THE COLOR-MAGNITUDE DIAGRAM FOR THE GALACTIC CLUSTER NGC 7789*

E. MARGARET BURBIDGE[†]

Kellogg Radiation Laboratory, California Institute of Technology

AND

Allan Sandage

Mount Wilson and Palomar Observatories Carnegie Institution of Washington, California Institute of Technology Received May 5, 1958

ABSTRACT

Colors and magnitudes for nearly seven hundred stars are given for the cluster NGC 7789 The colormagnitude diagram and the absence of large numbers of faint stars show this to be a galactic cluster Photoelectric calibrations in three colors for forty-three stars were obtained with the 60-inch telescope Photographic plates taken with the 100-inch telescope were used for the photometry The cluster has a strong yellow giant branch which slopes blueward toward faint magnitudes until the Herzsprung gap is reached at $(B-V)_0 = 0.92$. The gap is $\Delta(B-V) = 0.45$ mag wide The main sequence is reached at $V \approx 14$ and has the characteristic steep slope due to evolution Blue stars exist brighter than the main-sequence break point, as in M67 and M3 This feature is unexplained by evolutionary theory The apparent distance modulus is $m - M = 12.20 \pm 0.2$, the reddening is E(B-V) = 0.28, the true modulus is 11.36 ± 0.2 , and the distance is 1870 ± 170 parsecs The yellow giant stars reach $(B-V)_0 = 1.62$ This color would correspond to M2 III stars if our photometry is correct and if color is a good indicator of spectral type in this range. However, spectra obtained with the 60-inch telescope indicate a type K4 III for the stars at the top of the giant branch NGC 7789 fits into the systematic scheme of C-M diagrams for other galactic clusters in the expected way It is older than Praesepe or Hyades but younger than M67 The giant sequence of NGC 7789 crosses the giant sequence of M11 This again shows the non-unique massluminosity relation for luminosity class III giants

I. INTRODUCTION

NGC 7789 is a rich cluster of stars at $a(1950) = 23^{h}54^{m}28^{s}$, $\delta(1950) = +56^{\circ}26'.2$, $l = 83^{\circ}$, $b = -5^{\circ}2$. It has the appearance of a galactic, rather than a globular, cluster because of the absence of large numbers of faint stars. Both Trumpler and Shapley list it as a galactic cluster. But in 1954, V. C. Reddish concluded, from data he had obtained on the color-magnitude (C-M) diagram and the luminosity function, that NGC 7789 was a globular cluster. Acting on this result, A. J. Deutsch placed the cluster on his program for spectroscopic studies of individual stars in globular clusters. Deutsch's spectrogram of one of the bright red stars in NGC 7789 showed that the cluster was indeed galactic rather than globular because the star was a normal luminosity class III giant. Because of this spectroscopic datum and Reddish's photometric results, the cluster appeared to be important because it is old. The slope of the red giant branch is similar to the galactic clusters NGC 752 and M67. Consequently, it was put on this observatory's program for evolutionary studies. The present paper gives the photometric data and C-M diagram for NGC 7789. The usual combination of photoelectric and photographic techniques was used.

II. THE PHOTOELECTRIC DATA

Colors and magnitudes for forty-three stars in the vicinity of NGC 7789 were measured in three colors with the 60-inch telescope on Mount Wilson. The measurements

 \ast Supported in part by the joint program of the Office of Naval Research and the U S Atomic Energy Commission

[†] Now at Yerkes Observatory, Williams Bay, Wisconsin

FIG. 1.—The identification chart for the photoelectric standards and the supplementary stars in NGC 7789. Küstner nu bers are used for the standards. Arbitrary numbers prefixed by S are used for the supplementary stars.

extended over two observing seasons. The photometer described by Walker (1954) was used in the 1956 season. This used an EMI 5659 end-on multiplier tube operating without refrigeration. The filters used were Corning 9863 for the ultraviolet, 1 mm of Schott BG12 plus 2 mm of Schott GG13 for the blue, and 1.7 mm of Schott GG11 for the yellow. A new photometer was used in the 1957 season which employed a refrigerated 1P21 photomultiplier and the same filters in the blue and visual bands. No ultraviolet measures in NGC 7789 were made in the 1957 season.

All measures were reduced in the usual manner to outside the atmosphere by the method of conditioned extinction coefficients. By special observations on seven nights, all data were transformed to the Johnson U, B, V photometric system, with probable errors of the order of ± 0.01 mag. The details of the photoelectric reductions are described more fully in a current paper (Sandage 1958).

Table 1 gives the photoelectric data for the forty-three stars. Where possible, numbers assigned by Küstner (1923) are used. Five stars fainter than Küstner's limit which were also measured are given supplementary numbers as explained in the next section. The Küstner numbered standards of Table 1 are marked on Figure 1. They are the stars with no S prefix.

III. THE PHOTOGRAPHIC DATA

Plates in the blue and visual wave-length regions were taken of NGC 7789 with the 100-inch telescope diaphragmed to 58 inches. The telescope so diaphragmed gives a circular field of 475 seconds of arc free from photometric errors larger than 0.01 mag.

