFICATION

HD	Sp	CN	HD	Sp	CN
417	K0 III	1	175751	K2 III	4
2589	K0 IV	1	176678	gK1	2
2774	K2 III	3	180262	G5 II	4
3712	K0 II-III	4	180809	K0 II*	$3 \frac{1}{2}$
6186	K0 III	2	181655	G8 V	0
6582	G5 VI*	0	182572	G8 IV	0
12929	K2 III*	3	182762	KO III	2
17506	K3 Ib*	3	184406	K3 III	3
20630	G5 V*	0	184467	Kl V	0
27022	G5 III	2	185958	G8 II	$3 \frac{1}{2}$
77912	G8 Ib-II	$3 \frac{1}{2}$	188056	K3 III	3
82885	G8 IV-V*	$1{ }^{2}$	188326	G8 IV	1
101501	G8 V*	0	188512	G8 IV*	1
137759	K2 III*	3	188947	KO III	3
140573	K2 III*	4	190360	G6 IV	1
141714	G5 III-IV	1	191026	KO IV	1
143393	K2 III	4	194152	gK0	4
144287	G8 V	0	195506	K2 III	2
144889	K4 III	2	196755	G5 IV	1
145148	K0 IV	1	197989	K0 III*	2
146084	gK3	3	198149	K0 IV**	1
149161	K4 III	1	199191	K0 III	1
150275	Kl III	1	199580	K1 IV	1
151937	K1 II-III	2	199870	gG7	2
152391	G6 V	0	200577	gG8	3
152879	K4 III	2	203344	K0 III-IV	2
153344	G5 IV	0	203504	Kl III*	3
153472	K3 III	3	203886	K0 III	3
156283	K3 II*	3	205512	Kl III	3
157617	gKl	4	206078	G8 III	1
157999	K3 II	4	206778	K2 Ib*	4
160315	gG9	4	206859	G5 Ib*	4
160346	dK3	0	207089	K0 Ib	4
160781	gG7	4	207134	K3 III	2
161096	K2 III*	3	209747	K4 III	1
161198	K0 V	0	210745	Kl Ib*	4
163588	K2 III	$2 \frac{1}{2}$	212943	K0 III	2
164922	K0 V	0	215549	Kl III-IV	1
165760	G8 III-IV	3	218101	G8 IV	1
166229	K2 III	2	218792	gK3	2
166460	gK2	3	219134	K3 V*	0
166620	K2 V*	0	219615	G8 III	2
166640	gG7	2	219945	gK0	2
167042	K1 III	1	219962	K2 III	2
167768	G8 III	3	220954	K1 III	3
168322	K0 III	2	221115	G8 III	3
168656	G8 III	2	221148	K3 III	3
168723	K0 III-IV*	2	221345	G8 III	2
174980	gG8	4	222107	G8 III-IV*	1
175305	G5 III	1	222404	Kl IV*	2
175515	gG9	3	223047	G5 Ib	4
175541	dK0	0			

stars are indicated by the designation "MK" following the spectral types. The exposure times for the program stars are 30 minutes in all cases. The spectra of HD 3712 and HD 3681 have been increased to twice their original width by printing two strips side by side, in order to illustrate the spectral features more clearly. The intensity of the $\lambda 4077$ line of ionized strontium relative to the $\lambda 4063$ and $\lambda 4071$ lines of neutral iron increases from dwarf to supergiant. The break in the continuum at the cyanogen band head at $\lambda 4216$ does not increase uniformly but varies in strength within a given luminosity class. HD 209992 and HD 211153 appear to be more luminous than the standard II-III star HD 3712. The cyanogen absorption in HD 209992 appears normal, but in HD 211153 it is definitely weak. HD 205836, which is underexposed on the original plate, appears brighter than the standard III star HD 12929, yet shows weak cyanogen absorption. HD 208107 and HD 3681 appear to have normal cyanogen absorption for their luminosity, while HD 218935 has weak absorption.

Long exposures, using the combined prisms, have been obtained over a number of years with the Curtis Schmidt, primarily in four declination zones, $+23^{\circ},+27^{\circ},+53^{\circ}$, and $+58^{\circ}$. The plate centers are such that about 10 per cent of each 5° circular field overlaps the next field. Generally a 10 -minute and a 30 -minute exposure have been obtained for each center. Additional plates have been obtained for many of the centers; the result is that 42 per cent of the stars classified have been exposed on two or more plates. The quality of the spectra is relatively independent of exposure time. On nights of good seeing, the 30 -minute plates have resolution essentially equal to that of the 10 -minute plates, as is well illustrated in Figure 1, where the standard star exposures are very short. Comparison of the long- and short-exposure plates shows no systematic effect in classification due to exposure time or, more specifically, due to sky fog and resolution. The internal accuracy for spectral and luminosity classification is in agreement with that found for the standard stars.

Eight hundred and seventy-one stars brighter than photographic magnitude 9.5, primarily in the three declination zones, $+23^{\circ},+27^{\circ}$, and $+58^{\circ}$, have been classified within the spectral range G8-K2. The results for 684 are given in Table 2. The number of plates and the average quality of the classification are given in the fourth column. Quality "a" implies plates of good definition and well-exposed images, while quality "b" implies lower definition and/or faint images. The additional 187 stars have not been included because the images, although classifiable, are underexposed. Classifications from poor-quality plates have been excluded entirely. One hundred and forty-nine of the program stars in Table 2 have been classified on the MK system elsewhere, primarily at David Dunlap Observatory (Heard 1956). These stars have asterisks following their classifications. Comparison of the Schmidt and Dunlap spectral classifications gives a mean error of ± 0.9 subclass for one Schmidt spectrum and a small systematic difference, the Schmidt spectra being one half-subclass earlier. Sixty per cent of the luminosity classifications agree, 35 per cent disagree by one half-luminosity class, and 5 per cent disagree by one or two luminosity classes. A few stars included in Table 2 have been classified outside the G8-K2 limit. In these cases, the mean of the Schmidt and the Dunlap classifications is within the limit.

Of the 684 stars included in Table 2, 31 have been classified from faint images but were included either because they have been classified as weak CN stars or because they have published radial velocities. These are designated quality "c." Of the 653 stars classified from well-exposed plates, 3 per cent are luminosity classes V and IV-V, 15 per cent are luminosity class IV, 83 per cent are luminosity classes III-IV, III, and II-III, and 6 per cent are luminosity classes II and I. Of the stars in luminosity classes II-III through III-IV, 10 per cent are classified as heaving weak cyanogen absorption (CN 0,1 , and $1 \frac{1}{2}$).

III. DISTRIBUTION PERPENDICULAR TO THE GALACTIC PLANE

If a correlation exists between cyanogen absorption and space velocity, it will be evident in the density distribution as a function of distance from the galactic plane for

Fig. 1.-Schmidt objective-prism spectra of three standard stars, designated by MK after the spectral types, and seven prolm stars, showing luminosity criteria and cyanogen absorption.

