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ABSTRACT 
A program of numerical calculations, carried out by the author, is described and summarized. The 

purpose of the program was to test the suggestion (Zhevakin 1953, 1954a, b; Cox and Whitney 1958; Cox 
1959) that second helium ionization, occurring at a critical depth in a stellar envelope, is the ultimate 
source of cepheid instability. All calculations were performed on an IBM 704 electronic computer. Simpli- 
fied, purely radiative envelope models were adopted for stars of prescribed mass, luminosity, radius, and 
chemical composition, and the negative dissipation in the envelopes was computed numerically as a func- 
tion of these parameters. The Woltjer theory in the first approximation was used to obtain the non- 
adiabatic flux and temperature variations, from which the negative dissipation in the envelopes could be 
computed. Second helium ionization was explicitly included in the calculations, but first helium ionization 
and hydrogen ionization were omitted. 

A strong destabilizing influence, resulting from second helium ionization, was revealed in the envelope 
models for population I cepheids, assuming reasonable helium abundances. The magnitude of the negative 
dissipation in the envelopes was comparable to the estimated positive dissipation in the interiors, for 
reasonable radii. While no definitive conclusions could thus be drawn concerning the sign of the total dis- 
sipation for the entire star, the possibility of pulsational instability is, at any rate, not excluded by these 
calculations. For log L (solar units) = 3.13 and B (helium/hydrogen ratio, by numbers) = 0.15, maxi- 
mum instability for the entire star was attained for a value of the radius about 1.6 times larger than the 
empirical value. For these same values of log L and B and for radii near the observed values, the amplitude 
of the surface flux variations was about O1?? or 0^8 and the phase lag (relative to minimum radius) was 
about 40° or 50°; these values may be considered to be very roughly consistent with observations of classi- 
cal cepheids. It may be inferred from the calculations that, for stars in the cepheid region, first helium 
ionization and hydrogen ionization are not primary causative agents in producing pulsational instability, 
at least for the kinds of envelopes considered here. These ionizations, however, had they been included in 
the calculations, would have increased the magnitude of the pulsational instability (through indirect 
effects) and would have brought the surface flux variations into closer agreement with observation than 
the present calculations show. 

Results for population II cepheids were inconclusive because the low surface gravities of these stars 
(assuming M = 1.25 Mo) invalidated some of the approximations that were used. It is concluded that the 
results of the calculations are generally favorable to the helium-ionization hypothesis, at least as applied 
to the population I cepheids. Because of various uncertainties, however, this conclusion must be regarded 
as tentative. 

I. INTRODUCTION 

This paper presents a description and a summary of some results obtained from a 
project begun by the author in the spring of 1959 at Cornell University and concluded 
during the summer of 1959, while he was acting as a consultant at the Smithsonian 
Astrophysical Observatory in Cambridge, Massachusetts. 

The general purpose of the work to be described here was to effect a quantitative test of 
the suggestion (Zhevakin 1953, 1954a, b; Cox and Whitney 1958, hereafter referred to as 
“Paper IV”; Cox 1959, hereafter referred to as “Paper V”) that second helium ioniza- 
tion, occurring at a critical depth in a stellar envelope, is the ultimate source of cepheid 
instability. The general plan of attack was, first, to adopt simplified envelope models for 
stars of prescribed mass (M), luminosity (L), radius (R), and chemical composition (in 
particular, B, helium/hydrogen ratio, by numbers) and, second, to compute numerically, 
using an approximate linear theory, the negative dissipation and other pulsation proper- 
ties as functions of these parameters. More specifically, by adopting semiempirical rela- 
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tions between L and M for both population I and population II cepheids and by suppos- 
ing a star to evolve with constant L and if, it was planned to determine the range of 
radii (and hence periods) for which a star with given L and M would be pulsationally 
unstable. One of the principal results of such a computation, if successful, would be a 
mapping of regions of cepheid instability on the Hertzsprung-Russell diagram and hence 
a delineation of the period-luminosity (ITL) relations of cepheids of populations I and 
II. Comparison of the computed relations with the observed ones was to have provided 
one test of the helium-ionization theory. 

Another result of such a computation would be the determination of the amplitude 
and phase of the variations in emitted flux (relative to the radial variations) for stars 
which are pulsationally unstable. Comparison with the observed flux variations of 
cepheids was tö have provided another (but less rigorous) test of the theory. 

The scope of the project was such that it could be carried out only with the aid of a 
fast electronic computer. Preliminary work, including the development and refinement of 
many of the details of the computational procedure, was carried out by use of the Cornell 
Computing Center’s electronic computer (at that time, an IBMT)50) and of the IBM 650 
at the Littauer Statistical Laboratory at Harvard University. The final program was 
written for an IBM 704 electronic computer, and the actual calculations were performed 
on the 704, which was installed at the Smithsonian Astrophysical Observatory in mid- 
summer of 1959. 

A calculation designed to realize the goals outlined above entails two general require- 
ments: (1) a sequence (or sequences) of equilibrium stellar models and (2) a (linear) 
theory of non-adiabatic pulsation. 

To date, satisfactory equilibrium models for cepheids do not exist. Ideas underlying 
the present approach indicate, however, that most of the physical factors that are of 
decisive importance in determining pulsational instability operate only in the outer 
stellar layers, in particular in those regions having temperatures (T) less than, say, about 
200000° K. Because the emphasis in this study was to be primarily on the mechanism for 
exciting the pulsations, it was decided that envelope models alone might suffice for the 
purposes of this investigation, especially in view of its exploratory nature; and simplified 
envelope models were accordingly adopted (cf. Sec. II, a). A further justification of this 
approach was provided by the interest in the character of the non-adiabatic flux terms 
themselves in the extreme outermost layers. The investigation showed that, aside from a 
single parameter whose value had to be assigned (this was the constant in the period- 
mzan density relation, cf. eq. [15a]), the amplitude and phase of the surface flux varia- 
tions were determined to within an accuracy of better than 1 part in 108 by conditions in 
the envelopes alone. 

A restriction imposed by the lack of interiors is that an accurate computation of the 
dissipation for the entire star cannot be made. It was planned, however, to estimate the 
positive dissipation in the interior regions in only an approximate way, since it was antici- 
pated that the negative dissipation in the envelopes would depend rather critically on the 
stellar radii and would outweigh by a considerable margin the positive dissipation in the 
interior regions, for reasonable helium abundances and for radii in the appropriate range 
(cf. Sec. IV, c). 

The approach adopted for the non-adiabatic problem was the iterative procedure sug- 
gested by Woltjer (1936). (For a discussion of this, as well as of certain other matters 
connected with the non-adiabatic problem, see Cox [1958], hereafter referred to as 
“N-A I”].) The Woltjer method in the first approximation consists in using the solution 
of the adiabatic wave equation to compute the quasi-adiabatic flux variations and their 
first derivatives, and then using these derivatives in the right-hand sides of the Woltjer 
“^-equations” (cf. eqs. [34a], [345]). The solution of the Woltjer ^-equations yields the 
non-adiabatic flux and temperature variations, from which the negative dissipation in 
the envelopes can be computed. 
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The ultimate intention was to attempt to achieve a sufficiently accurate solution of 
the non-adiabatic problem by proceeding to higher and higher approximations in the 
iterative procedure. In the course of the summer’s work, however, time limitations per- 
mitted only the first approximation to be carried through. 

It is therefore important to emphasize that the mathematical problem of the non- 
adiabatic pulsations of the envelopes has not actually been solved in this investigation. 
The mathematical accuracy of the results obtained by use of the Woltjer method in the 
first approximation is not really known at present, although certain arguments may be 
advanced (cf. Sec. V) which suggest that the results are not likely to be grossly incorrect 
qualitatively.1 For this reason, many of the precise numerical results of this calculation 
must be regarded as tentative, even within the framework of the physical approximations 
that have been made. 

II. METHOD OF CALCULATION, PRINCIPAL EQUATIONS USED 

a) The Envelope Models 

For simplicity and in view of the results reported in Paper V, purely radiative en- 
velope models were adopted. The opacity was approximated by an interpolation formula 
of the form 

K = KoPnT~s , (i) 

where p is the density, and kq, n, and s are constant throughout a particular model 
envelope; ko is a function of the helium/hydrogen ratio B, given (for B ^ 0.05), ap- 
proximately, by 

B 
Ko = Kqq Y+ß ’ (2) 

where 
log koo= 1.4379+ 7.9676 M +4.505 7 (s). O) 

The numerical constants in equation (3) were chosen so that equation (1) would provide 
a reasonable approximation to tabulated opacities at some representative point in the 
envelopes. 

Radiative envelopes with opacity given by equation (1) have a poly tropic structure 
(provided that Mr ~ M,Lr ^ L, and p [mean molecular weight] = const.; cf. Schwarz- 
schild 1958, pp. 90-92), so that the relation between pressure P and temperature T is 

where 

P = K„Tne+l , 

n+ 1 

(4) 

(5) 

is the effective polytropic index and 

r lÔTacG /ZA / k \nl1/(1+w) 

n* = iJK^îfh+J) \m) \Jh) J 
(6a) 

Here a, c, G, k, and H are, respectively, the radiation constant, the velocity of light in 
vacuo, the gravitation constant, Boltzmann’s constant, and the reciprocal of Avogadro’s 
number, and /Z is the value of the mean molecular weight at a representative point in the 
envelope. We may also write equation (6a) in the form 

logis:« =-+-[- 9.8837+ 7.9198w-log(w*+l) +logilf 
U-\~ \ (6b; 

- log L - log Kq — n log pi , 
1 See footnotes at end of Section V. 
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where L and M are in solar units (as they are throughout the present paper). The rep- 
resentative point for the evaluation of ß was taken to lie in the region between the zones 
of first and sesond helium ionization; hence ß is given (neglecting elements heavier than 
helium) by 

1 + 4B 
ß = 2(1+B) * 

The temperature distribution in the polytropic envelopes is given by 

Dz , 
where 

z = ~- 1 
X 

(7) 

(8) 

(9) 

X = 

and 
R' 

(10) 

D = 
1 GH ßM 

fie ”f” 1 k R 

22.94 X 106 ßM0 

Tle+1 R 
K (ii) 

where R is also in solar units, as it is throughout this paper. 
It can be shown that the values of z at which the photospheric density is reached are 

mpch less than 1 for all the population I cepheid models considered here and for the 
population II cepheid models having periods less than, say, about 10 days. Hence, for 
these models, the “radiative zero” solution (Schwarzschild 1958, pp. 90-92) expressed by 
equation (4) is an adequate approximation (cf. also Hoyle and Schwarzschild 1955). 

b) Method of Treatment of the Adiabatic Problem 

In accordance with the discussion in Section I, the first step in the Woltjer scheme is 
to obtain the solution of the adiabatic wave equation for the envelopes. Since the 
Woltjer method is an iterative procedure, it was deemed permissible to introduce some 
simplifications into this first step. To facilitate convergence, however, the simplified 
treatment should nevertheless be reasonably accurate. Accordingly, the solutions of the 
adiabatic wave equation (in the fundamental mode, the only one considered) were ap- 
proximated by the analytical solutions, expressible in terms of Bessel functions, for 
plane-parallel, poly tropic envelopes (Rosseland 1949, pp. 24 ff.), modified to take into 
account, in an approximate way, the curvature of the envelopes. Explicitly, the relative 
pulsation semiamplitude (normalized to unity at the surface and assumed purely real) 
was approximated by the relation 

2w«r(^e+l) 7ne(f) 
X 

(12) 

where Jne (f ) is the Bessel function of the first kind, of order nej and F denotes the gamma 
function; f is defined by the relation 

r = 2Sí(^ÍA)1/2(l-*) i/2, (13) 

where Fi is the appropriate effective ratio of specific heats (assumed constant) and 

(72£3 

Í22 = 
GM 

= 8.3938 
/0.04\2 

\Qa ) 

(14a) 

(14b) 
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The factor or1 in equation (12) takes curvature into account in an approximate way. In 
equation (14a), a denotes the (real) adiabatic pulsation eigen-frequency. Equation (146) 
follows from equation (14a) by making use of the period-mean-density relation, 

TLM^R-3'2 =Q , (isa) 

where H is the adiabatic pulsation period and a subscript d means that the units are in 
days. If Qd = 0.04, equation (15a) may be written in the form 

log£ = 0.932+ i log M+§ logIId . (i5b) 

The lack of interiors has the consequence that central boundary conditions cannot be 
used to determine the adiabatic pulsation periods. Therefore, a suitable semiempirical 
value of Q was used for most of the calculations, and some calculations were performed 
by using altered values of this constant, to determine their effects (cf. Sec. IV, e). 