Küstner No	V	B-V	U - B	n	Küstner No	V	B-V	U-B	n
72 80 155 169 193	10 98 13 16 15 07 14 17 12 59	1 81 1 25 0 91 0 71 1 42	$+1 \frac{13}{13}$ +1 64	4 1 3 3 1	501 521 526 558 669	$ \begin{array}{r} 11.17\\13\ 52\\12\ 80\\14\ 65\\11\ 44\end{array} $	$ \begin{array}{r} 1 74 \\ 0.67 \\ 1 28 \\ 0 58 \\ 1 66 \end{array} $	$+0 \frac{1}{11}$ + 97	2 1 1 1 2
213 246 253 256 282	13 62 10 29 13 75 13 92 12 05	$ \begin{array}{c} 1 51 \\ 0 21 \\ 0 74 \\ 0 73 \\ 0 24 \end{array} $	$+0\ 11$ +0 25 +0 26 +0 17	$ \begin{array}{c c} 1 \\ 10 \\ 1 \\ 1 \\ 2 \end{array} $	671 677 751 758 799	13 32 11 11 10 84 10 46 11 78	0 68 0 15 1 84 0 72 0 33	+ 10 - 05 + .33 + 20	1 1 2 5 1
301 304 311 321 329	12 29 11.05 14 85 12 92 12 29	$ \begin{array}{c} 1.37\\ 173\\ 060\\ 126\\ 142 \end{array} $	$^{+088}_{+145}$	2 7 2 1 1	833 889 977	15 23 11.52 11 01	0 83 0 21 1 77 Supplemen	+0 18 tary Stars	1 1 1
338 342 351 371 430	11 79 12 42 13 55 12 94 12 95	1 17 0 19 0 50 0 35 0 65	+086+005+021+020+014	1 1 2 1 1	S1 S8 S9 S12 S15	15 78 15.78 16 45 15 95 16 28	1 12 0 81 0 56 0.72 1 06		$ \begin{array}{c c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $
453 461 462 476 494	12 61 11 29 12 97 13 14 10.70	0.26 1 64 0 52 1 26 1 74	$ \begin{array}{c} -0.01 \\ +0.28 \\ +0.97 \end{array} $	1 1 1 2 1					

TABLE 1

PHOTOELECTRIC STANDARDS IN NGC 7789

(due to off-axis aberrations). Because of the peculiar mounting of the 100-inch telescope and the high declination of NGC 7789, the plates had to be taken at the large hour angles of 3-4 hours. The plates were Eastman 103a-O behind 2 mm of Schott GG13 for the blue, and Eastman 103a-D behind 2 mm of Schott GG11 for the visual.

Two plates in each color were measured with the Eichner variable-iris diaphragm photometer at California Institute of Technology. Nearly seven hundred stars were chosen for measurement in a circular area with a radius of about 450" centered on Küstner's co-ordinate system at X = -50" and Y = 0. An attempt for completeness was made for stars within a circle of radius 230". No attempt at completeness was made outside this area. The magnitude limits were V = 10.2 to V = 16.3.

All standard stars of Table 1 were read back through the photographic calibrationcurves. They were treated as unknowns, to determine the color and magnitude equation between the photoelectric system of Table 1 and the photographic plates. A small color equation was detected. It was well determined from B-V = 0.2 to B-V = 1.7. In other investigations of this same type (Johnson and Sandage 1955; Sandage and Walker 1955; Johnson, Sandage, and Wahlquist 1956; Sandage 1958) no color equation had ever been found between similar photoelectric-photographic data. In the present case it probably arises from the large hour angle at which the plates were taken. The color equation was applied to the first reductions of the photographic data. The data so corrected are given for the standard stars in Table 2. The residuals of Table 2 from Table 1 in the

TABLE	2
-------	---

MAGNITUDES FOR STANDARDS READ FROM THE PHOTOGRAPHIC CALIBRATION-CURVES

Küstner No	v	B-V	Küstner No	v	B-V
72	10 98	1 92	501	11 22	1 71
80	13 19	1 31	521	13 44	0 76
155	15 02	1 02	526	12 79	1 31
169	14 18	0 72	558	14 53	0 66
193	12 54	1 55	669	11 46	1 63
213	13 62	1 63	671	13 30	0 67
246	10 27	0 24	677	11 14	0 13
253	13 76	0 74	751	10 80	1 89
256	13 93	0 75	758	10 45	0 74
282	12 03	0 23	799	11 79	0 29
301 304 311 321 329	12 08 11 08 14 84 12 92 12 25	1 37 1 73 0 58 1 31 1 47	833 889 977	15 25 11 56 11 03 Supplement	0 78 0 18 1 72
338	11 83	$ \begin{array}{c} 1 \ 15 \\ 0 \ 14 \\ 0 \ 53 \\ 0 \ 36 \\ 0 \ 68 \\ \end{array} $	S1	15 77	1 15
342	12 43		S8	15 96	0 65
351	13 48		S9	16 43	0 59
371	12 93		S12	15 99	0 62
430	12 94		S15	16 30	1 04
453 461 462 476 494	12 67 11 27 12 94 13 14 10 61	0 18 1 66 0 56 1 28 1 87			

sense photoelectric *minus* photographic are shown in Figures 2 and 3. These residuals define the color and magnitude equations of the *final* photographic data with respect to Johnson's U, B, V system. The residuals show no systematic trend with V or B-V. Consequently, all data reported in this paper are on the U, B, V system to within the accuracy of the determination.

