THE GALACTIC CLUSTER M11*

H. L. JOHNSON, A. R. SANDAGE, AND H. D. WAHLQUIST

Lowell Observatory; Mount Wilson and Palomar Observatories Carnegie Institution of Washington, California Institute of Technology

Received March 2, 1956

ABSTRACT

The results of three-color photographic-photoelectric photometry on about 400 stars in the galactic cluster M11 are given The cluster reddening is found to be $E_{(B-V)} = 0.42$ mag; the apparent distance modulus, 12.3 mag; and the true distance, 1660 parsecs The ratio of the two color excesses, $E_{(U-B)}/E_{(B-V)}$, has been found to be 0.72 The color-magnitude diagram for M11 appears to be consistent with present-day ideas on stellar evolution. The age of M11 is intermediate between the Pleiades and Praesepe.

I. INTRODUCTION

Three-color photometric observations, made by the process of photographic interpolation between photoelectrically measured standards, are here reported for about 400 stars in and near the galactic cluster M11. This cluster is very rich in stars and contains many more yellow giant stars than do most galactic clusters; in these respects, it is similar to the galactic cluster, M67 (Johnson and Sandage 1955) The cluster M11 appears in the sky in the direction of the Scutum cloud. It is probably closer to the sun than is the Scutum cloud and is therefore seen in projection against the very rich background.

II. THE OBSERVATIONS

The photoelectric observations were made with the McDonald 82-inch telescope in the manner described for Praesepe (Johnson 1952), and the probable errors listed there for the cluster stars also apply to M11. The tie-in with the U, B, V system depends upon special observations on five different nights. The photoelectrically obtained values for the cluster standard sequence stars are listed in Table 1.

The photographic observations were made with the 100-inch telescope on Mount Wilson in the manner described for M67 (Johnson and Sandage 1955). The plate and filter combinations were the same as those previously described. Four plates in each of the three wave-length bands were measured to yield U, B, and V magnitudes. Table 2 gives the results for 399 selected stars in M11. To check the photographic system, magnitudes for the standards of Table 1 were read back through the calibration-curves. The adopted values for these stars are also listed in Table 2. Intercomparison of Tables 1 and 2 shows the lack of magnitude and color equations in the final data. The photographic data are therefore on the U, B, V system. The probable error of a single measurement for a U, B, or V magnitude is ± 0.031 mag. The probable error of the tabulated means in Table 2 is ± 0.015 mag.

With the exception of the yellow giants, the stars in the field of M11 were chosen at random for measurement. Every yellow giant was measured which was within the correction-free field of 10 minutes of arc radius from the center of M11. This biased procedure of selection gives approximately two times more yellow giants in the color-magnitude diagram than would be the case if the stars had been chosen strictly at random. This statistical bias was introduced to define better the yellow giant sequence. The luminosity function is not under discussion here.

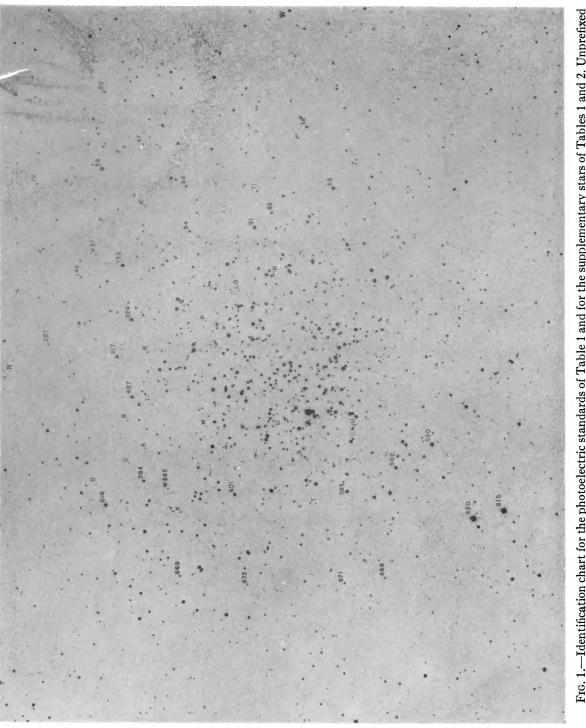
* Contributions from the McDonald Observatory, No 264.