Comparison with published integrations shows that equation (12) (with the appropri- 
ate value of £2 or Q) reproduces the actual integrations to within, generally, better than 
about 10 per cent in the regions of greatest interest (say x > 0.9). In the deeper regions, 
however, equation (12) may be a poor representation of theTelative pulsation amplitude, 
for two reasons. First, the curvature correction (the factor Æ-1) is probably inadequate. 
Second, and perhaps more important, are the indirect effects introduced by the absence 
of interiors. The absence of interiors precludes accurate knowledge of the mathematically 
correct value of Q, and the relative pulsation amplitude is quite sensitive to the value of 
Q in these deeper regions (cf. Sec. IV, e). 

Such a treatment as this neglects the effects of ionization on the adiabatic pulsations; 
these effects, however, were not considered important in a first approximation. It was 
planned to carry through subsequent approximations without making use of these 
simplifications. 

In the computation of the quasi-adiabatic flux variations in the envelopes (cf. eq. 
[35]), second ionization of helium was taken explicitly into account, although first helium 
ionization and hydrogen ionization were omitted. The principal reason for the omission 
of these last two ionizations was that rough computations had indicated that their inclu- 
sion would have only a minor effect on the solution of the non-adiabatic problem. More- 
over, inclusion of these additional ionizations would have increased the complexity of the 
numerical calculations by a large factor. As it turned out (cf. Sec. IV), the indirect 
effects of these additional ionizations were more serious than had been anticipated. 

The effect of second helium ionization manifests itself predominantly through its in- 
fluence on the value of the effective ratio of specific heats (Fg) ; the effect on the values of 
the exponents n and s was found to be small and so was neglected. Consequently, the run 
of values of Fs throughout each envelope was accurately computed (cf. Table 2^4). 
Values of the first and second derivatives with respect to temperature (i.e., position) 
were also required. Because, for reasons that will be given in Section II, c, accurate values 
for these derivatives were needed, they were computed from rather involved analytical 
formulae. For completeness and for possible future reference, the runs of the other gam- 
mas (Fi and r2) were also computed for each envelope. The effects of second helium 
ionization also appear in the coefficients of the ^-equations (i.e., in Ä2, cf. eqs. [31] and 
[33]); these effects were accurately included in the calculations. 

The gammas were computed from the formulae 

/¿lnP\ _ 5+E(2.5 + 125.30)2 

Al”"U In p/ad 3+E[ (1.5+ 125.30) (2.5+ 125.30) - 125.30] ’ (16) 

(d\nT\ __ 2+E(2.5 + 125.30) 

\d In p/ad 3+2 [(1.5+ 125.3 0) (2.5+ 125.3 0) - 125.3 0] 7 
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and 

where 

and 

r2 _ /d In P\ _ Ti 

r2 -1
_ Vd in rAd “ r3 - 1 ’ 

. 5040.3 

2v(l-r,)B[l+B(l + r,)] 

[l+B(l + v)][2+B(2 + v)] +v(l-r,)B(l+B) ■ 

(18) 

(19) 

(20) 

Here y is the degree of second helium ionization (the fraction of all helium atoms and 
ions that are twice ionized), given by the Saha equation; for polytropic envelopes, this 
may be written in the form 

'»s[îA;îÎ-It7tït] - -0-4772 - l0s 3'7024 <*•- ‘•5) 

+ (we-1.5)log 0- 54.40 0 . 

(21) 

The derivatives of Fa — 1 were obtained by analytical differentiation of equations (17), 
(20), and (21). Equations (16), (17), and (20) are approximately valid if only two suc- 
cessive stages of ionization of one element are effectively in progress, as is assumed to be 
the case here (hydrogen ionization and first helium ionization are assumed to be com- 
plete) ; these equations may be derived in a manner analogous to that used, for example, 
by Unsold (1955). The relation between the three gammas expressed by equation (18) is 
an identity that is generally valid. 

c) The Woltjer v-Eguations 

Before presenting the Woltjer ^-equations, we must explain the notation used. In 
general, the normalized Lagrangian variation of any physical quantity, /, is written as 

1L 
Vof 

= Ík6 iff't (22) 

where fK is the complex amplitude of the relative variation and 

a' = (T-\rÍK (23) 

is the complex angular pulsation frequency, where <r is the adiabatic eigen-frequency, and 
K is the (complex) stability coefficient (cf. Rosseland 1949, chap. v);/K is a function only 
of x and r/o = | àR/R | is the absolute value of the relative pulsation semiamplitude at the 
surface of the star. In terms of real and imaginary parts, we write 

-/«=/l + ¿/2, (24^ 

where/i and/2 are real. For the (normalized) relative pulsation amplitude itself, we write 

yK=yi=y, (25) 

since y2 = 0 in the present approximation (corresponding to standing-wave solutions). 
The Woltjer ^-equations as used here may be derived by means of the relation 

(r3-1) pk+ vK (26) 
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in the expression for HKy the variation in the net rate of flow of energy H (here purely 
radiative) through a sphere of radius r. Here p* is the relative density variation, given by 

- p, = 3y*+tfy', (27) 

where a prime denotes differentiation with respest to x, and vK is the non-adiabatic con- 
tribution to the temperature variation. We may write HK in the form 

Hk = ^K,a + Ffc j (28) 

where a, the quasi-adiabatic flux variation, contains all terms which do not de- 
pend explicitly on or v'K and where 

7,= U + 4) !>«+ Í29) 
d z 

is the non-adiabatic contribution to the flux variation. (Note that &K, a and VK are 
here defined differently than in N-A I.) In regions in which there is no energy produc- 
tion, the energy equation may be written in the form 

where 

= vKl cL z 

a 

~~r~ 
cvpTx2, 

(30) 

(31) 

cv being the specific heat per unit mass at constant volume. Defining 

P 
0 :r = 

cvpT 

and using equation (4), we may also write equation (31) in the form 

Tne+lx2 . 
ÏTR*(TKne 

LQt 

(32) 

(33) 

Substituting equations (28) and (29) in equation (30) yields the Woltjer ^-equations, 
which may be written (for n and s constant), in terms of real and imaginary parts, as 

d2 Vi s5 d Vx ¡i2X2 _x2 

dz2 z dz z V2 z i, a (34a) 

d2v2^_s + S dv2 h2x
2 

dz2 z dz z 
(34b) 

For poly tropic envelopes in radiative equilibrium, we have 

-^y-[n-T^^}L\Pi+[{s + A) Pl-OS) 

where y, pi, and p[ are to be computed from the solution of the adiabatic wave equation. 
The right-hand side of equation (34#) is zero in the present approximation because 
y2 = 0. 

It is seen that the effects of curvature, which were taken into account in only an 
approximate way in the solutions of the adiabatic wave equation, have been allowed for 
exactly in the ^-equations. 
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Equations (34a) and (34¿>) were integrated numerically for each model envelope, with 
surface boundary conditions appropriate to vanishing temperature and density (i.e., 
2—>0). Satisfaction of these boundary conditions requires that each integration be 
started at the surface and carried inward. The surface boundary conditions suffice, how- 
ever (as may be seen from eqs. [34a] and [346]), to determine only two of the four con- 
stants of integration; the remaining two must be determined by the requirement that the 
solutions of the ^-equations remain finite in the deep interior (from the standpoint of the 
^-equations, the “deep interior,, is still well within the envelope, say in regions with 
T > 80000° K; this is due to the extremely rapid rate of increase of inward). Conse- 
quently, the numerical solution of the ^-equations is of the nature of a double eigen value 
problem, and a series of trial integrations is required, for each model, to determine the 
values of the two remaining constants of integration. Explicitly, these two constants of 
integration are the surface values of Fi and F2 (or Vi and z>2). An extremely efficient, fully 
automatic searching procedure was evolved, by means of which the surface values of 
Fi and F2 could be determined to within better than 1 part in 108 in only twelve to 
eighteen trial integrations. The method of integration and the searching procedure will be 
described in Sections III, b and c, respectively. 

A comment is in order concerning the very high accuracy to which the surface values 
of Fi and F2 were computed. Such great accuracy is, of course, not essential if one is inter- 
ested only in the surface flux variations themselves. However, in evaluating the stability 
coefficient for the envelopes, an integration through the envelopes is required, using the 
solutions of the ^-equations (cf. Secs. Ill, a, and IV, c). Consequently, these solutions 
must be reasonably accurate throughout the major portion of the envelopes. Now an 
analytical study of the ^-equations shows that any error in the starting values of Fi and 
F2 increases inward very rapidly, a behavior which was subsequently confirmed by the 
numerical work. Hence, at levels in the “deep interior,, (say T « 100000o-150000° K), 
the error in the surface values of Fi and F2 will have been multiplied by a factor of about 
lO^-lO6. In addition, at these levels the magnitudes of Fi and F2 themselves will have 
decreased, typically, by factors of about lO^-lO-4 below their surface values. It therefore 
appeared that if all calculations were carried to eight significant figures (the capacity of 
the machine with single precision), it would be possible to carry the integrations through 
the significant portions of the envelopes and on down to these levels in the “deep in- 
terior” without having to use special procedures to continue the integrations. Working 
to eight significant figures, the maximum depth to which it was actually possible to 
carry any final integration (without using special procedures) was about T = 170000° K; 
in some cases the final integration could be carried only to about T — 90000° K. (This 
maximum depth is the depth at which the solutions begin to diverge because of numerical 
inaccuracies in the surface values of Fi and F2.) This emphasis on numerical accuracy 
and the desirability of having a smooth function for a explain why the derivatives 
of r3 — 1 were evaluated analytically rather than by numerical differentiation. 

d) Analytic Theory of the Woltjer v-Eguations 

An analytic study of the Woltjer ^-equations was carried out by the author, in part to 
serve as a guide for the numerical work. While the details of this study are much too 
elaborate to be presented here, it is felt that, since the results of this study have been 
used to extend and check some of the numerical results of the present calculations (cf. 
Secs. IV and III, 6), at least a descriptive outline of the study should be given. 

For the case of plane-parallel, polytropic envelopes in radiative equilibrium, it was 
found possible, by means of suitable transformations of variables, to express the solution 
of the homogeneous, transformed (complex) ^-equation in terms of cylinder functions of 
real order and complex argument. With these solutions of the homogeneous equation 
available, it was then possible, by using well-known procedures (cf., e.g., Forsyth 1929), 
to write down the formal solution of the transformed, inhomogeneous ^-equation (the 
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inhomogeneous part of this equation depends on a, the quasi-adiábatic flux varia- 
tion). The formal solution was then applied to some schematic a-curves (assumed 
given). 