Table 3 gives the photometric data for each of the program stars which were bright enough to have Küstner numbers. These stars are not identified on the photographic chart, since their positions and identifications can be recovered from Küstner's catalogue (1923). Table 4 gives the B and V magnitudes, together with B-V for one hun-

FIG. 2.—The color equation between the photoelectric values of Table 1 and the final photographic values of Table 2 The residuals are taken in the sense photoelectric *minus* photographic.

FIG. 3 —The magnitude equation between the photoelectric values and the final photographic values. The residuals are taken in the sense photoelectric *minus* photographic.

TABLE 3

COLORS AND MAGNITUDES OF KUSTNER STARS IN NGC 7789

Küstne	r		Küstne	r		Küstner			Küstner		
No.	v	B-V	No.	V	B-V	No.	V	B-V	No.	v	B-V
70	10.09	1 02	212	11 04	1 37	426	13.49	0.64	549	12 29	1 44
/2	10.70	1.72	212	14.02	0.74	428	14 11	(1.00)cr	551	15 69	0.67
80	13.17	0.71	214	12 77	0.22	429	14 59	0.64	553	14 01	0.07
02	13.4/	0.71	210	10.77	1 14	430	12 94	0.68	555	13 03	1 27
106	13.04	0.40	321	12.92	1.31	432	15.04	0,67	556	14.09	0.72
100	14.72			12172							
124	14.65	0.65	322	14.70	0 63	433	14.79	0.66	558	14.53	0.66
144	13.42	0.37	323	14.54	0.66	434	13.57	0.59	559	14.50	0 83
155	15 02	1 02	326	14.42	0.55	436	14.32	0.5/	560	14.20	0.68
156	(Variat	ole?)	327	12.39	1.02	443	13.55	0.86	561	14.94	0.58
159	14 93	0.65	329	12.25	1.4/	444	12.90	1.20	562	14,22	0.00
160	13.01	1.27	332	15.49	0.68	446	15.68	0.72	563	14.81	0.51
161	13.71	0.83	337	12.26	1.32	450	12.33	1.37	566	14.16	0.55
167	13.98	0.78	338	11.83	1 15	451	14.61	0.65	567	15.77	0.66
168	13.77	0.37	339	15 01	0.67	453	12.67	0.18	569	15.10	0.58
169	14. 18	0 72	341	15.01	0.89	461	11.27	1.66	573	13.76	0.64
170	14 33	0.70	342	12 43	0 14	462	12 94	0.56	574	14.22	0.62
170	15 54	0.59	343	14 45	0.63	463	14 16	0.50	575	12.07	1.48
170	14 38	1 17	347	12 97	1 27	464	13 03	0.61	576	13 59	0.64
101	14.00	0.67	348	12.02	1 23	444	12 17	1 47	578	14 59	0.63
101	14 17	0.67	340	12.72	0.45	400	12.17	0.42	582	14.00	0.71
104	14.41	0.05	547	15 55	0.45	407	15.55	0.02	JUL	14.00	0.71
192	13.58	0.35	351	13 48	0 53	468	11.10	1.65	583	14.62	0.54
193	12.54	1.55	352	15.78	0.69	470	15.56	0.66	585	13.78	0.71
197	13.28	0 45	353	12.58	1.46	471	15 48	073	586	15 34	0.62
200	13.15	1 28	3 54	14.55	1 38	472	15.04	0 67	589	15.21	0.61
212	13.24	1.24	355	14.71	0.67	475	15.19	0.69	590	14.04	0.67
213	13 62	1.63	356	15.79	0.72	476	13.14	1, 28	592	15.77	0.65
215	14.81	0 77	359	14.21	0.60	479	15.07	0.67	593	12.91	1.31
224	15.66	0.71	360	14.29	0.74	480	14.51	0.60	594	14.30	0.66
227	14.34	0.56	362	14.84	0.64	483	14.81	0,66	599	14.54	0,66
231	15.01	0 73	364	(16.11)	(0.66)	485	14.41	0.55	602	13.89	0.68
					•						
232	13.04	1.33	365	14 03	0.76	486	13.71	1.19	603	14.08	0 58
233	14.51	0.63	368	14 88	0.75	489	11 19	1.39	604	14.37	1.18
234	13.43	0.48	369	14 4/	2.12	490	15.68	0.69	605	12.79	1.23
235	14.15	0.72	3/0	15.88	0.69	491	12.89	1.29	609	14.17	0.72
237	14, 53	0 73	371	12.93	0.36	493	15.38	0.64	610	14.79	0.59
241	(16.04)	(0.66)	372	13 96	0.63	494	10,61	1.87	611	14, 98	0,60
244	13.13	1.26	373	(15.93)	0,73	496	13.91	(0.82)	614	15.39	0.63
246	10.27	0.24	375	14.74	1.38	501	11.22	1.71	615	14, 47	0.55
247	15.12	0.81	377	13.60	0,64	503	14.71	0 53	616	15.64	0.80
248	14.88	0.66	378	14.79	0.94	504	15.32	0.65	620	14.52	0,66
252	12 74	0.74	270	15 79	0.44	505	15 71	0.40	(00	15 54	0.71
253	13.70	1 25	321	14 50	0.00	505	15.71	0.67	023	15.50	0.71
255	13.21	1.25	392	14.04	0.37	500	13.20	0.66	024	14.01	0.02
255	12.07	0.75	388	13 73	1 31	510	14.77	0.55	625	14,40	0.00
257	15.48	0.56	389	14.87	0.62	515	14.47	1.45	627	13.98	0.67
				(10 00)							
259	15.18	0.62	392	(15.90)	0.71	516	14.02	0.67	632	13 97	0.71
260	15.50	0,70	393	15.39	0.61	517	14.68	0.52	633	14.05	0.57
262	14 09	0.67	394	15.36	0 64	518	14.34	0 62	635	12.83	0.48
265	14.59	1.20	402	14,03cr	(0.72)cr	521	13.44	0.76	637	12.39	1.44
268	13.64	0.67	404	15.63	0.6/	526	12.79	1.31	638	14.24	0.68
269	14,77	0.62	405	13.99	0.63	527	15.05	0.67	640	15.20	0.69
273	14.30	0.58	406	13.98	(0, 61)cr	528	14.27	0.61	641	14.34	0.63
278	13.84	0.71	409	12.95	0.31	529	15.74	0 69	642	14.29	0.69
282	12,03	0.23	410	13 82	(0, 55)cr	531	15.70	0.68	644	15.44	0.62
286	14.11	0.96	412	14.83cr	(0 57)cr	533	15.35	0.68	645	15.31	0.67
289	15 94	0.67	A12	15 43	0 72	524	14 20	0.72	444	14 55	0.40
200	15.24	0.07	A1A	14 94	0.72	534	14.20	0.73	040	14.00	0.00
273	14 45	0.00	414 A15	10 43	1 90	530	15 7/	0.70	048	15.20	0.54
27 4 204	14 00	0.05	415	13 04	1.70	545	15.31	0.73	650	14.90	0.56
270 297	12.45	1,17	418	14.34	0.60	545 544	15.42	0.73	051 454	13.51	0.57
						5-0	10.04		0.04	17.42	0.04
301	12.08	1.37	419	14.27	0.68						
304	11.08	1.73	420	14.82	0.63						
308	13.46	0.68	421	14.10	0.58						
310	14.97	0.69	422	14.40	0.59						
311	14 84	0.58	424	14.85	0.68						

