SPECTRAL CLASSIFICATION OF 533 B8-A2 STARS AND* THE MEAN ABSOLUTE MAGNITUDE OF A0 V STARS

Kiyoteru Osawa \dagger
Yerkes Observatory, University of Chicago
Received A pril 18, 1958; revised January 26, 1959

ABSTRACT
Spectra of 533 B8-A2 stars with declinations between $+10^{\circ}$ and $+40^{\circ}$ and brighter than magnitude 6.5 were observed and classified according to the MK system. The MK spectral types were found to range from B3 to A8. Colors of 220 of these stars were observed photoelectrically. The mean parallax of A0 V stars of apparent magnitude 5.0 was derived from the motions of 99 non-peculiar main-sequence stars which were selected from the 533 stars. The absolute magnitude of A0 V stars was found to be +0.5 .

I. OBSERVATIONAL PROCEDURE

a) Spectral Types

Spectra were obtained of all non-variable stars brighter than visual magnitude 6.50 , with declination between $+10^{\circ}$ and $+40^{\circ}$, and with $H D$ spectral types in the range B8-A2. The observations were carried out by the author by means of the one-prism spectrograph attached to the 40 -inch refractor of the Yerkes Observatory in the period from April, 1954, to March, 1955. The 6-inch camera, which gives a dispersion of $125 \mathrm{~A} / \mathrm{mm}$ at $\mathrm{H} \gamma$, was used. The slit-width corresponded to about 4 A in the spectrum.

The spectra were classified on the revised system of the Yerkes Spectral Atlas (MK system) (Johnson and Morgan 1953). The revised types of these stars, 533 in number, lie in the interval B3-A8. Spectra of classes around A0 are most difficult to classify accurately. All lines, with the exception of the Balmer lines, are weak, and the broad-line stars show few spectral features that can be used for classification. The dispersion and resolving power used by the present investigation were about half the dispersion and resolving power that would be necessary for an accurate classification.

b) Photometric Observations

Photoelectric observations on the (U, B, V) system were made at the McDonald Observatory in March and April, 1955. The photoelectric photometer attached to the 13 -inch reflector was used. Some stars were observed also with the 82 -inch reflector with the help of Dr. Nancy G. Roman, whom the author wishes to thank cordially. The photoelectric observations were made for stars with right ascensions between $6^{\mathrm{h}} 30^{\mathrm{m}}$ and $18^{\mathrm{h}} 30^{\mathrm{m}}$. Six of the primary standards (Johnson and Harris 1954), namely, β Cnc, η Hya, β Lib, a Ser, $\epsilon \mathrm{CrB}$, and τ Her were used to determine the extinction coefficients. In addition, ten additional standard stars of spectral type B or A were included in the observing program in such a way that at least one standard star could be observed every hour. These standard stars were chosen from the above-mentioned list of Johnson and Harris.

More than half the 220 stars were observed at least three times. The probable errors of the photometric observations are estimated to be about ± 0.02 in $(B-V)$ and about ± 0.03 in $(U-B)$ for a star observed on three nights.

In Table 1, columns 1 and 2 contain a running number and the $H R$ number. Column 3 contains the spectral type on the MK system. An asterisk refers to a note at the end of the table. The visual magnitudes in column 4 were taken from the Yale Catalogue

* Contributions from the McDonald Observatory of the University of Texas, No. 308.
\dagger Now at the Tokyo Astronomical Observatory.
of Bright Stars (ed. of 1940). Columns 5 and 6 contain the results of the photoelectric observations; a colon after a number refers to a case of a poor internal agreement. Column 7 lists the number of photometric observations.

II. THE MEAN ABSOLUTE MAGNITUDE OF A0 V STARS

a) The Observational Material

The object of Section II is to obtain a calibration of the absolute magnitudes of late B and early A stars from their motions. The stars treated here were selected from Table 1 of the present paper. The selection of stars from this table was made by the following conditions:

1. Spectral types should be between B9 V and A3 V of the MK system. Giants, supergiants, and peculiar stars were rejected.
2. The observational probable error of the proper motion should be smaller than 10 per cent of the proper motion itself.
3. Stars belonging to the Ursa Major cluster (Delhaye 1948), the Pleiades (Hertzsprung 1947), the Hyades (van Bueren 1952), Praesepe (Klein-Wassink 1927), and the Coma Cluster (Trumpler 1938) were rejected.
4. The limits of the apparent magnitudes were as follows: for B8 and B9: $m<5.0$; for B9.5, A0, and A1: $m<6.0$; for A2 and A3: $m<6.5$. The fourth condition implies that the stars were selected approximately inside a sphere 150 parsecs in radius.

Under these conditions, only 99 stars were selected from the 533 stars of Table 1. As they were selected on the basis of apparent magnitude, they may be somewhat brighter than average stars of the same spectral class per volume of space.

The proper motions were taken from the General Catalogue and were reduced to the system of N30 by the method described in the preface of the N30 catalogue (H.R. Morgan 1951). Further, they were subjected to the correction of the precessional constants, according to Morgan and Oort (1951), namely,

$$
\begin{aligned}
& \text { Correction to } \mu_{a}=0.31 \cos \delta-0^{\prime \prime} .300 \sin a \sin \delta, \\
& \text { Correction to } \mu_{\delta}=-0.37 \cos a .
\end{aligned}
$$

The corrections for differential galactic rotation in proper motion and radial velocity were not inserted because the stars are not very distant. Some stars were found in the N30 catalogue. In these cases the mean values of the proper motion of $G C$ and N30 were adopted.

As the stars cover an appreciable range of distance from the sun, the proper motions were reduced to a standard distance. The standard distance was chosen to be that of an A0 V star with apparent magnitude 5.0. For other spectral types, the reduction factors to this standard were calculated by assuming, tentatively, the values of the absolute magnitudes given in Table 2. The standard distance defined above is merely a convenient unit, whose absolute value is to be determined by the present investigation.