TABLE 2
PROGRAM STARS

HD or BD	Sp	CN	Number; Quality	$\underset{(\mathrm{km} / \mathrm{sec})}{\mathrm{S}}$	HD or BD	Sp	CN	Number; Quality	$\frac{\mathrm{S}}{(\mathrm{~km} / \mathrm{sec})}$
71	KO III	4	1-a	19	6634	KO III-IV	1	1-a	
112	K1 III-IV	3	2-a		6833	K0 III*	0	1-b	249
417	K0 II-III*	$2 \frac{1}{2}$	1-b	98	6999	K2 III	$3 \frac{1}{2}$	1-b	
554	G8 III	4	1-c		7087 +56022	K0 Ib**	${ }^{2 \frac{1}{2}}$	1-b	
663	K1 III	3	1-a		7318	G8 III-IV*	3	1-b	12
697	G8 III	3	1-b		+56.232	K2 II-III	3	1-a	
756	K0 III	$2 \frac{1}{2}$	3-b		+560234	K2 III	$3 \frac{1}{2}$	2-a	
1254	KO III-IV	$2 \frac{1}{2}$	3-b		7666	K1 III-IV	4	1-a	
1449	G9 III	1	2-b	51	+22.205	K1 III	$3 \frac{1}{2}$	1-b	
1535	G9 III	2	1-b		+560242	K1 III-IV	2	1-b	
1583	K1 III	4	2-b		+550300	K1 II-III	$2 \frac{1}{2}$	2-b	
2234	G9 III-IV	$2 \frac{1}{2}$	2-b		8200	G8 IIT-IV	$2 \frac{1}{2}$	1-b	
2372	KO III	3	1-b		+570277	K0 IV-V	0	2-b	
2469	G8 III-IV	2	2-a		+570280	G8 III-IV	4	1-a	
2824	K2 III	3	1-a	30	+560279	K1 Ib	2	1-a	
2925	G8 III*	1	3-b	155	8997	K2 V	0	2-b	
3250	K0 II-III	3	1-a		9033	K2 III	3	2-b	
3253	K2 III	2	1-b		9109	KO III	0	1-c	
3293	K2 III	$2 \frac{1}{2}$	2-b		9277	KO III-IV	1	1-b	
3323	K1 III	3	1-b		9493	G8 II-III	$1 \frac{1}{2}$	3-b	118
3409	K1 III	3	1-a		9900 9939	K1 Ia	4	2-a	
3411 3468	K2 III	$3 \frac{1}{2}$ $3 \frac{1}{2}$	$3-b$ $1-b$	42	9939 10309	${ }_{\text {K0 }} \mathrm{IV}$ IVI-IV	$\frac{1}{2}$	1-b	100
3651	K2 V^{*}	$0^{\frac{1}{2}}$	1-b		10437	K1 III	$2 \frac{1}{2}$	2-a	
3681	K0 III-IV	31	2-a	19	+570375	G8 IV	1	1-c	
3690	K0 III-IV	$2 \frac{1}{2}$	1-b	21	+550402	K0 III-IV	3	2-a	
3757	K0 III	$2{ }^{2}$	2-b		10680	G8 III-IV	$2 \frac{1}{2}$	2-a	
3767	K0 III-IV	2	3-b		+58²95	G9 III-IV	2	1-a	
3828	K1 III	3	1-b		+580296	KO IV	0	1-a	
3943	G9 III	1	2-b	52	10806	G9 Ib	3	4-b	
4029	G8 III-IV	${ }_{3}^{2}$	1-b		11043	G8 III		2-b	
4105	K0 III	3^{31}	2-b		111363	K2 III	- $1 \frac{1}{2}$	2-b	34
4688	K0 III	1	1-b		11383	G9 III-IV	4^{2}	2-b	
4719	K0 III	,	2-b		11763	K1 III	3	3-b	14
+550175	K1 III	2	1-a		12139	K0 III-IV	$2 \frac{1}{2}$	2-a	44
4831	KO III*	$\frac{1}{3}$	2-b	51	12202	G8 III-IV		1-a	
4832	K2 III	3	$3-b$ $2-b$		12306	G8 III	2	2-a	
4833	G8 III	2	2-b		12494	G8 IV	1	1-b	
4934	K0 III	2	3-b		12772	K1 IV	2	2-a	
5197 5234	K0 İII	3	1-b	34	13149	K2 III	4	2-b	44
+55*200	G8 III-IV	2	1-a		13437	G9 II	$3 \frac{1}{2}$	2-b	
5286	K1 IV	2	2-b	7	13482	Kl III-IV	${ }^{2}$	2-a	
5361	G9 III-IV	1	1-b		13982	K2 III	3	4-b	22
5395	G8 III-IV*	3	1-b	57	13994	G8 II-III	3	4-b	31
5396	K2 III	4.	1-a		14039	K1 V	2	1-b	
5430	G8 IV	$2 \frac{1}{2}$	1-a		14346	KO II	3	4-b	
5516	G8 III*	2	1-b	32	14571	K1 III	3	2-b	
5556	K2 III	$2 \frac{1}{2}$	1-b		14914	KO III-IV		2-b	48
+58.146 5747	G8 III	3 3	1-b	19	15449 15498	K2 III	2 3	2-b	11
5981	K1 III	3	2-a	19	15619	G9 III	$2 \frac{1}{2}$	2-b	
6009	G9 III-IV	0	2-b	74	15665	G8 Ib	$2 \frac{1}{2}$	1-b	
6098	K0 III-IV	$3 \frac{1}{2}$	1-a		15673	K2 III	$2 \frac{7}{2}$	1-b	
6238	G8 II-III	3	2-a	39	15734	KO III	$2 \frac{1}{2}$	1-b	
$+56{ }^{\circ} 195$ 6555	G8 III	3	1-a		15953	K0 III	$\frac{1}{4}$	1-b	
6555 $+58^{\circ} 176$	K0 III-IV	2 2	1-b		16293	${ }_{\text {K }}^{\text {K }}$ IIII	4		

TABLE 2 - continued

HD or BD	Sp	CN	Number; Quality	$\underset{(\mathrm{km} / \mathrm{sec})}{\mathrm{S}}$	HD or BD	Sp	CN	Number; Quality	$\underset{(\mathrm{km} / \mathrm{sec})}{\mathrm{S}}$
16448	K2 III	$3 \frac{1}{2}$	2-b	56	46316	K2 III	$2 \frac{1}{2}$	2-a	
16644	G8 III-IV	0^{2}	1-c		46607	G8 III	$2{ }^{2}$	2-a	
16843	G8 III-IV	2	1-b		46702	G8 III-IV	2	1-a	
17046	G8 IIT-IV	1	2-b		47254	G9 III-IV	$2 \frac{1}{2}$	2-a	
17190	K2 IV*	0	2-b	126	47586	G8 III-IV	1	1-c	
17309	K0 III	2	3-b		47587	K2 III	1	1-c	
17346	G9 II	$3 \frac{1}{2}$	4-a		47726	KO III	2	2-a	
17675	G9 III	$\frac{1 \frac{1}{2}}{}$	2-b	58	48091	K1 III	$3 \frac{1}{2}$	2-a	
18560	K1 III	$2 \frac{1}{2}$	1-a		48432	KO III-IV	3	2-a	18
18749	KO II	$2 \frac{1}{2}$	1-a		49116	K0 III	2	1-a	
18991	K0 IV	$2 \frac{1}{2}$	2-a	15	49237	K2 III	3	1-a	
19077	K1 III	3	1-a		49399	$\mathrm{Kl}^{\text {K }}$ IV	1	1-a	
19089	K0 II	$2 \frac{1}{2}$	1-a		58680	G8 III	4	1-b	
+580569	K2 III	2	1-a		58944	G8 III-IV	3	1-b	
20524	K1 III-IV	$\frac{1}{3}$	1-a		59506	KO III	3	2-b	
20762	K0 II-III	$3 \frac{1}{2}$	1-a		59621	K1 III-IV	$\frac{1}{2}$	2-b	
20930	K1 III	${ }^{2}$	1-a	61	59642	K1 III-IV	${ }_{3}^{2}$	2-b	
22400	K1 III-IV	2	1-a		60252	${ }_{\text {KO }}^{\text {GO }} \mathrm{V}$	3 0	2-b	
22886	K2 III	3	1-b		60294	K2 III	3	2-b	12
24154	KO II-III	1	1-b	61	60982	K2 III	3	2-b	
25877	G8 Ib-II*	3	1-a		62564	KO III	3	1-b	
26755	K2 III	$3 \frac{1}{2}$	1-a	42	+5701104	G8 II-III	2	1-b	
27029	K1 III	3.	2-b		62808	K0 III-IV	3	2-b	
27224	K0 III	$3 \frac{1}{2}$	1-a		63628	K1 III	3	3-b	
27371	K0 III*	3	6-a	33	66660	K1 III-IV	3	2-b	
27697	K0 III*	3	3-a	33	67368	K1 III	$3 \frac{1}{2}$	2-b	
28085	G8 II	$2 \frac{1}{2}$	1-b		68077	G9 III	3	2-b	13
28100	G9 II-III*	2	5-a	23	68193	K2 II-III	2	1-b	
28307	G9 III*	$2 \frac{1}{2}$	6-a	35	68638	G8 V	0	2-b	
29117	K0 III	2	1-b		68683	G8 III-IV	3	1-b	
30166	K0 III	2	2-b		+55*1275	G8 III-IV	3	1-b	
31324	K1 III	2	2-b	46	70918	K0 III	$1 \frac{1}{2}$	2-b	
31646	G9 III-IV	3	2-b		+5701141	K0 ${ }^{\text {V }}$	0 0 3	1-b	
31757	G9 III	3	2-b		70985	G8 III	3	2-b	
32547	G8 III	3	2-b		71111	KO III		1-b	
33618	K2 III	3	2-b	12	71224	Kl III-IV	3	2-b	
34786	K1 III	$3 \frac{1}{2}$	1-b	21	+5601305	K0 III	3	1-b	
34853	K0 II-III	3^{2}	1-b		71905	G9 III-IV	$3 \frac{1}{2}$	2-b	
36770	G8 II-III	3	1-b		72003	K1 III-IV	$2{ }^{2}$	2-b	
36850	K1 III	$3^{2 \frac{1}{2}}$	1-b		72604	K1 III	3	3-a	
37007	G9 III	3	1-b		72742	K0 II	4	1-b	
37601	K0 III	2	1-b	49	73469	G8 III-IV	3	2-b	
39628	K2 IV	3	1-b		73553	G8 III	3	1-b	
40141	K2 III	$2 \frac{1}{2}$	1-b		73598	G8 III-IV		4-b	28
40827	K2 III	$3 \frac{1}{2}$	1-b		73665	G9 III	$3 \frac{1}{2}$	4-b	
40872	K0 II-III	4	1-b		74150	KO III-IV	${ }^{0}$	1-c	
41589	K0 III	4	1-b		74379	K0 III	3	1-b	
41597	K0 III*	3	1-b	37	74442	K1 III-IV*	$2 \frac{1}{2}$	3-a	43
41783	K0 III	3	1-b		74908	K0 III	$2{ }^{2}$	1-b	
42721	G8 II-III	3	1-b		75697	KO III-IV	3	1-b	
43352	K1 III	$2 \frac{1}{2}$	2-a		76428	G8 III-IV	2	2-a	
44061	Kl III	3	3-a		78249	K1 III-IV*	$2 \frac{1}{2}$	2-a	86
44123	K1 III	3	3-a		78865	Kl III	3	2-a	
44647	G9 III	3	2-a		78937	Kl III	3	2-b	
44648	G8 III-IV	$1 \frac{1}{2}$	2-a		79675	K1 III	$3 \frac{1}{2}$	4-a	
44649	G8 III-IV	$3^{\frac{1}{2}}$	1-a		79702	KI IV	2	1-b	
45388	K2 III	4	1-a		80792	K0 III-IV	3	2-b	
45410	KO III-IV	$2 \frac{1}{2}$	2-a	123	81338	K2 III	4	1-b	
45636	K2 III	${ }_{3}^{4}$	1-a		83285	K0 III	3	2-b	
45742	K1 III-IV	3	2-a		83491	G8 III	$1 \frac{1}{2}$	2-b	
45878	G8 III	1	1-c		83564	K2 III-IV	3	2-a	