TABLE 3 (Continued)

COLORS AND MAGNITUDES OF KÜSTNER STARS IN NGC 7789

Küstner			Küstner			Küstner			Küstner		
No.	v	B-V	No.	v	B-V	No.	v	B-V	No.	v	B-V
								1.00	1014	15.00	o
655	14.65	0 55	755	15.02	0.68	866	12.81	1 22	1014	15 23	0 66
658	13.05	1.20	756	15.50	0.71	870	12.83	1 27	1021	14 91	0.67
659	14.40	0.56	757	15.73	0.69	871	14 57	0.60	1022	14.32	1.53
663	14.59	0.61	758	10.45	0.74	874	14.64	0.58	1027	13.79	0.69
665	12.77	1.20	760	13.53	0.70	875	12.86	1 25	1029	13.83	0.75
	12 05	0.43	741	14 42	0.59	880	14 79	0.40	1030	14 04	0.70
000 440	13.95	0.03	761	14.03	0.56	882	14.70	0.60	1030	15 91	0.70
007	11.40	1 00	702	15.50	0.00	002	13 00	0.37	100.0	14.40	0.71
670	14.21	0.59	/63	15.61	0.64	665	14 42	0.00	1034	14.40	0 59
6/1	13.30	0.67	765	11.58	1.44	886	14.98	0.65	1030	12.91	1.1/
674	13.88	1 59	766	15.00	0.63	88/	14.71	0.62	1040	14 83	0 60
675	(12.25)cr	(1.22)cr	769	14.34	0.58	889	11.56	0.18	1047	12 31	0.47
676	12.80	1.23	777	15.54	0.64	890	14.11	0,73	1049	13 99	1.43
677	11.14	0.13	778	12.99	1.24	894	14 58	0.85	1051	13.31	0 65
682	13.70	0.66	782	15.31	0.70	897	12 84	1 23	1057	14.26	0.73
684	12.92	1 28	784	15.28	0.43	900	15 63	0.73	1059	14 18	0 68
(0 5			70/	14.04	o (0	001	14.00	0.45	10/2	15 55	0 70
685	15.86	0.64	/86	14 96	0.60	901	14.92	0.65	1063	15.55	0.73
080	15.20	0.64	/8/	14.20	0.62	902	13 00	1.2/	1000	11.72	1.51
68/	15.69	0.6/	/89	13.70	0.57	904	15.48	0.63	1070	15.49	0.00
688	14.78	0.60	790	14.31	0.59	906	12.62	0 52	10/1	12 53	1.28
689	13.54	093	792	15.17	0.61	908	12 96	1.22	1074	(14.33)cr	(1 22)
690	15.57	0.67	794	13.80	0.65	909	14.58	0.60	1075	(14, 22)cr	(0 73)
691	15 01	0.00	798	14 49	0.58	910	14 64	0.54	1077	(14 49)cr	(0 62)
402	10 00	1.24	700	11 70	0.00	012	14.04	0.59	1079	15 26	0.00
404	12 72	1.20	200	11.77	0.27	712	14.24	0.58	1091	(12, 74)	(0.75)
074	14.65	0.60	802	15.54	0 6/	914	14 12	0.60	1001	(13 / 6)cr	(0.75)
070	14 90	0.65	804	15.29	0.90	710	13 25	1.22	1005	14.77	0.02
696	13.66	0.32	805	15.72	0 65	920	14.79	0.59	1084	12.80	1 35
697	14.75	0.67	806	15.24	0.60	922	14.93	1.01	1086	14.68	0,56
698	13 80	0.60	807	13.96	0.62	924	13.54	0.64	1090	15.48	0.82
400	14 90	0.58	808	14 74	0.56	925	14 57	0.62	1091	12.97	1 38
703	14 04	0.63	810	14.31	0.63	928	15.00	0.65	1092	12.26	1 40