Radial velocities were taken from the catalogue of R. E. Wilson (1953).

b) The Solar Motion

The stars were arranged in 24 groups for every 2 hours in right ascension and every 15° in declination. For each of the groups, mean values of $a, \delta, \mu_{a_{1}} \cos \delta, \mu_{\delta_{1}}$, and radial velocity ρ were computed. The position of the solar apex was obtained from the proper motions only, by solving the following equations for the unknowns X, Y, and Z by the method of least squares:

$$
\begin{array}{ll}
-X \sin \langle\boldsymbol{a}\rangle \quad+Y \cos \langle\boldsymbol{a}\rangle & =-\left\langle\mu_{a 1} \cos \delta\right\rangle, \\
-X \cos \langle\boldsymbol{a}\rangle \sin \langle\delta\rangle-Y \sin \langle\boldsymbol{a}\rangle \sin \langle\delta\rangle+Z \cos \langle\delta\rangle & =-\left\langle\mu_{\delta_{1}}\right\rangle,
\end{array}
$$

No.	H.R.	Sp.	m_{v}	B-V	U-B
1	15	B8 p *	2.15		
2	26	B8 V	5.51		
3	44	Al V	6.06		
4	49	AO V	6.05		
5	53	Al V	6.06		
6	63	A2 V	4.44		
7	68	A2 V	4.51		
8	71	Al V	5.80		
9	78	B6 IV	5.82		
10	149	B8 p *	6.26		
11	246	Al V	6.48		
12	254	Al V	5.76		
13	262	A3 V	5.94		
14	269	A4 III	3.94		
15	277	A2 V	6.41		
16	291	B9 V	5.46		
17	$310)$	B9.5 IV	5.55		
18	311	B9 V	5.82		
19	328	A3 V	5.63		
20	348	B7 III	5.75		
21	364	B8 III	5.85		
22	383	A3 V	4.67		
23	395	Am *	5.53		
24	422	B9 III	6.36		
25	432	A4 III	5.96		
26	438	B6 V	6.28		
27	446	B8 V	5.77		
28	455	B9 III	6.20		
29	490	B9 V	5.45		
30	522	B9.5 V	5.73		
31	545	B9 V	4.83		
32	546	Al p^{*}	4.75		
33	578	A6 V	6.14		
34	599	A2 III	5.44		
35	613	Am *	5.08		
36	615	B8 V	6.00		
37	620	A4 V	4.77		
38	628	B9.5 V	6.05		
39	634	Am *	6.20		
40	655	B9.5 V	5.26		
41	664	AO V	4.07		
42	669	Al V	5.69		
43	675	A2 V	5.28		
44	677	B8 IV	6.51		
45	746	B8 IV *	6.28		
46	760	B5 V	6.40		
47	769	AO III	6.26		
48	773	A7 V	5.36		
49	782	A3 V	5.38		
50	793	-AO IV-V	5.72		
51	797	A2 V	6.27		
52	803	A3 V	6.37		
53	809	B9 V	5.80		
54	830	B9 V	5.87		
55	838		3.68		

TABLE 1 (continued)

No.	H.R.	sp.	m_{v}	B-V	U-B	n
56	873	AO p *	5.18			
57	879	A2 V	4.62			
58	$\begin{aligned} & 887 \\ & 888 \end{aligned}$	A2 V	5.55 5.25			
59	894	B8 V (e)	5.92			
60	905	Am *	5.91			
61	927)		6.11			
	928		6.11			
62	944	B7 V	5.60			
63	945	AO V	6.38			
64	948	B8 V	5.91			
65	954	B8 p *	5.65			
66	971	Al III ?	5.53			
67	972	AO IV	4.95			
68	976	Am *	6.42			
69	986	A3 V	5.97			
70	1019	B9.5 V	5.64			
71	1027	AO V	5.92			
72	1036	A3 III	6.45			
73	1039	B9.5 V	6.20			
74	1041	A2 V	5.60			
75	1061	B9.5 V	5.12			
76	1078	A3 V *	5.80			
77	1086	A3 V	5.92			
78	1103	A4 III	6.42			
79	1118	A2 V	6.15			
80	1126	B8 V e ? ${ }^{\text {) }}$	5.50			
81	1133	A3 III	5.57			
82	1137	AO V	6.03			
83	1144	B8 V	5.63			
84	1151	B8 V	5.85			
85	1152	B9.5 V	6.46			
86	1172	B8 V	5.51			
87	1177	A2 V	5.10			
88	1178	B8 III	3.80			
89	1180	B7 pec*	5.18			
90	1183	B8 V	6.11			
91	1185	B8 III	5.92			
92	1194	B9 II-III	6.16			
93	1221	B9.5 IV	5.98			
94	1229	A1 V	6.38			
95	1234	B9.5 V	6.33			
96	1237	B9.5 V	6.30			
97	1268	AO p *	5.27			
98	1284	B9.5 V	6.02			
99	1297	B8 II-III	6.16			
100	1339	B9 V p ? *	5.39			
101	1341	Al p ${ }^{*}$	5.32			
102	1369	B9.5 V	5.38			
103	1375	B9 V	5.92			
104	1376	Am *	5.68			
105	1377	B7 V	5.58			
106	1378	B3 V	6.16			
107	1389	A3 III	4.24			
108	1402	B7 III	5.84			
109	1419	B9.5 V	6.19			
110	1442	B9 Vn *	6.24			

No.	H.R.	Sp.	m_{v}	B-V	U-B	n
111	1445	B6 p *	5.70			
112	1471	B8 V	5.73			
113	1478	$\mathrm{Am}{ }^{*}$	5.15			
114	1484	B7 IV	5.37			
115	1490		5.68			
116	1512	B5 III	6.17			
117	1519	Am	5.43			
118	1570	AO V	4.74			
119	1576	B8 III	5.74			
120	1590	B9.5 V ?	5.65			
121	1592	A1 V	4.99			
122	1600	B6 V	5.98			
123	1632	A7 V	6.48			
124	1638	B9 p *	4.65			
125	1642	A7 III	6.46			
126	1706		5.14			
127	1711	A2 IV	6.16			
128	1718	AO III	5.50			
129	1732	B9 p *	5.39			
130	1750	B8 V	6.30			
131	1752	A2 V	5.72			
132	1768	B9 V	6.39			
133	1774	A2 V *	6.09			
134	1776	B9 III	5.93			
135	1791	B7 III	1.78			
136	1795	A1 p ? *	5.85			
137	1804	B9 Ib	5.72			
138	1809	A2 V p ? *	6.13			
139	1814	B9 V	5.51			
140	1819	$\mathrm{A}_{4} \mathrm{~V}$	6.26			
141	1821 A+B	B9 V	$6.64+5.86$			
142	1832	A3 V	5.78			
143	1847p	B7 IV	6.02			
144	1847 f	B8 V	6.52			
145	1850	Am *	6.50			
146	1854	A4 V	6.05			
147	1860	B6 V	6.09			
148	1883	B8 III	5.59			
149	1902	B8 III	5.70			
150	1914	comp. *	5.49			
151	1929	A2 V	6.32			
152	1938	B7 V	5.96			
153.	1951	B7 III	6.49			
154	1985	B7 III p ? *	5.91			
155	1989	A3 V	5.67			
156	1997	B7 V	5.94			
157	2010	B9 V	4.92			
158	2025	A3 III	6.46			
159	2030	comp.**	6.00			
160	2033	B9 p *	5.57			
161	2034	B9.5 V	4.54			
162	2050	A2 V	6.46			
163	2066	A2 Ib	6.42			
164	2095	B9 p *	2.71			
165	2110	AO V	6.01			