82

H. L. JOHNSON, A. R. SANDAGE, AND H. D. WAHLQUIST

All stars in Table 2 are labeled by their Küstner numbers (1923), by their Wallenquist numbers (1936), or by supplementary letters. The photoelectric standards and the faint supplementary stars are identified in Figure 1.

III. THE COLOR-MAGNITUDE DIAGRAM


The observed color-magnitude diagram, V versus B - V, for M11 is shown in Figure 2. All the stars listed in Table 2 are plotted. A well-populated cluster main sequence is evident, as well as many yellow giant stars. The color-magnitude diagram for this cluster is of the usual galactic-cluster type, similar to the Praesepe cluster or the Hyades, rather than of the globular-cluster type. The diagram is markedly different from that for M67, even though the two clusters are quite similar in physical appearance.

Star	v	B-V	U-B	N	Star	V	B-V	U-B	N
Küstner nos.:					Küstner nos.:				
20	14 06	+0.82	+0 44	1	615	934	+050	$+0\ 20$	Std
38	12 64	+0.41	+0.17	1	616	11 71	+0.45	+0.25	2
47	15 11	+0.50	+0.29	1	620	9 21	+1 25	+1 10	1
56	11 58	+1 49	+1 39	1	668	14 38	+0.55	+0.33	1
66	13 43	+133	+1 02	1	669	14 58	+0 59	+041	1
68	11 59	+169	+190	1	671	14 18	+0 76	+0.43	1
71	14 04	+0.46	+0.32	1	672	14 75	+0.45	+041	1
72	14 36	+165		1	Wallenguist				
82	13 43	+1 40	³ +1 36	1	nos :				
91	11 93	+0.33	+0.18	2	81	15 18	+0.44	+0.35	1
94	13 11	+0.28	+0.08	1	265	14 96	+1 59	+1 81	1
132	11 64	+0.38	$+0\ 23$	3	Supplemen-				
149	14 58	+0.52	+0.32	1	tary stars:				
224	11 81	+140	+1 15	2	A	15 81	+0.83	+024	2
287.	14 25	+042	+0.32	1	В	15 21	+160	+1 70	1
317	12 36	+0.42	+0.25	2	C	15 06	+0.64	+0.43	2
427	11 72	+152	+1 43	2	D	15 90	+2 00		1
530	10 81	+0.61	+0.12	1	E	15 76	+1 59	+1 79	1
562	11 92	+0.34	+0.16	2	F	16 01	+1 65	+1 84	1
584	12 87	+0.40	+0.19	2	Н	15 45	+0.75	+0.33	1
593	11 97	+0.34	+0.04	2	J K	14 75	+243	+1 96	2
601	12 04	+0.42	+0.12	1	K	14 54	+0.58	+041	1

TABLE 1
PHOTOELECTRIC STANDARDS IN M11

The color-magnitude diagram appears to be nearly free from field stars brighter than V = 13. At about this magnitude numerous stars which are off the M11 sequences begin to appear. Most of these are quite red and are undoubtedly the brightest stars of the background Scutum cloud. The solid slanting line in Figure 2 gives the approximate plate limit of the present data and shows that we have reached only a few magnitudes into the membership of the Scutum cloud.

In order to make more convenient a detailed analysis of the properties of M11, a mean main sequence has been derived from the values for all observed quantities for all the stars in given magnitude intervals. These intervals were $\frac{1}{2}$ mag. for V < 14 and $\frac{1}{4}$ mag. for V > 14. The yellow giants and all other stars that obviously are not cluster main-sequence stars were omitted from this computation. The results are listed in Table 3.

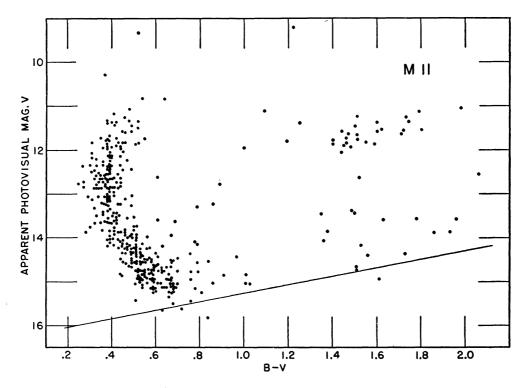


TABLE 2. COLORS AND MAGNITUDES OF 399 STARS IN M 11.

