PUBLISHED BY THE AMERICAN ASTRONOMIGAL SOGIETY

REDSHIFTS AND MAGNITUDES OF EXTRAGALACTIC NEBULAE *

By M. L. HUMASON, N. U. MAYALL, and A. R. SANDAGE

Abstract

There are three main sections to the present discussion. Part I contains redshifts of 620 extragalactic nebulae observed at Mount Wilson and Palomar. Included in these data are redshifts for 26 clusters of nebulae. Part II contains redshifts for 300 nebulae observed at Lick, together with a comparison of results for 114 nebulae in common with the Mount Wilson-Palomar lists. Part III is a discussion of these new redshift data in combination with photometric data. The redshift-apparent magnitude relation is investigated for (I) field nebulae with and without regard to nebular type, (2) isolated groups, and (3) clusters of nebulae. The principal corrections applied to the apparent magnitudes are discussed in two of the three appendices. Appendix A gives the procedure for correcting the published magnitudes for the effect of different photometer apertures. Appendix B describes the theory and computation of the correction for the selective effect of redshifts. In the final Appendix C, a provisional evaluation of the Hubble redshift parameter H is made by two independent methods. The principal results of this study may be stated as follows. (I) For those nebulae observed in common there is a negligible mean systematic difference between the redshifts from the two sources. (2) Spectrographic coverage is 63 per cent complete to $m_{\mathrm{pg}}=12.9$ in the Shapley-Ames catalogue for nebulae north of $\delta=-30^{\circ}$. (3) The log redshift-magnitude relation for field nebulae with and without regard to type is linear to within the accuracy of the data. (4) The log redshift-magnitude relation for the cluster data confirms the linearity for small $\Delta \lambda / \lambda_{0}$ and shows an apparently significant departure from linearity for shifts of the order of $\Delta \lambda / \lambda_{0}=0.2$. This non-linearity indicates deceleration of the expansion if interpretation is made by theoretical equations due to Robertson. Because of the cosmological significance of this last result, the accuracies of the various quantities that lead to it are examined. It is concluded that a deceleration should be regarded as tentative until Whitford's results are available for the spectral energy distribution of the distant nebulae, and until an adequate theory of stellar evolution is advanced to explain the Stebbins-Whitford effect. (5) The Hubble redshift parameter H is provisionally estimated from (a) the magnitudes of resolved stars in NGC 432 I that have been isolated from the emission $H_{\text {II }}$ regions, and (b) from the assumption that the brightest field and cluster nebulae are giants of luminosity comparable to the Andromeda nebula, with the result that $H=180 \mathrm{~km} / \mathrm{sec}$ per $10^{6} \mathrm{pc}$.

GENERAL INTRODUCTION

More than 25 years ago Hubble (1929) announced a relationship between velocities and distances of extragalactic nebulae. Since he realized that this first formulation referred to only a relatively small distance, he initiated an exploratory program to follow the relationship to the greatest distances attainable with the largest telescope. The successful outcome of that program has become widely known, especially through publication of his book, The Realm of the Nebulae (Hubble 1936a), and his professional lectures. The last of these (Hubble 1953) summarizes the observational basis for the early restricted veloc-ity-distance relation, and the later far-reaching law of redshifts.
Despite the comprehensiveness of Hubble's extragalactic researches that used the roo-inch to the limits of its power for observations of faint
nebulae, he regarded them in sum as a "preliminary reconnaissance." This appraisal, although a characteristic understatement, emphasized the need for many more nebular redshifts and magnitudes. These spectrographic and photometric data are now available in considerable numbers, on a systematic basis, and with improved precision, chiefly as the result of Hubble's inspiring influence on his colleagues.

This paper contains as its principal new material redshifts for over 800 nebulae observed during the 20 -year interval from 1935 to 1955 . While these redshifts doubtless could be discussed alone, one of the main reasons for obtaining them was their use as the higher-precision, independent variable in correlations with nebular magnitudes. This unified treatment of spectrographic and

[^0]photometric data follows previous practice by Hubble, who, had he lived, would have participated as the senior author in the analysis and discussion.

Since photography of nebular spectra 20 years ago required much more telescope time than now, a cooperative program of nebular spectroscopy was started in 1935 at the Mount Wilson and Lick Observatories. The field was divided according to the instrumental facilities. At Mount Wilson, the fainter catalogued nebulae and the faintest and smallest cluster nebulae were natural selections for the superior light-gathering power and scale of the roo-inch; at Lick, the brighter catalogued nebulae and the larger spirals of low surface brightness were appropriate objects for the moderate capabilities of the 36 -inch Crossley. At both observatories the ShapleyAmes Catalogue of Bright External Galaxies (1932) was used as the principal finding list and source of magnitudes. Originally, the two programs separated the nebulae north of $\delta=-30^{\circ}$ at the catalogue magnitude of ir.6, except that the Crossley was used for most objects north of the roo-inch limit at $\delta=+64^{\circ}$. As the work progressed, considerable overlap resulted over a fairly wide range in magnitude because of interest in individual objects for special purposes, and more than ioo nebulae were observed in common.