It was found that the integrals in the formal solution could be evaluated explicitly 
(again in terms of cylinder functions) for the case in which the «-curve (considered 
as plotted against 0; cf. eq. [37]) was made up of a series of straight-line segments. For 
generality, the number of straight-line segments was left arbitrary, and the possibility of 
discontinuities in the «-curve was allowed for (see N-A I, Sec. IV, cy for an ex- 
ample of such a discontinuity). The discontinuities which occur both in « and in 
its slope in such an “w-zone modeF were dealt with by use of the Dirac delta function. 
The constants of integration were evaluated explicitly by application of appropriate 
boundary conditions at the surface and in the “deep interior.” Explicit equations were 
thus derived for computing the solution VK which satisfies all the boundary conditions at 
any point (including the surface) in such an w-zone model. Because of the complexity of 
these equations, they will not be presented here. 

Since the number of zones was left arbitrary, the analytic solution so obtained could 
be used, in principle, to calculate the solution VK associated with an arbitrary «- 
curve to any desired degree of accuracy by taking the number of zones to be sufficiently 
large. In practice, however, the labor of computation required to evaluate the analytic 
solution numerically with a large number of zones would probably be greater than that 
required by purely numerical methods. In addition, the usefulness of the analytic solu- 
tion is limited, even in principle, for highly accurate work because curvature in the 
envelopes and the effect of ionization on the function hz (cf. eqs. [31] and [33]) are both 
neglected in the analytic theory, whereas these effects are included in the numerical 
work. 

The specific cylinder functions employed were the Bessel function of the first kind, 
Jv (£), and the Hankel function of the third kind, (£), where £ oc ¿3/2 ft/*, ^ being de- 
fined by equation (37), and where v, a real number, is a function of the exponents n and s 
in the opacity law (eq. [1]). These functions form a fundamental system of solutions of 
BessePs equation for all values of v (cf. Watson 1944). Because of this choice of cylinder 
functions, the equations for Vi and F2, the real and imaginary parts of —VK, are ex- 
pressible in terms of the ber v, bei „, her „, and hei „ functions discussed by Whitehead 
(1911). 

In the specific application of the analytic theory made here, it was found that the 
§1, «-curves could be adequately represented by a three-zone model; when §1, « is 
plotted against 4> for a typical envelope, the three principal portions of the curve ap- 
proximate rather closely straight-line segments (cf. Fig. 2). In view of the close corre- 
spondence between the results obtained from the numerical work and from the analytic 
theory (cf. Sec. Ill, b), it may be concluded that the approximations involved in the 
analytic theory do not lead to appreciable errors. 

III. ACTUAL CALCULATIONS 

a) General 

The actual calculation, programed for and carried out on an IBM 704 electronic com- 
puter, was divided into three major parts, as follows : Part I : construction of model en- 
velopes; Part II: solution of adiabatic wave equation and evaluation of coefficients of 
^-equations; and Part III: solution of ^-equations and evaluation of stability coefficient. 

The parameters which entered into Part I were L, My ny sy and B. Two semiempirical 
mass-luminosity relations were used, one for population I cepheids and one for population 
II cepheids. These were as follows: 

Population I: log M = 0.304 log L — 0.220 ; 06a) 

Population II: M = 1.25, all L. 06b) 
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Equation (36a) is based on semitheoretical evolutionary arguments and is obtained from 
equation (5) of Sandage (1958) by taking Mboi (O) = 4.77; this value follows from the 
values of the solar absolute photovisual magnitude given by Stebbins and Kron (1957) 
and the bolometric correction given by Kuiper (1938). In this part were computed, prin- 
cipally, the degree of second helium ionization (from eqs. [21] and [65]); Th r2, and Ts 
(from eqs. [16] through [20]); and the first and second derivatives of r3, all as functions 
of T. Each envelope went from T = 0° K to T = 200000° K, in steps of AT = 100°. 

The additional parameters required for Parts II and III were R andÇ; the value of Pi 
in equation (13) was taken as § for all models. In Part II were computed, for each R and 
Q, the geometrical depth, z, in the envelopes, as a function of T (from eqs. [8] and [11]); 
the Bessel function solutions of the adiabatic wave equation (from eqs. [12], [13], and 
[14]) and their appropriate derivatives; the quasi-adiabatic flux variations, a (from 
eq. [35]) and their first derivatives (by analytical differentiation of eq. [35]); the coef- 
ficients of the ^-equations (cf. eqs. [31], [33], and [34a], [346]); the phase-lag function 
(introduced and discussed in N-AI and Papers IV and V), given in the present notation 

¿(z) = fZ Jw^dz' 137) 
J0 Í T 4 

(note that eq. [37] includes curvature), as well as several other relevant quantities. 
Part III involved, for each Æ and Q, the solution of the ^-equations and the evaluation 

of the stability integral for the envelopes. The automatic searching procedure (cf. Sec. 
Ill, c) was programed into Part III. The machine would do successive trial integrations 
(each going to T = 200000° K) until the surface values of Vi and F2 had been found to 
within the accuracy limitations of the machine, and then would proceed to perform the 
final integration, which included calculation of the contribution of the envelopes to the 
stability coefficient, as well as of numerous other subsidiary quantities. For each model 
an average of about fifteen trial integrations was required to yield the starting values of 
Vi and F2 to an accuracy of eight significant figures. In the final integration, an auto- 
matic stopping procedure stopped the integration at the point at which the first indica- 
tions of divergence of the solutions appeared. 

The contribution of the regions exterior to z to the real (ki) and imaginary (/c2) parts of 
the stability coefficient were computed, respectively, from the equations 

Jl(0, z) = jT epPi(-^y) dz, (38a) 

/2(0, 2) = jfepp^-^)^ <38b) 

(cf. Rosseland 1949, chap, v, or N-A I), where, for this problem, 

0P = r3 - 1 (38c) 

(cf. N-A I, eq. [20]) and pi is the relative density variation corresponding to adiabatic 
oscillations. 

For a star of given L, My R, and II, ki (z) oc Jl (0, z) and k2 (z) «: /2 (Q, z). The factors 
of proportionality cannot be computed accurately without interiors; however, this is not 
important, as the sign of ki is the quantity of interest for stability considerations. A 
negative value of ki (z) (or ii [0, z\) means that the regions exterior to z are exerting a 
destabilizing influence on the pulsations. The star will be pulsationally unstable if ki for 
the entire star or if 

7l(0, 00 ) =/!(0, z) +Ii(z, 00 ) (38d) 

is negative. Because of the absence of interiors, the values of I\ (z, oo ) must be estimated 
in an approximate way (cf. Sec. IV, c). 
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b) The Method of Integration 

The method that was used for the integration of the ^-equations (34a) and (346) may 
be explained in general terms by considering a Æth-order system of differential equations; 
this system is equivalent to a single differential equation of the Æth order, which we 
write in the form 

dkw _ f [d
k~lw dk~2w 

= ^Lch^' J¥=*' 
(39) 

(Note that the reduction to a single differential equation has been effected here merely 
for ease of exposition.) Assuming that w, dw/dx, . . . , dkw/dxk are all known at we 
proceed to the point # + /? by using the following simple integration formulae: 

/__ /dx-%\ hi/dhv\ /dhv\ 

Kdx^/x+h Kdx^^/x 2\Kdx*)x Kdx^/x+h 
. . , k) y (40) 

where the terms neglected in each equation are of order hz. 
The usual procedure for solving equations (39) (evaluated at x + 6) and (40) for the 

& + 1 unknowns w, , dkw/dxk at x + & is by iteration (cf., e.g., Schwarzschild 1958, 
pp. 119-20). We have chosen, however, to solve equations (39) (evaluated at # + 6) and 
(40) algebraically^ so as to obtain an analytic expression of the form 

(SL=/■[©)■ (£2),  
(41) 

all quantities on the right-hand side of which are known. Note that/2 —>/i as A —» 0; this 
therefore serves as a rough first check on the algebra. The integration formulae (40) are 
then applied successively to obtain {d^ho/dx^1)^, . . . , w (x + A), thus completing 
the integration from x to x-\- h. 

The above algebraic method of solution is therefore exactly equivalent, mathemati- 
cally, to the iterative method and, of course, yields the same accuracy; consequently, a 
very small step length must be used (one such that terms of order hz are negligible). 

The algebraic method possesses the following advantages over the iterative method: 
1. The algebraic method enables one to integrate under conditions for which the 

iterative method will not converge. Such conditions may obtain, for example, in regions 
in which dkw/dxk is poorly determined by the differential equations, as in the vicinity of 
a singularity of the differential equations. The algebraic method has also been found to 
work in cases in which the Runge-Kutta method failed. 

2. At least for the kinds of singularities met with in the differential equations used 
here (cf. eqs. [34a], [346]), the algebraic method permits one to start integrating right 
from a singularity, without the necessity of developing the solution about the singularity. 
The quantities needed in equation (41) at the singularity may be obtained by evaluating 
equation (39) and its higher derivatives at this point. The variety of types of differential 
equations for which the integration can be begun at a singularity in the way described 
has not been investigated in detail by the author, but it is suspected that the method will 
work at least for linear differential equations which possess no essential singularities. 

3. In this particular problem the algebraic method was found to be easier to program 
than the iterative method and required less computing time with the equipment that was 
used. 

The principal disadvantage of the method is that the algebraic manipulation that is 
required may become rather heavy. It should also be noted that the method will not 
improve the accuracy of the derivatives if they are poorly determined by the differential 
equations. The effects introduced by inaccurate values of the derivatives must be checked 
by some other means. 
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For the particular problem dealt with here, it was found that a step length of AT = 
100° was sufficiently small; so this step length was used in all the integrations. 

The algebraic method, as applied to the Woltjer ^-equations (34a), (34Ô) yields the 
following equations: 

/d2 v{\ _ 
\ d z2 / r*2 

n+l n+1 w+l 
{Cn+1 [-^1, n+l (Fn+1^5l, -n n) 

+ -i^n+1 [Fw+iB2, n Qn+lAi, w] } , 

/d2 »2\ _ 

\dz2 ),,, f2 A- m 
rj + l ^« + 1 ' n+l 

Dn+\ [-^1, n+l {Pn+\^1, n “bQn+l^ 2, n) ] 

f42a) 

(42b) 

where 

5 + 5 h^x2 

C« + l \Pn+1^2, n Qn+l^ll, 

r^_X2&1, a 

8 z 
671+I — 1 + 2 Pn+l • 

(43a., b, c) 

(44a) 

and 

D„+1^Qn+1 (-ÿj, 

A'--m 

At) 

(44b) 

(45a) 

(45b) 

where ^42, n and B2, n are also given by equations (45a) and (456), but with the subscript 
1 replaced by 2. The integrations were started right from the surface (z = 0). The surface 
values of the first and second derivatives of Vi and v2 were obtained by evaluating equa- 
tions (34a) and (346) and their first derivatives at z = 0 and using the condition that 
z>i and v2, as well as their first, second, and third derivatives, be finite here (this procedure 
is equivalent to evaluating the first three terms in the expansions of Vi and v2 about z = 
0). Because the second derivatives are poorly determined by equations (42a) and (426) 
for z very small, several significant figures in these derivatives were lost at the first step 
(T = 100°). However, since the calculation was carried out with eight-figure accuracy, 
these derivatives were still good to four or five significant figures at this point and were 
continuous with the surface values of the derivatives. (Indeed, it may be shown that, in 
the limit of vanishing step length, the values of the second derivatives, as given by eqs. 
[42a] and [426], must be continuous with the surface values at the first integration step, 
in spite of the singularities in the coefficients.) After two successive integrations, for each 
of fli and v2, by use of formulae of the form of equations (40), the lost figures had been 
regained, so that vx and v2 themselves were again accurate to eight significant figures at 
this point. In addition, because of the smallness of the factors multiplying the second 
derivatives in equations (45a) and (456), high accuracy in these derivatives is not essen- 
tial in integrating to the next step. 