TABLE 2 . COLORS AND MAGNITUDES OF 399 STAKS IN M II. Star Star Star Star Star Star						
Küstner Nos V B-V U-B	Küstner Nos V B-V U-B	Küstner Nos. V B-V U-B	Küstner Nos. V B-V U-B	Wallenquist Nos. V B-V U-B		
20 14.10 + 78 + 48 35 12.71 38 .11 38 12.70 38 .20 46 12 39 27 .15 47 14 96 53 .33	219 14.51 +.68 +.37 222 13 76 .30 10 223 12.71 42 14 224 11.79 1.40 1.13 227 11.34 .52 .15	388 13.67 .39 .33 389 13.07 .37 .24	532 14.49 +.70 +.42 533 12.16 39 .22 534 12.88 .32 .04 537 13.46 .42 .27 538 14.24 .46 .39	111 15.11 + 54 +.35 119 15.06 .70 .14 126 15.06 .51 .41 129 14.70 1.51 - 137 14.78 .79 .29		
56 11.58 1.44 1.40 60 12.35 .30 .10 61 12.35 .36 .12 66 13.47 1.35 1.07 67 12 59 37 .18	228 14 20 .63 .48 233 11.37 .39 15 234 13.06 38 .01 235 14.16 .49 41 238 11.90 42 .19	393 12.32 .44 .07 394 11.77 .38 .09 395 14 58 .50 .42	539 11.37 1.74 1.93 540 14.50 .58 .36 543 14.55 .67 .33 545 13.56 .47 .54 548 13.30 .79 .50	141 14.58 .79 .44 144 15.16 .78 .06 145 15.07 1.03 .11 150 14.08 1.36 .86 155 15.20 .58 .55		
68 11 63 1 71 1 89 71 14.00 47 .32 82 13.39 1.49 1 33 87 12.72 .34 16 91 11 95 .36 .18	239 11.55 1.72 1.94 240 13.60 .61 .38 241 12.62 .61 .26 243 11.46 .49 .26 247 14.32 .49 31	403 13.62 41 .32 404 11.81 .45 .09 406 15.12 .63 .48	549 12.80 .37 .19 550 12.83 .44 .24 556 12.52 .39 .32 560 13.29 .49 .22 562 11.88 .38 .17	157 14.88 .55 .29 160 14.77 .51 .53 166 13.59 1 63 1.19 171 14.78 .63 .37 174 15.05 .67 .30		
92 14.09 .44 39 94 13 07 29 .11 98 14.83 .54 28 99 13.23 .36 .19 101 14.33 .45 39	250 13.36 .39 .32 251 14.32 .53 .48 252 14.74 .59 31 254 11.98 .38 .12 255 14.22 43 41	413 12.87 .38 .25 414 11.26 .46 .16 415 13.83 .50 .35	566 12.88 .35 .19 568 14.57 .50 .42 569 14.58 .53 .33 575 14.55 .58 .43 576 13.91 .46 .41	177 14.84 1.01 .29 184 14.93 .54 .44 191 15.03 1.01 .22 194 14.77 .52 .50 197 14.21 .50 .38		
102 12,48 .39 .16 103 14,56 .51 .34 106 13,97 .39 .38 108 14,05 .38 .29 116 12 .85 .27 .11	256 14.50 .49 .42 258 13.57 .38 .33 260 13.40 .38 .25 262 13.81 .36 31 263 11.39 1.25 .77	421 14.24 .51 37 422 14.60 53 .36 423 13.91 41 .39	577 14.66 .59 .46 579 13.11 .46 .33 580 11.98 .44 24 581 14.31 .51 .48 582 14.42 .53 .31	198 14.97 .59 .28 199 15.07 .68 .38 203 15.25 .66 .31 205 15.17 .68 .36 206 15.13 .63 .39		