The remainder of this paper is divided into three parts, which were written by the authors in the order shown by the line following the title. These parts may be described as follows:

Part I. The Mount Wilson-Palomar Lists of Redshifts. These are subdivided into three tables that include non-cluster objects, bright nebulae in clusters, and faint nebulae in clusters. This arrangement reflects the basic programs and facilitates the treatment of the material for the numerous brighter nebulae in the nearer clusters, such as those in Virgo and Coma, and the fewer fainter nebulae in the more distant clusters. Because of the considerable mass of the material, which was obtained with several different telescopes and with a variety of spectrographs and dispersions, it was impracticable to include in the tables all the detailed data for individual plates. Instead, the number of plates and the dispersions are indicated in a summary column, and a mean redshift is given for each nebula.

Part II. The Lick List of Redshifts. These are given in a single table, because the observing program placed no special emphasis on cluster nebulae. Since all the plates were obtained with
the same telescope, spectrograph and two-prism dispersion (except for one nebula observed with three prisms), it was feasible to list for each plate such details as slit-width, emulsion, exposure, and an index of accuracy based on the agreement between redshifts for different spectral features. Such information reveals something of the technique, observing time, and order of precision involved in low-dispersion spectroscopy of nebulae.

Following the last list of spectrographic data, Table V and notes, the redshifts are discussed for (I) systematic differences for nebulae observed in common at Mount Wilson-Palomar and at Lick, and (2) degree of completeness in terms of the Shapley-Ames catalogue magnitudes.

Part III. Discussion of the Spectrographic and Photometric Data. This section contains quantitative evaluations of the relationships between redshifts and magnitudes for (I) field nebulae with and without regard to nebular type, (2) isolated groups, and (3) the cluster nebulae. The magnitudes for field nebulae were obtained principally from Pettit's (1954) large catalogue, supplemented with measures by Stebbins and Whitford (1952). The magnitudes for the faintest cluster nebulae were obtained photographically with the 200 -inch and a jiggle-camera. Before the magnitudes were used, all were corrected for the effects of different photometer apertures by the procedure given in Appendix A. The appendix gives, moreover, the list of corrected magnitudes for field nebulae, together with an analysis of the overlap between the Pettit and the Stebbins and Whitford photoelectric data, on the one hand, and between the Pettit data and Holmberg's unpublished precision photographic material, on the other. Additional corrections to all magnitudes were made for the effects of redshift. These socalled K corrections were computed by the procedure given in Appendix B. The redshift-magnitude correlations are discussed with theoretical relations given by Robertson (1955), in simplified form for the nearer field nebulae, and with a second-order term for the cluster nebulae. Finally, in Appendix C a provisional evaluation of the Hubble redshift parameter H is made from distance indicators calibrated in the nearby resolved systems.

PART I. MOUNT WILSON-PALOMAR LISTS OF REDSHIFTS

The systematic spectroscopic observation of extragalactic nebulae at the Mount Wilson Observatory was begun in 1928 at the request of

Edwin Hubble, in order to test further the relation he had found (Hubble 1929) between redshifts in nebular spectra and the apparent brightness of the nebulae.

First results from the spectroscopic program became available (Humason 193I, 1936) when the redshifts for 146 nebulae observed at Mount Wilson had been measured. The present Mount Wilson-Palomar lists contained in Tables I, II, and III give the redshifts for 620 individual objects, of which 474 are new. The remainder are revised values for the 146 objects previously published.

Up to 1950 all the observations were made with the Mount Wilson instruments, as described in the two earlier publications cited above. Since June 1950 the work has been carried on at Palomar with a prime-focus nebular spectrograph. The Palomar spectrograph has a beam diameter of 3 inches and, as originally designed, contained two $62^{\circ} \mathrm{LBF} 2$ glass prisms. Two cameras have been used, both of the thick-mirror Schmidt type. Their focal lengths and F ratios are 1.4 inches and 0.47 for one, and 2.8 inches and 0.95 for the second. Dispersions are $430 \mathrm{~A} / \mathrm{mm}$ and 2 I $5 \mathrm{~A} / \mathrm{mm}$ at $\lambda 4340$.