Two checks were applied to insure that the procedure for starting the integrations and 
the loss of significant figures in d2 vh 2/dz2 for small z had not introduced any severe 
inaccuracies into the final results or led to a wrong solution. 

First, a power-series solution of equations (34a) and (346) was obtained by expanding 
a in a Taylor series about z = 0, and a few terms in the expansions for vx and v2 were 
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evaluated for a typical model envelope. The values of vx and z>2, computed in this manner, 
were then compared with the values obtained by the numerical integration at some small 
value of T, and the two sets of values showed very close agreement. 

(This power-series development was considered impractical for general use in begin- 
ning the integrations because the series coefficients involve increasingly higher deriva- 
tives of « and the evaluation of derivatives of a higher than the second or third 
becomes excessively laborious. In addition, the magnitudes of the successive coefficients 
were found to increase rather rapidly, so that a fairly large number of terms would have 
been required to reach a value of z such that a standard integration procedure could be 
used with confidence. This difficulty, together with the fact that a development in the 
simple form considered here is possible only for integral values of ne, was largely respon- 
sible for the decision to use the algebraic method described above.) 

Second, the analytic theory outlined in Section II, d, was applied to calculate the 
correct surface values of Vl and F2 for a typical envelope model (Model 1, cf. Sec. IV, a), 
by using a three-zone model for the §1, «-curve (cf. Fig. 2). Comparison with the cor- 
responding values of Vi and F2 as obtained from the numerical work showed that the 
two sets of values differed from each other by only a few per cent; this is as good an 
agreement as can be expected in view of the approximations which were involved in the 
analytic theory. It therefore seems safe to conclude that no appreciable errors were intro- 
duced into the final results and that no wrong solutions were obtained by the particular 
method of integration that was used. 

c) The Automatic Searching Procedure 

The automatic searching procedure that was used for the determination of the correct 
surface values of V\ and F2 was based on the following simple considerations. Let 
AFi, 2 (rc) denote the changes in Fi and F2 at some fixed temperature, Tc, due to the 
changes AFi, 2 (0) in Fi and F2 at the surface {T = 0). We then assume the following 
linear relation to be valid: 

A Vi (Tc) = ¿ a,-,- (Tc) A Fy (0) (¿=1,2), (46) 
2 = 1 

where 
trr^_dVi(Tc) (. ^._1 ^ (A^ 

ail (Tc) - d Vi (W (*,.7-1,2). 

Solving equation (46), we obtain 

and 

A F i (0) 
a22A F i (Tc) — ai2A F 2 (Tc) 

ctna22 — ai2a2i 

AF2(0) 
anA F2 (Tc) — a2iA Fi (Tc) 

aiia22 — ai2a2i 

(48a) 

(48b) 

It can be shown from analytic considerations that, in this problem, the relation be- 
tween AFi, 2 (Tc) and AFi, 2 (0) is, in principle, strictly linear or that the (Tcy$> are 
strictly independent of Fi, 2 (0). This, in fact, accounts in part for the rapidity of con- 
vergence of the method in this case. In practice, however, because of small numerical 
inaccuracies, the a ¿y (Tc) showed a slight, erratic dependence on Fi, 2 (0), so that, to 
secure the high accuracy that was desirable (cf. Sec. II, c), sl searching procedure was 
required. 

The values of AFi, 2 (Tc) can be found from a single integration at any stage in the 
approximation from knowledge of the required behavior of Fi, 2 in the “deep interior,, 
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(cf. Sec II, c) where Tc is located. If Tc is such that <t>(Tc) 1 (cf. eq. [37]) (this is, in 
fact, the condition that Tc be in the “deep interior”), then it is known (cf. last paragraph 
in Sec. IV, a) that the physically correct solution is that one for which | Fi, 2 {Tc) |<3C 1; 
in practice, it was found that Fi, 2 {Tc) — 0 provided an adequate approximation. The 
values of the a ¿y (Tcy$ can be found from two additional integrations, at the same stage 
in the approximation, by replacing the right-hand side of equation (47) by the corre- 
sponding ratio of two finite differences. 

At each stage in the approximation, three points in the Fi, 2 (0) plane were selected, 
say a, b, and c, as indicated in the following scheme : 

a: V[a) (0) , F(«) (0) ; 

b: F(“)(0)+A, F(a)(0); 

c: F(«)(0), F(«)(0)+A, 

where A denotes the “grid size” assosiated with the triad of integrations carried out at 
each stage. Point a is the point whose location had been predicted in the preceding stage. 
The magnitude of A was computed at each stage so as to facilitate convergence. Experi- 
ence had shown that convergence would be most rapid, for this problem, if the magnitude 
of A for each stage were chosen to be about an order of magnitude larger than the value 
which would be predicted in that stage for the change in | Fi, 2 (0) |. 

The actual searching procedure then was as follows : In the Æth stage of approximation, 
the first step was to carry out a single integration at point a, whose location had been 
predicted in the (k = l)th stage of approximation. Because only a single integration is 
needed to determine AFi, 2(rc), a rough estimate could be made of the values of 
AFi, 2 (0) by using the values of the a%j (Tc) as computed in the (k — l)th stage of 
approximation in equations (48a) and (48¿). From these rough values, the new grid size 
for the Æth stage could then be computed. The actual relation used was 

, -vM [A (Tc) ]2 + [A (Tc) ]21 (49) 

where A is an arbitrary constant which was set equal to 10 in these calculations. Once 
A^) had been determined, the locations of the points b and c were then known, and the 
remaining two integrations for the &th stage could be carried out. From these three in- 
tegrations, the values of the aff (Tc), for the Æth stage, could be computed from equa- 
tions (47), and a new point a, for the (k + l)th stage, could be predicted from equa- 
tions (48a) and (486). The process was continued either until the predicted changes in 
Fi, 2 (0) fell below the accuracy criterion or until the computed value of A for a given 
stage of approximation had become larger than that in the preceding stage (at which 
time the limiting accuracy of the searching procedure had been reached). The final 
integration was then performed, using the best predicted values of Fi, 2 (0) as given by 
the searching procedure. The final integration was stopped automatically at the point at 
which the first signs of divergence in the solutions appeared. 

The location of point a and the value of A for the first stage of approximation were 
chosen arbitrarily, and Tc was taken to be 200000° K in all calculations. 

IV. RESULTS AND DISCUSSION 

Calculations were carried out for several values of each of the various parameters. 
In particular, the ranges of L and M appropriate to cepheids of both populations were 
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partially covered, and calculations for several values of R, for each L and M, were carried 
out. 

We shall here present detailed numerical results only for certain selected models 
which are of greatest interest or which exhibit features common to most of the models. 
The behavior of models for which detailed results are not given will be summarized in 
qualitative statements. 

All the discussion in this section is to be understood to apply only within the frame- 
work of the particular method of mathematical approximation that has been used for the 
treatment of the non-adiabatic problem (cf. Sec. I and footnotes at end of Sec. V). 

The discussion in this section will be limited to the models for population I cepheids, 
because certain difficulties were encountered in the application of the helium-ionization 
theory to the population II cepheids; these difficulties rendered the results for these stars 
largely inconclusive. The basic source of the difficulty is to be found in the low surface 
gravity of the population II cepheids (assuming M — 1.25); second helium ionization 
occurs at such a great geometrical depth in the envelopes that the relative pulsation 
amplitude is rather small in this region. This may also be seen from equations (8) and 
(11). The values of D are so small that z must be relatively large in the region of second 

TABLE 1 

Physical Characteristics of model 1 

log L  3.13 
log M  0.73152 

n  0.70 
s  2.10 
ne  3.00 
B  0.15 
ß  0.69565 

log Kne  -13.42508 
logR  1.527 

D  6.3892 X 105°K 
Qd  0.04 
nd  3.3639 
Q,    2.897206 

Pi (in eq. [13])  | 

helium ionization (the temperature here is not very sensitive to the envelope model). 
Also the relatively great curvature in these regions and the absence of interiors invalidate 
the approximate method of treating the adiabatic problem (cf. the discussion following 
eq. [12]). This great curvature, moreover, renders the total heat-storage capacity of the 
layers above the level of second helium ionization relatively small (in other words, 
<*>[**] = <£*, where z* is the’level of 50 per cent He+ ionization, is very small, cf. eq. [37] 
and Sec. IV, d). For other elements (first helium ionization and hydrogen ionization), the 
geometrical depth would be less, but the corresponding values of </>* would be far too 
small for these ionizations to be directly effective. 

As a basis for comparison of some of the theoretical results with observation, we shall 
adopt the following expression for the empirical period-luminosity (II-L) relation for 
classical cepheids: 

log L= 1.05 logIL*+2.60 . (so) 

Equation (50) was obtained from equation (12) of Sandage (1958). 

a) Results for a Particular Model 

In Table 1 are summarized the physical properties of the model which we may regard 
as the prototype of the models adopted here for the classical cepheids; we shall call this 
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“Model 1.” The values of R and II for this model are close to the empirical values (log 
R — 1.513, Ed ;= 3.20; cf. eqs. [156] and [50]) for a classical cepheid of this luminosity. 
Also the values of n and s are such that equation (1) provides an adequate approximation 
to tabulated opacities in the regions of greatest interest. 

In Tables 2A, 2B, and 2C are presented the results of the calculations for Parts I, II, 
and III, respectively, for Model 1, as functions of temperature T. Note that Part I does 
not involve either R or Q. The notation and formulae used have been explained iii Sec- 
tions II and III, a; however, the following comments should be made: (1) In Table 2^4, 

was computed from the formula 

0 T 
(r3-l)(l.5 + 125.30) -1 

125.30 
(51) 

which can be obtained from equation (32), (2) In the tenth and eleventh columns of 
Table 2C, \HK\ and dH represent, respectively, the (normalized) semiamplitude of the 
relative flux variation and its phase relative to minimum radius; i.e., 

— Hk= \Ek\ exp (iOn) • (52> 

Thus a negative value of 0# (> — tt) means that the relative flux variation reaches 
maximum after minimum radius; negative values of 0# will be referred to as “phase lags”; 
positive values as “phase leads.” 

Some of the entries in Tables 2^4, 2B, and 2C have been displayed in Figures 1,2, and 

TABLE 2A* 

RESULTS OF PART I FOR MODEL 1 

T{° K)X10- r3-i l/OTs-l) feT 

0 
10 
20 
25 
30 
32 
34. 
36. 
37. 
38. 
40. 
42. 
44 
46, 
48. 
50. 
52. 
54. 
56. 
58. 
60. 
65. 
70. 
80. 

100. 
120. 
140. 