120 13,50 .33 .27 123 11,41 .41 .15 124 13,43 36 .25 127 14,75 52 .42 128 11,83 .31 11	272 11.59 .49 .06 275 13.81 .46 32 276 13.22 86 .56 280 11.76 .55 .38 282 14.89 .52 .42	427 11.71 1.46 1.44 433 14.93 54 52 434 11.59 .45 .13	584 12.86 .39 .20 585 13.13 .39 .19 586 11.85 1.46 1.33 588 13.63 .69 33 589 14.17 .41 .35	209 15.03 .86 .10 210 14.95 .76 .18 212 15.11 .67 .21 213 14.68 .67 .18 214 15.23 .60 .21		
129 12.53 2.06 - 130 14.37 .76 .51 132 11.69 .39 .26 133 12.72 .27 .02 134 11.33 .38 .09	263 12.20 .33 .07 284 14.49 .44 .30 286 11.24 1.51 1.71 287 14.24 .47 38 288 14.26 .53 .44	440 11.37 .3829 443 13.26 .38 + 22 445 12.67 .3202	590 13,93 .49 .37 592 13,97 .67 .44 593 11,97 .38 .02 595 12,23 .47 .26 597 11.88 1.59 1.50	216 14.92 .58 .35 217 14.40 1.56 - 225 14.78 .55 .33 226 15.13 .69 .29 228 14.69 1.51 -		
136 11.59 1.60 1.35 138 13.11 .31 .16 139 14.10 .39 +31 141 11.75 .3806 143 11.04 1.98 +2.26	289 14.36 .49 .34 290 12 83 .40 .10 292 13.14 .38 .20 296 14.76 .53 .37 297 13.45 .41 21	9 451 13.98 .49 .36 9 453 14.21 .51 .37 7 454 14.95 .53 .30	598 14, 47 .57 .48 599 13 53 .50 .31 600 13.23 .43 .29 601 12.03 39 14 602 11.75 1.51 1 42	231 14.94 59 .44 235 14.85 .91 .15 237 14.97 .66 .31 240 15.26 .59 .47 243 14.96 .66 .20		
144 13.84 .39 32 145 12.55 .43 .21 148 11.38 1 60 1.74 151 14.38 .60 .36 152 13 88 .43 .36	298 14.91 .52 32 301 15.00 .59 .50 302 12.59 .35 12 303 13 19 .38 + 26 305 12.88 .32 - 03) 457 14.71 .58 .36 2 459 14 06 .45 + 38 5 461 11.39 .4201	603 12,51 .34 .21 604 13,22 .43 .24 607 14,76 .61 46 608 12,79 .89 .43 609 14.50 .55 .45	245 13.84 1.38 .74 249 14.94 .59 .36 250 15.03 .62 .27 251 15 10 .68 .56 252 15.25 81 .42		
153 14.80 .58 30 154 13.89 .30 31 156 14.59 .46 .32 157 13.47 .36 .21 158 14.11 .54 .35	306 14.72 .57 +.35 308 10.82 54 .02 309 12.55 .38 10 311 14.38 .51 .39 313 11.91 1.48 1.25	2 465 12.37 .33 +.12 0 467 12.13 3904 9 468 13.52 .42 +.34	610 12,73 .36 .13 612 14,74 .63 .33 615 9.32 .52 .19 616 11,60 .46 .29 617 14.42 .97 .43	265 14 93 1 61 - 268 13.88 1.86 - - 270 15.18 .59 .33 272 15.24 .68 .41 283 14.37 1.73 -		
159 14.50 56 .38 160 14.78 55 .37 161 13.23 .37 .22 162 13 47 .36 .21 163 12.88 .34 .18	314 13.71 51 .37 317 12.38 .39 30 320 14.70 .59 .35 321 14.56 .55 35 322 13.21 .36 +.20	0 472 12.62 1.52 1 18 9 473 11.55 1 80 1 93 6 474 14.79 .76 .25	618 14 59 .51 .44 620 9.18 1.22 1.11 624 11.95 1.00 .51 625 13.00 .38 .22 627 12.48 .32 .13	349 11.62 1.47 1.32		