In February 1952 an important revision to the spectrograph was made when the two prisms were replaced by a newly ruled first-order grating having 600 lines per millimeter. The dispersions then became $370 \mathrm{~A} / \mathrm{mm}$ for the 1.4 -inch camera and $190 \mathrm{~A} / \mathrm{mm}$ for the 2.8 -inch camera. Allowing for the difference in dispersion, the grating spectra compare exceedingly well with the prism spectra, both in speed and definition. This, and the added advantage of linear dispersion, led to the ruling of several more gratings, until there are now five Babcock-Swanson gratings which are interchangeable for different wave-length regions and dispersions. The various combinations of gratings and cameras provide dispersions from 80 to $750 \mathrm{~A} / \mathrm{mm}$. The type of emulsion most often used is Eastman IIa-O and roza-O. The IIa-O plates are baked for 24 hours at a temperature of $65^{\circ} \mathrm{C}$, which increases their speed some three times for exposures of five hours or more.

Many combinations of spectrographs and cameras have been used in the twenty-five years of the current program with the Mount Wilson 60inch and roo-inch telescopes and the Palomar 200-inch. At Mount Wilson, the dispersion for about 90 per cent of the plates is of the order of $450 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$. Almost all the observations
were made at the Cassegrain focus with a spectrograph which could not be rotated, using the long way of the slit in an east-west position. At Palomar the spectrograph can be rotated to any position angle. Most of the Palomar observations have been made with the slit in a north-south position. The slit length was usually 2.5 mm , which corresponds to $12^{\prime \prime}$ at the Cassegrain focus of the roo-inch, and to $30^{\prime \prime}$ at the prime focus of the 200 -inch. Observations are of the nuclear regions unless otherwise indicated in the notes.

Redshifts of objects previously published have been included for the following reasons. (i) As data were accumulated it became possible to improve upon the initial wave-length system used in the reductions. (2) Additional spectrograms have been obtained of objects which at the beginning had been poorly observed. (3) Redshifts corrected for the solar motion with respect to the local group are included for the first time. (4) Investigators in this field may appreciate having all known redshifts available in one paper.

Wave lengths used for the reduction of features most often observed and measured on small-scale spectrograms of extragalactic nebulae are $3727 \cdot 3$, the blended emission lines of [$O_{\text {II }}$], absorption at 3933.7 (K), $3968.5(\mathrm{H}), 4$ IOI. $7 \mathrm{H} \mathrm{\delta}, 4226.7$ blend, 4304.4 G-band blend, 4340.5 $H \gamma, 4385.0$ blend. Other emission and absorption features are measured when they appear.

Some of the first Mount Wilson spectrograms of extragalactic nebulae were of poor quality as compared with those obtained now. This was necessarily so, as no high-speed short-focus cameras were then available and plate speeds were far below those of today. Many of the objects observed between 1928 and 1935 have therefore been re-observed to reduce the plate errors in the final redshifts. In cases where the redshift had been measured from under-exposed plates or on plates of very poor quality, the old measures were discarded as being uncertain enough to do actual harm to the values measured from later and better plates.

Most of the revisions to the old values are small; the total revision of many being due only to the fact that the older values were given to the nearest 50 or $100 \mathrm{~km} / \mathrm{sec}$. None of the earlier measures were reduced to the sun. All of the tabulated redshifts have now been reduced to the sun and corrected for curvature of the spectrograph slit. Results are given to the nearest whole kilometer.

Re-observation has shown that the formerly

Figure I. The distribution of residuals in the measured redshifts for the Mount Wilson-Palomar material when two or more plates are available for a given nebula. The normal error curve is drawn with $\overline{\Delta\left[c \Delta \lambda / \lambda_{0}\right]}=0$ and with dispersion $\sigma=39.4 \mathrm{~km} / \mathrm{sec}$. This corresponds to a probable error of $\pm 27 \mathrm{~km} / \mathrm{sec}$.
published redshifts for five nebulae are in error. They are NGC 1700, 6207, and 6702 in Table I and 4192 and 4569 in Table II. The redshift for NGC I700 was formerly given as $+800 \mathrm{~km} / \mathrm{sec}$ (Pease 1918; Stromberg 1925); from two very good plates of this object the redshift is now known to be $+3,976 \mathrm{~km} / \mathrm{sec}$; the reason for the discrepancy in the two values is not known. The redshift for NGC 4192 is $-124 \mathrm{~km} / \mathrm{sec}$; the former value was +ir50 km/sec (Humason 193I) ; the plate from which this value was measured was obtained by Pease and measured by the writer; it is an extremely weak plate and the single absorption feature measured was either incorrectly identified or not real. The negative shifts, $-200 \mathrm{~km} / \mathrm{sec}$ for NGC 4569 and -250
km/sec for NGC 6207 (Humason 1936), were found in each case to be that of a star projected on the nebula. The redshifts are $+960 \mathrm{~km} / \mathrm{sec}$ for NGC 4569 and $+869 \mathrm{~km} / \mathrm{sec}$ for NGC 6207. The redshift of NGC 6702 is $+4749 \mathrm{~km} / \mathrm{sec}$; it was formerly given as $+2250 \mathrm{~km} / \mathrm{sec}$ (Humason 193I) ; the early observation was by Pease, who probably observed the nearby nebula NGC 6703, whose redshift is $+2,316 \mathrm{~km} / \mathrm{sec}$, for 6702 .