704	13.60	0.65	811	15.42	0.64	929	15.37	0.66	1094	15 39	0.77
705	14.66	0.59	814	12.88	1 20	930	15.22	0.60	1096	13.53	1.33
707	12.93	1 25	815	14.14	0.60	931	14.87	0.64	1097	13.81	036
708	14.48	0.57	816	13.57	0.67	933	15.21	0.59	1098	14.07	0 64
709	12.37	1.30	817	14.92	0.65	935	14.43	0.58	1101	12 89	1.27
710	14 70	0.40	010	12 00	0.70	000	14 50	0.59	1102	12 24	0 49
710	14.72	0.02	010	13.70	0.70	730	14 30	0.39	1105	15.30	0.00
/11	12.60	1.04	819	15.04	0.01	939	15.73	0.71	1100	15.32	0.79
/12	14.3/	0.63	820	14.01	0.00	943	14 /0	0.00	1107	12.71	1.25
713	15.02	0.63	821	13.85	0.65	945	15.43	0.75	1108	14.92	0 65
714	14.13	0.68	822	15 73	0 70	94/	15.30	0.70	1114	13.16	1 18
715	13 85	0.69	824	15.20	0.64	948	14.32	0.63	1119	12.65	0.25
716	12.83	1.24	826	15.48	0.46	949	(14, 05)cr	(0.69)	1141	13.96	0.72
717	14 75	0.40	827	12 79	1 22	950	12 80	1 24	1145	15 48	0.68
719	15 37	0.40	833	15 25	0.79	953	15 01	0.80	1146	15.71	0.70
721	15.63	0.71	834	13.76	0.75	955	15.77	0.65	1148	14.58	0.96
								•	, ,,,,,		
723	15.46	0.62	836	15.06	0.74	957	12 97	1.27	1149	12.07	1.04
724	13.07	1 19	838	14.14	0.66	958	15.20	0.65	1156	13.83	0.72
725	14.66	0.60	840	13.80	0.69	965	13.97	0.67	1163	13.15	057
726	14.81	0.57	843	15.37	0 64	967	14.93	0.63	1196	11 85	1.56
728	13.82	0.74	844	14.02	0 61	970	11.82	1.55	1198	14.76	0.62
730	14 85	0.62	845	15 31	0.62	971	10.98	1.89	1208	11.63	0 54
730	12 40	1 22	847	15 /4	0.62	977	11 03	1 72	1200	14 30	0.30
732	12.00	0.54	04/	12.00	1 15	097	15.25	0.49	1207	14.50	0.71
/33	14.50	0.56	047	13 02	1.15	70/	15.35	0.07	1211	11.50	0.05
/34	13 79	0.68	850	14.98	0.63	988	14.00	0.66	1225	12.56	1.25
737	13.30	1.20	851	15.56	0.78	991	11 49	1.55	1230	14, 12	0.67
738	15.07	0.57	854	14.20	0 58	993	14.38	0.61	1234	14.09	0.69
742	14.04	0.67	855	14.39	0.57	1002	14, 12	0.90	1238	13 54	0,80
743	15 10	0 60	856	15.43	0.63	1005	12.62	1.11	1244	12.81	1 85
745	15 41	0.60	857	13 97	0.67	1007	15 10	0.79	1250	13 83	0.70
746	12.51	0.39	859	12.65	1.39	1011	15.73	0.90	1298	13.61	(0, 69)
	12.31	0.07		.2.00					1270		(0.07)
747	14.36	0.56	861	13.84	0.55				1309	11.15	0.38
750	15.24	0.68	862	15.09	0.60				1349	14.33	0.63
751	10.80	1.89	863	(14 94)cr	(0.67)						
752	13.04	1.28	864	15.20	0.56						
753	14 02	0.54	865	12.60	1.08						

