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STUDIES IN THE EQUILIBRIUM OF GLOBULAR CLUSTERS (II) 

R. v. d. R. Woolley and Denise A. Robertson 

(Received 1956 January 3) 

Summary 

Times of relaxation are calculated for radial and circular motion in an 
<4 isothermal gas sphere.” The times of relaxation increase outwards with the 
radius. A model is developed in which relaxation is complete only up to a 
limited distance from the centre. Calculations with this model give projected 
densities which agree much better with observation than do those from the 
simple isothermal case. 

In a previous paper, M.N. 114, 191, 1954 (Paper I), attention was given to 
the distribution of density in globular clusters, with special reference to (1) the 
fact that the “ isothermal gas sphere ” is not a finite object and (2) that it is only 
a correct solution of the differential equation concerned (Poisson’s equation) 
if the stars all have the same mass. 

The first point has been dealt with by many authors by introducing an 
arbitrary cut-off in the solution. In Paper I this appeared as an arbitrary upper 
limit to the stellar velocities. The second point was examined by introducing 
a spread of stellar masses—a mass function. In the present paper we attempt 
to enquire more closely into the nature of the cut-off, in other words to suggest 
a physical justification for one. Throughout the present paper we deal only 
with the case where the stars all have the same mass : firstly, to avoid complication, 
and secondly to avoid producing results which only have meaning in relation to 
an arbitrary mass function. (All stellar masses equal is also an arbitrary mass 
function, but it is the simplest.) Secondly, observations of globular clusters 
continue very obstinately to give no support to the theoretical expectation that 
massive stars are concentrated towards the centres of clusters.* Perhaps this 
only means that the mass luminosity law for nearby stars is quite inapplicable to 
stars in clusters, but it does suggest some caution in assigning a mass function 
and a mass luminosity law to cluster stars, both derived from observations of 
“main sequence” stars. 

I. By “globular cluster” we mean an assembly of stars possessing spherical 
symmetry. The relation between the gravitational potential </> and the radius r 
is then Poisson’s equation 

(,-i) 

If the cluster is in complete equilibrium, Liouville’s theorem can be applied 
to it, and hence so can Jeans’ theorem. The only satisfactory! solution for the 

* But the galactic cluster M37 as analysed by von Zeipel shows a concentration of luminous stars 
towards the centre, and so do the Hyades, according to van Bueren. 

f i.e. stable against collisions, 
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velocity distribution is Maxwell’s distribution, and if vj^v, r) dmdv is the number 
of stars per unit volume at r with velocities between v and v + dv and masses 
between m and m + dm, 

vJVyr) = Nof(m) 4- (ßrnf12. exp {2ßm(<f>-<ji0)}.w2. exp {-ßmv2} (1.2) 
V77 

where N0 is the number of stars per unit volume at the centre of the cluster, 
f(m) the mass function at the centre of the cluster, and is a constant.* 

Then if vm(r)dm is the number of stars at r with masses between m and 
m + dm, integrated over all velocities, 

vm(r) = N0f(m) exp {2ßm(<f> - <¿0)} 

leading to an expression for the density, p(r) = $mvm(r) dm, which depends on 
the central mass function f(m). However, throughout this paper we confine 
ourselves to the case where all the masses are the same, and then 

vm(r) = N0 exp {2ßm(<f> - 

We write ßm=j2 and — Then 

P = P»z-w> (1.3) 
Further we introduce a dimensionless radius z defined by 

z = rx(%TrTp0j
2yi2 (1.4) 

and then equation (i.i) becomes 

Equation (1.5) is the well known equation of the isothermal gas sphere and its 

solution has been tabulated. 
In passing we may note that if in (1.4) z = rjl, where / is a length, then if p0 

is in solar masses per cubic parsec andj in (km/sec)-1, 

1 - 3'05(Poi2)“i;2 parsecs. 

2. We now turn to the calculation of the time of relaxation in the cluster. 
It was remarked in Paper I that “once a high velocity star has got a velocity 
anywhere near the velocity of escape it spends almost all its time well away from 
the centre of the cluster and experiences very few collisions relative to the number 
experienced by a low velocity star which spends its time near the centre.” In 
this section we follow up this remark. 