0 

1.22415 (-7) 
4.83471 (-5) 
2.46846 (-3) 
8.29674 (-3) 
2.37779 (-2) 
5.88937 (-2) 
8.78403 (-2) 
0.126340 
0.233849 
0.373583 
0 521922 
0.654125 
0.757560 
0.832027 
0.883298 
0.917979 
0.941416 
0 957392 
0.968433 
0.983890 
0.990936 
0.996393 
0.998957 
0.999521 
0.999715 

0.666667 
.666667 
.666663 
.665721 
.634547 
.580718 
.488893 
.381935 
.334686 
.295839 
.245604 
.227032 
.232679 
.257664 
.298045 
.350230 
.406715 
.461194 
.508851 
.547606 
.577586 
.623236 
.644380 
.659507 
.665271 
.666203 

0.666457 

1.500000 
1.500000 
1.500009 
1.502211 
1.579295 
1.732462 
2.072606 
2.676968 
3.067999 
3.483988 
4.220339 
4.580303 
4.474242 
4.037361 
3.477446 
2.951176 
2.528984 
2.218929 
2.001621 
1.852457 
1.750580 
1.613849 
1.556810 
1.518017 
1.503549 
1.501197 
1.500551 

1.000000 
1.000000 
0.999994 
0.998497 
0.948387 
0.861278 
0.711806 
0.536384 
0.458268 
0.393555 
0.308402 
0.274765 
0.280988 
0.319468 
0.384632 
0.468977 
0.561914 
0.652262 
0.731791 
0.796806 
0.847338 
0.924796 
0.961012 
0.987220 
0.997409 
0.999107 
0.999580 

* The numbers in parentheses are the powers of 10 by which the corresponding entries must be 
multiplied. 
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3. Figure 1 shows the runs of the quasi-adiabatic flux variation, §i, a {solid curve), and 
the phase, 6H {dashed curve), of —HKf with T over a range which includes the region of 
second helium ionization. The dash-dot curve, labeled §i, a, represehts the curve that 
would have been obtained for §i, « if r3 had been held constant and equal to § (cf. eq. 
[35]), i.e., if second helium ionization had not been taken into account or if B had been 
set equal to zero. The large and abrupt decrease toward the surface in the §i, «-curve 
shown in Figure 1 is brought about by the sudden increase in the heat-storage capacity 
of the stellar material in the region of second helium ionization (i.e., by the abrupt dim- 
inution in the values of r3 — 1; cf. Table 2A). This abrupt decrease in the §i, «-curve is 

TABLE 2B* 

Results of Part II for Model 1 

7TK) 
X10-3 pi 0(2) 

0 
1.5651 (-2) 
3.1303 (-2) 
3.9129 (-2) 
4.6954 (-2) 
5.0085 (-2) 
5.3215 (-2) 
5.6345 (-2) 
5.7910 (-2) 
5.9475 (-2) 
6.2606 (-2) 
6.5736 (-2) 
6.8866 (-2) 
7.1997 (—2) 
7.5127 (-2) 
7.8257 (-2) 
8.1388 (-2) 
8.4518 (-2) 
8.7648 (-2) 
9.0778 (-2) 
9.3909 (-2) 
0.10173 
0.10956 

0  
10  
20  
25  
30  
32  
34  
36   
37   
38   
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
65  
70  
80  

100  
120  
140  

0.12521 
0.15651 
0.18782 
0.21912 

1.00000 
0.98459 
0.96965 
0.96234 
0.95515 
0.95230 
0.94947 
0.94666 
0.94526 
0.94386 
0.94108 
0.93832 
0.93557 
0.93284 
0.93012 
0.92742 
0.92474 
0.92207 
0.91942 
0.91678 
0.91415 
0.90766 
0.90126 
0.88872 
0.86467 
0.84188 
0.82026 

1.00000 
0.93923 
0.88297 
0.85640 
0.83081 
0.82083 
0.81100 
0.80131 
0.79652 
0.79177 
0.78236 
0.77309 
0.76395 
0.75494 
0.74606 
0.73731 
0.72868 
0.72017 
0.71178 
0.70351 
0.69536 
0.67546 
0.65623 
0.61970 
0.55358 
0.49551 
0.44428 

4.0363 
3.8517 
3.6796 
3.5979 
3.5189 
3.4881 
3.4576 
3.4276 
3.4127 
3.3979 
3.3687 
3.3398 
3.3113 
3.2832 
3.2555 
3.2281 
3.2010 
3.1743 
3.1479 
3.1219 
3.0962 
3.0334 
2.9725 
2.8562 
2.6438 
2.4550 
2.2864 

7.0363 
6.6100 
6.2168 
6.0316 
5.8535 
5.7842 
5.7159 
5.6487 
5.6155 
5.5825 
5.5173 
5.4531 
5.3898 
5.3275 
5.2662 
5.2057 
5.1461 
5.0874 
5.0296 
4.9726 
4.9165 
4.7797 
4.6477 
4.3975 
3.9468 
3.5533 
3.2083 

+19.698 
+18.224 
+16.894 
+16.117 
+11.450 
+ 5.6871 
- 1.0387 
- 4.7724 
- 5.0703 
- 4.6328 
- 2.6915 
- 0.28229 
+ 2.3892 
+ 5.3624 
+ 8.4495 
+ 11.205 
+13.187 
+ 14.241 
+14.531 
+14.353 
+13.966 
+12.919 
+12.141 
+11.115 
+ 9.6773 
+ 8.5094 
+ 7.5148 

+ 98.256 
+ 91.912 
+ 86.836 
+ 173.74 
+ 1541.4 
+2416.0 
+2055.0 
+ 550.62 
- 89.144 
- 499.95 
- 819.77 
- 918.10 
-1032.2 
-1134.0 
-1110.6 
- 900.83 
- 565.61 
- 235.47 
- 2.2411 
+ 120.66 
+ 164.94 
+ 143.25 
+ 102.56 
+ 68.605 
+ 54.364 
+ 48.419 
+ 43.694 

0 
1.8408 (-4) 
5.5975 (-3) 
1.6661 (-2) 
4.0879 (-2) 
5.7235 (-2) 
8.1219 (-2) 
0.11951 
0.14750 
0.18381 
0.28828 
0.44023 
0.63158 
0.84285 
1.0559 
1.2618 
1.4597 
1.6536 
1.8488 
2.0505 
2.2635 
2.8721 
3.6313 
5.7877 

13.967 
30.176 
58.507 

* The numbers in parentheses are the powers of 10 by which the corresponding entries must be multiplied. 

seen to induce a large phase lag in the surface flux variation, amounting, in this case, to 
(o) = — 45?3. Note also that the value of </>{z) (cf. eq. [37]) for this model is near 

unity in the region in which the abrupt drop in &lf « occurs (and therefore also in the 
region of second helium ionization). The significance of this last result for the stability 
problem has been discussed in N-AI and in Papers IV and V and will be discussed further 
in Sections IV, b and d of this paper. 

The steep rise to relatively large values in the §i, «-curve exterior to the region of 
second helium ionization is probably unrealistic, as first helium ionization and hydrogen 
ionization (which have been neglected here) would probably have prevented this in- 
crease from being so abrupt or pronounced. Since, as is seen from Table 2A, the material 
is convectively unstable in the region of second helium ionization, the variations in 
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612 JOHN P. COX 

convective flux, if taken into account, might also have tended to depress the §i, a-curve 
in this region. The effects of this abrupt rise in the §1, «-curve on the surface flux varia- 
tions and on the stability problem turned out to be more serious than had been antici- 
pated in the planning stages of the investigation and will be discussed in more detail 
later in this section and in Sections IV, b and c. 

Convective instability in the region of second helium ionization occurred in all models 
having B = 0.15 or 0.25 but did not occur for B = 0.05. The critical value of B for which 
convective instability occurs therefore probably lies between 0.05 and 0.10. 

The effect of this convective instability on the structure of the envelopes has not been 
analyzed in detail. Rough calculations suggest, however, that this effect will be small 
for the cepheids. 

4>(z) (radians) 

Fig. 1.—Quasi-adiabatic flux variation and phase of non-adiabatic flux variation for Model 1. The 
solid curve (scale at left) shows the actual (normalized) quasi-adiabatic flux variation, while the dash-dot 
curve shows the quasi-adiabatic flux variation which would have been obtained if second helium ioniza- 
tion had not been taken into account or if B (helium/hydrogen ratio) had been set equal to zero. The 
dashed curve (scale at right) shows the phases (relative to minimum radius) of the maxima of the non- 
adiabatic flux variations. Values of the phase-lag function <t>(z) (ci. eqs. [37] and [33]) are given at the 
top of the figure. The level of 50 per cent ionization of He+ is also indicated on the figure. 

Figure 2 shows §i, « as a function of 0 (cf. eq. [37]) for Model 1. 
In Figure 3 the runs of — VK(z) {dashed curve) and —HK{z) {solid curve) as functions 

of z (or T) are presented in a polar plot. The small numbers beside the plotted points 
denote the corresponding values of T. On this type of diagram, y (relative pulsation 
amplitude) and §i, «, if positive, would be represented by vectors lying along the positive 
real axis. The abrupt turn to the left in the — F*(z)-curve corresponds to the minimum of 
the §i, «-curve (point a in Figs. 1 and 2), and the turn to the right corresponds, approxi- 
mately, to the maximum of the ¿pi, «-curve. The upward turn in the — (z)-curve for 
T < 36000° K is caused by the abrupt rise toward the surface in the ¿pi, «-curve exterior 
to the region of second helium ionization. If ¿pi, « had remained approximately constant 
exterior to point #, this upward turn in the —^(z)-curve would not have occurred, and 
—#*(0), the surface value of —H^z), would have had both a larger amplitude and a larger 
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CEPHEID INSTABILITY IN STARS 613 

phase lag than is actually the case in Figure 3. The encircled dot in Figure 3 shows the 
value that —HK(0) would have had if §i, a had remained constant and equal to its mini- 
mum value at all points exterior to point a in Figures 1 and 2. The co-ordinates of the 
encircled point in Figure 3 are given in parentheses in Table 3. These values were com- 
puted from the analytic theory (cf. Sec. II, d). 

It is seen from the negative values of h (0, z) in Table 2C that the envelope is exerting 
a destabilizing influence on the pulsations; this again is a consequence of the abrupt 

Fig. 2.—&i,a as a function of </> for Model 1. The point corresponding to 50 per cent ionization of He+ 

is shown in the figure. The three light straight lines represent the schematized $i,0-curve that was 
adopted in the three-zone model used for the calculations described in Section III, bf with the analytic 
theory (cf. Sec. II, d). 

Fig. 3.—Polar plot of non-adiabatic flux variation as a function of depth for Model 1. The solid 
curve represents the non-adiabatic flux variation, and the dashed curve represents the non- 
adiabatic contribution, — Fk(z), to the flux variation. All phases are relative to minimum radius. The 
numbers beside the plotted points denote the corresponding temperatures. The relative pulsation ampli- 
tude, yK (real and positive here), lies along the positive real axis. Arrows represent the surface flux varia- 
ti ons, —Hk(0). The encircled dot shows the location that —HK(0) would have had if the ^pi,«-curve had 
r emained constant and equal to its minimum value at all points exterior to the minimum (point a in 
Figs, 1 and 2). 
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decrease outward in the §i, a-curve in the region of second helium ionization. The direct 
destabilizing influence produced by the action of second helium ionization can be appreci- 
ated more fully if the values of I\ (0, z) in the region in which this function attains mini- 
mum (say at Zi) are examined; Z\ is also the point at which Hi attains maximum. The 
increase in the value of h (0, z) for z > Zi is caused by the decrease in the iJi-curve 
toward the stellar center; this decrease gives a positive (or stabilizing) contribution to 
Ii (0, z) (cf. eq. [38a]). For values of z much greater than Zi, however, the positive con- 
tribution to Ii (0, z) becomes relatively insensitive to the effects of second helium 
ionization, for two reasons. First, r3—>§ and §i, a (2) —» §1, a (cf. Fig. 1). Second, <j>(z) be- 
comes much greater than unity; this has the consequence that | F* (z)| <<C | §1, a (^)| 
or that the quasi-adiabatic flux variations begin to provide a good approximation to the 
actual, non-adiabatic flux variations. (This was shown in N-AI; the result can also be 
shown to follow from the Woltjer ^-equations. The numerical work provides still further 
confirmation of this, as may be seen from the entries in Table 2C). Thus the non-adiabatic 
effects produced by second helium ionization also become insignificant. We shall ar- 
bitrarily adopt h (0, Zi) as an approximate measure of the direct destabilizing effects 
produced by the action of second helium ionization in the envelopes. The stability prob- 
lem will be discussed further in Section IV, c. 

b) Dependence of Surface Flux Variations on R, B, and M 

We now consider the dependence of —HK(0), the surface value of —HK(z), on radius 
i?, helium abundance B, and mass M (or luminosity L). In Table 3 are presented values 
of Hi (0), iJ2 (0), I#*(0)1, and 6H (0), with R as the independent variable, for three 
values of B and two values of log T, for the case n = 0.70, s = 2.10, and Qd = 0.04. 
These results are also presented in a polar plot in Figure 4. The solid curves are for log 
L — 3.13, log M = 0.73152, and the dashed curve is for log L = 4.13, log M = 1.03552. 
The numbers beside the plotted points denote the corresponding values of log R. 