TABLE 2 - continued

HD or BD	Sp	CN	Number; Quality	$\begin{gathered} \mathrm{S} \\ (\mathrm{~km} / \mathrm{sec}) \end{gathered}$	HD or BD	Sp	CN	Number; Quality	$\begin{gathered} \mathrm{S} \\ (\mathrm{~km} / \mathrm{sec}) \end{gathered}$
83588	K2 V	0	1-b		109654	KO III	3	2-b	47
84779	K0 III	4	2-b		109702	K2 III	$3 \frac{1}{2}$	2-b	
85459	G9 III-IV	2	2-b		109894	G9 III	2	2-b	
85472	G8 IV	1	3-a		110463	K2 V	0	2-b	
85945	G8 III	2	1-b	78	110762	K2 III	4	2-b	
86217	K2 III	2	1-b		111093	K1 III-IV	4	1-b	
86335	Kl III-IV	3	2-b	21	111094	KO IV	1	1-c	
86661	G8 IV	0	2-b	198	111850	KO III-IV	3	2-b	
87045	K1 III	$2 \frac{1}{2}$	1-b		112395	G9 III	$1 \frac{1}{2}$	2-b	
87421	K1 III	$2 \frac{1}{2}$	2-b		113253	G9 III-IV	$2 \frac{1}{2}$	2-b	
+5901290	K0 III-IV	$1{ }^{1}$	1-c		114107	G8 III-IV	1	1-b	
88800	K0 III-IV	3	1-b		114535	K1 II-III	3	2-b	
88999	K2 III	3	2-b		114633	G9 III	3	$2-\mathrm{b}$	
89523	G8 IV	0	1-c		115019	K2 II	$2 \frac{1}{2}$	1-b	
89862	K0 III-IV	2	2-b		115442	KO III-IV	$2 \frac{1}{2}$	2-b	
90222	G8 III	2	1-b		115720	G9 IV	$2 \frac{1}{2}$	2-b	
90715	G8 III-IV	2	1-b		115749	G8 III	1	1-c	
90859	K0 III-IV	2	1-b		116956	G9 IV-V	0	2-b	
91810	K2 III	4	1-b		117417	K0 III	$2 \frac{1}{2}$	2-b	
91971	G9 III	3	1-b		119332	KO IV-V	0	2-b	
93859	K2 III	3	2-b	33	119347	KO IV	0	1-b	
94631	KO III-IV	3	2-b	26	119549	K1 III	3	2-b	
94862	G8 III	$2 \frac{1}{2}$	2-a		123338	KO III-IV	3	2-b	
95001	G9 III-IV	$2 \frac{1}{2}$	2-a		123977	K0 III-IV*	$2 \frac{1}{2}$	$2-\mathrm{b}$	94
95098	K2 II-III	3	2-a		124319	G9 III	2	2-b	
95690	K2 V	0	1-a		125260	K2 III	4	2-b	
96688	K0 III	$1 \frac{1}{2}$	2-b		125918	G9 II	$3 \frac{1}{2}$	1-b	
96708	G8 III	3	2-b		126186	G8 IV	1	1-b	
96717	KO IV	2	1-a		+57 ${ }^{\circ} 1509$	K1 III	$2 \frac{1}{2}$	1-b	
97934	K0 IV	$2 \frac{1}{2}$	1-a		127760	K2 III	$3 \frac{1}{2}$	1-b	
98214	K0 III	3	3-a		+5501691	KO IV	0	1-c	
98316	G8 III	2	1-a		128386	G9 III	2	1-b	
99283	K0 III	3	1-a	41	128781	K1 III	3	1-b	
99489	K0 III	$2 \frac{1}{2}$	2-b		129267	K0 III-IV	1	1-b	
99807	K0 III-IV	2	1-b		129580	G8 IV	0	$1-\mathrm{b}$	69
100403	K0 III	$3 \frac{1}{2}$	$2-\mathrm{b}$		129937	K2 III	$2 \frac{1}{2}$	1-b	
100615	KO III	3	1-a	38	130499	K2 III	3	1-b	
101090	K2 II-III	4	1-b		131219	KO III	$3 \frac{1}{2}$	2-b	
102194	K2 III	2	2-b		148228	G8 III	2	1-b	27
102251	K0 III	3	1-b		152153	K0 IV	3	1-b	9
102569	K1 III	$2 \frac{1}{2}$	2-b		+2602979	G8 III-IV	1	1-c	10
102956	KO III	3	3-b		156774	K2 III*	4	1-a	51
103605	K1 III	$3 \frac{1}{2}$	1-b	29	156775	K1 III-IV*	3	1-a	41
104239	K1 IV	1	1-b		156841	K0 III-IV	4	1-a	
105440	KO IV	2	$2-\mathrm{b}$		156874	KO III	$2 \frac{1}{2}$	1-b	19
105719	K0 IV	$1 \frac{1}{2}$	2-b		+2802720	G8 II-III	0	1-c	
106102	K2 III-IV	3^{2}	2-b		157150	G8 III	1	1-c	
106711	KO III-IV	2	1-b		157294	G9 III*	$2 \frac{1}{2}$	1-a	110
107325	K2 III-IV	2	$4-\mathrm{b}$	41	158038	K1 IV*	3	1-a	47
107468	K0 III*	4	2-b	88	158331	G8 IV-V	0	1-a	
107469	K0 IV	1	3-b	73	158332	Kl IV*	0	1-a	142
107854	K1 II-III	$2 \frac{1}{2}$	3-b	59	158416	K2 III	2	1-a	
107949	K2 III	2	1-b		+26*3026	G8 IV	0	1-c	26
108123	K1 III	$2 \frac{1}{2}$	4-b	50	158507	G8 II-III	2	1-a	
108381	K2 III*	3	5-b	22	159027	K2 III	3	1-a	
108466	K1 III*	$3 \frac{1}{2}$	3-b	44	159479	K2 III*	3	1-a	19
108805	G8 III*	3	$3-\mathrm{b}$	57	162113	K0 III	3	1-b	69
108861	G9 III	3	1-b	41	162135	G9 III	0	1-c	
109011	K1 V	0	2-b		166070	K1 III*	4	$1-\mathrm{c}$	37
109012	K2 III*	2	3-b	77	166730	G8 III*	3	1-c	58
109508	G8 IV	1	1-c		166842	K0 III-IV*	4	1-a	47
109627	KO III-IV*	3	3-b	61	167132	G8 IV*	2	1-c	44