A formula, number 2.355, given by Chandrasekhar in his Principles of Stellar 
Dynamics asserts that SAE2 the sum of the squares of the exchanges of energy 
experienced in time dt by a star of mass w2 and velocity moving through a 
field of N stars per unit volume, all of mass mly and having a Maxwellian distri- 
bution of velocities with a parameter j, is given by 

where 

SAE2 = 87rNr2m1
2m2

2v2G(x0) In (qv2
2) dt 

G(#o) ^ (2#2)-1 <¡ erf # — x exp ( — x2) 

x0=jv2 

/ 6 V/3 

q==\¿Ñj • irK + mi) l“1» 

* cf. Paper I, section 4. 

21 
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Here ^ = w2 = m. If we take* as our definition of the time of relaxation dt=T 

when yZAE2 = E2/eJ where E = 2mUj2y ^en 

T-i = IfTreNj^m^Gijv^ In (qv2
2). (2.2) 

To calculate this for a star moving in a circular orbit is simple, as v2 is constant 
throughout the history of the star, but for any other motion it is necessary to 
follow the history of the velocity of the star as it describes its orbit. 

Consider first a star which has the circular velocity at some point in the cluster. 
Since gdr=—d(f) we have 2j2gldz = di/j, where l=(87rrp0j

2)~112. But vc
2=gr 

so that 

2j\2 = 2j2glz = Z^ . 

In any motion î;2 — 2^ = constant = 2-B/w where E is the energy in the motion: 
hence y2^2 + î/f = constant = 2y2£,/7w. Hence if an object moves radially with the 
speed of the circular velocity at a point where */* = the apocentre of the move- 
ment occurs where ^ such that 

=<Ai + l( (2.3) 

and from tabulated solutions of equation (1.5) giving î/r as a function of z, the value 
of 02 can always be found for any ifj^ 

The circular velocity at ^ is given by 

Íí,c = (^2-i/'l)1/2 = (2.4) 

Substitution in equation (2.2) now gives Tc, the time of relaxation for a star 
moving with the circular velocity. We have in fact 

Tr1 = w TTepjsr2m(tp2 - ip1)
1!2G{(:p2 - <Ai)1?2} In - ^)} (2.5) 

where 

? = ^ — j (2ri«)-1{p0 exp ( - iAi)}-1'3. 

Then 

T-' = V6 *^exp(-¡A)(<A2-<A)1,2G{(i/f2-<A)li2}In{?/-%-<f>)} 

using l~2 = 87rpory2. 
On the other hand if a star is moving radially so that its apocentre^ occurs 

where 0 = 02, at any other point j2v2 = 02 — 0 so that the time dt required to [pass 
through an element of dimensionless radius dz is 

j Idz jldz 

~ = 0A2-'/'1)
1:"2' 

Hence the time to complete an oscillation is 

4T=4ji ¡IZ ^ ~ ^ (f (2-7) 

and T can be found from the tabular solution. Now by (2.1) and (2.6) the sum 
of the squares of the energy exchanges experienced in moving through dz is 

2AÆ2 = 877 Nq exp ( - 0) T2mn G {{ijj2 - 0)1'2} In {qj-2 (02 - 0)} dz 

*i.e. e-1 of the quantity defined by Chandrasekhar as 7 E. 
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Hence in performing a quarter oscillation (moving from i/r = o to 0 = î/r2) n
1 time T, 

2 AS2 12877 
Nt 

dz 
0 r2w2j4/J exp (-<A)G {(^ - -A)!'2} In {?r2 (>p2 - P)}ÿ 

E“ 9 

Accordingly 2AB2/Zi2 = 1 in time. TV = nT if 

12877 
i = ne Pof ^rnjl exp ( - ifi)G{(ifi2 ~ 'A)1'2} In {?r2 (-A2 

Hence Tr, the time of relaxation for radial oscillation is given by 

T~1 = -L T 
16^ Fm/ 

yi2" 

V»8 
exp{->!>) G{(>l>2->P)^}In {?r

2(<A2-^{dzm# 

Í 1 (dzldip) dtp 
d 0 

. (2.8) 

From formulae (2.2) and (2.8) we can calculate the times of relaxation for the 
extreme cases of circular and radial motion for any total energy E=^mj~2iff2- 
Both times of relaxation are inversely proportional to y//2, characteristic of the 
particular cluster, and also inversely proportional to the common mass of the 
individual stars. 