The random errors in the tabulated redshifts of Tables I, II, and III arise from two principal causes. These are (I) the personal error of measurement and (2) the error caused by various photographic effects, such as emulsion creepage and graininess. These two effects may be separately evaluated by analysis of the residuals in the measured redshifts from (i) plates measured more than once and (2) several plates taken on the same object. A formal analysis of all available Mount Wilson spectra with dispersions of approximately $450 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$ yields distributions of the residuals which give the probable error of personal measurement, on good to very good quality plates, of the order of p.e. $= \pm 1 \mathrm{Ikm} / \mathrm{sec}$ with a total spread of about 5 times this value. The probable error for the plate error is about $\pm 24 \mathrm{~km} / \mathrm{sec}$, again with a spread of 5 times this value.

Figure I shows the distribution of redshift residuals where two or more good quality plates are available on a given nebula. Since the true redshifts were not known, the mean redshift from the various plates on a given object was adopted

Figure 2. The distribution of spectral type as a function of nebular type for 546 nebulae from Tables I and II.
and residuals from the mean computed. This procedure tends to symmetrize the distribution, but the effect should not be serious. The normal error function was drawn with the mean equal to zero and with $\sigma=39.4 \mathrm{~km} / \mathrm{sec}$. This gives a formal probable error of $\pm 26.6 \mathrm{~km} / \mathrm{sec}$ for the tabulated redshifts, for good to very good quality plates. It is the combined plate and measuring error. For poor quality plates the probable error of the tabulated values is about $\pm 35 \mathrm{~km} / \mathrm{sec}$. The conclusion from this formal analysis is that all tabulated redshifts of Table I, II, and III are expected to be within $5 \times 35=175 \mathrm{~km} / \mathrm{sec}$ of their true value with more than half within 35 $\mathrm{km} / \mathrm{sec}$ of their true value. The errors are smaller for higher dispersion plates.

Since this formal analysis is somewhat unrealistic due to the small number of objects involved, estimated errors based upon experience with the plates have been tabulated instead. The size of the estimated errors for small-scale plates is usually an indication of plate quality although other factors can also affect these estimates. One of these factors is the character of the absorption features. The Mount Wilson-Palomar spectra indicate that absorption lines in the spectra of elliptical and So nebulae are narrower and deeper than they are for the Sa, Sb, and for some of the Sc nebulae. Noticeable line widening begins to appear in the Sa objects. In many of the Sb 's the absorption features are wider and more poorly defined than in other types. Both wide or narrow lines are, however, observed in the nuclear regions of the Sc's. Exceptions to these observations occur in all types but the wide, shallow features observed in most Sb nebulae make their measurement on small-scale spectra more difficult and tend to increase the size of the estimated error.

A typical example of the type of line widening observed in many of the Sb objects can be seen in Plate III, if the spectrum of the Sb nebula NGC 224 is compared with that of the elliptical NGC 22I. Spectra of both objects were obtained at Mount Wilson under exactly the same conditions and differences in the widths of the absorption features are obvious. Absorption lines in the spectrum of the Sb nebula are estimated to be four times wider and noticeably shallower than those observed in a non-rotating stellar source of comparable spectral type. Lines in the spectrum of the elliptical nebula are approximately two times wider than normal stellar lines. In some Sb nebulae the lines are again as wide as those observed in NGC 224. It is probable that widen-
ing of the absorption features in many of the extragalactic nebulae is caused by a mixture of velocities and spectral types, and that this characteristic is less pronounced in the elliptical and Sc nebulae than for many of the Sb 's, and some Sa 's.

Spectral types of nebulae in Tables I and II have been estimated in the same way as in the past (Humason 1936). Although absorption features in small-scale spectra are few, those that do appear are good indicators of type. Nevertheless the accuracy of the estimates is not high, especially for some of the Sb objects having wide lines. For these, the error is probably larger than one-half of a spectral division; for the other groups, not greater than one-half a division.