TABLE 2 - continued

HD or BD	Sp	CN	Number; Quality	$\underset{(\mathrm{km} / \mathrm{sec})}{\mathrm{S}}$	HD or BD	Sp	CN	Number; Quality	$\underset{(\mathrm{km} / \mathrm{sec})}{\mathrm{S}}$
167275	K0 II*	4	1-a	93	186223	K2 III*	3	2-b	47
167304	K1 III-IV	3	1-a	45	186260	G8 III*	$2 \frac{1}{2}$	1-b	65
167472	Kl III*	4	1-a	58	186378	K2 II-III	4	1-b	68
168293	G8 III	1	1-c		186486	K0 II*	$2 \frac{1}{2}$	1-b	
168622	K0 III*	3	1-c	37	186517	K0 II-III*	2	1-b	71
169573	K0 III*	3	1-c	70	+2703492	G8 III	1	1-c	
169797	G8 III-IV*	1	1-a	25	186815	K2 III	4	2-b	21
170289	K1 II	1	1-c		+2503944	K0 II-III	1	1-c	
170737	G8 III-IV*	0	1-b	195	186930	K0 II-III	3	1-b	
170738	G8 III-IV*	3	2-b	92	187162	G8 II-III*	1	1-b	64
171164	K1 III*	2	1-b	63	187193	KO II-III	$2 \frac{1}{2}$	1-b	72
171830	G7 III*	$3 \frac{1}{2}$	2-b	61	187280	Kl III*	2	1-c	72
172132	K1 III*	3 3	1-b	38	187614	G8 III*	$2 \frac{1}{2}$	1-b	$\xrightarrow{7}$
173132	G8 II	$2 \frac{7}{2}$	1-b		+2603688	K2 II-III	4	1-b	≥ 113
173367 173435	K9 II-III*	2	1-b	129 26	188258 188259	K1 III-IV*	3 3	l-b $1-b$	29 36
173702	G8 III-IV	${ }_{2}$	2-b		188566	K1 III***	$3 \frac{1}{2}$	$1-\mathrm{b}$	50
173780	K2 III*	3	1-b	9	189108	K0 II-III*	2	1-b	52
+26.3350	K2 III	3	2-b		189127	G9 III	3	3-a	58
+2703110	KO III-IV	2	1-b		189251	G8 II	3	1-b	
173909	K0 III*	2	1-b	75	189475	K2 II	3	1-b	
+2703112	K2 III	2	2-b		189533	G9 III	4	2-b	20
174180	K1 II-III	4	1-b		189843	G8 III-IV	4	1-b	
174414	K2 III*	3	1-b	36	190913	K0 III	3	1-b	
174695	K0 III*	$3 \frac{1}{2}$	1-b	36	191009	G9 III	2	1-b	
174733	G9 III-IV	4	1-b		192491	K0 III-IV	3	1-b	
174881	K1 II-III	3	1-b	30	192806	K2 III*	$2 \frac{1}{2}$	1-b	26
175204	G8 III-IV*	1	1-b	42	192892	G9 II-III*	2	1-b	33
+2603394	G8 II-III*	3	1-b	45	193031	G8 III	3	1-b	
175940	K2 III*	3	1-b	59	+28.3682	G8 IV	0	1-c	
176230	K0 III*	4	1-b	54	193094	K1 III	3	1-b	19
176527	K2 III*	$2 \frac{1}{2}$	1-b	27	193221	K2 III*	4	1-b	24
+26.3430	K0 III*	4	1-b	65	193287	K0 III-IV	4	1-b	
+2803155	K1 III	4	1-b		193342	K1 III	2	1-b	
+2703217	K0 III-IV	0	1-c		194033	K2 II-III	3	1-b	11
178276	K2 III-IV	$3 \frac{1}{2}$	1-a		194071	G8 II-III*	$2 \frac{1}{2}$	1-b	30
178539	Kl III	4	1-a	16	194241	K1 III-IV	$3 \frac{1}{2}$	4-a	
$+2803210$	G8 II	2	1-a		+2803729	K0 III**	3 3	1-b	89
+2603472 +2603485	${ }_{\text {KO }}^{\text {KO }} \mathrm{II}{ }^{\text {Ib }}$	2	1-a	50	194260 194403	G8 III-IV	3 3	5-a	26
180006	K0 II-III	3	1-b	32	194450	K1 III	3	1-b	39
180161	G8 V	0	1-b		194759	K2 II-III	3	1-b	
+28.3245	K0 III-IV	$3 \frac{1}{2}$	1-a		195100	G8 III*	2	4-a	
+2803250	G8 III	2	1-a		195176	G8 III	3	4-a	
180315	K2 III	3	1-a		+28.3761	G8 III	1	1-c	
180656	K1 II	$3 \frac{1}{2}$	1-b		195273	K0 II-III*	3	1-c	52
+2803262	G8 II-III	31	1-a		+4103775	K0 II	2	2-c	
181069	K1 III	${ }^{4}$	1-a		+2703773	K0 IV	$2 \frac{1}{2}$	1-b	36
182218	KO Ib-II*	3	2-a		195509	G9 III*		1-b	40
182617	K1 III*	3	1-b	28	195647	K0 III	3	5-a	
183399	Kl III*	3	1-b	26	195712	G8 II ${ }^{\text {c }}$	2	1-b	51
+2803339	G8 IV	0	1-c		195790	G8 III*	2	1-b	24
183491	K0 III	4	1-b	15	195835	K0 II	4	1-b	
183753	K2 II-III*	1	1-b	141	195987	K0 IV*	0	5-a	70
183754	K2 II	2	1-b		196134	K0 III-IV	11	5-a	46
+2803367	G8 IV	1	1-c	5	196360	G8 III	$1 \frac{1}{2}$	5-a	
184010	K0 III-IV	2	1-b	16	197139	K2 III	$2 \frac{1}{2}$	4-a	63
+27*3426	G8 III	1	1-c		198821	Kl III*	3	1-b	13
184538	K2 III*	3	1-b	13	+2504418	G8 IV	0	1-b	
185241	K1 III*	3	1-b	39	199375	K1 III-IV*	3	2-b	19
185289	G7 III*	2	1-b	12	199440	G8 III*	$2 \frac{1}{2}$	1-b	44
185982	G8 III*	$2 \frac{1}{2}$	2-b	55	199512	K1 IV	2	1-b	

TABLE 2 - continued

HD or BD	Sp	CN	Number; Quality	$\underset{(\mathrm{km} / \mathrm{sec})}{\mathrm{S}}$	HD or BD	Sp	CN	Number; Quality	$\begin{gathered} \mathrm{S} \\ (\mathrm{~km} / \mathrm{sec}) \end{gathered}$
199693	K2 III	1	1-c	59	208563	K2 II-III	2	1-a	
199717	G8 III-IV*	2	1-b	56	208667	K1 III-IV	3	3-a	
200206	K1 III	3	1-b	23	208700	K1 III*	4	2-b	53
200491	G8 III*	$2 \frac{1}{2}$	1-b	27	208799	K1 IV	3	1-a	
200578	KO II-III*	3	$2-\mathrm{b}$	28	208839	K1 III	2	3-a	
200679	K0 Ib*	$3 \frac{1}{2}$	1-b		209180	K1 III-IV	2	1-b	
200831	K2 III	4	1-a	20	209181	KO III-IV	$1 \frac{1}{2}$	3-a	48
200844	KO II	2	2-a		209543	G9 III-IV*	$2 \frac{1}{2}$	3-b	58
201051	KO II-III	$2 \frac{1}{2}$	3-b	29	209694	K1 IV	3	1-b	
+2803995	K0 III-IV	1	1-c		209761	K2 III	3	3-b	29
201626	G9 ${ }^{\text {* }}$	0	2-b	≥ 140	209992	K0 Ib	3	1-a	
+2703988	G8 II-III	2	1-b		209994	G6 III**	1	2-b	90
201669	G8 III*	$2 \frac{1}{2}$	1-b	73	210026	KO III*	$3 \frac{1}{2}$	2-b	31
201890	K1 III	3	1-a		210144	K0 IV	0	1-a	253
202089	K2 III	1	1-c		210211	G8 III-IV	$1 \frac{1}{2}$	3-a	
202365	G9 II-III*	3	1-b	110	210373	Kl IV	2	3-a	
+2704021	G8 IV	0	1-c		+205090	KO III-IV	4	1-a	
202521	K2 III*	4	1-b	71	210608	KO III*	$3 \frac{1}{2}$	2-c	28
202573	G8 II-III	1	$2-\mathrm{b}$	162	210685	K0 III*	2	2-b	37
202696	K0 III-IV	$2 \frac{1}{2}$	1-b		210789	K1 III-IV*	$1 \frac{1}{2}$	3-b	70
202975	G8 II-III	$2 \frac{1}{2}$	2-a	59	210801	K2 III	3	3-a	
203030	G8 IV**	0^{2}	1-b	32	210925	K1 III*	$1 \frac{1}{2}$	2-b	131
203344	K1 III*	3	1-a	126	211006	K2 III	$3 \frac{1}{2}$	2-b	30
203886	KO III-IV*	$2 \frac{1}{2}$	1-a	16	211153	G8 Ib-II	1	2-a	
204079	K1 IV*	0	1-b	139	+284330	G8 III	0	1-c	
204415	KO III	2	1-a	28	+22 ${ }^{\circ} 4593$	KO III	3	1-b	
+2604170	Kl III-IV	4	1-b		+254696	K2 III	3	2-b	
204539	K2 III*	4	2-b	48	211407	G8 III-IV*	3	2-b	78
204540	K2 III*	4	2-b	17	211432	G9 III	3	2-b	38
204642	K1 III-IV*	3	2-b	97	211460	G7 II-III*	$1 \frac{1}{2}$	$2-b$	194
204711	K1 II-III*	3	1-b	103	211555	K1 III*	$3 \frac{1}{2}$	$2-\mathrm{b}$	44
204721	KO III	2	1-b		+23 ${ }^{\circ} 4513$	G8 III	1	1-b	87
204878	KO II	1	1-b		211984	G8 II-III	2	1-a	
204892	KO III-IV	$2 \frac{1}{2}$	1-b		212005	KO III-IV	2	1-b	
204923	K1 III*	$2 \frac{1}{2}$	$1-\mathrm{b}$	161	212136	G8 III	3	$2-\mathrm{b}$	
204934	G8 III*	$2 \frac{2}{2}$	1-b	15	+21 ${ }^{\circ} 4738$	G8 III-IV	1	1-a	
205011	G8 Ib	$3 \frac{1}{2}$	1-a		212416	K2 III-IV	$3 \frac{1}{2}$	2-a	
+2604191	G8 II-III	1	1-c	116	212596	K2 III	3	1-b	
205316	K0 II*	1	1-b	106	212750	K0 III*	3	1-a	65
205540	KO III	2	1-b		212833	K2 III-IV	3	2-a	
205553	G8 III	3	1-a		213013	KO IV	0	1-b	20
205602	K0 III	3	2-8	12	213025	G8 III-IV*	$2 \frac{1}{2}$	1-a	49
205760	Kl III-IV*	4	l-b	17	+20 ${ }^{\circ} 5162$	G8 III	1	1-a	
+2904458	G8 IV	1	1-b	26	213178	K0 III*	3	1-a	19
205836	K0 II-III	1	1-b	187	213179	K2 II	4	1-a	
206027	G9 III	3	2-b	29	+24*4603	KO III	3	1-a	
206169	KO III	3	1-b		213787	G9 IV	2	3-b	
206536	G8 III-IV	3	2-b		213803	G8 IV*	$2 \frac{1}{2}$	1-c	36
206646	K1 III	2	1-a	20	213930	G8 III-IV	3	$2-\mathrm{b}$	24
206842	K1 III	3	2-b	25	213994	G9 III-IV	1	1-a	24
206889	K1 III*	4	l-b	93	214099	K0 III-IV	4	1-a	
206990	G9 III-IV	$3 \frac{1}{2}$	2-b		214265	KO II-III*	3	1-a	73
207086	G9 III	$2 \frac{7}{2}$	2-b		214434	KO III-IV*	3	1-a	28
207089	G8 II-III*	4	1-a		214543	G8 II-III	1	1-c	
207134	K2 III*	$2 \frac{1}{2}$	4-a	114	214757	K0 II-III	2	2-a	
207244	K0 III-IV	1	1-c		215041	K2 III-IV	$2 \frac{1}{2}$	2-a	
207470	G7 II-III*	2	1-c	44	215183	G9 III	$\frac{1}{3}$	2-a	65
207719	K0 III	3	1-a		215361	K1 III-IV	3	2-a	
207740	G8 IV*	0	1-b	32	215445	G9 III-IV	$1 \frac{1}{2}$	2-a	12
208107	K1 III-IV	3	1-a		215522	K0 III-IV	0	1-c	
208201	G8 II-III	$1 \frac{1}{2}$	2-b		215567	K1 III	3	1-b	
208330	KO III	1	1-c		215771	KO III-IV	$2 \frac{1}{2}$	1-a	