TABLE 1 (continued)

No.	H.R.	Sp.	m_{v}	B-V	U-B	n
166	2111	AO Iab	6.08			
167	2116	B8 V *	6.28			
168	2130	B8 III *	5.17			
169	2133	B9.5 V	5.96			
170	2139	B9 III p *	6.10			
171	2191	B9.5 V	5.86			
172	2193	B9.5 V	5.70			
173	2207	B8 V	6.21			
174	2223	B7 V	5.28			
175	2229	B9 II-III	5.36			
176	2250	B9. 5 V	6.48			
177	2253	A2 V	5.98			
178	2258	B9.5 p *	6.17			
179	2272	Al V	6.27			
180	2304	AO V	6.02			
181	2330	A2 V	6.11			
182	2374	B6 V	6.46			
183	2375	A4 V	5.08			
184	2383	A2 V	6.38			
185	2398	B9.5 V	5.05	-. 03	-. 08	2
186	2417	A3 V	6.44	. 10	. 05	2
187	2420	B8 III	5.28	-. 07	-. 43	2
188	2421	AO IV	1.93	. 00	. 03	std
189	2425	B9.5p *	5.54	-. 01	-. 08	2
190	2438	B6 III	5.84	-. 09	-. 50	2
191	2449	A3 V	5.88	. 06	. 11	2
192	2457	AO V	6.18	-.01:	-.07:	2
193	2466	A2 V	5.14	. 06	. 01	2
194	2471	A2 V	6.28	. 06	. 11	2
195	2499	A2 V	6.16	. 07	. 01	2
196	2519	B8 III	5.69	-. 14	-. 53	2
197	2529	A2 V	5.22	-. 02	. 01	2
198	2540	A3 III	3.64	. 10	. 13	std
199	2547	B9 p ?	6.23	-. 05	-. 19	2
200	2589	B7 V	5.88			
201	2605	B8 III	6.29	-. 14	-. 44	2
202	2659	B9.5 V	5.91	-. 03	-. 08	3
203	2669	B9 V	6.23	-. 10	-. 26	3
204	2700	$\mathrm{A}_{4} \mathrm{~V}$	5.60	. 12	. 14	2
205	2757	B9.5 V	5.98	-.03:	-. 10	3
206	2763	A3 V	3.65	. 11	. 10	std
207	2780	A2 V	6.47	-. 02	. 07 :	3
208	2810	Al V	6.02	-. 01	-. 01	2
209	2820	A4 III	5.34	. 10	. 13	3
210	2836	A2 V *	6.22	. 09	. 06	3
211	2840	B6 IV	6.31	-. 13	-. 47	3
212	2857	A6 V	5.04	. 11	. 12	3
213	2858	B9 V	6.07	-. 05	-. 11	3
214	2872	A2 V	6.46	. 07	. 03	3
215	2886	Al V	5.07	. 05	. 06	3
216	2890)	comp. *	2.85 1.99	. 04	. 00	3
217	2893	B9.5 V	6.21	-. 01	-. 06	3
218	2931	A2 V	6.04	. 01	. 04	3
219	2991	AO V	6.28	. 00	. 00	3
220	3008	Al V	5.30	. 01	-. 02	3

TABLE 1 (continued)

No.	H.R.	Sp.	m_{v}	B-V	U-B	n
221	3040	Am *	6.02	. 15	. 13	3
222	3067	A4 V	4.99	. 12	. 11	3
223	3083	A pec *	6.11	. 28	-. 02	2
224	3086	B9.5 V	5.36	-. 04	-. 06	3
225	3132	A1 V	6.20	. 01	. 03	3
226	3134	B9 V	5.91	-. 02	-. 02	3
227	3158	B9.5 V	6.06	-. 05	-. 12	3
228	3163	AO IV	5.11	. 00	-. 01	3
229	3164 A+B	AO V *	6.16	-. 02	-. 07	3
230	3198	A2 V	6.14	. 02	. 02	3
231	3201	B7 III	6.07	-. 12	-. 41	3
232	3215	B9 p ${ }^{*}$	5.59	-. 07	-. 13	3
233	3224	A3 III	6.44	. 11	. 12	3
234	3268	B9 V	5.87	-. 03	-. 12	3
235	$\left.\begin{array}{l} 3310 \\ 3311 \end{array}\right)$	A4 III	$\begin{aligned} & 6.32 \\ & 6.30 \end{aligned}$. 18	. 09	3
236	3333	A5 V	5.90	. 19	. 14	3
237	3348	B8 V	6.06	-. 06	-. 13	3
238	3372	AO V	6.30	-. 02	-. 04	3
239	3377	A2 III	5.83	. 04	. 02	3
240	3406	A3 V	5.98	. 09	. 10	3
241	3429	A6 III *	6.32	. 16	. 19	2
242	3449	Al V	4.73	. 00	. 03	2
243	3465	AO p *	5.58	-. 10	-. 25	3
244	3481	Al V	5.71	. 11	. 05	3
245	3504	AO V	6.14	-. 01	. 00	3
246	3528	A3 III	6.02	. 04	. 11	3
247	3566	Al V	6.46	-. 01	. 01	3
248	3587	A3 V	5.83	. 00	. 09	2
249	3595	B9 p *	5.45	-. 05	-. 12	4
250	3601	AO.V	6.34	. 00	. 05	4
251	3623	B8 III p *	5.14	-. 10	-. 45	3
252	3657	A2 V	6.09	. 02	. 06	4
253	3689	A3 V	6.29	. 07	. 11	3
254	3690	A2 V	3.82	. 06	. 05	3
255	3711	AO V	6.49	-. 02	. 01	3
256	3792	A3 III ? *	6.35	. 12	. 10	4
257	3818	Al V	6.21	. 04	-. 05	4
258	3861	A3 V *	5.73	. 12	. 06	4
259	3900	A5 V *	5.33	. 23	. 09	4
260	3937	B9.5 V	5.18	-. 04	-. 13	4
261	3975	AO Ib	3.58	-. 01	-. 24	4
262	3982	B7 V	1.34	-. 11	-. 36	std
263	4024	AO V	5.35	. 01	. 01	4
264	4041	B9.5 p *	6.46	-. 03	-. 11	4
265	4070	Al V	6.10	. 01	-. 03	4
266	4101	B9 p *	5.87	-. 06	-. 10	3
267	4113	A4 III	5.87	. 07	. 14	4
268	4124	AO IV *	5.83	. 08	. 07	4
269	4137	A2 V	5.58	. 02	. 04	4
270	4189	A5 V	5.55	. 17	. 09	3
271	4192	A2 V	5.05	. 04	. 05	4
272	4203	B9 V	5.37	-. 05	-. 12	4
273	4227	A2 V	5.27	. 01	. 05	3
274	$\left.\begin{array}{l}4259 \\ 4260\end{array}\right)$	Al V	4.51 6.30	. 01	. 02	5
275	4300	Al V *	4.42	. 07	. 05	5