In Figure 2 the spectral types of 546 nebulae from Table I and Table II have been plotted against Hubble's determinations of nebular type. The picture is not greatly changed from that of the 1936 plot when only I 36 objects were shown (Humason 1936). With the exception of four, all elliptical nebulae have been classified as G. For the spirals the number of blue objects gradually increases toward earlier nebular type until the distribution of the Sc's is almost uniform between types Fo and G3. The mean spectral type for each group is shown in Table IVA.

The frequency of the occurrence of $\lambda_{3727}^{[O}$ II] in the spectra of extragalactic nebulae has been estimated by Mayall (1939) and by Humason (1947). The new data have not greatly increased the number of spectra available for inspection, nor changed the percentage values. From 278 spectra well enough exposed in the ultraviolet to show $\lambda 3727$, if present, the percentage frequencies shown in Table IVB were estimated.

The Mount Wilson and Palomar redshifts have been subdivided into three groups in order to separate the non-cluster and the cluster nebulae. Table I contains the redshifts for non-cluster nebulae and groups. In general they are the brighter nebulae, most of them being NGC or IC objects. Among the nebulae designated "anonymous" are several originally observed as possible members of clusters, but later found to be field nebulae with redshifts not in agreement with those obtained from cluster members.

Table II contains the redshifts from clusters of bright nebulae. Most of them are catalogued objects. All tabulated redshifts in Table II are smaller than $+12,000 \mathrm{~km} / \mathrm{sec}$.

In Table III are the uncatalogued faint cluster nebulae with redshifts larger than $+12,000 \mathrm{~km} /$ sec.
table I. redshifts of extragalactic nebulae. non-Cluster objects