TABLE 2 - continued

HD or BD	Sp	CN	Number; Quality	$\begin{gathered} \mathrm{S} \\ (\mathrm{~km} / \mathrm{sec}) \end{gathered}$	HD or BD	Sp	CN	Number; Quality	$\begin{gathered} \mathrm{S} \\ (\mathrm{~km} / \mathrm{sec}) \end{gathered}$
$+25^{\circ} 4819$	KO IIp	0	1-b		221293	G9 III	3	1-a	20
216046	K2 II-III	3	1-a		221354	K1 V*	0	2-a	
216218	G9 II	3	2-a		221364	G8 IV*	1	1-b	15
+2804474	G8 III-IV	1	1-b		221395	K2 III	3	2-b	
216502	K1 III-IV*	$3 \frac{1}{2}$	1-b	35	221639	KO III-IV	$1 \frac{1}{2}$	2-a	50
216586	K1 III-IV*	4^{2}	1-b	60	221670	G9 III	$2 \frac{1}{2}$	2-a	24
216712	G8 III-IV	3	1-a		221786	K1 III-IV	2	$2-\mathrm{b}$	
216723	G7 II-III*	2	1-b	40	222067	G9 III-IV	$3 \frac{1}{2}$	1-b	
216730	G8 III	2	2-b		222078	K0 III-IV	2	1-b	
+58*2522	G8 IV	1	1-a		222218	KO III	2	2-a	44
217673	K0 II-III*	$3 \frac{1}{2}$	3-a		222366	K0 IV	0	$2-\mathrm{b}$	
217711	Kl III	2^{2}	2-b	12	222390	K0 II-III*	4	1-b	49
217797	KO III	2	1-a		222618	G8 III	3	2-a	16
+5702673	K2 V	0	1-a		222797	G9 III	$1 \frac{1}{2}$	3-b	16
217850	G8 V	0	1-a		222842	K0 II-III*	3	1-b	26
217944	G8 IV	1	4-a	22	222886	G9 III-IV	2	1-a	
218187	G8 III	$3 \frac{1}{2}$	3-a	26	223019	G8 III-IV*	3	1-c	78
218356	K1 Ib-II*	3	3-b		223094	K2 III	0	1-c	34
218468	K0 III	3	2-b	14	223165	K2 II-III*	3	1-b	42
218660	K1 III*	3	1-b	33	223211	K2 III-IV*	3	3-b	39
218803	G8 III-IV	$2 \frac{1}{2}$	4-a		+58²659	K1 III	3	1-a	
+59*2660	K0 III	1	2-b		223792	G9 III	$2 \frac{1}{2}$	2-b	37
218935	G8 III-IV	1	1-b	119	223847	KO III	3	1-a	62
219110	G8 III	2	1-b	54	224116	K2 III	2	3-a	
219310	K2 III	4	2-a	58	+56³112	K0 III-IV	3	1-b	
219446	G9 III	1	2-b		224355	G8 Ib	3	1-a	
219800	G8 III-IV*	2	2-b	62	224784	G9 III-IV	$2 \frac{1}{2}$	3-a	65
220265	K1 III	$2 \frac{1}{2}$	2-b		224907	K2 III-IV	$2 \frac{1}{2}$	2-a	
220539	KO III	$2 \frac{1}{2}$	$2-\mathrm{b}$		224940	G9 III	3	3-a	
220583	G8 III	1	1-b		+5902815	G9 II-III	1	1-a	
220952	K1 IV	1	2-b	49	224981	K2 II	4	1-a	
221039	K0 III-IV	2	2-b		225170	G8 IV	2	1-a	
221113	Kl III-IV	$2 \frac{1}{2}$	2-b	58	225261	G9 V	0	2-a	
221204	KO III-IV	2	2-b		225274	G9 III	3	1-a	

[^0]the weak CN stars relative to normal CN stars. The " z " components of distance have been computed for the program stars listed in Table 2 with luminosities II-III through III-IV. The luminosity classes have been converted to visual absolute magnitudes with Roman's calibration (1952). Whenever MK classifications from elsewhere are available, as indicated by asterisks in Table 2, the absolute magnitude depends on the mean of the two luminosity classifications. The Henry Draper visual magnitudes have been used when available, with no correction for interstellar extinction. For the BD stars, the magnitudes listed in the proper-motion catalogues have been used. The largest source of error in the resulting " z " distances is the absolute magnitude. Virtually all the program stars are within 300 pc of the galactic plane. For 65 per cent of the stars, the galactic latitude is less than 30°. Thus the error in " z " is less than 50 pc in most cases.

The sampling is not uniformly distributed in galactic latitude, and the depth of the survey is relatively small. Nevertheless, the frequency distributions in " z " for the stars with both normal and weak cyanogen absorption can be approximated by normal distribution curves. The dispersions of the normal curves are 121 and 162 pc for 462 normal CN stars and 84 weak CN stars, respectively. The stars with normal cyanogen absorption actually deviate significantly from their normal distribution curve, but in that an excess of stars are concentrated within 20 pc of the galactic plane. The comparison clearly shows a lower concentration toward the galactic plane for the stars with weak cyanogen absorption.