164 14.25 .56 .33 166 14 73 .52 .32 168 13.41 1.50 1.48 169 13 31 32 .13 170 12.58 .33 .08	323 12.66 .4025 326 11.65 1.51 +1 36 327 12.29 .36 .15 328 12.11 .39 15 329 11.86 1.40 1.33	5 480 12.45 .38 .10 5 482 13.03 .41 .24 5 483 14.85 .45 .34	630 11 92 .44 .31 631 14.53 .84 .33 632 13.91 .51 .43 635 14.28 .47 35 639 14.36 .49 .41	SUPPLEMENTARY STARS		
173 14.76 .70 28 174 14.17 .48 .26 179 11.80 1.19 84 180 13.87 .44 .41 183 12.54 .38 .21	332 12.01 .45 19 333 12.97 .39 .24 334 12.05 1.44 +1.15 335 12.62 .41 03 336 10.30 .37 55	4 489 12 81 .37 .17 9 491 11.94 .40 .11 8 495 12.87 43 .20	658 , 11,90 1,45 1,41 667 12,65 ,16 ,37 668 14,42 ,51 ,38 669 14,64 ,48 ,50 671 14,15 ,79 ,41	A 15 82 + 84 - C 15.15 .59 + 41 H 15.50 68 .18 K 14.57 .54 .52 L 14.91 56 .28		
185 12 32 .39 .10 188 14 81 .57 .43 190 12.67 .36 .11 191 11.72 .42 .02 193 11.77 .38 .09	339 11.82 1.55 1.54 340 13.74 .50 .36 345 14.21 .57 .35 346 12.39 .38 .07 348 13.79 .41 .41	5 504 14.37 .53 41 9 506 11.08 .48 .24 7 507 14 14 .47 .33	672 14.54 .49 .36 675 12.14 .44 .21 682 11.51 1.62 1.87 684 12.44 .49 .25 Wallenguist Nos.	M 15.61 .72 - N 13.86 1.93 - O 15.37 .66 .21 P 15.41 .51 +.27 Q 15.45 7704		
194 13,69 .35 .32 195 13,62 .37 .32 197 11,74 .35 .09 199 14 49 .49 .34 200 14.68 .65 .20	349 13.50 .40 + 26 350 12 79 .25 - 21 355 11.81 .46 + 16 356 12.18 .31 .16 357 14 61 .60 .36	1 513 14.92 53 .54 0 514 14.68 .63 .31 3 515 14.81 .44 43	68 15.02 .56 .33 81 15.10 .54 .29 89 14.17 1.53 - 90 13.56 1.78 - 99 14.92 .67 .18	R 14.95 .65 +.32 S 14.83 .54 .61 T 15.67 .63 .28 U 15.03 +.61 +.44		
202 13.89 .46 .39 205 14.82 .66 .26 207 12.66 .39 14 208 14.66 .49 .33 211 14.73 .63 .31	358 11.50 .52 .24 362 14.40 54 .33 364 12.64 .44 .24 365 12.86 .38 .19 366 12.25 .39 .07	3 522 12.74 .44 .19 5 524 14.00 .51 .45 9 525 11.25 1.73 1.49	100 15.17 .58 .14 102 15.14 .59 .45 103 15.13 .65 .33 105 14.85 .59 .54 109 13.59 1.96 -			
213 14.00 .49 .32 215 14.03 .51 .43 216 .14.03 .43 .38 216 .14.03 .43 .38 217 13.08 .39 .19 218 14.63 .59 .37	369 13.66 .39 .22 370 14.65 .60 .4 373 14 42 .61 .38 378 12.11 .39 .13 .380 12 .45 .25	1 528 11 81 .43 .19 3 529 14.01 .40 37 9 530 10 84 .64 07				