NGC	1950			Gal		Type		Redshift $c \Delta \lambda \lambda_{0}$ (8)	CorrRedshift (9)	Plis Disp (10)	Est Error (11)	
*IC (1)		$\begin{aligned} & \text { R A } \\ & \text { (2) } \end{aligned}$	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)					
								$\mathrm{km} / \mathrm{sec}$	km/sec		$\mathrm{km} / \mathrm{sec}$	
7814	$0^{\text {h }}$	0.7	+15*51	76°	-45*	Sa	G3	+ 1,047	+ 1,245	2a	50	
16		6.5	+27 27	80	-34	SBO	G5	+ 3,110	+ 3,335	la	50	
23		7.3	+25 39	80	-36	Sb	F5*	+ 4,568	+ 4,790	la	100	Absorption lines are broad and indistinct.
45		11.4	-23 27	30	-82	Sc	Em	+ 450	+ 488	la	30	Bright am patch 0: 8 nf nucleus.
55		12.5	-39 30	296	-77	Sc	Em	+ 210	+ 177	la	50	Em patch 2:7p nucleus. p of two. Observed by Hubble.
68		15.8	+29 48	83	-32	So	G3	+ 5,787	+ 6,012	la	65	This and next four are members of a group.
69		15.8	+29 46	83	-32	SBO	G2	+ 6,637	+ 6,862	la	150	
71		15.8	+29 47	83	-32	E2	G3	+ 6,591	+ 6,816	la	150	
72		15.9	+29 46	83	-32	SBa	G7	+ 6,976	+ 7,201	la	150	
Anon		16.0	+29 46	83	-32	E4	G3	+6,807	+ 7,032	la	130	Brighter and p of 3 faint neb. 1:3 sf NGC 72.
* 10		17.5	+59 2	87	-3	Sc	Em	- 343	- 88	1 b	12	Br em patch in sf part. Possible member local group.
80		18.6	+22 5	83	-40	so	G5	+ 5,586	+ 5,790	la	100	This and next one are members of a group.
83		18.8	+22 9	83	-40	EO	G3	+ 6,541	+ 6,745	la	150	
Anon		25.2	+22 25	85	-40	Sb	G0*	+37,052	+37,251	la	60	See note 1 at end of table.
Anon		26.1	+ 240	82	-60	Sa	G0*	+ 4,460	+4,594	la	50	Neb 5: 6 n , 9:5 p NGC 128.
125		26.3	+ 234	82	-60	So	G5*	+ 5,289	+ 5,423	la	50	
127		26.6	+ 236	82	-60	Sa	G0	+ 4,094	+ 4,228	2a	40	
128		26.7	+ 235	82	-60	SO	G7*	+ 4,250	+ 4,384	2a	50	
157		32.2	-840	82	-71	Sc	G4	+ 1,826	+ 1,913	la	100	
160		33.4	+23 41	87	-37	Sa	G8	+ 5,255	+5,456	la	50	See note 2 at end of table.
182		35.6	+ 228	87	-60	Sa	G4	+ 5,234	+ 5,360	la	50	
185		36.1	+48 4	89	-14	Ep	G0	- 266	- 24	la	75	Member local group.
185		36.2	+48 4	89	-14		F8	- 344	- 102	la	150	Globular cluster in NGC 185. 1: 1 sf nucleus.
194		36.7	+ 246	87	-59	E1	G5	+ 5,105	+ 5,237	la	50	
205		37.6	+41 25	89	-21	SBO	A8	- 239	- 8	3b	12	Member local group.
214		38.8	+25 14	89	-37	Sc	G3*	+ 4,535	+ 4,731	la	50	
221		40.0	+40 36	89	-22	E2	G3	- 214	+ 17	1c,3d	10	Member local group.
224		40.0	+41 0	89	-21	Sb	G5	- 266	- 35	1c,3d	15	Member local group.
227		40.1	- 148	89	-64	E4	G3	+ 5,315	+ 5,423	la	65	
247		44.5	-21 2	94	-83	Sc	Fm	- 28	+ 1	la	35	Bright em patch 5:0 sf nucleus.
253		45.1	-25 34	105	-88	Sc	Em	- 81	- 72	la	35	Em patch $2: 7 \mathrm{n}$ of nucleus.
Anon		47.1	+42 19	91	-20	E2	G5	+60,980	+61,208	la	250	For this and next one see note 3 at end of table.
Anon		47.1	+42 20	91	-20	Sb	F3*	+23,908	+24, 136	la	30	
278		49.2	+4717	91	-15	Sb	F0*	+ 622	+ 854	la, lb	30	One plate by Hubble.
300	0	52.7	-37 58	259	-80	Sc	Em	+ 248	+ 200	la	40	Brighter of two em patches 2 2:8 sp nucleus.
357	1	0.8	-637	103	-69	SBa	G4	+ 2,541	+ 2,613	la	50	
*1613		2.5	+152	99	-60	Irr	Em	- 238	- 130	16	10	Em patch 0! 9s, 10 ! $8 \mathrm{fBD}+1^{\circ} 200$. Member local group.
375		4.3	+32 5	95	-30	E5	G5	+6,011	+ 6,209	2 a	40	This and next eight are members of a group.
379		4.5	+32 15	95	-30	So	G6	+ 5,374	+ 5,572	la	65	
380		4.5	+32 13	95	-30	E2	G5	+ 4,341	+ 4,539	la	150	
382		4.6	+32 8	95	-30	EO	G5	+ 5,156	+ 5,354	la	50	
383		4.6	+32 9	95	-30	So	G0	+ 4,888	+ 5,086	la	50	Absorption lines are somewhat broad and shallow.
384		4.6	+32 2	95	-30	so	G1	+ 4,401	+ 4,599	2a	100	Absorption lines are somewhat broad and indistinct.
385		4.7	+32 3	95	-30	E3	G5	+ 4,845	+ 5,043	2a	150	
386		4.7	+32 6	95	-30	E3	G2	+ 5,555	+ 5,753	la	150	Absorption lines are indistinct.
388		5.0	+32 3	95	-30	E3	G5	+ 5,114	+ 5,312	la	100	
404		6.6	+35 27	95	-26	So	F8*	- 55	+ 152	1 l	30	
474		17.4	+ 39	107	-58	E0	G5	+ 2,306	+ 2,402	2 a	40	
488		19.2	+ 50	107	-56	Sb	G7	+ 2, 180	+ 2,282	la	150	
495		20.1	+33 13	99	-28	SO	G5	+ 4,114	+ 4,306	la	50	This and next two are members of a group.
499		20.4	+33 12	99	-28	So	G3	+ 4,375	+ 4,567	la	50	
507		20.8	+33 0	99	-28	E3	G7	+ 4,929	+ 5,121	la	50	
514		21.4	+12 39	104	-49	Sc	G0	+ 2,487	+ 2,616	la	60	
524		22.3	+917	106	-52	So	G3	+ 2,470	+ 2,587	la	65	
560		24.9	-211	113	-63	so	G1	+ 5,503	+ 5,578	la	150	
564		25.2	-29	114	-62	E3	G4	+ 5,851	+ 5,923	la	150	
584		28.8	- 77	120	-67	E3	G5	+ 1,827	+ 1,878	la	75	
596		30.3	-717	121	-67	EO	G3	+ 2,049	+ 2,097	la	65	
598		31.0	+30 24	102	-31	Sc	A7	- 189	- 12	lb, lc	15	Member of local group.
604	1	31.7	+30 32	102	-31	Sc	Em	- 226	49	2 b	12	Em patch in NGC 598.