IV. SPACE VELOCITIES

Space velocities have been computed for 256 stars with luminosity classes II-III through IV for which radial velocities are available. One hundred and twenty radial velocities are from David Dunlap Observatory (Heard 1956), 113 are from Wilson's catalogue (1953), and an additional 25 are from spectrograms obtained by the author, using the Mount Wilson 60 -inch reflector and x-spectrograph. Proper motions for 239 of the stars have been take from the Yale proper-motion catalogues (Barney 1953; Barney, Hoffleit, and Jones 1959), while the remainder are from the General Catalogue (Boss 1937). The proper motions from the General Catalogue and from the $+57^{\circ}$ Yale zone have been converted to the FK3 system, using Kopff's corrections (1939). The proper motions for the remaining Yale zones are already on the FK3 system. The resulting space velocities, which have been corrected for solar motion of $15.5 \mathrm{~km} / \mathrm{sec}$ toward R.A. $=265^{\circ}$, Dec. $=+21^{\circ}$ (Vyssotsky and Janssen 1951), are listed in the last column of Table 2.

In Table 2, the velocity of HD 201626 is based on its radial velocity alone. This is a CH star (Keenan 1958b), with no available absolute magnitude. The velocity of $+26^{\circ} 3688$ is based on proper motion alone and is included in Table 2 only because it is also listed in Table 4.

The frequency distributions for the space velocities are shown in Figure 2. The stars of luminosity class II-III through III-IV have been divided into three groups, normal and strong CN, slightly weak CN, and weak CN, and are shown in Figure 2, a, b; and c, respectively. Figure 2, d, shows the distribution for stars of luminosity class IV with weak cyanogen absorption. Seven stars of luminosity class IV with stronger cyanogen absorption are included in Figure 2, a and b, shown as crosshatched areas. Figure 2, e, will be discussed in Section VI.

The accuracy of individual space velocities is limited by the largest source of accidental error-the absolute magnitude, which is accurate to about 1 mag. and which gives for typical giants an uncertainty of about $20 \mathrm{~km} / \mathrm{sec}$, as compared with about $5 \mathrm{~km} / \mathrm{sec}$ for the uncertainty caused by the error in proper motion. The random errors increase the dispersions of the frequency distributions. Nevertheless, it is evident, even with the low precision of the individual velocities, that the dispersions of the frequency distributions increase with decreasing cyanogen strength.

The frequency distribution for the stars of normal cyanogen strength (Fig. 2, a) is
similar to the frequency distribution for Miss Roman's strong-line and weak-line stars combined (1952). On the other hand, the space velocities of the subgiants (Fig. 2, d) generally are less than those of the subgiants compiled by Eggen (1960).

V. 60-INCH ABSOLUTE MAGNITUDES

The precision in absolute magnitude has been increased for 37 program stars by means of slit spectrograms obtained with the Mount Wilson 60 -inch reflector and x-spectrograph, using both the $4^{\prime \prime}$ and $8^{\prime \prime}$ cameras, with dispersions of approximately 80 and $40 \mathrm{~A} / \mathrm{mm}$. This group consists of 29 weak and slightly weak CN giants and subgiants, 6 normal CN giants and subgiants, and 2 weak CN supergiants (one of which is spectral type K3 and thus not listed in Table 2).

In order to establish a calibration-curve for absolute magnitude, spectra were also obtained for 42 standard stars from spectral type G0-K4. All the plates are baked II a-O emulsion, standardized with the wedge spectrograph located in the 60 -inch dome. The exposure times of the calibration plates are generally about one-third as long as the

Fig. 2.-Frequency distributions for space velocities of G8-K2: a, strong and normal CN giants (CN 3,4); b, slightly weak CN giants (CN 2, 21 2) ; c, weak CN giants (CN0,1, 11 $) ; d$, subgiants with weak CN (CN 0, 1); and e, weak CN giants, based on improved absolute magnitudes. The crosshatched areas in sections a and b show stars of luminosity class IV; the crosshatched areas in section e show stars from Griffin and Redman's list (1960).
exposure times of the stellar plates, to compensate partially for the intermittency effect due to the multiple trailing of the stellar images along the spectrograph slit. Several calibration plates of varying exposure times were exposed at regular intervals throughout each night. Development times of both calibration plates and stellar spectrograms were $5 \frac{1}{2}$ minutes at $66^{\circ} \mathrm{F}$ in D-19.

The 60 -inch standard stars are from the lists of Wilson and Bappu (1957), Oke (1957), and Keenan and Keller (1953). A number of these stars have high space velocities and/or weak cyanogen absorption. The method of Wilson and Bappu is apparently relatively insensitive to abundance differences and has a high internal accuracy. Oke's method depends on line ratios and thus also is relatively insensitive to abundance differences, while Keenan and Keller were concerned specifically with luminosity criteria suitable for high-velocity stars. Other spectroscopic parallaxes are available but generally depend on visual estimates of line strengths or line ratios or are expressed in terms of MK luminosity classes instead of absolute magnitudes. Reliable trigonometric parallaxes are available for the majority of the stars used for calibration, except for the supergiants (Jenkins 1952). For absolute magnitudes fainter than -1, each value used for the cali-bration-curve is the mean of the absolute magnitudes available from the above four sources. For stars brighter than -1 , the values of Wilson and Bappu are used. The internal accuracy of the absolute magnitudes of both Wilson and Bappu and Oke is ± 0.3 mag (m.e.). The resulting mean absolute magnitudes for the standard stars generally are accurate to $\pm 0.3 \mathrm{mag}$. also. The G5-K3 stars are listed in Table 3. The sources for the spectral and luminosity classifications are the same as for the standard stars in Table 1, and the asterisks in Table 3 have the same meaning as in Table 1. For stars in common with Table 1, the Schmidt CN strengths have been repeated in column 3 of Table 3. For an additional seven stars in Table 3, "cyanogen equivalents" have previously been measured (unpublished). The results have been discussed elsewhere (Yoss 1958). These cyanogen equivalents have been included in column 3 of Table 3 and are shown in parentheses. They have been converted to the CN step scale of the present investigation. The seventh and eighth columns of Table 3 give the mean absolute magnitude and the sources of the absolute magnitudes making up the mean.

Microphotometer tracings on a scale of direct intensity were made of all 60 -inch spectrograms at the California Institute of Technology. In most cases only one plate per star is available. Therefore, the analyzing slit was set relatively wide -20 and 30μ for the $4^{\prime \prime}$ and $8^{\prime \prime}$ plates, respectively-reducing plate grain effect but, at the same time, reducing resolution. Line-intensity ratios involving lines which are luminosity-sensitive have been measured relative to a fiducial continuum. The ratios are relatively insensitive to the exact location of the continuum or zero intensity and also to the calibration-curve used to produce the direct-intensity tracing. Ratios used by Keenan and Keller (1953) and Oke (1957) were measured on the 60 -inch tracings. Of these, several have steep cali-bration-curves, others have relatively large scatter, and two ratios in particular are strongly correlated with cyanogen absorption and therefore cannot be used. These last two ratios, $\lambda 4161 / \lambda 4149$ and $\lambda 4196 / \lambda 4198$, both fall within the cyanogen absorption band. The line ratios found to produce good calibration-curves for the $8^{\prime \prime}$ plates are $\lambda 4077 / \lambda 4063, \lambda 4077 / \lambda 4071, \lambda 4129 / \lambda 4127, \lambda 4152 / \lambda 4154$, and $\lambda 4215 / \lambda 4250$. The line ratios producing useful calibration-curves for the $4^{\prime \prime}$ plates are $\lambda 4077 / \lambda 4063$, $\lambda 4077 / \lambda 4071$, and $\lambda 4215 / \lambda 4250$. These individual ratios have been combined to form mean line ratios for each dispersion. The mean line ratios for the $4^{\prime \prime}$ dispersion are systematically less than those for the $8^{\prime \prime}$ dispersion by 0.07 . After this correction has been applied to the $4^{\prime \prime}$ ratios, they have been combined with the $8^{\prime \prime}$ line ratios to form a single calibration-curve relating line ratio and absolute magnitude. The mean line ratios are shown in the sixth column of Table 3 , where, in the case of the 4 " plates, the ratios have been corrected to the $8^{\prime \prime}$ system; the number of plates is given in parentheses. The cali-bration-curve for the G5-K3 stars is shown in Figure 3. The slope changes slightly over