1958ApJ...128..174B

TABLE 4

COLORS AND MAGNITUDES FOR SUPPLEMENTARY STARS IN NGC 7789

Star		в	v	B-V	Star	В	v	B-V	Star	В	v	B-V
s	1	16.92	15.77	1.15	s 4	6 17.2	21 -	-	S 91	17.34	-	-
-	2	16.89	16.17	0.72	4	7 17.3	19 -	-	92	17.05	-	-
	3	16.26	14.90	1.36	4	8 16.7	-4	-	93	16.43	15.75	0.68
	4	16 55	15.66	0.89	4	9 167	2 16.11	0 61	94	16.95	-	-
	5	16.94	-	-	5	0 16.4	14 15.78	0.66	95	16 87	16 11	0.76
s	6	17.07	-	-	S 5	1 17.0	- 00	-	S 96	16.63	15.93	0.70
	7	16.95	16.30	0,65	5	2 16.9	~ ~	-	97	17.01	-	-
	8	16.61	15.96	0.65	5	3 16.6	- 66	-	98	16.92	16.14	0,78
	.9	17.02	16.43	0.59	5	4 16 7	/8 -	-	99	16.88	16.12	0 76
	10	10,8/	10.10	0.77	5	5 10.5	- 44	-	100	10 43	15.73	0.70
S	11	17.30	-	-	S 5	6 17.3	6 -	-	S 101	17.08	15.71	1.37
	12	16 61	15.99	0 .62	5	7 17.2	27 –	-	102	16.72	15.94	0.78
	13	17.39	-	-	5	8 17.3	16 -	-	103	17.43	-	-
	14	16.59	15.83	0.76	5	9	Discordant		104	16.60	15.76	0.84
	15	17.34	16.30	1 04	6	0 16.8	16.17	0.65	105	16.59	15.79	0.80
s	16	16.64	15.78	0.86	S 6	1 16.5	3 15.83	0,70	S 106	17.33	-	-
	17	17.18	-	-	6	2 17.3	- 11	-	107	16.71	16.01	0,70
	18	16 96	16.31	0.65	6	3 16.8	17 16.03	084	108	17.42		-
	19	17,28	16.33	0.95	6	4 16.7	6 16.03	0,73	109	16.68	15.88	0.80
:	20	16.97	16 25	0.72	6	5 16.8	16.13	0.71	110	16.36	15.67	0.69
s :	21	17 11	_	-	56	6 16 8	- 1	-	\$ 111	16.73	15.98	0.75
	22	16.63	15.96	0.67	6	7 16.7	3 16.06	0 67	112	16.43	15.69	0.74
	23	16, 95	16.29	0.66	6	8 16.6	5 15.87	0.78	113	17.18	-	-
	24	17.22	_	-	6	9 16.8	2 15.72	1, 10	114	16.53	14, 95	1.58
	25	16.79	16.12	0.67	7	0 17.0	- 00	-	115	16 50	15.24	1 26
\$	26	16.63	16.06	0.57	S 7	1 17.1	6 -	-	\$ 116	17, 20	_	-
	27	16.56	15.90	0.66	7	2 17.0	9 -	-	117	16.37	14,86	1.51
	28	16.51	15.81	0.70	7	3 16.6	3 15 94	0.69	118	17,48	-	-
	29	Disc	ordant		7	4 17.2	3 -	-	119	16.48	16.15	0.69
;	30	16.37	15.60	0.77	7	5 16.7	- 4	-	120	C	Discordant	
s :	31	17.15	-	-	S 7	6 16.7	16.06	0.72	S 121	16.57	15.81	0.76
	32	16.76	16.09	0 67	7	7 17.2	7 -	-	122	16.58	15.83	0.75
	33	16.78	16.04	0.74	7	8 16.8	8 16.04	0.84	123	16.51	15.68	0.83
	34	16.83	16.18	0.65	7	9 17 1	0 -	-	124	16.64	15.91	0.73
:	35	17.17	-	-	8	0 16.7	1 16 05	0.66	125	16 91	16.09	0,82
s :	36	17.36	-	-	S 8	1 17.4	2 15.99	1.43	S 126	16.97	-	-
	37	17, 10	15 89	1.21	8	2 16.8	16.09	0 72	127	17.21	16, 12	1.09
	38	17.08	_	_	8	3 16.9	3 -	-	128	16.47	15.75	0.72
	39	17.42	-	-	8	4 16.5	0 15.82	1.08	129	16.86	16, 16	0.70
	40	16.98	-	-	8	5 16.9	5 16.13	0, 82	130	16.73	-	-
s 4	41	17.34	-	_	5.8	6 16.5	6 15.84	0, 70	5 131	ח	iscordant	
Ĩ.,	42	16.94	16.20	0.74	8	7 16.4	5 15.80	0.65	132	16.70	15.98	0.72
	43	16.92	-	-	8	8 16.6	8 15.96	0.72	133	16.86	16.15	0.71
	44	16.81	16, 15	0.66	8	9 16.8	5 -	_	134	16.50	15.90	0,60
4	45	16.80	15.60	1.20	9	0 16.5	3 15.99	0.94	135	D	iscordant	
									C 124	17 37	_	_
									137	16.35	15 54	0.79
									132	16 79	15 72	1 05
									139	17.28	16.02	1 26
									140	16.57	15.80	0.77