table I. redshifts of extragalactic nebulae. non-Cluster objects

NGC	1950			Gal		Type		Redshift $c \Delta N \lambda_{0}$ (8)	Corr Redshift (9)	$\begin{aligned} & \text { Plts } \\ & \text { Disp } \\ & (10) \end{aligned}$	$\begin{aligned} & \text { Est } \\ & \text { Error } \\ & \text { (11) } \end{aligned}$	
*IC (1)		R A (2)	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)					
								$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$		$\mathrm{km} / \mathrm{sec}$	
628		34.0	+15*32	108	-45*	Sc	F5*	+ 561	+ 687	20	50	
636		36.6	- 746	125	-66	El	G5	+ 1,941	+ 1,983	la	50	
*1727		44.7	+27 5	107	-33	Sc	Em	+ 362	+ 518	la	50	Em patch in sf end of IC 1727.
681		46.7	-10 40	135	-67	Sa	G5*	+ 1,750	+ 1,768	la	60	
720		50.6	-13 59	143	-69	E5	G4	+ 1,808	+ 1,814	la	100	
736		53.8	+32 48	107	-27	El	G2	+ 4,366	+ 4,528	2a	40	
741		53.8	+ 523	122	-53	E0	G5	+ 5,559	+ 5,637	la	50	
750		54.6	+32 58	107	-26	EO	G7	+ 5,130	+ 5,295	1 b	40	p neb. This and 751 appear to be physically connected.
751		54.6	+32 58	107	-26	EO	G2	+ 5,126	+ 5,291	la	60	f neb. Forms close pair with 750.
772		56.6	+1846	113	-40	Sb	G4	+ 2,431	+ 2,553	la	150	
788	1	58.6	-7 7	135	-63	Sa	G0"	+ 4, 137	+ 4, 161	la	65	Abs. lines are weak and shallow.
821	2	5.7	+1045	120	-47	E6	G5	+ 1,778	+ 1,865	la	100	
890		19.3	+33 2	112	-25	SO	G4	+ 4,043	+4,193	la	65	
891		19.3	+42 7	108	-17	Sb	G1	+ 72	+ 246	la	100	Abs. lines are somewhat broad and shallow.
925		24.3	+33 21	113	-24	Sc	F0*	+ 420	+ 564	la	200	Abs. lines are broad and indistinct.
936		25.1	- 122	137	-54	SBa	G3*	+ 1,343	+ 1,367	la	50	
972		31.3	+29 6	117	-27	Sb	F3*	+ 1,538	+ 1,664	2 a	60	Abs. lines are narrow and weak.
Anon		34.6	+34 12	115	-23	SBa	F8	+ 4,800	+ 4,938	1 b	150	Observed and measured by Minkowski.
1003		36.1	+40 39	112	-17	Sc	F0*	+ 585	+ 741	3a	60	
1023		37.2	+38 51	113	-18	SBO	G5	+ 557	+ 709	la, lb	60	One plate by Hubble.
1049		37.7	-34 29	202	-64	Ep	F0	+ 40	- 71	1 la 2 b	30	Bright cl in For syst. Member of local group.
For		38.1	-34 41	202	-64	Ep	F7	+ 35	- 76	la	60	Faint cl in For syst.
1052		38.6	- 828	150	-56	E3	G5*	+ 1,439	+ 1,424	3 a	40	
1068		40.3	-0 13	141	-51	Sb	Fo"	+ 1,020	+ 1,032	1 b	40	Both abs. and em lines are broad and indistinct.
1079		41.6	-29 13	189	-63	SBa	G3	+ 2,252	+ 2,156	la	250	
1084		43.6	- 747	151	-55	Sc	F5	+ 1,558	+ 1,540	la	100	
1087		43.9	-0 42	142	-50	Sc	F0	+ 1,824	+ 1,835	la	200	Abs. lines are weak.
1097		44.2	-30 29	193	-63	SBb	F8	+ 1,326	+ 1,224	la	100	
1140		52.1	-10 14	156	-55	Irr	F2"	+ 1,544	+ 1,511	la	40	
1156	2	56.7	+25 2	125	-28	Irr	Em	+ 405	+ 495	la	40	Two em patches p center of neb.
1199	3	1.3	-15 48	167	-56	E3	G2	+ 2,581	+ 2,518	la	50	