Since very narrow main sequences have been found in other galactic clusters, such as Praesepe (Johnson 1952), the Pleiades (Johnson and Morgan 1951, 1953), NGC 2362 (Johnson 1950; Johnson and Morgan 1953), and the Coma Berenices star cluster (Weaver 1952; Johnson and Knuckles 1955), it seems safe to assume that these mean values actually represent the true positions of the individual main-sequence cluster stars in the color-magnitude diagram. Haffner and Heckmann (1937, 1940) have shown, however, that some 20 per cent of the Praesepe stars probably are doubles. If we assume that this proportion holds in M11, we can estimate that the values in Table 3 may be about 0.1 mag. too bright to represent main-sequence single stars.

We shall not plot here the mean color-magnitude diagram, V versus B - V, from Table 3, but we shall, instead, plot the other color-magnitude diagram that this table permits—V versus U - B. This diagram is shown in Figure 3, and its interpretation leads us into the next section.

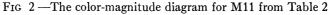


TABLE 3THE MEAN MAIN SEQUENCE FOR M11

V	B-V	U-B	No. of Stars	V	B-V	U-B	No. of Stars
11 32 11 80 12 29 12 73 13 24 13 76	$ \begin{array}{r} +0 \ 44 \\ + \ 42 \\ + \ 38 \\ + \ 37 \\ + \ 39 \\ +0 \ 42 \end{array} $	$ \begin{array}{r} +0 & 12 \\ + & 15 \\ + & 15 \\ + & 15 \\ + & 22 \\ +0 & 35 \\ \end{array} $	$\begin{array}{c}11\\24\\29\\38\\30\\35\end{array}$, tervals	14 12 14 36 14 61 14 86 15 13	+0 46 + 51 + 56 + 57 +0 64	+0 36 + 38 + 37 + 36 +0 35	26 22 33 35 25 4-mag. in- tervals

84

GALACTIC CLUSTER M11

IV. THE REDDENING OF THE CLUSTER

Figure 3 should be compared with Figure 6 of Johnson and Morgan (1953). The similarity of the two figures in the region of the hydrogen dip (A stars) is evident. Johnson and Morgan's Table 14 shows that U - B goes through a maximum, at about A5 V, of +0.09 mag. On the assumption that this value of +0.09 mag. also corresponds to the *unreddened* color of the M11 stars at the U - B maximum in Figure 3, we compute the reddening in U - B to be $E_{(U-B)} = +0.29$ mag.

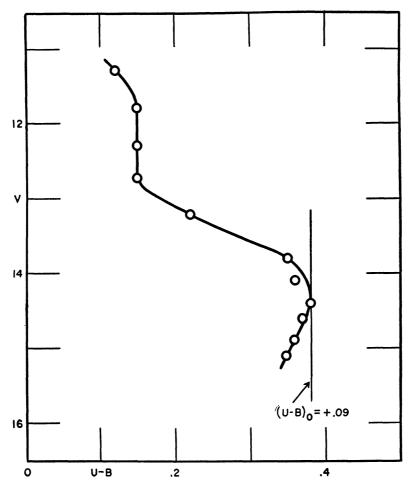


FIG 3 — The color-magnitude diagram in the arguments V and U - B. The data are from Table 3

The two-color index diagram, U - B versus B - V, plotted from Table 3, is shown in Figure 4. The smooth line, drawn by hand, proceeds through the points in the same order as does the one in Figure 3. As in Figure 3, the line $(U - B)_0 = +0.09$ is tangent at the maximum in U - B.

We now make use of the fact that, by definition (Johnson and Morgan 1953, p. 322), $(U - B)_0 = 0$ at A0 V. This means that the $(U - B)_0 = 0$ line intersects the clustercurve at the same point as does the $(B - V)_0 = 0$ line and that, further, $E_{(B-V)}$ equals the observed B - V at this point. We find that $E_{(B-V)} = +0.405$ mag. The ratio of these two color excesses, $E_{(U-B)}/E_{(B-V)} = 0.72$, confirms exactly the value found by Johnson and Morgan (1953). A second way of estimating the reddening of M11 is by the "Q" method developed by Johnson and Morgan (1953) for individual main-sequence stars. This method cannot be applied to the brighter M11 stars because, as Figures 3 and 4 demonstrate, these stars exhibit, in their colors, effects of their higher luminosity. However, if the Q method is applied to the two bluest points on the *normal* main-sequence line of Figure 4 (not those on the hooked portion), we find $E_{(B-V)} = +0.42$ mag.

Armin Deutsch has estimated spectral types for several M11 stars, and he has permitted us to use them in our discussion. Table 4 lists these types, the intrinsic colors

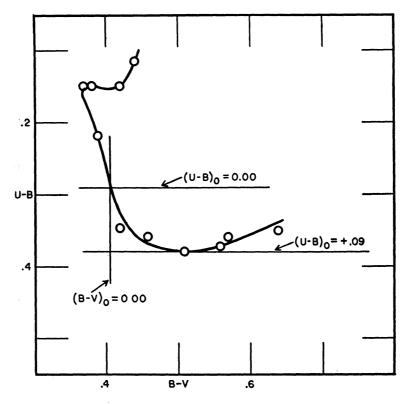


FIG. 4.-The two-color index diagram for the B- and A-type stars in M11. The data are from Table 3