dred and forty supplementary stars which are fainter than Küstner's limit. These stars are numbered in order of increasing R.A. and are identified on Figure 1. The prefix S indicates "supplementary." The probable errors for the entries of Tables 3 and 4 are p.e. $(V) = \pm 0.021$ mag., p.e.(B) = 0.021 mag., and p.e.(B-V) = 0.031 mag.

IV. THE COLOR-MAGNITUDE DIAGRAM

The data of Tables 1, 3, and 4 give the reddening, the C-M diagram, and the distance of the cluster. Figure 4 is the U-B, B-V relation with the photoelectric data of Table 1 plotted. The normal relation of Johnson and Morgan (1953) is shown shifted by $\Delta(B-V) = 0.28$, $\Delta(U-B) = 0.20$. A reddening line of slope 0.73 has been assumed. The fit to the observed points is good. In the following we shall assume the reddening

FIG 4 — The two-color diagram for the photoelectric stars of Table 1 The solid line is the standard Johnson and Morgan relation shifted by E(B - V) = 0.28 along a reddening line with a slope of 0.73.

to be E(B-V) = 0.28. There is no evidence for differential reddening across the cluster.

The C-M diagram for the cluster is shown in Figure 5 from the data of Tables 3 and 4. The most striking feature is the sloping giant branch going from V = 10.52, B-V = 1.9, to V = 13.2, B-V = 1.2. The branch is heavily populated. A pronounced Hertz-sprung gap is present, extending from a normal $(B-V)_0$ of 0.47 to $(B-V)_0 = 0.92$. Finally, the main sequence with its characteristic turnoff is present from $V \approx 14.0$ to the limit of the data at V = 16.3. The effects of evolution are evident because the slope of the main sequence is steeper than the age-zero unevolved sequence, and the turnoff into the giant region is abrupt.

There are a number of stars which do not fall on the sequences in Figure 5. The most striking concentration of these stars is above the turnoff point at blue color indices. There are thirty-two stars in a band between $B-V \approx 0.10$ and $B-V \approx 0.35$ at $V \approx 11.5$ to between $B-V \approx 0.3$ and $B-V \approx 0.6$ at $V \approx 13.5$ Because of the low galactic latitude of NGC 7789, the possibility that these points are due to a concentration of bright main-sequence stars, belonging to the general field of the Perseus spiral arm, has not been ruled out. However, we feel that there are probably too many of these blue

E. MARGARET BURBIDGE AND ALLAN SANDAGE

stars to be accounted for in this way. Furthermore, the recent proper-motion study of the vicinity of NGC 7789 by Meures, Bähr, and Thomas (1956) shows that at least ten of these outriding stars are probable cluster members. They are Küstner numbers 88, 144, 168, 197, 234, 349, 371, 409, 635, and 799. In view of the rather low resolving power of the proper-motion data, radial velocities would provide important additional data for deciding what proportion of the stars in this region of the C-M diagram are cluster members.

This feature of blue cluster members brighter than the main-sequence turnoff point occurs in a number of other clusters. Most notable is M67 (Johnson and Sandage 1955), where the bright blue stars were first interpreted as a possible horizontal branch (Sand-

FIG. 5.-The color-magnitude diagram for NGC 7789 from the data of Tables 3 and 4

age 1957). On the basis of our present results in NGC 7789, we now conclude that this interpretation is probably not correct. M3 also has many blue stars brighter than the main-sequence turnoff point (Sandage 1953; Johnson and Sandage 1956). Additional bright blue "stragglers" are known in the Coma Berenices cluster (17 Comae: Weaver 1952; Johnson and Knuckles 1955), and in Praesepe (Klein Wassink No. 265: Eggen 1951; Johnson 1952) and possibly in h and χ Persei (Masevich 1957, using Johnson and Hiltner's data of 1956). The point is of interest because these bright blue stragglers are not understood on current ideas of stellar evolution.