TABLE 1 (continued)

No.	H. R.	Sp.	m_{v}	B-V	U-B	n
276	4309		6.08	. 16	. 10	5
277	4322	A5 V	6.39	. 17	. 12	5
278	4332	A3 III	5.63	. 06	. 12	5
279	4359	A2 V	3.41	. 02	. 02	3
280	4378	A2 V	6.50	. 07	. 05	4
281	4380	A2 V	4.78	. 09	. 04	3
282	4422	Al V	5.26	. 00	. 01	2
283	4454	A5 V *	6.46	. 18	. 10	4
284	4464	A4 III	6.45	. 13	. 10	4
285	4534	A3 V	2.23	. 09	. 07	std
286	4535	Am *	5.95	. 26	. 14	4
287	4564	A3 V	5.49	. 10	. 12	4
288	4632	A2 V	6.34	. 06	. 10	4
289	4633	A3 V	5.78	. 12	. 09	5
290	4650	Am *	5.81	. 27	. 09	4
291	4663	A2 V	5.08	. 05	. 03	4
292	4673	A4 V *	5.68	. 16	. 11	5
293	4705	AO V	6.02	-. 02	. 00	5
294	4717	A3 V	5.10	. 08	. 11	5
295	4738	A4 V	5.04	. 08	. 14	5
296	4752	AO p *	5.38	-. 04	-. 12	5
297	4756	A3 V	5.72	. 07	. 09	5
298	4780	A4 V	6.14	. 10	. 10	5
299	4789	AO III	4.78	-. 03	-. 01	5
300	4816	A p *	6.32	. 05	. 01	5
301	4828	Al V	4.95	. 07	. 04	
302	4861	AO V	6.43	. 02	. 00	4
303	4865	A2 V	5.64	. 00	. 06	4
304	4869	A2 V	5.83	. 02	. 05	4
305	4875	A.4V*	5.86	. 15	. 09	4
306	4886	A5 V	6.25	. 16	. 11	4
307	4904	A5 V	6.26	. 19	. 09	4
308	4914,	A0 p^{*}	5.39	- 11	-. 32	4
309	4943	B9 V	5.11	-. 08	-. 21	4
310	4948	A3 V	6.44	. 03	. 07	4
311	4967	B7 III	6.22	-. 12	-. 48	4
312	5057	A3 V	5.75	. 06	. 08	4
313	5144	Al V	5.65	. 00	. 01	4
314	5214	$\mathrm{A}_{4} \mathrm{~V}$	6.57	. 11	. 07	4
315	5220	A2 V	5.99	. 04	. 01	4
316	5255	AO V	5.42	-. 04	. 02	4
317	5333	A8 V	6.40	. 17	. 09	4
318	5373	A2 V	5.98	. 04	. 06	4
319	5374	Am *	6.34	. 15	. 10	4
320	5422	B9.5 p *	5.96	-. 03	-. 09	4
321	5433	A7 IV-V	5.90	. 22	. 07	4
322	5475	B9 III p *	4.94	-. 02	-. 33	4
323	5476	Am *	5.81			
324	5477 5478	A2 III	4.83 4.43	. 03	. 05	4
325	5478 5532	A3 III	4.43 5.66	. 05	. 08	4
326	5567	B9.5 V	5.77	-. 06	-. 08	4
327	5569	A3 V	6.11	. 11	. 07	4
328	5574	Al V	6.24	-. 02	. 01	4
329	5633	A2 V	6.00	. 06	. 06	4
330	5665	A2 V	6.25	. 06	. 06	4

TABLE 1 (continued)