TABLE 3
60-INCH STANDARD STARS FOR SPECTRAL TYPES G5 THROUGH K3

HD	Sp	$\underset{\mathrm{CN}}{\text { Schmidt }}$	$\underset{\mathrm{CN}}{60-\mathrm{in}} .$	$\underset{\triangle \mathrm{CN}}{60-\mathrm{in}} .$	Mean Line Ratio	\bar{M}_{v}	$\begin{aligned} & \text { Ref } \\ & * * * \end{aligned}$
3546	G8 III	(1)	+0.08	-0.09	1.08 (1)	+1.7	a,d
3627	K3 III		. 21	+0.01	1.07 (1)	+0.3	c, d
3651	KO V*	(1)	. 08	+0.02	0.73 (1)	+5.2	b,d
4128	K0 III		. 18	-0.01	1.10 (1)	+0.8	b, c, d
6582	G5 Vp*	0	. 03	-0.02	0.54 (1)	+5.6	a, b, d
9270	G8 III*	(3)	. 22	+0.01	1.23 (1)	-0.2	,
27371	K0 III*	(31)	. 21	+0.02	1.13 (2)	+0.6	b, c, d
124897	K2 IIIp*	(2)	. 18	-0.02	1.09 (2)	+0.5	c, d
135204	G8 V		. 06	0.00	0.69 (1)	+5.2	a,b,d
144579	dG8		. 03	+0.01	0.56 (3)	+6.3	b,d
148897	G8 II		. 09	-0.11	1.12 (2)	+0.2	c
150275	K1 III	1	. 09	-0.07	0.96 (2)	+2.2	c,d
153210	K2 III		. 21	+0.02	1.06 (1)	+0.5	c, ${ }^{\text {d }}$
161797	G5 IV*	(1)	. 07	-0.04	0.88 (2)	+3.7	,
163770	Kl II	(4)	. 25	+0.01	1.16 (2)	-2.5	c
167042	Kl III	1	. 11	-0.02	0.91 (1)	+3.2	c, d
168723	KO III-IV*	2	. 13	-0.03	0.95 (2)	+2.0	b,d
180809	K0 II	$3 \frac{1}{2}$. 25	+0.01	1.13 (1)	-2.4	
182572	G8 IV	0	. 08	-0.03	0.86 (1)	+3.9	a,b,d
184406	K3 III	3	. 23	+0.08	0.95 (2)	+2.3	c,d
185351	K0 III		. 13	-0.03	1.01 (1)	+1.9	c,d
186791	K3 II*		. 20	-0.04	1.07 (2)	-2.1	c
188512	G8 IV*	1	. 07	-0.05	0.86 (2)	+3.5	b,d
197989	K0 III*	2	. 15	-0.03	1.15 (1)	+1.2	b, c, d
198149	KO III-IV	1	. 12	-0.02	0.88 (2)	+2.8	a,b,c,d
206778	K2 Ib*	4	. 15	-0.11	1.09 (1)	-4.6	c
206859	G5 Ib*	4	. 22	-0.04	1.43 (1)	-4.0	c
212943	K0 III	2	. 11	-0.04	0.93 (3)	+2.3	c,d
216228	K1 III		. 19	+0.01	1.13 (1)	+1.2	b,d
219134	K3 V*	0	. 01	0.00	0.72 (2)	+6.5	b, c, d
219615	G7 III	2	. 07	-0.12	1.12 (1)	+0.8	a,d
222107	G8 III-IV*	1	. 07	-0.09	0.95 (2)	+2.1	b, c, d
222404	K1 IV*	2	+0.17	+0.02	0.94 (2)	+2.4	b, c, d

* Johnson and Morgan (1953) or Morgan and Roman (1950).
** a) Keenan and Keller (1953), b) Oke (1957), c) Wilson and Bappu (1957), d) Jenkins (1952).
the spectral range, but the change is less than the scatter of the points and therefore cannot be clearly defined. The weak CN stars are shown as open circles. No systematic dependence of the line ratios on cyanogen absorption is apparent on the basis of these relatively few data. If only trigonometric absolute magnitudes are used, individual points change, but the mean curve changes insignificantly. The solid line represents a weighted mean least-squares solution for the stars between absolute magnitudes -1 and +5.5 . The mean error of a single determination of absolute magnitude from one plate has been determined by intercomparison of pairs of plates, as well as by the leastsquares solution, assuming the mean error of the absolute magnitudes to be $\pm 0.3 \mathrm{mag}$. Both approaches give consistent results, the mean error being about $\pm 0.5 \mathrm{mag}$. for one 60 -inch plate. For stars brighter than -1 , the scatter is large and the slope steep, and thus the calibration-curve cannot be used. The line ratio used by Oke (1957) for the

Fig 3 -Calibration-curve, relating mean absolute magnitude and mean line ratio for the 60 -inch standard stars The open circles represent stars with weak cyanogen absorption. The crosses represent Oke line ratios (1960), converted to the 60 -inch system
bright giants and supergiants, $\lambda 4233 / \lambda 4236$, produces a well-defined calibration-curve for the stars brighter than -1 .

For fifteen standard stars which have also been measured by Oke (1957), the 60 -inch and Oke line ratios show a linear relationship. The Oke line ratios of stars not included in the present investigation have been transformed to the 60 -inch system and are shown as crosses in Figure 3. These points have not been used in the least-squares solution but do show good agreement with the curve.

The "CN discontinuity" has been formed by measuring the ratio of the continuum difference on each side of the $\lambda 4216$ band head of cyanogen divided by the strength of the continuum on the red side of the band head. The CN discontinuity is given in column 4 of Table 3. The least-squares solution for the linear relationship between the Schmidt CN measurements and the CN discontinuity of the 60 -inch plates is

$$
\mathrm{CN}(\text { Schmidt })=-0.1+15.1 \mathrm{CN}(60 \text {-inch }),
$$

with a scatter consistent with the accuracy of the Schmidt data.

A calibration-curve relating CN discontinuity and absolute magnitude has been formed for the 60 -inch standard stars with normal cyanogen absorption. Following the procedure of Keenan (1958b) and Griffin and Redman (1960), the "CN discrepancy," $\Delta \mathrm{CN}$, is defined as the difference between the measured CN discontinuity and the value obtained from the calibration-curve for a given absolute magnitude. The resulting CN discrepancies are given in column 5 of Table 3.

On the Schmidt scale, the weak CN stars are defined as those stars with cyanogen absorption weaker than normal by one or more steps. On the 60 -inch scale, the weak CN stars thus are defined as those stars with CN discrepancies equal to, or greater negatively, than -0.07 . The weak CN stars shown in Figure 3 have been defined in this manner.

A calibration-curve relating spectral type and line ratios has been formed with the mean of the following line ratios: $\lambda 4227 / \lambda 4102, \lambda 4254 / \lambda 4260$, and $\lambda 4325 / \lambda 4340$. For the dwarfs and giants, the internal mean error for a single plate is one subclass. The supergiants define a calibration-curve that deviates two subclasses toward later spectral types from that of the dwarfs and giants.

Five of the standard stars also are radial-velocity standards (Trans. I.A.U. 1955). Seven spectrograms were obtained of all five standards with the $8^{\prime \prime}$ camera, while four spectrograms were obtained for three of the standards with the $4^{\prime \prime}$ camera. Using the effective wave lengths of Wright (1952), a number of suitable absorption lines were found that give consistent measurements of radial velocity relative to the published values for the standards. The mean errors for a single plate are ± 5 and $\pm 10 \mathrm{~km} / \mathrm{sec}$ for the $8^{\prime \prime}$ and $4^{\prime \prime}$ cameras, respectively. The $8^{\prime \prime}$ radial velocities also require a systematic correction of $-7 \mathrm{~km} / \mathrm{sec}$. The mean error for the $4^{\prime \prime}$ plates is consistent with that found by Woolley (1959), while the $8^{\prime \prime}$ mean and systematic errors are consistent with those found by Abt (1960).

Spectral types, CN discontinuities, CN discrepancies, radial velocities, and absolute magnitudes have been measured for the 3760 -inch program stars. The results are given in Table 4, where the spectral and luminosity types and CN strengths from Table 2 are also repeated. The radial velocities, reduced to the sun, are given except in the cases when they have been published previously or when the plate is not suitable for measurement. The number of 60 -inch plates is indicated in parentheses after the visual absolute magnitude.

The calibration-curve for the absolute magnitudes depends on line ratios measured on tracings of relatively short exposures of bright standard stars. The fact that exposure times are considerably longer for the program stars may possibly introduce a systematic error when the calibration-curve is used for determining absolute magnitudes for the fainter program stars. The measurement most subject to systematic error in the photometry is the CN discontinuity, where any error in slope of the assumed characteristic curve directly affects the measurement. For the standard stars, the relationship between the CN strengths of the Schmidt and 60 -inch plates, shown in columns 3 and 4 of Table 3, is approximately linear, with the expected scatter corresponding to the accidental mean errors of the measurements. The scatter is much larger for the program stars, given in columns 3 and 5 of Table 4, and the mean relationship has shifted an amount corresponding to one CN step on the Schmidt scale; the 60 -inch measurements are stronger relative to the standard star relationship. The systematic difference is not correlated with luminosity class. No systematic difference is evident between the CN strengths of the Schmidt spectra on the 10 - and 30 -minute plates or between the stars which have been classified on both program plates and standard star plates of short exposure. Most of the systematic difference therefore probably is in the 60 -inch photometry. Line ratios, on the other hand, are relatively insensitive to variations in the slope of the assumed characteristic curve, and when various curves are used to convert the microphotometer signal to direct intensity, the measured line ratios for a given plate show no significant