V. THE CLUSTER DISTANCE AND EVOLUTIONARY CONSIDERATIONS

The fit of the C-M diagram of Figure 5 with the age-zero main sequence (Johnson and Hiltner 1956; Sandage 1957) gives an apparent modulus of $m-M = 12.20 \pm 0.2$

mag. if E(B-V) = 0.28. This fit is difficult because we have not carried the photometry in NGC 7789 to the unevolved main sequence. Because the break point is at $V \approx 14.0$, we should not reach the unevolved main sequence until $V \approx 17.0$. However, if evolutionary corrections are applied, we can use the observed segment of the main sequence. Because the age of NGC 7789 is very close to NGC 752, we have used the evolved part of the NGC 752 sequence with help from the evolved M67 main sequence on the faint end and the evolved Praesepe main sequence on the bright end to interpolate the evolutionary effects. This gives the quoted value of $m-M = 12.20 \pm 0.2$. If $A_V/E(B-V) =$ 3.0, then the true modulus is $(m-M)_0 = 11.36 \pm 0.2$. This corresponds to a distance of 1870 ± 170 parsecs.

FIG 6—The composite cluster diagram showing the relation of NGC 7789 to other known clusters The sequences of NGC 7789 are shown as a striped area

The relation of NGC 7789 to the systematics of other galactic clusters is shown in the composite diagram given in Figure 6. The main-sequence break point in 7789 is fainter than that of the Hyades and Praesepe but brighter than that of NGC 752 and M67. The Hertzsprung gap follows the systematics of the other clusters. It is $\Delta(B-V) = 0.45$ mag. wide, which is quite similar to the value in NGC 752.

The most interesting feature of Figure 6 is the long extension of the giant branch to red colors and the intersection of this branch with that of M11. The giants in NGC 7789 reach $M_V = -2.3$ at $(B-V)_0 = 1.62$. According to the $(B-V)_0 = f$ (spectral type) relation of Johnson and Morgan (1953), these stars should be M2 III stars, if the color is a unique indication of spectral type in this range. This is a point of some importance because, if true, this would be the only cluster besides NGC 6940 (Vasilevskis and Rach

1957) with normal M giants. However, spectrograms of four stars at the top of the giant branch were obtained by E. M. Burbidge with the help of G. R. Burbidge with the grating spectrograph on the 60-inch telescope (dispersion 80 A/mm). These stars do not have such a late spectral type as the photometry would indicate, which again shows the well-known fact that B - V color is not a sensitive discriminant of spectral type for late-type stars. The types of Küstner numbers 751, 415, 494, and 977 are K3-4 III, K4 III, K4 III, and K3 III, respectively. In view of the richness of NGC 7789, it would seem worthwhile to survey the region around the cluster with an objective-prism instrument to search the region for M III stars If enough rich clusters can be found with M stars, there may be a chance to determine the ratio of K to M giants in clusters and to compare this with the ratio of ~ 30 to 1 observed in the general field (Oort 1932).

The final point we wish to make is the crossing of the giant branch of NGC 7789 with the giant branch of M11. This again illustrates the funnel effect into the region of luminosity class III stars. There is apparently no unique mass for normal giants because Fig. 6 shows that any point in the composite C-M diagram from B-V = 0.8 to B-V =1.7, $M_V = +2$ to $M_V = -2$, can be reached by a variety of evolutionary tracks, starting at the main sequence between $M_V = -1$ and $M_V = +3$.

Since this paper was prepared, Weber (1958) has announced the discovery of a variable star in NGC 7789. The star is Küstner 468, for which our measures (uncorrected for reddening and absorption) give V = 11.10 and B - V = +1.65. Weber found an amplitude of about 1 mag. (pg) and considered the star to be a cepheid, although he was not able to determine a period. His discovery was confirmed by Romano, who also believed the star to be a cepheid but mentioned rapid variations in brightness.

The absolute magnitude of only -1.10 and the large value of B-V make it unlikely that this star, if a cluster member, is a classical cepheid; furthermore, it falls right on the giant branch. It is not red enough to be a typical long-period variable. It is at a considerably lower absolute magnitude than the red variables found occasionally on the giant branches of globular clusters Variation was not found on our plates. Possibly the star is a semiregular or irregular variable. A check on its cluster membership and observations leading to a light-curve would be very valuable.

REFERENCES

- —— 1956, *ibid*, 124, 379
 Johnson, H L, Sandage, A R, and Wahlquist, H D 1956, Ap J, 124, 81
 Küstner, F 1923, Bonner Veröff, No 18
 Masevich, A G. 1957, A J USSR, 34, 176
 Meurers, J, Bähr, O., and Thomas, H H 1956, Bonner Veröff, No 43
 Oort, J H 1932, B.A N, 6, 289
 Reddish, V C 1954, M N, 114, 583
 Sandage, A. R 1953, A J, 58, 61
 —— 1957, *ibid*, 126, 326
 —— 1958, *ibid*, 128, 150

- 1958, ibid , 128, 150
- Sandage, A R, and Walker, M F 1955, A J, **60**, 230 Vasilevskis, S, and Rach, R A 1957, A J, **62**, 175 Walker, M F 1954, *Pub A S P*, **66**, 71
- Weaver, H F. 1952, Ap J, 116, 612
- Weber, R 1958, L'Astronomie, 72, 80