No.	H.R.	Sp.	m_{v}	B-V	U-B	n
331	5676		5.26	. 02	. 08	4
332	5702	Am *	6.14	. 24	. 09	4
333	5717	B9.5 V	6.20	-. 03	-. 05	4
334	5718	B9 V	5.36	-. 06	-. 21	4
335	5760	A5 V *	6.35	. 19	. 14	4
336	5770		6.14	-. 05	-. 21	4
337	5793	AO V	var.	-. 04	-. 03	4
338	5833	B6 V	6.00	-. 12	-. 47	4
339	5834	B7 V	5.07			
340	5842	Al V	4.49	. 01	. 04	4
341	5843	Al p	5.26	. 02	. 05	4
342	5849	AO IV	3.93	. 00	-. 05	4
343	5858	AO V	5.89	. 00	-. 03	4
344	5867	A2 IV	3.74	. 07	. 08	4
345	5870		5.72	. 09	. 06	4
346	5931	B7 III	6.22	-. 12	-. 41	3
34.7	5971	AO II-III p *	4.91	-. 08	-. 18	4
348	5972	A3 V	4.82	. 05	. 09	4
349	6013	AO V	6.07	. 00	-. 07	3
350	6035	AO V	5.90	. 02	-. 02	3
351	6074	A3 III	5.73	. 04	. 12	4
352	6110	A3 V	6.20	. 06	. 09	4
353	6117	B9 p *	4.53	. 00	-. 04	3
354	6169	A2 V	6.27	. 05	. 00	3
355	6176	B9 p *	6.29	-. 11	-. 18	3
356	6203	A2 V	5.98	. 05	. 03	3
357	6246	A1 V	5.95	. 03	-. 02	3
358	6268	B9.5 p^{*}	6.41	-. 05	-. 07	3
359	6281	B8 IV	4.29	-. 08	-. 35	3
360	6324	B9.5 V	3.92	-. 03	-. 09	3
361	6326	A2 ${ }^{\text {a }}$ *	6.16	.06:	. 00	3
362	6332	A3 'III	5.27	. 02	. 02	3
363	6341	Al V	5.86	. 00	-. 04	3
364	6352	B9.5 V	6.13	-. 01	-. 09	3
365	6385	Am *	6.46	. 09	. 09	3
366	6410	A3 IV	3.16	. 07	. 06	3
367	6432	A1 V	5.90	. 01	. 02	3
368	6436	A2 V	4.80	. 04	-. 01	3
369	6455	A3 III	5.32	. 03	. 10	3
370	6457	A1 V	5.12	-. 04	. 02	3
371	6481	A3 III	5.69	. 06	. 10	3
372	6482	B9.5 IV	6.25	-. 03	-. 1^{17}	3
373	6484	AO p *	5.47	-. 03	-. 04	3
374	6485	AO IV	4.52			
375	6506	Al p ? *	5.91	-. 01	-. 06	3
376	6521	A2 V	6.40	. 06	. 01	3
377	6532	AO III	6.18	-. 02	-. 19	3
378	6533	B9.5 V	5.58	. 00	-. 05	3
379	6559	A7 III	5.82	. 18	. 15	3
380	6570	A7 V	5.76	. 16	. 09	3
381	6571	A2 V	5.67	. 09	.04	3
382	6589	A2 V	6.26	. 04	. 01	3
383	6619	AO Ib	6.25	-. 01	-. 20	3
384	6627	AO V	5.58	. 01	. 00	3
385	6642	AO IV	6.04	. 02	-. 09	3

TABLE 1 (continued)

No.	H.R.	Sp.	m_{v}	B-V	U-B	n
386	6696	A2 V	6.50	. 11	. 08	3
387	6720	B7 IVn(e)	6.42	-. 06	-. 39	3
388	6741	B3 V	6.12	-. 10	-. 63	3
389	6744	AO V	6.48	. 01	-. 01	3
390	6776	A2 V	6.46	. 05	. 07	3
391	6779	B9.5 III	var.	-. 05	-. 04	3
392	6784	A6 III *	6.30	.17	. 21	3
393	6814	A2 III	5.85	. 01	. 11	3
394	6826	B8 V	5.88	-. 08	-. 23	3
395	6852	B9.5 III	5.99	. 03	-. 10	3
396	6876	A6 V	5.54	. 22	. 06	3
397	6883	A2 V	5.89	. 04	. 08	3
398	6903	A3 III *	5.04	. 03	. 08	3
399	6904	A2 V	6.20	. 05	. 02	3
400	6906	B9 V	6.45	-. 03	-. 27	3
401	6917	A2 V *	5.71	. 04	. 10	3
402	6955	A2 V	5.67	. 04	. 07	3
403	6968	B8 IV	5.37	-. 10	-. 34	3
404	6975	A3 V	6.44			
405	6976	Al V	6.38			
406	6977	B9.5 IV	5.73			
407	6992	B8 V	6.36			
408	6997	B8 II p *	5.46			
409	7001	AO V	0.14			
410	7030	B8 V	6.47			
411	7058	AO p *	6.39			
412	7086	A2 V	5.82			
413	7098	B9.5 V	6.50			
414	7102	A3 V	5.16			
415	7109	B8 V	6.09			
416	7113	B9 II-III	5.33			
417	7147	B9.5 p *	6.41			
418	7171	B6 V	6.22			
419	7174	B6 V	5.75			
420	7178	B9 III	3.30			
421	7235	B9.5 V	3.02			
422	7248	B7 V	5.10			
423	7283	B8 p *	5.77			
424	7285	B8 V	6.44			
425	7286	A2 V	5.90			
426	7305	B5 III	6.26			
427	7307	B9 V	5.46			
428	7324	A3 V	6.48			
429	7332	A3 V	6.02			
430	7338	AO III	6.19			
431	7346	B7 III	6.29			
432	7364	B8 V	6.47			
433	7369	A2 III ?	6.03			
434	7374	B3 V	6.36			
435	7384	Al V	6.36			
436	7390	AO V	5.58			
437	7395	B8 p *	5.15			
438	7418	B7 V	5.36			
439	7419	B9.5 III	6.04			
440	7436	A3 V	6.48			

No.	H.R.	Sp.	m_{v}	B-V	U-B	n
441	7437	B7 V	4.88			
442	7452	B9 III p ? *	6.12			
443	7457	B8 V	5.86			
444	7467	B3 III	6.38			
445	7481	A3 V	6.12			
446	7493	B8 III	6.26			
447	7502	A4 III	5.89			
448	7505	Al V	6.06			
449	7511	B8 IV	6.12			
450	7512	B8 II-III	5.95			
451	7529	B9.5 III	6.50			
452	7543	B8 V	5.67			
453	7546	A3 V	4.95			
454	7556	B3 III	6.29			
455	7592	B9.5 III	4.50			
456	7601	AO III	5.47			
457	7607	B5 V	6.36			
458	7610	A1 V	5.29			
459	7616	A3 III	6.47			
460	7622	B9 IV	5.38			
461	7640	B9 III	5.44			
462	7656	B5 IV	5.75			
463	7664	B8 II-III	5.47			
464	7699	B5 Ib	6.07			
465	7711	A3 III	5.46			
466	7719	B7 V (e)	5.91			
467	7723	Am *	6.48			
468	7724	A2 V	4.96			
469	7734	AO III	6.41			
470	7736	A2 III ?	4.98			
471	7752	B9.5 V p *	6.14			
472	7769	A3 V	5.52			
473	7782	AI III	6.47			
474	7784	A2 V	6.24			
475	7789	B7 IV(e)	5.41			
476	7826	A3 V	5.45			
477	7833	Am *	6.38			
478	7835	Al Ib	5.94			
479	7836	Al pec *	5.92			
480	7839	Am *	6.00			
481	7858	A2 V *	5.23			
482	7871	A3 V	4.69			
483	7874	A4 III	6.29			
484	7880	B9 V	5.52			
485	7883	A2 V *	5.43			
486	7885	B8 IV	6.24			
487	7891	B9.5 V	4.78			
488	7903	AO III	5.94			
489	7906	B9 V	3.86			
490	7917	A3 V	6.09			
491	7922	B6 IV	6.44			
492	7981	A1 V	6.49			
493	8012	${ }^{\text {A } 4 . ~} \mathrm{~V}$	5.54			
494	8143	B9 Ia	4.28			
495	8158	B7 IV	6.15			