It is seen from Table 3 or Figure 4 that, for ^ = 0.15 (both values of log L) and 0.25, 
the phase lags in the surface flux variations are generally in the same quadrant as the 
observed phase lags (say 70o-90°) of classical cepheids, for reasonable values of i£. For 
orientation, the empirical values (cf. eqs. [15b] and [50]) are log R = 1.513 for log L = 
3.13 and log R = 2.248 for log L = 4.13. The computed phase lags are, however (in 
particular for B = 0.15), a little smaller than the observed ones; a possible reason for 
this will be given later in this section. For B = 0.05, the phase lags are seen to amount to 
only a few degrees and in some cases to be negative. While the ^-equations were not 
integrated explicitly for the case £ = 0, it may be inferred from extrapolation of the 
results given in Figure 4 or from analytic considerations that, in this case, phase leads in 
the surface flux variations, rather than phase lags, would have resulted. As was pointed 
out in Section IV, a, this case is characterized by a steady rise in the §1, «-curve toward 
the surface (cf. Fig. 1). 

In order to effect a rough comparison of the amplitudes, |#k(0) |, of the surface flux 
variations shown in Figure 4 with observations, we proceed as follows. We denote by 
AAfboi the total range in the (bolometric) magnitude of the light-variation, i.e., 

^ia_í = 1 O0-4 AMbol . (53) 
Tmin 

However, |#*(0)| is the normalized semiamplitude of the surface luminosity variation, 
i.e., 

<54> 
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where AL and L are, respectively, the semiamplitude of the luminosity variation and the 
mean luminosity itself, and rço = | &K/R| is the surface value of the relative pulsation 
semiamplitude. (We assume sinusoidal light-variations, as we must in a linear theory.) 
We then obtain 

a j/f _ O c 1 + r)o\ HK(0) \ AMbol -2.5 logia Y^¡^Yh7(0)J ‘ () 

Some values of AMboi are presented in Table 4, with |#*(()) | as the independent vari- 
able, for three values of rjo. 

By comparing the entries given in Table 3 for | UK(0) |—say for B = 0.15, log L = 
3.13—with those in Table 4 (for 770 = 0.05, a value which seems to be consistent with 
observations of classical cepheids), it is seen that the computed values of AMboi, for 
reasonable values of R, are comparable to, but somewhat smaller than, the values of 
AMboi based on observations for most cepheids. (The photographic amplitudes for the 
classical cepheids generally range between about O^S and 2I?0; for cepheids with periods 
less than 10 days, the range is between 0?5 and l^S, with 1^0 being perhaps the most 

TABLE 3 

Phase and Amplitude of Surface Flux Variations as Functions of 
Radius and Helium Abundance 

0 = 0.70, s=2.10, öd=0.04) 

log R -Si (0) #2(0) 10« (0)| M0) 
(degrees) 

0.05 

.15. ... 

.25. 

0.15 

1.477 
1.527 

<¡1.577 
1.627 
1.677 
1.777 

1.627 
1.677 
1.727 

Í2.263 
2.313 
2.363 
2.413 
2.463 
2.613 

log L=3.13, log M = 0.73152 

+7.756 
+6.849 
+6.217 
+5.926 

+6.573 
+4.774 

(+3. 34) 
+3.170 
+ 1.900 
+ 1.054 
+0.726 

(-2.0 + 1.0) 
+1.105 
-0.202 
-1.002 

-1.478 
-0.599 
+0.484 
+1.681 

-5.331 
-4.826 
(-8.26) 
-3.904 
-2.637 
-1.143 
+2.002 

-4.3 + 1.0) 
-4.760 
-3.280 
-1.622 

7.896 
6.875 
6.236 
6.159 

8.463 
6.788 

(8.910) 
5.029 
3.251 
1.555 
2.130 

(4.7 + 1.4) 
4.887 
3.286 
1.907 

log L = 4.13, log M = 1.03552 

+3.118 
+2.105 
+ 1.299 
+0.726 
+0.383 
+0.434 

-2.570 
-2.028 
-1.336 
-0.559 
+0.233 
+2.184 

4.040 
2.933 
1.863 
0.916 
0.448 
2.227 

-10.79 
- 5.00 
+ 4.45 
+ 15.84 

-39.04 
-45.31 
(-68.0) 
-50.92 
-54.23 
-47.31 
+70.08 

-115 + 20) 
-76.94 
-93.52 

-121.72 

-39.49 
-43.94 
-45.80 
-37.62 
+31.32 
+78.76 
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typical value [cf. Ledoux and Walraven 1958, p. 373]. The bolometric amplitudes are 
not likely to differ greatly from the photographic.) For example, for B = 0.15, log L = 
3.13, log R = 1.527, and 970 = 0.05, we have AMboi = 0^77. 

The amplitudes of the surface flux variations are generally smaller for log L — 4.13 
than for logZ, = 3.13 {B = 0.15). This can be attributed (as in the case of the population 
II cepheid models) to the relatively small surface gravities of models with log L = 4.13, 
with reasonable radii (or to the small values of D; cf. eqs. [8] and [11]), as compared with 
those for log L = 3.13. The values of z (i.e., geometrical depth) at the level of second 
helium ionization are greater for log L = 4.13 than for log L = 3.13, so that the relative 

Fig. 4.—Surface flux variations for the case n — 0.70, s = 2.10, Q = 0.04 day. Here #i(0) and #2(0) 
denote, respectively, the real and imaginary parts of —^(0), the (normalized) surface flux variation. 
The phases are relative to minimum radius. Each curve shows the variation of —HK{Qi) with radius, R, 
for the particular value of helium abundance, B, indicated alongside the appropriate curve. Solid lines 
are for log L = 3.13, log M — 0.73152 (solar units); dashed line for log L = 4.13, log M = 1.03552. The 
numbers beside the plotted points denote the corresponding values of log R (solar units). The empirical 
values (cf. eqs. [156] and [50]) are log R = 1.513 for log L — 3.13, log R = 2.248 for log L = 4.13. The 
dash-dot curve shows the approximate location which the curve for log L = 3.13, B = 0.15, would have 
had if the §i,a-curve had remained constant and equal to its minimum value at all points exterior to the 
minimum (point a in Figs. 1 and 2). See text for further explanation of this curve. 
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pulsation amplitudes (and hence the quasi-adiabatic flux variations) are smaller at this 
level in the former case than in the latter. Because of the relatively large values of z at 
the level of second helium ionization for log L = 4.13, the approximate method of treat- 
ing the adiabatic problem renders these results less reliable than those for log L = 3.13 
(cf. the discussion following eq. [12] and Sec. IV, c). 

We now consider the possible effects on the surface flux variations of some of the 
approximations made in computing the ¿pi, 0-curve. It should be noted, first, that the 
primary factor determining the character of the surface flux variations is the behavior 
of those portions of the §i, «-curve that lie in the region with <£(z) ^ 1 (this is the 
“critical region” discussed by Eddington 1927 and in N-AI, Sec. III). In regions with 
4>(z) ^>> 1, the non-adiabatic effects are insignificant (cf. last paragraph in Sec. IV, a), 
whereas, in regions with <f>{z) <<C 1, the HK(z) vector is effectively “frozen in” (this may 
be seen from eq. [30] or from the entries in Table 2c). The large phase lags in the surface 

TABLE 4 

Relation of &Mbol to |//k(0) i 

AJlfbol 

, = 0.05 ^o: 0.10 

0.109 
0.218 
0.328 
0.440 
0.555 
0.672 
0.794 
0.920 
1.053 
1.193 
1.505 
1.883 
2.386 
3.197 

0.218 
0.440 
0.672 
0.920 
1.193 
1.505 
1.883 
2.386 
3.197 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
12. 
14. 
16. 
18. 
20. 

I Hk(0) i 

Vo = 0.04 

0.0869 
0.172 
0.262 
0.350 
0.440 
0.532 
0.625 
0.720 
0.818 
0.920 
1.136 
1.374 
1.646 
1.971 
2.386 

flux variations obtained here (for reasonable radii) are due not only to the abrupt out- 
ward decrease itself in the ¿pi, «-curve in the region of second helium ionization (first 
helium ionization and hydrogen ionization would have produced qualitatively similar 
decreases) but also to the fact that the decrease occurs, for second helium ionization, just 
in the critical region (cf. Figs. 1 and 2). It was because first helium ionization and hydro- 
gen ionization both occur in regions with (¡>(z) <& 1 (for radii in the cepheid domain) that 
it was felt safe to neglect these ionizations in this investigation. 

However, these ionizations, if included, would have acted indirectly by decreasing the 
extent and steepness of the increase toward the surface in the §i, «-curve exterior to the 
region of second helium ionization. The effect of removing this increase completely for 
the model with log L = 3.13,2? = 0.15, andlogi? = 1.527 is shown by the location of the 
encircled dot in Figure 4. The location of this point (whose co-ordinates are given in 
parentheses in Table 3) was computed from the analytic theory (cf. Sec. II, d) by 
assuming ¿pi, « to remain constant and equal to its minimum value at all points exterior 
to the minimum (point a in Figs. 1 and 2). It is seen from the extent of the shift that the 
effects of the steep rise in the §i, «-curve are not negligible. The reason for this is that 
the magnitude of the slope of the ¿pi, «-curve (with respect to </>; cf. Fig. 2) is very large 
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at points exterior to point a, and the values of 0 in the region of the rapid increase are not 
sufficiently small for the “freezing-in” of HK(z) to be effective. 

In general, the result of completely removing the abrupt increase in the §1, «-curves 
would be to cause all points in Figure 4 to be moved downward and to the left by amounts 
which increase with increasing!? (for given B). Because the calculations with the analytic 
theory are quite laborious even for a three-zone model, the shift was accurately computed 
only for the one case {open circle) mentioned in the preceding paragraph. The shift for 
the model with log Z, = 3.13, Z = 0.15, and log i? = 1.777 was obtained from an esti- 
mate based on the analytic theory, and the new location is shown by the triangle in 
Figure 4 (the co-ordinates of this point are also given in parentheses in Table 3). The 
estimate of the location of this point is inaccurate by, at most, plus or minus one unit 
(the possible error is shown by bars through the point). These two shifted points have 
been connected by the dash-dot curve shown in the figure; this then represents approxi- 
mately the curve which would have been obtained for the case log L = 3.13, B = 0.15, 
if the increase in the ¿pi, «-curve exterior to point a in Figures 1 and 2 had been removed 
altogether. 