Numerical results are given in Table 1. For the purposes of this table we have 

taken m = the solar mass,/_1= 1 km/sec, and / = 1 parsec. 

Table I 

Times of relaxation for circular and radial motions, etc., in the isothermal gas sphere 

^ = \nz (where z is 
dimensionless 

radius) 

log t years 
log Tc years 
log Tr years 
log TJTr 

log pipo 

02 

7*11 
8-86 
8*37 
0-49 
2*71 
2-97 
4*22 

7*60 
9*88 
8-96 
0-92 
3*64 
5*42 
6*55 

8-05 
10-78 
9*50 
i -28 
476 
7-47 
8*42 

8- 48 
ii*55 
lo-oi 
£*54 
5*95 
9- 32 

10*26 

In the example shown in Table 1 complete equipartition cannot be established 
beyond £ = 3 or 4 in a life of 1010 years : and if the life of the cluster is substantially 
less than that the full quota of circular velocities can hardly extend much beyond 
£ = 3 (or # = e3 = 20). The effect of this defect on the distribution of density in the 

cluster is discussed in the next section. 
3. We are led to the idea that at some considerable time after the formation of 

a cluster, relaxation is substantially complete at and near the centre, but that in any 
finite time after formation there are some great distances from the centre at which 
there has not yet been time to relax the stellar velocities. If the cluster started out 
in a restricted volume, it would push out some stars beyond this initial volume, at 
first on orbits initially present in the distribution, and later on orbits arising as a 
result of relaxation of velocities at and near the centre. 

We now investigate a model of a cluster in which relaxation is complete inside 
a certain radius R, but stars only occur outside this radius if they travel in orbits 
part of which lie within R (or touch R). The stars outside R are thrown out, as 
it were, by the equilibrium at and inside R. 

21* 
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Consider an orbit such that the velocity is vx and the direction makes an angle 04 
with the radius vector at R. Then if the corresponding quantities are v2 and <x2 at a 
distance ^l?,from the centre of the cluster (where x> 1), we have, since the force 
is always central, 

Again, 
v1 sin ax = sin a2- 

Í2(»l2-®22) = ^2->Al- 

Accordingly if Fl, V, are the velocities in the orbit which touches both r = R and 
r — xR (i.e. such that sin oq = sin <x2 = 1), 

V^xVq 

j2Vriz=(.'l’2-’Pi)x2l(x*-1), fV% = (^-A)l(x2-i). 

Three cases arise, as follows, 

Case I. If/2^i2 <^2 “ the orbit cannot get to xR for any value of oq. 

Case II. If î/r2 — i/q < /2sq2 <j2 Vj2, the orbit intersects r = xR for some values of oq 
(see Fig. 1). 

(b) o<a1<7r/2. 
(c) a1=a2 = o. 

Case III. If jW>pV2, the orbit intersects r = xR for all values of oq. 
These cases arise from 

sin oc2 = sin oq. — = sin oq. v1 {x2v^ — (^j2 — 1) V1
2}~112. 

Hence, sin a2> i, which is impossible, unless oq<u4, where 

sin2^4 = x2 — (x2—i) V2!v2. 
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When /V = î/r2 ~ *Ai — {(*2 — ï)/-^2} -j2Vi> sin2 A = o. 

When = J^2, sin2 A = 1. 

Accordingly in Case II, o<sin2^4<i, and A can always be found. All (vl9 oíj)) 
stars for which o«x.<A get to xR. In Case III, all values of ax give a possible 
value of 0C2, (but not all values of a2 are possible.) 

These rules enable us to calculate the number of stars at xR from the number at 
R. If vt is the number of stars per unit volume at R, the number with velocities, 
between v1 and v1 + moving in directions between 0^ and 04 + is 

v1 J3^i2 exp ( —J 2^!2) dv-L I sin ax | dcn^ 
V 77 

The number moving inwards and outwards over the sphere of radius R in unit time 
is 

v1 -7-J3^!3 exp ( —i2^!2) dvt I sin ax | cos ax d^. 47ri?2 

V 77 

integrated over all values of ax from o to 77/2 and v1 from o to 00. The number 
crossing the sphere at xR is the same integrated over all permissible values of a! 
and Each class (vl9 ocjJ contributes to v2, the number per unit volume at xRr 