No.	H. R.	Sp.	m_{v}	B-V	U-B
496	8169	A2 V	6.03		
497	8186	A2 V	6.45		
498	8194	A2 V*	6.22		
499	8217	Al V *	5.38		
500	8231	B9 V	5.94		
501	8240	A2 ${ }^{\text {p }}$ *	6.44		
502	8292	B5 IV	5.95		
503	8307	B9.5 V	5.62		
504	8338	B8 V	5.80		
505	8343	AO V	5.00		
506	8348	B6 V p *	5.68		
507	8349	B8 III p ?	6.19		
508	8358	AO V *	5.76		
509	8373	A2 V	5.59		
510	8397	B5 V	6.36		
511	8404	B9 IV	5.75		
512	8419	AO V	5.58		
513	8438	B6 V	5.66		
514	8459	A4 III	6.40		
515	8522	B8 III	4.88		
516	8574		5.51		
517	8605	A2 V	6.40		
518	8624	A2 V	6.14		
519	8634	B8 V	3.61		
520	8641	Al IV	4.85		
521	8706	B6 III	6.24		
522	8723	B7 III	5.63		
523	8781	B9.5 III	2.57		
524	8798 A+B	A3 V			
525	8873	B5 IV	6.14		
526	8887	B3 V	5.37		
527	8891	B9.5 IV	6.22		
528	8903	B9 III	5.46		
529	8915	AO III	5.87		
530	8933	AO p *	6.23		
531	8947	A2 III	5.50		
532	8960	A2 V	6.18		
533	8963	Al V	5.42		

```
As was mentioned in the text, it is difficult to make a very accurate classification by the present spectrograms of small resolving power (about 1000), and it is much more so to do detailed studies about the peculiar spectra. Some peculiar stars, especially manganese stars and weak-line stars might have been classified incorrectly in Table l. In the following, peculiar features are described only when they are very significant; complete description is not intended. "4128" means a line or a group of lines near 4128 A ; it could be the silicon lines 4128-31, chromium line 4129, europium line 4130, or a blend of some of these lines.
No references are given in the notes, but the peculiar lines in general are referred to the papers of Horgan (Ap.J., 77, 330, 1933), Deutsch (Ap.J., 105, 283, 1947) and Slettebak (Ap.J., 119, 146, 1954).
```


H.R.

```
15 3944, 3984 and 4128 are strong; known to be a Mn-star. 1493984 is strong, Balmer lines are narrow; probably a inn-star. 395 A3 K-line, F5 metallic and F2 hydrogen spectrum. 546 similar to 78 Vir except that 4078 is not very strong.
A2 K-line, A8 metallic and A8 hydrogen spectrum.
Al K-line, A6 metallic and A5 hydrogen spectrum.
perhaps similar to \(H R 149\).
3955, 4078, 4200 and a group of lines near 4003-4017 are strong.
A2 K-line, Fl metallic and A8 hydrogen spectrum.
4200 is strong, K-line is weak; similar to HR 1732.
A2 K-line, F2 metallic and A8 hydrogen spectrum.
metallic lines indicate A6.
shell star Pleione.
3955 and 4128 are strong, Balmer lines are narrow, K-line is very
```weak.4128 and other lines seem to be stronger than normal.
 3955, 4128 and 4200 are very strong; similar to HR 1732.
 Al K-line, F5 IV metallic and FO hydrogen spectrum.
 very diffuse lines. }4128\mathrm{ may be stronger than normal.
 similar to HR 149.
 A3 K-line, A9 metallic and A7 hydrogen spectrum.
 4 1 2 8 ~ i s ~ s t r o n g , ~ K - l i n e ~ i s ~ v e r y ~ w e a k .
 3955, 3992, 4128, 4200 are very strong; prototype of the peculiar
 spectra of type (Si, 4200).
 metallic lines indicate A3.
 4128 is stronger than normal, Balmer lines are narrow.
 4 1 7 1 ~ i s ~ s t r o n g . ~
 A2 K-line, A7 metallic and hydrogen spectrum.
 A2 V plus G8 III ?
 probably similar to HR 149.
 B9 V plus K ?
 similar to 78 Vir.
```

H.R.

2095

4128 is strong, K-line is weak.
4128 and 4171 are strong.
3930 and 4171 seem to be stronger than normal.
4128 is strong, K-line is weak.
4128 is strong.
4128 and 4171 are strong, K-line is wide and shallow.
4128 and some other lines are strong.
metallic lines indicate A4.
Am plus A3 III.
A3 K-line, FO metallic and A7 hydrogen spectrum.
a weak-line star; metallic lines (including K-line) indicate A2 or A3, Balmer lines indicate FO.
Balmer lines are broader than in a regular AO V star.
4128 is strong, Balmer lines are narrow, K-line is very shallow or absent. Probably similar to HR 1732.
metallic lines indicate A8. The absolute magnitude effect might be spurious.
similar to 78 Vir.
4128 is slightly stronger than normal.
4171 is strong; known to be a Mn-star.
difficult to classify because the lines are very diffuse.
K-line indicates A3, metallic lines indicate A5.
metallic and hydrogen lines indicate A7.
4128 and 4171 are strong.
4171 and a group of lines near 4003-4017 are strong.
K-line indicates AO, Balmer lines indicate AO IV or A5 V. This star might be a weak-line star.
metallic lines indicate A4.
metallic lines indicate A8.
A2 K-line, F3 metallic and A7 hydrogen spectrum.
A3 K-line, F2 metallic and A7 hydrogen spectrum.
metallic lines indicate A6.
similar to 78 Vir.
similar to 78 Vir. There is a broad, shallow K-line superposed over the sharp component. Similar appearance of K-1ine in 78 Vir was described in the Atlas and was illustrated by Deutsch (Ap.J., 105, 283, Figure 6, 1947).

K-line indicates $K 4$, other metallic lines are weak and diffuse, hydrogen lines indicate A7.
4128 is strong; known to be a Si, Cr, Eu-star.
A3 K-line, FO metallic and A4 hydrogen spectrum.

## NOTES TO TABLE 1 (continued)

## H.R.

5422
5475
5476