TABLE 4
60-INCH PROGRAM STARS

HD or BD	$\underset{S p}{\text { Schmidt }}$	$\underset{\mathrm{CN}}{\text { Schmidt }}$	$\underset{\mathrm{Sp}}{60-\mathrm{in}}$	$\underset{\mathrm{CN}}{60-\mathrm{in}} .$	$\stackrel{60-\mathrm{in} .}{\triangle \mathrm{CN}}$	$\begin{aligned} & 60-\mathrm{in} . \\ & \mathrm{RV} \\ & \mathrm{~km} / \mathrm{sec} \end{aligned}$	$\underset{M_{v}}{60-\text { in. }}$	$\begin{gathered} 60-\mathrm{in} . \\ \mathrm{s} \\ \mathrm{sm} / \mathrm{sec}) \end{gathered}$
2925	G8 III	1	G7	+0.12	-0.05		+1.5 (1)	126
3943	G9 III	1	G4	+0.14	-0.05	-40	+0.8 (1)	49
6009	G8 III-IV	0	G6	+0.05	-0.06	+40	+3.7 (1)	40
9493	G8 II-III	$1 \frac{1}{2}$	G7	+0.19	+0.01	-13	+1.4 (1)	46
9939	K0 IV	1	K2	+0.09	-0.02	-55	+3.7 (1)	95
11363	KO III	$1 \frac{1}{2}$	K1	+0.18	+0.01	-17	+1.5 (1)	30
17190	K2 IV	0	K2	-0.02	-0.08		+5.1 (1)	38
17675	G9 III	$1 \frac{1}{2}$	G8	+0.12	-0.06	-46	+1.3 (1)	56
+2602979	G8 III-IV	1	G7	+0.12	-0.04	-12	+2.1 (1)	8
158038	K1 IV	3	K1	+0.28	+0.11		+1.7 (1)	68
158332	KO IV	0	G9	+0.12	+0.04		+4.5 (2)	66
+2603026	G8 IV	0	G7	+0.11	0.00	-37	+3.9 (1)	25
170737	G8 III-IV	0	G6	+0.05	-0.08		+3.1 (2)	152
+2803367	G8 IV	1	G8	+0.19	0.00	-16	+0.5 (1)	8
+2603688	K2 II-III	4	K0	+0.35	+0.17		+1.4 (1)	≥ 37
+2703773	KO IV	$2 \frac{1}{2}$	K2	+0.23	+0.05	+11	+1.1 (1)	97
200831	K2 III	4	Kl	+0.27	+0.07	-09	+0.5 (1)	22
202573	G8 II-III	1	G4	+0.10	-0.07	-24	+1.7 (1)	57
203030	G8 IV	0	G8	+0.03	-0.02		+5.4 (1)	18
204079	Kl IV	0	K2	0.00	-0.05	-36	+5.4 (1)	54
+264191	G8 II-III	1	G5	+0.14	-0.07	-03	-0.2 (1)	84
205602	KO III	3	G8	+0.24	+0.06	-17	+1.4 (1)	9
+2904458	G8 IV	1	G6	+0.11	-0.03	-01	+2.9 (1)	30
205836	K0 II-III	1	K1	+0.13	-0.03	-02	+2.2 (1)	52
206114	K3 Ib	1	K2	+0.15	-0.07	-10	-1.2 (1)*	
209181	K0 III-IV	112	K1	+0.21	+0.04	+13	+1.5 (1)	46
211153	G8 Ib-II	1	G5	+0.10	-0.11	+12	-0.2 (1)**	
211460	G7 II-III	$1 \frac{1}{2}$	G7	+0.06	-0.09		+2.3 (1)	51
+2304513	G8 III	1^{2}	G9	+0.13	-0.03	-08	+1.9 (1)	41
213994	G9 III-IV	1	G7	+0.10	-0.09	+16	+0.6 (1)	24
215183	G9 III	$1 \frac{1}{2}$	G9	+0.16	-0.01	+12	+1.8 (1)	42
215445	G9 III-IV	$1 \frac{1}{2}$	G8	+0.18	0.00	-18	+1.2 (2)	12
219800	G8 III-IV	2	Kl	+0.19	+0.02		+1.5 (1)	53
220952	Kl IV	2	K2	+0.14	-0.02	-18	+2.2 (1)	69
221364	G8 IV	1	K0	+0.20	+0.02		+1.3 (1)	15
222797	G9 III	$1 \frac{1}{2}$	G7	+0.10	-0.09	-05	+0.8 (2)	11
223094	K2 III	0	G9	+0.13	-0.04	+26	+1.6 (1)	33

variation over the range in slope between the calibration-curves of long and short exposures. The mean difference between the 60 -inch and Schmidt spectral types for the program stars is 0.8 subclass. If a corresponding error were present in the line ratios for absolute magnitude, the maximum error would be 0.3 mag.

VI. 60-INCH SPACE VELOCITIES

Space velocities for the weak CN stars listed in Table 4 have been recomputed, using the absolute magnitudes derived from the 60 -inch spectrograms, and are shown in the last column of Table 4. The resulting frequency distribution is shown in Figure 2, e. Six stars from Griffin and Redman's list with CN anomalies greater negatively than - 0.10 are also included in Figure 2, e. The absolute magnitudes of five of these stars are accurate to within 0.5 mag . The stars and their space velocities in $\mathrm{km} / \mathrm{sec}$ are HD 3546, 102; HD 37160,101 ; HD 81192, 130; HD 188119, 14; and HD 215549, 90. Although the absolute magnitude of the sixth star, HD 199191, is not accurately known, the star has been included on the basis of its high radial velocity, $185 \mathrm{~km} / \mathrm{sec}$. These six stars are shown as crosshatched areas in Figure 2, e.

Figure 2, e, does not include all known weak CN stars with available space velocities, but the stars in the diagram have been selected from random samples on the basis of their cyanogen strengths alone. The frequency distribution for these 27 weak CN stars includes a large percentage of high-velocity stars; 32 per cent have space velocities greater than $80 \mathrm{~km} / \mathrm{sec}$, as compared with 4 per cent for the stars of normal cyanogen absorption.

This investigation has been supported by the Council on Research of the Louisiana State University and by the National Science Foundation. I would like to thank Dr. Leo Goldberg and Dr. Freeman Miller, of the University of Michigan, for making available observing time with the Schmidt and for permitting me access to the plate collection; Dr. I. S. Bowen and his colleagues for permitting me use of the 60 -inch reflector; Dr. Jesse Greenstein and Dr. J. B. Oke for use of the microphotometer of the California Institute of Technology; Dr. J. F. Heard, of David Dunlap Observatory, for kindly reclassifying several of the Dunlap stars; and Miss Katherine Bracher for measuring most of the radial velocities from the 60 -inch plates.

REFERENCES

Abt, H. A 1960, private communication.
Barney, I 1953, Yale Astr Obs Trans, Vol 24
Barney, I , Hoffleit, D., and Jones, R. B. 1959, Yale Astr Obs Trans, Vol 27.
Boss, B 1937, General Catalogue (Washington, D.C.: Carnegie Institution of Washington).
Crawford, D. L. 1960, A J., 65, 343.
Eggen, O. J. 1960, M.N., 120, 430.
Griffin, R. F , and Redman, R. O. 1960, M.N, 120, 287.
Halliday, I. 1955, Ap.J., 122, 222.
Heard, J. F. 1956, Pub David Dunlap Obs., Vol. 2, No. 4.
Jenkins, L. F. 1952, General Catalogue of Trigonometric Stellar Parallaxes (New Haven: Yale University Observatory).
Johnson, H. L , and Morgan, W. W. 1953, Ap. J., 117, 313.
Keenan, P. C 1958a, Trans. I A.U, 10, 447.
-...1958b, Hdb d Phys., ed. S. Flügge (Berlin: Springer-Verlag), 50, 93
Keenan, P. C, and Keller, G 1953, Ap. J., 117, 241.
Kopff, A 1939, A.N., 269, 160.
Morgan, W. W. 1937, Ap. J., 85, 380.
Morgan, W. W , and Roman, N. G 1950, Ap J., 112, 362
Oke, J. B. 1957, Ap. J., 126, 509.
Ramberg, J M 1941, Stockholm Obs. Ann., Vol. 13, No. 9.

Roman, N. G. 1952, Ap. J., 116, 122.
——. 1955, Ap. J., Suppl., Vol. 2, No. 18.
Strömgren, B., and Gyldenkerne, K. 1955, Ap. J., 121, 43.
Vyssotsky, A. N., and Janssen, E. M. 1951, A.J., 56, 58.
Wilson, O. C., and Bappu, M. K. Vainu, 1957, Ap. J., 125, 661.
Wilson, R. 1953, General Catalogue of Stellar Radial Velocities (Washington, D.C.: Carnegie Institution of Washington).
Woolley, R. v. d. R. 1959, M.N., 119, 351.
Wright, K. O. 1952, Pub. Dom. Ap. Obs. Victoria, 9, 167 (No. 3).
Yoss, K. M. 1958, A.J., 63, 61.

[^0]: * Also classified elsewhere on $M K$ system.