inversely as v2 cos a2, so that 

4 rcc==A ^ exp ( — j2^2) . sinax cos ax R2 

v2~vi- yV J a =o J v2 cosa2 ‘ xR2 * 

Since v1 sin ax = xv2 sin a2, we have xv2 cos a2 = (x2v2
2 — Vj2 sin2 ocj)1'2 and, carrying: 

out the a integral, we get 

—/3 
00 í;!2 sin 2A^ 1/2 

»! exp ( -y V) 1®2- ( V 
77 J — 

When 'lt2 — 4si<j2vi<j2Vi we have sin 2A = x2V2
2/V1

2 and wheny2^2^*2^2 we 
have sin2A=i. Accordingly 

/I r7at>i2.=72«ia 

^^2 exp ( —72^i2) dv2 

2 \ 1/2 

= —/3 

'1 V77' 

+ I eXP ( -i2yl2) {®2- (v- A/ 77 L \ X / 

v1v2 exp ( —pv-f) dv1 

“ ^ il r. “ ÿ) exp ( ~iV) 

and remembering thaty2^2
2 =j2v1

2 — (ifj2 — 0^, v1dv2 = ^ dvl9 

in which j =y2w2
2 and - (i/j2 - ^ = (</<2 - ¡Ax)/(*

2 -1). 
Again 

fv2 

(y-yi)’ 

so that 

X =exP{-(^-iAi)} [l - (^1)1,2 exp( - 'fcr1)] • 
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The differential equation to be solved is 

±(zzdA\- 
dz\ dz)~ 

z* exp ( — 0) 

from # = o to z = R/l (say # = 3i) subject to ifj = o and ijj = o at z = o. (3.2) 

2" ] 

for all z>zl9 subject to i/j arid i/j being continuous at z = z1. ^ is the value of 
*1* at z = z1. 

A solution of equations (3.2) was made, with ^ = 30, and carried from # = 30 to 
100. It is shown in Table 2, with some comparisons, including projections. 

It was found that if we denote p/po by ^ then r¡zs was approximately constant (there 
is a small term linear with z) from # = 60 to # = 200, and in making the projection it 
was supposed that this relation held good outwards for such a distance as could 
sensibly affect the projection. Notice that this gives a projected density roughly 
proportional to r~2, as compared with r-1 for the isothermal case. 

Table 2 

Solutions and projections of isothermal and modified isothermal 

z 

o 
2 
5 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Iso. mod. 

o-oo 
0*56 
2*04 
3*74 
5*4i 

6*29 
6- 87 
7‘3i 
7- 66 
7- 96 
8*20 
8- 41 
8*6i 

6*29 
6-86 
7- 27 
7*57 
7*80 
7*99 
8- 14 
8-28 

log 17 
Iso. mod. 

o-oo 
i *76 
i'ii 
2- 38 
3- 65 

3/27 
3*02 
4*83 
4*67 
4*55 
4-46 
4*35 
4*26 

3*27 
4*85 
4*57 
4*35 
4*16 
4*00 
5*87 
5*74 

log projected intensity 

isothermal 

1*52 
1-36 
0-96 
o*54 
o*i8 
o-oo 
1*88 
i*79 
i -70 
1*65 
i *6o 
£*55 
1*52 

modification 

i*75 
i*59 
i -i8 
0*75 
o*34 
O'OO 
ï*75 
£•58 
£*45 
£*34 
£'24 
i -i6 
T'o8 

To obtain a good comparison of these results with Gascoigne’s observed 
curves,* the zero of the log of projected light was chosen at 

# = 30 for isothermal and modified isothermal solutions 

r = 2»S minutes for 47 Tue. 

and r = 7*23 minutes for a> Cen. 

These four points were plotted as one in Figure 2, thus determining the scale of the 
abcissae. 

* M.N.y 116 (in press). 
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Fig. 2.—Comparison of theoretical models with observations. 

The modification certainly agrees better with observation than does the 
unmodified isothermal solution, but much more work is needed, both theoretical 
and observational, to decide these outstanding questions : 

What is the mass function in clusters ? 
What is the mass-luminosity law ? 
How far out in radius do clusters extend and what is the nature of the cut-off ? 
Is equipartition of energy confined to the centres, or even absent ? 

Commonwealth Observatory, 
Mount Stromlo, 

Canberra, Australia: 

1955 December. 
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