It is clear that the shifted curve is in much better agreement with observations of 
classical cepheids than the original curve. The amplitude of the light-variations ranges 
between 0^52 for log!? = 1.777 and 1“04 for log!? = 1.527 (assuming tjo = 0.05), while 
the phase lag ranges between 115° and 68°, for the same respective values of log R. In 
addition, it is shown in Section IV, c, that maximum instability occurs, in the case of the 
original curve, for log I? « 1.7. While this value of log R would certainly have been 
altered somewhat if stability calculations had been carried out for the case of the shifted 
curve, it is clear that the phase lag corresponding to maximum instability would have 
been close to 90°, which is approximately the observed phase lag of most classical 
cepheids. The phase lag would not have been greatly different from 90°, in fact, if maxi- 
mum instability had occurred for any value of log R between 1.527 and 1.777. If the 
shifted curve actually corresponded to classical cepheids, it would provide a natural ex- 
planation of the common tendency of the observed phase lags to cluster around 90°. 
While the shifted curve must obviously represent a gross oversimplification of the actual 
situation, it is probable that the results of the numerical calculations would have been 
considerably improved if those physical factors (in particular, first helium ionization and 
hydrogen ionization) which would depress the ¿pi, «-curve in the region exterior to the 
zone of second helium ionization had been taken into account. 

Another approximation made in the computation of the ¿pi, «-curves is the simple 
form of the opacity law (cf. eq. [1]). The effect of the variation of the exponents n and s 
with depth has apparently been taken into account by Zhevakin (1959), and his ¿pi, «- 
curves do not differ significantly from those obtained in this investigation. The assump- 
tion of constancy of n and s has therefore evidently not introduced any very large errors 
into the present calculations. 

c) Dependence of Pulsational Instability on R, B, and M 

The question of the pulsational stability of the star can be answered, in principle, by 
determining the sign of Ii (0, oo ) (cf. eqs. [38a], [38d]). If, as in the present case, interiors 
are not available, the best that one can do is to use the results of the integrations to 
evaluate the contribution to Ii (0, °° ) from the envelopes alone and then to estimate in 
some way the contribution from the remainder of the star. 

We shall set z = Zi in equation (38d), where Zi is the value of z for which /i (0, z) at- 
tains minimum. In accordance with the discussion in Section IV, a, h (0, zf) may be 
regarded as an approximate measure of the direct destabilzing influence produced by 
second helium ionization in the envelopes. These values of I\ (0, zf) are taken from the 
integrations and are given in Table 5, with R as the independent variable, for three 
values of B (0.05, 0.15, and 0.25) and two values of log L (3.13 and 4.13), for the case 
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n = 0.70, s = 2.10, and Qd = 0.04. Here TV is the temperature at the point Z\. Values 
of I\ (0, Z\) are also displayed in Figure 5 {dashed curve) for log L = 3.13, B = 0.15. 

We may obtain an estimate of the values of h (*i, °°)> the positive contribution to 
h (0, oo ) from the regions interior to zh in the following way. Write 

/l ( 2l, 00 ) = /l ( ZU Z2) + /l ( 22, 00 ) , (56) 

where z2 denotes the greatest depth to which any particular final integration was carried. 
Values of h (^i, s2) are also available from the integrations. The value of Ji fe, oo ) may 
be estimated by taking 0p = f in equation (38a) and integrating by parts, to obtain 
(neglecting the effects of nuclear energy production) 

/l(Z2, œ) =|[(p1£f1),2- (p1ff1)oo-^
0°íri(-^)¿2]. (57) 

For giant-star models, (piiTOoo (i.e., the central value of piHi) is invariably much smaller 
than (pi2Ti)*2 and so may be neglected. In addition, the integral in equation (57) will be 
some fraction of (piiTi)22, the value of this fraction depending on z2. Thus we write 
equation (57) in the form 

A ( 22, 00 ) = fa ( Z2) (Pl#l) *2 . <58) 

TABLE 5 

Results of Stability Calculations 
(tt=0.70, 5=2.10, Qd=0.04, a=i) 

log R TiC K) XI0-3 -/i(0, zi) h(zi, oo) /i(0, oo) 

0.05. 

.15. 

.25... 

0.15... 

1.477 
1.527 
1.577 
1.627 
1.677 
1.777 

1.627 
1.677 
1.727 

Í2.263 
2.313 
2.363 
2.413 
2.463 
2.613 

61.0 
60.5 
59.5 
58.5 

64.0 
63.0 
62.0 
61.0 
60.0 
58.0 

62.0 
61.5 
60.0 

54.0 
53.5 
53.0 
52.5 
52.0 
51.0 

log L = 3.13, log M = 0.73152 

0.10359 
.11528 
.12720 
.14030 

.08928 
09860 

.10888 

.12019 

.13265 

.16143 

.10623 

.11823 
0.12942 

10.551 
10.991 
10.502 
8.924 

11.347 
13.367 
14.773 
15.334 
14.924 
11.204 

15.484 
15.879 
15.373 

+20.083 
+18.770 
+17.285 
+15.781 

+22.007 
+20 911 
+19.634 
+18.244 
+16.836 
+13.888 

+ 19.844 
+ 18.671 
+ 17.239 

log L = 4.13, log M = 1.03552 

0.22853 
.25404 
.28238 
.31384 
.34878 

0.48320 

4.175 
4.349 
4.214 
3.787 
3.122 
0.511 

6.951 
5.943 
5.079 

+ 4.210 
+ 3.417 
+ 0.702 

+ 
+ 
+ 

+ 9.532 
+ 7.771 
+ 6.783 
+ 6.857 

+10.660 
+ 7.544 
+ 4.861 
+ 2.910 

1.912 
2.684 

+ 
+ 

+ 4.360 
+ 2.792 
+ 1.866 

+ 2.776 
+ 1.594 
+ 0.865 
+ 0.423 
+ 0.295 
+ 0.191 
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The values of s2 are in all cases such that 0(z2) 1, so that, for points interior to z2, 
I-ff«I ^ \&K,a\ (cf. last paragraph in Sec. IV, a). Thus the behavior of a(z2) can be esti- 
mated by examining the quasi-adiabatic flux variations associated with models for which 
solutions of the adiabatic wave equation are available. In all cases pi and jplf a decrease 
monotonically toward the center for points interior to z2. In such cases, a(z2) is a slowly 
varying function of z2, and its value lies between zero and unity. 

Zhevakin (1958) has discussed the dependence of the function a(z2), defined in equa- 
tion (58), on z2 and on the exponents n and s in the opacity law (cf. eq. [1]), for the quasi- 
adiabatic oscillations of several stellar models, assuming radiative transfer. (In Zheva- 
kin’s notation, our function a is denoted by 0.) He has shown the following: (1) For giant- 
star models whose outer parts are in radiative equilibrium, a(z2) is practically independ- 

Fig. 5.—Stability integrals for log L = 3.13, log M = 0.73152 (solar units), n = 0.70, s = 2.10, 
Qd = 0.04 (see text for explanation of symbols). The appropriate values of B (helium/hydrogen ratio) 
are indicated alongside the various curves. The radii are in solar units. 
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CEPHEID INSTABILITY IN STARS 621 

ent of z2 for z2 < 1 (corresponding to x2 > i). (2) The value of a, for z2 < 1, is very in- 
sensitive to the stellar model, in particular to the degree of mass concentration toward 
the center, and hence to the degree of “non-homologousness” (i.e., the rapidity of the 
rate of increase of pi toward the surface) of the pulsations. (3) For giant-star models with 
0.5 < w < 1.5, 1 < s < 5 (the range of values of practical interest), equation (58) will 
be accurate to within better than 4 per cent for z2 < 1 if a is assigned the value 0.535. 

Equation (58) therefore evidently gives a good estimate of the value of /i (z2, 
00 ), and 

the principal uncertainty lies in the values of (piHi)?2, which are taken from the in- 
tegrations (cf. next two paragraphs). In computing h (z2, °o), we shall assume that a is 
independent of z2 and shall adopt the value a = f. Values of 7i (zh oo), computed in 
this way, are also presented in Table 5 and are plotted in Figure 5 for the case log L = 
3.13, B — 0.15 {dash-dot curve). In this table also are given the corresponding values of 
h (0, oo ), computed from equation (387), with z = Z\. Values of /i (0, oo) are plotted 
in Figure 5 for the case log L = 3.13, with three values of B (0.05, 0.15, and 0.25, solid 
curves). 

We note that 7i (0, oo ) is positive in all cases shown in Table 5, thus indicating stabil- 
ity against pulsations. It is seen, however, that the values of |7i (0, Z\) | are roughly 
comparable to the corresponding values of h (si, oo ) ; this means that the destabilizing 
effects of second helium ionization in the envelopes are roughly comparable in magnitude 
to the stabilizing effects of the interior regions. Consequently, any error in either or 
both of |7i (0, Zi)I and I\ {z\, oo) will be greatly magnified in 7i (0, oo), which is the 
difference between these two quantities. 

The uncertainties involved in 7i (zi, oo ) are more serious than for h (0, zi) (for given 
ionizing constituents), because most of the contribution to h (zh oo ) comes from regions 
with relatively large values of z; and, as is pointed out elsewhere (cf. the discussion fol- 
lowing eq. [12] and Sec. IV, e), the approximate method of treating the adiabatic prob- 
lem is subject to considerable error in such regions. If, for example, all values of h (zi, oo ) 
in Table 5 were actually too large by, say, 50 per cent (a not unreasonable value), 7i (0, 
oo ) would have been negative (indicating pulsational instability) for most of the values 
of log R in Table 5, for B > 0.15, and the stability situation would have been marginal 
for B = 0.05. (Note that, because of the relatively high accuracy of eq. [58], uncertainties 
in 7i [zi, oo ] arise only indirectly from the absence of interiors.) In view of these considera- 
tions, it does not seem safe to attempt to draw any firm conclusions from these calcula- 
tions regarding the sign of h (0, oo ). The question of whether or not the effects of second 
helium ionization are sufficiently large to produce pulsational instability has therefore 
not been answered in this investigation, although they have been shown to be a signifi- 
cant destabilizing influence. 

It can be shown from the analytic theory that the values of 17i (0, Zi) | would have 
been increased over their present values if §i, a had remained approximately constant 
and equal to its minimum value at all points exterior to point a in Figures 1 and 2 (cf. 
Secs. IV, a and b). It is estimated that the increase might have been between, say, 5 and 
20 per cent, depending on the radius. The corresponding values of 7i (zi, oo ) would hardly 
have been affected at all (cf. last paragraph in Sec. IV, a). Since the present values of 
17i (0, Zi) I are already almost large enough to produce instability, it is likely that the 
computed values of 7i (0, oo ) would in this case have been negative for some values of 
log R. 

We note, next, that, for log L — 3.13, the minimum values of 7i (0, oo ) for 2? = 0.15 
are roughly equal to those for B = 0.25, while those for B — 0.05 are several times larger 
than those for either B — 0.15 or B = 0.25. This implies that the question of pulsational 
instability is not very sensitive to the value of B, provided that B is larger than some 
value which lies between, say, 0.05 and 0.10. For B = 0, it may be inferred that the 
envelopes would have had no destabilizing influence and would have contributed to the 
pulsational stability of the star. 
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While the sign of 7i (0, œ ) cannot be determined reliably from the present calcula- 
tions, it is encouraging to note that 7i (0, °o ) actually attains a minimum with respect 
to R for log L = 3.13, for the two cases B = 0.05 and £ = 0.15; a minimum would 
probably have been reached also for B = 0.25 if the calculations for this case had been 
extended to larger values of log R. The dependence on R, however, is discouragingly 
uncritical. Also, for logL = 4.13 and# = 0.15,h (0, °o) decreasesmonotonically within 
in the range that was covered by the integrations (i.e., the range of reasonable values of 
R). The results for this latter case, however, may be particularly unreliable because of the 
relatively large values of z in the region of second helium ionization (cf. Sec. IV, e, and 
the discussion following eq. [12]). 

For log L = 3.13, the values of R (say Rcrit) at which Ii (0, oo ) attains minimum (cf. 
the third column of Table 6) are seen to be larger than Roba, the observed value of R, but 
the discrepancy becomes smaller as B decreases. Adopting log RCvit = 1.777 îov B = 
0.25 (log L = 3.13), we have ÆcHt/Æobs = 1-22, 1.59, and 1.84 for B = 0.05, 0.15, and 
0.25, respectively. 