```
4128 and a group of lines near 4003-4017 are strong.
3984 and 4128 are strong; known to be a Mn-star.
A2 K-line, A'7 metallic and hyörogen spectrum.
A3 K-line, FO metallic and A7 hydrogen spectrum.
A5 K-line, A7 metallic and hydrogen spectrum. 4078 is strong.
3984 is strong, known to be a Mn-star.
4 1 7 1 ~ i s ~ v e r y ~ s t r o n g , ~ K - l i n e ~ i s ~ v e r y ~ s h a l l o w ~ a n d ~ b r o a d . ~
similar to 78 Vir, lines of the 3955 group are visible.
4128,4171 are strong.
similar to 78 Vir.
Al K-1ine, A5 metallic and A3 hydrogen spectrum.
4 1 2 8 ~ i s ~ s t r o n g .
3 9 4 4 \text { and 4137 seem to be strong.}
A6 K-line, FO metallic and A8 hydrogen spectrum. 4078 is strong.
metallic lines are weak.
metallic lines indicate A4.
3944 and 3984 are strong.
similar to 78 Vir.
similar to HR 1732.
4 1 2 8 ~ i s ~ s t r o n g , ~ B a l m e r ~ l i n e s ~ a r e ~ n a r r o w . ~
metallic lines indicate A3.
4 1 2 8 ~ i s ~ v e r y ~ s t r o n g .
4128 and 4171 are strong.
A4 K-line, F4 metallic and F0 hydrogen spectrum.
4026 (He I) is visible, K-line as strong as in an Al star.
A4 K-line, FO metallic and A7 hydrogen spectrum.
known to be a peculiar shell star.
A2 K-line, A7 metallic and hydrogen spectrum.
metallic lines indicate A3.
metallic lines indicate A4.
 metallic lines indicate A3.
 metallic lines indicate A3.
 similar to 78 Vir.
 4 1 2 8 ~ i s ~ s t r o n g . ~
 3984 is strong.
 metallic lines indicate A3.
 similar to 78 Vir.
```


## KIYOTERU OSAWA

where the suffix 1 means the values of the proper motions reduced to the standard distance, and the symbol $\rangle$ indicates a mean value for a group. The following results were obtained:

$$
\begin{aligned}
& A=\tan ^{-1} \frac{Y}{X} \quad=261.2 \pm 4.5 \text { (p.e.) } \\
& D=\tan ^{-1} \frac{Z}{\left(X^{2}+Y^{2}\right)^{1 / 2}}=29^{\circ} 5 \pm 3^{\circ} 8 \text { (p.e.) } .
\end{aligned}
$$

Next, by assuming these values of $A$ and $D$, the following equations of condition were solved by the method of least squares:

$$
V_{0} \cos \lambda+K=\langle\rho\rangle,
$$

where $V_{0}$ and $K$ denote the velocity of the solar motion and the $K$-term, respectively, and $\lambda$ is the angular distance of the apex from the mean position ( $\langle a\rangle,\langle\delta\rangle$ ) of a group. The result was
and

$$
\begin{aligned}
V_{0} & =19.1 \pm 1.1 \mathrm{~km} / \mathrm{sec} \\
K & =2.9 \pm 0.7 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

These results may include systematic errors arising from the grouping of stars into large areas (Smart 1936). However, it is easily shown that errors of this source would not be larger than the probable errors presented above.

TABLE 2
Assumed Difference in Absolute Magnitude with Respect to A0 V

	Spectral Type						
	B8 V	B9 V	B9.5 V	A0 V	A1 V	A2 V	A3 V
Assumed abs. mag. . Difference in abs	-0.5	0.0	0.3	0.5	0.8	1.2	1.8
$\text { to } \AA 0 \mathrm{~V} \text {. }$	-1.0	-0.5	-0.2		0.3	0.7	1.3

It is of interest to compare these results with the values obtained by other investigators. According to Vyssotsky and Williams (1947), the solar apex derived from the proper motions ( $G C$ system) of B7-A4 stars brighter than 7.0 is

$$
A=270^{\circ} .2 \pm 1.3, \quad D=26.0 \pm 1.2
$$

Campbell and Moore (1928) obtained $V_{0}=18.6$ and $K=1.68 \mathrm{~km} / \mathrm{sec}$ from an analysis of radial velocities of 500 B8-A3 stars. McRae and Nevin (1948) obtained, from radial velocities of $457 \mathrm{~B} 8-\mathrm{A} 3$ stars of average photovisual magnitude $6.90, V_{0}=18.37 \pm 1.11$ and $K=1.38 \pm 0.71 \mathrm{~km} / \mathrm{sec}$. Our values are in fair agreement with these previous values obtained from different material.

## c) Mean Parallax from the Upsilon Components

The $v$ and the $\tau$ components of proper motions were calculated by the following formulas:

$$
v=\mu_{1} \cos \left(\theta-\theta_{0}\right), \quad \tau=\mu_{1} \sin \left(\theta-\theta_{0}\right),
$$

where $\theta$ and $\theta_{0}$ denote the position angle of the proper motion and the position angle of the great circle directed from the star to the antapex of the solar motion, respectively. Here $\mu_{1}$ again denotes a proper motion reduced to the standard distance.

From the $v$ components, the mean parallax, $P_{0}$, of these stars was obtained by using the following formula (Smart 1938):

$$
P_{0}=4.738 \frac{v_{0}}{V_{0}}, \quad v_{0}=\frac{\Sigma v \sin \lambda}{\Sigma \sin ^{2} \lambda} .
$$

The probable error of $P_{0}$ can be obtained from the average value of the residuals of the $v$-components, namely,

$$
\text { p.e. of } v_{0}=0.845 \frac{\langle | v-v_{0} \sin \lambda| \rangle}{\left(\Sigma \sin ^{2} \lambda\right)^{1 / 2}} .
$$

The numerical results were as follows:

$$
v_{0}=0^{\prime \prime} 0444 \pm 0^{\prime \prime} .0029, \quad P_{0}=0.0110 \pm 0^{\prime \prime} .0007
$$

## d) Mean Parallaxes from the Tau Components

We have, if the peculiar motions of the stars were uniformly distributed for all directions in space,

$$
P_{0}=\frac{4.738\langle | \tau| \rangle}{\langle | \Delta \rho| \rangle}
$$

where $\langle | \tau\rangle$ and $\langle | \Delta \rho|\rangle$ denote the average absolute values of the $\tau$-components and the residual radial velocities, respectively. However, the actual distribution of the velocity is ellipsoidal instead of spherical. Therefore, it is necessary to calculate a correction factor before a final result of the statistical parallax is derived. This correction factor was calculated from a simple geometric consideration. The numerical value of this factor is 1.075 . Therefore, we have