 TABLE 4

 The Cluster Reddening from Spectral Types

Star* 141 193 308 . 336 358 434 436 455	Sp. B9 V B9 V B8 V B3p A0 V A0 III: B9 V A5 V:	$ \begin{array}{r} (B-V)_{0} \\ -0 \ 05 \\ -05 \\ -09 \\ -20 \\ 00 \\ 00 \\ -05 \\ +15 \end{array} $	$ \begin{array}{r} B - V \\ + 0 & 38 \\ + & 38 \\ + & 54 \\ + & 37 \\ + & 52 \\ + & 45 \\ + & 41 \\ + & 40 \end{array} $	
461 506 Mean	A0 V B9 V	-0.05	+ 42 + 0 48	$ \begin{array}{r} + 42 \\ + 0 53 \\ \hline + 0 46 \pm 0 02(\text{p.e}) \end{array} $

* Küstner numbers.

86

taken from Johnson and Morgan, the observed B - V from Table 2, and the color excesses. We now have three values of $E_{(B-V)}$: +0.405, +0.42, +0.46. Since the scatter of the individual excesses of Table 4 is large, we give the spectroscopic determination lower weight and adopt $E_{(B-V)} = +0.42$ and $E_{(U-B)} = +0.30$.

V. THE DISTANCE OF THE CLUSTER

The distance modulus for M11 is obtained by fitting the cluster main sequence to the "age zero" main sequence computed by Johnson and Hiltner (1956) after shifting Figure 2 by $E_{(B-V)} = 0.42$ along the color axis. The procedure is illustrated by Figure 5. The apparent modulus is 12.3 ± 0.2 (p.e.) mag. The true modulus, after correction for interstellar absorption $[A_v = 3.0E_{(B-V)}]$ is 11.1 mag., corresponding to a distance of 1660 parsecs.

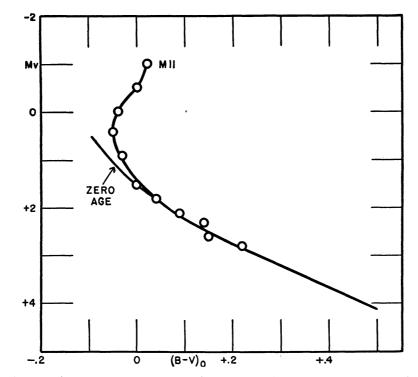


FIG. 5.—The fit of the M11 main sequence to the sequence of zero age computed by Johnson and Hiltner (1956).

The use of this age-zero main sequence, which leads to a significantly smaller distance for M11 than would a fit directly to nearby stars of large parallax but unknown age, seems justified observationally by the work of Johnson and Hiltner (1956), Johnson and Knuckles (1955), and Blaauw, Hiltner, and Johnson (1956). The point here is this: the nearby stars of large parallax probably are a mixture of stars of various and unknown ages and evolutionary motion away from the main sequence toward the higher luminosities. The positions of the brighter M11 stars illustrate the effect of this evolutionary motion for a number of stars, all of about the same age but with slightly different masses. On the other hand, it seems likely that the faintest M11 main-sequence stars are very little evolved and should not be compared directly with the evolved nearby stars without making some correction for the probable evolution. The age-zero main sequence is supposed to make this correction. In view of the errors possible in the foregoing procedure and in the determination of the cluster reddening and absorption, we estimate that the probable error of our derived modulus may be about ± 0.2 mag. We should point out that, in obtaining the distance modulus from a fit on the main sequence, it is assumed that if there are chemical-composition differences between M11 and the stars used in determining the age-zero main sequence, they have little or no effect upon the initial position of the main sequence. It should further be mentioned that our apparent modulus of 12.3 is only as good as the zero point of absolute magnitude for the age-zero main sequence. If this be changed, our modulus will change.

VI. THE EVOLUTIONARY SIGNIFICANCE OF M11

The upward bend of the observed main sequence in M11 shown in Figure 5 is consistent with current ideas of evolution. The departure shown in this figure is in very good agreement with the theoretical diagrams of R. J. Tayler (1954, Fig. 3) and of Sandage (1954, Fig. 4). The main-sequence termination point in M11 occurs near $M_v = -1.0$ and falls between that of the Pleiades and that of Praesepe, suggesting that the age of M11 is intermediate between these two clusters.