The general conclusion to be drawn from this subsection is that, while the precise 
numerical results of the stability calculations cannot be trusted because of the lack of 
interiors and the numerous approximations made, there does exist a definite destabilizing 
influence due to second helium ionization in the envelopes, one that is strong enough to 
be a significant factor in determining the over-all stability of the star. Moreover, the 
pulsational instability attains maximum (at least for log L = 3.13) for values of R which 
are at least reasonable, if not in close agreement with observation. 

It may also be inferred from the calculations that if either first helium ionization or 
hydrogen ionization had been invoked as the source of the instability, rather than second 
helium ionization, only a negligible destabilizing influence would have resulted, except 
possibly for values of R so large as to lie completely outside the range of the classical 
cepheids. 

d) Discussion of <¡)* 

Arguments were presented in N-AI for associating maximum pulsational instability 
with a value of about unity for <£*, the value of $(z) (cf. eq. [37]) at the level (z*) of 50 
per cent ionization of the critical element responsible for the instability. This was, in 
fact, the basis of the derivation of the semitheoretical H-L relations of Papers IV and V. 
The present calculations permit making a partial check of this assumption. 

To summarize briefly the ideas underlying the derivation of the II-L relations of 
Papers IV and V : Let 0C denote the value of </>* at which the instability against pulsation 
attains maximum. Assuming that the condition of maximum instability is also a condi- 
tion for pulsation, this latter condition, then, is that 

<l>* = <I>C , (M) 

where <£c is a constant whose value is assumed to be near unity. For a star evolving with 
constant L and M, </>* (R) depends rather critically on R; it was shown in Paper V that 
0* cc R0} where ß = 2.5 (the present calculations give, incidentally, a mean value of 
ß « 2.2 for the radiative envelope models). If i£Crit is the value of R for which equation 
(59) is satisfied, then Rcrit (which would then be the theoretical equilibrium radius of a 
cepheid with given L and M) is given by the solution of the equation 

</)* (J^crit) ^ (¡>c • 

The period of pulsation, corresponding to .ft = ftcrit, is then obtained from the period- 
mean-density relation (cf. eq. [15a]). The assumption of constancy of 0C was shown in 
Papers IV and V to lead to IL-L relations whose slopes were in good agreement with that 
of the empirical IL-L relation (cf. eq. [50]). The values of <t>c required to yield ftcrit = 
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i?obs (for classical cepheids), assuming He+ tobe the critical constituent responsible for 
the instability, were 1.0 for the convective envelopes of Paper IV and 0.44 for the radia- 
tive envelopes of Paper V (for B = 0.15). 

In Table 6 are given the values of log i^crit and 0* (Æcrit) as obtained from the present 
calculations (cf. Fig. 5), for three values of B, for the case log L — 3.13, log M — 0.73152, 
n = 0.70, s = 2.10, and Qd = 0.04. Here T* denotes the temperature at the level of 50 
per cent He+ ionization. Because of time limitations, the integrations for B = 0.25 were 
not actually carried toR = i£Crit, so the value of i?Crit given in Table 6 is based on a rough 
extrapolation of the curve given in Figure 5 for this case. Parentheses about the entries 
in Table 6 denote uncertainty arising from this extrapolation. 

It is seen from the entries in Table 6 that the values of 0* (ÆCrit) are all very nearly 
the same for the three rather widely different values of B that were used. While definite 
minima in h (0, oo ) were actually obtained only for the two cases shown in the first two 
rows of Table 6, the near constancy of <£* (RCrit) for these two cases does lend some sup* 
port to the validity of the assumption that </>* (ÆCrit) = const, is a condition for pulsation- 
al instability. The values of 0* (2?Crit) are also seen to be near unity, as was assumed in 
Papers IV and V. The present calculations suggest that the critical value of 0* required 
for instability may be $c « 1.5 or 1.6. 

TABLE 6 

ïHRoût) as Function of B 
0=0.70, 5=2.10, Gd=0.04, log ¿=3.13, log M=0.73152) 

r*(° K)xio-3 log R* 0*CRcrit) 

0.05. 
.15. 

0.25. 

46.0 
43.7 
42.7 

1.599 
1.714 

(1.777) 

1.55 
1.57 

(1.69) 

Because minima in /i (0, oo ) were obtained for only one value of log L, a theoretical 
ILL relation cannot be derived directly on the basis of the stability calculations. If, 
however, we accept the constancy of 0* (ÆCrit) and adopt, say, $c = 1.5, we can derive 
a ILL relation by the same methods that were used in Papers IV and V. The result is a 
curve that is nearly parallel to the empirical curve and which is displaced, for given L, 
toward longer periods by A log II « 0.302 for £ = 0.15. 

Finally, the present calculations permit an estimate to be made of the value of the 
quantity (m), which was defined in Papers IV and V and whose value was assumed in 
both these papers to be 3. Since the present calculations of 0* include the effects of 
curvature, (m) must be defined slightly differently than was done in Papers IV and V. 
We shall here define (m) in such a way that equations (8) and (9) in Paper V are still 
valid. Then {m) is determined by the equations 

1 

pi/(”e+l)dP = 

2 y x4 \ 
3 

X 

P* x-tpi/K+i) 

A9*'" 
dP, 

(61a) 

(61b) 

where the notation is the same as in Paper V. Thus (m) depends on z* as well as on B 
and on the mechanism of energy transfer. 

For B = 0.15, the values of (m) for several models ranged between about 1,8 and 2.2, 
with a mean value of about 2.0. 
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é) The Effects of Varying n, sy and Q 

We may summarize the effects of varying n, s, and Q by the following qualitative re- 
marks: 

1. Variation in the values of n and s over reasonable ranges produced changes in the 
detailed quantitative results, but it introduced no qualitatively new or significant fea- 
tures. 

2. Most of the results were found to be rather sensitive to the value used for Q. The 
immediate effect of varying Q is to alter the behavior of y, the relative pulsation ampli- 
tude (cf. eq. [12]), the relative magnitude of the alteration increasing with depth. With- 
out interiors to fix the value of Q, then, it follows that all quantities which depend on y 
and its derivatives are subject to this inherent source of uncertainty. Unreasonable 
values of Q may be excluded by the condition that y (in the fundamental mode) decrease 
monotonically inward through the envelopes without vanishing. Since y behaved in this 
manner (at least for the population I cepheids) with the value of Qd (i.e., 0.04) that was 
used in most of the calculations, then this semiempirical value is evidently not unreason- 
able from the standpoint of the mathematical characteristics of the envelopes. 

Within the realm of reasonable values of Q, however, there still exists a rather wide 
range of possible curves for y (2). Because all these curves are normalized to unity at 
2 = 0 and because the effects of the uncertainty in the value of Q increase with depth, it 
follows that the results based on the present method of treatment of the adiabatic prob- 
lem (cf. Sec. II, b) decrease in reliability rather rapidly with depth. 

V. CONCLUSIONS 

It may be concluded that the results of these calculations, taken at face value, are 
favorable in the following respects to the helium-ionization hypothesis, at least as applied 
to the population I cepheids: 

1. The calculations show that second helium ionization, occurring at a critical depth 
in the envelope, can, with a reasonable helium abundance, incite a strong tendency to- 
ward pulsational instability, at least for the kinds of envelopes that were considered here. 
First helium ionization and hydrogen ionization can be ruled out as primary causative 
agents in producing instability because they occur at depths (in ^-measure) which are 
too small for them to be directly effective for radii in the cepheid region and for the kinds 
of envelopes considered here. 

2. For radii near the observed values, the negative dissipation (produced by second 
helium ionization) in the envelopes is comparable in magnitude to the estimated positive 
dissipation in the interiors (cf. Sec. IV, c). The theoretical possibility of pulsational in- 
stability arising from this source is therefore at least not excluded by these calculations. 
However, before a definitive answer can be given to the question of the existence of pulsa- 
tional instability, information from the interiors will be needed. While the possession of 
suitable interior models for cepheids of both populations would be highly desirable for 
this purpose as well as for other reasons, it is possible that complete interior models may 
not actually be required. A sufficiently precise answer to the stability question might be 
provided merely by adopting a different computational procedure and pushing the in- 
tegrations to considerably greater depths than those that were attained in this investiga- 
tion.2 For this purpose only a very rough interior model would probably be sufficient. 

3. Maximum pulsational instability occurs, at least for the models with log L (solar 
units) = 3.13, for radii which are reasonable, if not in close agreement with observation. 
For B (helium/hydrogen ratio, by numbers) = 0.1S, the radius corresponding to maxi- 
mum instability is larger than the empirical radius by a factor of about 1.6. In addition, 
the critical value of the phase-lag function corresponding to maximum instability is about 
1.5 or 1.6 (cf. Sec. IV, d). 

2 The author is indebted to Dr. M. Schwarzschild for this suggestion. 
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4. The relative amplitudes and phases of the surface flux variations, for reasonable 
radii and helium abundances, are, in a very rough sense, consistent with observations of 
cepheids. For B = 0.15 and log L = 3.13, the amplitude of the light-variations is about 
0m7 or 0^8, and the phase lag (relative to minimum radius) is about 40° or 50° for radii 
near the observed values. It must be borne in mind that a linear theory, even at best, 
should not necessarily be expected to yield closely realistic results regarding details of 
surface flux variations, etc. (see Ledoux and Walraven 1958, p. 505, in this connection). 

Furthermore, it has been shown that inclusion of first helium ionization and hydrogen 
ionization would have increased the magnitude of the pulsational instability (through 
indirect effects) and would have brought the surface flux variations into even closer cor- 
respondence with observations than the present calculations show. The effect of these 
additional ionizations on the radii for which maximum instability is attained cannot be 
ascertained without further calculations. 

It is clear that a more refined discussion of the envelopes of the population II cepheids 
will be required before these stars can be placed unambiguously in the same scheme that 
applies to the population I cepheids. It is possible that a revision of ideas regarding the 
physical mechanism responsible for the instability in these stars will be required. More- 
over, a nonlinear theory may be needed to treat adequately the population II cepheids. 

The most important source of uncertainty in the calculations described here is perhaps 
the question of the accuracy of the Woltjer method in the first approximation in the solu- 
tion of the non-adiabatic problem. This question may be answered, for example, either 
by carrying out higher approximations within the Woltjer scheme or by adopting a dif- 
ferent approach based on an exact numerical solution of the entire set of linearized 
pulsation equations (a system of the eighth order). This latter approach is now under 
investigation by the author.3 It is interesting to note that the behavior of the surface 
flux variations was in qualitative agreement with results anticipated earlier (cf. N-AI) 
on the basis of a somewhat different (and cruder) treatment of the non-adiabatic prob- 
lem. In addition, the inference that phase leads would occur in our case B = 0 is in 
agreement with results reported by Zhevakin (19546) for a physically similar case. These 
considerations suggest that the results obtained by use of the Woltjer method in the first 
approximation are not likely to be, qualitatively at least, grossly in error. Until a defini- 
tive answer to this question has been given, however, the present results must be regarded 
as highly tentative and preliminary. 
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3 The exact numerical solutions of the complete eighth order system of linearized pulsation equations, 
as applied to envelope models of the same kind as those considered in this paper, have recently (July, 
1960) been obtained by the author during a brief tenure at the Smithsonian Astrophysical Observatory in 
Cambridge, Massachusetts. It may be concluded from the exact calculations that the results obtained by 
use of the Woltjer method in the first approximation are, indeed, qualitatively correct and that they do 
not differ greatly, quantitatively, from the exact results. The detailed results obtained and the method of 
calculation used in the exact treatment will be described in a future paper. 
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