$$
P_{0}=\frac{1.075 \times 4.738\langle | \tau| \rangle}{\langle | \Delta \rho| \rangle} .
$$

Still more corrections are necessary to correct for the observational errors of the proper motions and the radial velocities. The mean observational error of the proper motion was taken to be 0.0025 . Therefore,

$$
\langle | \tau\left\rangle=\left[(0.0275)^{2}-(0.0025)^{2}\right]^{1 / 2}=0.0262 / \text { year } .\right.
$$

The average observational error of the residual radial velocities was estimated to be $1.76 \mathrm{~km} / \mathrm{sec}$. This rather high value was caused by the inclusion of some radial velocities of low precision (grade c in Wilson's catalogue). We have

$$
P_{0}=\frac{1.075 \times 4.738 \times 0.0262}{9.47}=0.0141 .
$$

This is the final value of the parallax derived from the $\tau$-components. The probable error of $P_{0}$ can be estimated by means of the following formulas:

$$
\begin{aligned}
& \left(\frac{\text { p.e. of } P_{0}}{P_{0}}\right)^{2}=\left(\frac{\text { p.e. of }\langle | \tau| \rangle}{\langle | \tau| \rangle}\right)^{2}+\left(\frac{\text { p.e. of }\langle | \Delta \rho| \rangle}{\langle | \Delta \rho| \rangle}\right)^{2}, \\
& \frac{\text { p.e. of }\langle | \tau\rangle}{\langle | \tau\rangle}=\frac{\text { p.e. of }\langle | \Delta \rho| \rangle}{\langle | \Delta \rho| \rangle}=\frac{0.755}{(n-1)^{1 / 2}}=0.076
\end{aligned}
$$

(Brunt 1917). The numerical value is

$$
\text { p.e. of } \begin{aligned}
P_{0} & =\sqrt{ } 2 \times 0.076 \times 0^{\prime \prime} .0141 \\
& =0^{\prime \prime} .0015 .
\end{aligned}
$$

## III. CONCLUSION

Summarizing the results obtained in the preceding sections, we have

$$
\begin{array}{ll}
\text { From the } v \text { components: } & P_{0}=0 \prime .0110 \pm 0^{\prime \prime} .0007, \\
\text { From the } \tau \text { components: } & P_{0}=0.0141 \pm 0^{\prime \prime} .0015 .
\end{array}
$$

As these two values are not close to each other, a simple arithmetic mean $P_{0}=0.0125$ has been adopted as our final result. This is equivalent to a distance modulus of 4.52 mag. Our standard distance has been the distance of an A 0 V star of apparent magnitude 5.0 (see Sec. I). Therefore, the absolute magnitude of an A0 V star becomes

$$
5.00-4.52=0.48
$$

It is difficult to estimate the probable error of this value because the two values of $P_{0}$ derived by different methods are discordant,-and there may be a systematic error in one or both of these two values of $P_{0}$. However, judging from the difference between these two values, the probable error of the absolute magnitude is of the order of $\pm 0^{\mathrm{m}} 2$.

TABLE 3
Mean Parallax for Different Spectral Types

Spectral Type	No.	Parallax from $v$-Components	Parallax from   $\tau$-Components	Mean
B8 V, B9 V.	$8+5$	0 0"0151 $\pm 0$ ". 0022	0 0.0215 $\pm 0$ ". 0066	0 ". 0183
B9.5 V, A0 V, A1 V	39	. $0122 \pm .0008$	$.0129 \pm .0022$	. 0124
A2 V, A3 V.	52	$0.0083 \pm 0.0009$	$0.0152 \pm 0.0022$	0.0118
Total.	$99+5$	$00107 \pm 0.0007$	$0.0149 \pm 0.0016$	0.0128

Table 3 shows the values of $P_{0}$ calculated for different spectral subdivisions separately. As the number of stars included in the first group (B8 and B9) was only 8, the limit of the apparent magnitude was extended to 6.0 . By this extension, 5 stars were added to the 99 selected stars. We see, from Table 3, that there is a slight tendency for the parallaxes of B stars to be larger (relative to the parallax of A 0 V ) than we assumed in the beginning. But a definite conclusion should not be drawn from this result only, because the number of stars included in the present study was not sufficient.

In conclusion the author wishes to express his hearty thanks to Dr. W. W. Morgan for suggesting this problem and for his kind advice in connection with Part I; to Dr. Blaauw for many helpful discussions about Part II; and to Dr. D. L. Harris III for his kind advice during the course of photometric works.

Sincere thanks are also due to the American Educational Commission in Japan for a Fulbright Travel Grant and to the International Astronomical Union for a grant which partly supported the author's stay in the United States.

## REFERENCES

Brunt, D. 1917, The Combination of Observations (Cambridge: At the University Press).
Bueren, H. G. van. 1952, B.A.N., 11, 385.
Campbell, W. W., and Moore, J. H. 1928, Pub. Lick Obs., Vol. 16.
Delhaye, J. 1948, B.A.N., 10, 409.
Hertzsprung, E. 1947, Ann. Leiden Obs., Vol. 19, No. 2.
Johnson, H. L., and Harris, D. L. 1954, Ap. J., 120, 196.
Johnson, H. L., and Morgan, W. W. 1953, Ap. J., 117, 313.
Klein-Wassink, W. J. 1927, Groningen Pub., No. 41.
MacRae, D. A., and Nevin, S. 1948, A.J., 53, 120.
Morgan, H. R. 1951, Catalog of 5628 Standard Stars, 1950.0, Based on the Normal System N30. ("Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac," Vol. 13, Part III.)
Morgan, H. R., and Oort, J. H. 1951, B.A.N., 11, 379.
Smart, W. M. 1936, M.N., 96, 461.
1938, Stellar Dynamics (Cambridge: At the University Press).
Trumpler, R. J. 1938, Lick Obs. Bull., 18, 167.
Vyssotsky, A. N., and Williams, E. T. R. 1947, A.J., 53, 85.
Wilson, R. E. 1953, General Catalogue of Stellar Radial Velocities. ("Carnegie Institution of Washington Publications," No. 601 [Washington, D.C.: Carnegie Institution of Washington]).