The yellow giants in M11 are almost unique among galactic clusters, since they average 1 mag. brighter than the usual giants of luminosity class III at $M_v = 0.0$. However, this situation is entirely expected in populous clusters younger than the Hyades and Praesepe (i.e., with main-sequence terminations brighter than $M_v = 0$), since most current evolutionary theories predict that the entire giant and supergiant region of the M_{bol} , log T_e plane, with the exception of the wedge-shaped Hertzsprung gap, will contain stars if clusters of *all* ages from 10⁶ to 5×10^9 years can be found and plotted in a composite diagram. The absolute magnitude of $M_v = -1$ for the M11 giants is therefore not surprising.

One might ask why younger clusters, such as the Pleiades and NGC 2362, do not contain yellow or red intermediate giants at $M_v \approx -3$ to $M_v \approx -4$. The number of giants in a cluster at any given time is determined by the number of main-sequence stars which are immediate candidates for evolution. A convenient index for comparison of clusters is the ratio of the number of giants to the number of main-sequence stars within, say, 2 mag. of the termination point. This ratio in M11 is about 15/100 (obtained by counting in Fig. 1 and dividing the number of giants by the statistical bias of 2). For the Pleiades, Hertzsprung (1928) lists only 4 stars on the main sequence within 2 mag. of the termination point. If the M11 giant to main-sequence ratio applies, we would predict that the Pleiades should contain 0.6 giant. This agrees with the fact that no giants are known in the Pleiades. If the same ratio of 15/100 applies to the Hyades, we expect about 6 Hyades giants. Four are known. The extreme sparseness of 2362 likewise explains the absence of giants in this cluster. Hence the absolute mganitude and the number of giants in M11 do not appear to be anomalous by comparison with other known aggregates.

M11 is not the only cluster known to contain intermediate giants. NGC 2287 studied by A. N. Cox (1954) has 5 intermediate giants at $M_v = -2$. The positions of the main and giant sequences in M11 and NGC 2287 fit well into the scheme of systematics shown in the composite diagram in the previous paper on M67 (Johnson and Sandage 1955, Fig. 6).

VII. SUMMARY

Three-color photometric observations on many stars in M11 permit the determination of a color-magnitude diagram. These observations, together with Deutsch's spectral types for a few stars, give the reddening and distance to the cluster. M11 is a populous galactic cluster with a well-defined main sequence, which terminates at the bright end between that of the Pleiades and that of Praesepe. Its age is intermediate between these two clusters. M11 has many yellow giants, including several of later type than K0. These yellow giants are brighter than those of the Hyades and Praesepe. This is expected

88

GALACTIC CLUSTER M11

from current evolutionary hypotheses, since the main sequence in M11 terminates at about $M_v = -1.0$. The large number of giants in M11 is not anomalous when the abnormally large population of the cluster itself is considered. M11 is therefore another observational example of the scheme of evolution which has been discussed by many authors over the last fifteen years (Schönberg and Chandrasekhar 1942; Harrison 1944; Ledoux 1949; Sandage and Schwarzschild 1952; Roy 1954; Sandage 1954; Tayler 1954; Johnson and Sandage 1955; etc.).

REFERENCES

- Blaauw, A, Hiltner, W A, and Johnson, H L 1956, in preparation.
- Cox, A N. 1954, Ap J, 119, 188
- Haffner, H., and Heckmann, O. 1937, Göttingen Veröff, No 55.
- —— 1940, *ibid*, Nos 66 and 67. Harrison, M. H 1947, Ap. J, 105, 322
- Hertzsprung, E 1928, *M N.*, **89**, 660. Johnson, H. L. 1950, *Ap J*, **112**, 240
- 1952, ibid, 116, 640.

- Johnson, H L, and Sandage, A R 1955, Ap J, 121, 616. Küstner, F 1923, Veröff Sternwarte Bonn, No 18 Ledoux, P 1949, Mém Inst d'Ap Liége, No 309. Roy, A E. 1952, M.N, 112, 484

- Sandage, A R 1954, Mém Soc R. Sci Liége, 14, 254 (Communications du Colloque d'Astrophysique de Liége, 1953)
- Sandage, A R, and Schwarzschild, M 1952, Ap J, 116, 463. Schönberg, M, and Chandrasekhar, S 1942, Ap J, 96, 161. Tayler, R J 1954, Ap J., 120, 332. Wallenquist, A. 1936, *Medel Uppsala*, No 65.

- Weaver, H F 1952, Ap. J, 116, 612.