1201		2.0	-26 15	185	-60	SO	G5	+ 1,722	+ 1,626	la	50	
1209		3.7	-15 47	167	-55	E6	G4*	+ 2,568	+ 2,502	la	150	Observed by Hubble.
1302		17.7	-26 14	187	-56	Sa	G3	+ 1,730	+ 1,616	la	75	
1316		20.8	-37 24	206	-56	Irr	G2	+ 1,878	+ 1,728	la	75	Observed by Hubble.
1317		20.8	-37 17	206	-56	Sa	G4	+ 2,060	+ 1,913	la	100	Observed by Hubble.
1332		24.1	-21 31	179	-53	so	G2	+ 1,609	+ 1,507	la	50	
1380		34.6	-35 9	202	-53	Sa	G5	+ 1,856	+ 1,706	la	75	
1395		36.3	-23 11	183	-50	E2	G7	+ 1,690	+ 1,573	2 a	40	
1399		36.6	-35 37	203	-52	E2	G4	+ 1,458	+1,302	la	200	Observed by Hubble.
1404		36.9	-35 45	204	-52	E1	G4	+ 2,044	+ 1,885	la	200	Observed by Hubble.
1400		37.3	-18 51	177	-49	E1	G4	+ 483	+ 379	2 a	40	
1407		37.9	-1844	177	-49	EO	G3	+ 1,811	+ 1,706	la	50	
1415		38.8	-22 42	183	-50	Sa	F8*	+ 1,508	+1,388	la	50	
1417		39.5	-452	160	-42	Sb	G0	$+4,101$	+ 4,044	la	50	
1426		40.6	-22 16	182	-50	E4	G4	+ 1,358	+ 1,241	la	50	
* 342		41.9	+6757	106	+11	Sc	FO"	- 10	$+176$	$2 b$	20	Possible member of local group.
1439		42.6	-22 4	182	-49	EO	G2	+ 1,997	+ 1,878	la	100	Lines are somewhat broad.
1441		43.2	-4 15	160	-41	Sa	G5	+ 4,262	+ 4,202	la	150	
1449		43.6	-4 17	160	-41	SO	G3	+ 4, 176	+4,116	la	100	
1451		43.7	- 413	160	-41	E3	G5	+ 3,927	+ 3,867	la	75	
1453	3	44.0	-47	160	-41	E1	G0*	+ 3,919	+ 3,859	3a	40	
1521	4	6.1	-21 11	184	-43	E3	G5	+ 4,222	+ 4,060	la	50	
1569		26.0	+64 45	111	+12	Irr	Em	- 34	+ 131	1 b	30	Em patches. p. a. slit 112°. Observed by Mayall.
1587		28.1	+ 033	162	-29	El	G2	+ 3,890	+ 3,812	la	75	
1600		29.2	- 512	168	-32	E5	G7	+ 4,830	+ 4,728	la	100	
1601		29.2	- 510	168	-32	So	G5	+ 4,997	+4,895	la	100	
Anon		38.1	+ 49	160	-25	Sa	G2	+4,600	+4,531	la	50	Brightest neb in vicinity.
1637		38.9	-257	167	-29	Sc	F8*	+ 695	+ 596	2a	50	Abs. lines are broad and shallow.
1700	4	54.5	-456	171	-26	E3	G4	+ 3,976	+ 3,859	2a	40	Pease vel +800. Pease,F. G. 1918,Pub. A. S. P., 30,255.

table I. redshifts of extragalactic nebulae. non-Cluster objects

NGC	1950			Gal		Type		Redshift	Corr Redshift (9)	Plts Disp (10)	Est Error (11)	
*IC (1)		A 2)	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)	$c \Delta \lambda / \lambda_{0}$ (8)				
								km/sec	$\mathrm{km} / \mathrm{sec}$		km/se	
1832	$5^{\text {h }}$	999	$-15^{\circ} 46^{\prime}$	184°	-27°	Sb	G4	+ 2,037	+ 1,869	la	200	Observed by Hubble.
1889	5	20.3	-1132	181	-23	EO	G2	+ 2,472	+ 2,310	2a	40	
2146	6	10.7	+78 23	103	+26	Sap	F0"	+ 785	+ 965	la	50	
2207		14.2	-21 21	196	-16	Sc	G1*	+ 2,680	+ 2,455	1 la 1 l	60	p neb of close double. Abs. lines are weak.
2217	6	19.7	-27 13	202	-17	SBa	G2	+ 1,585	+1,345	la	150	Observed by Hubble.
2314	7	3.8	+75 19	107	+28	E3	G5	+ 3,843	+ 4,005	3 a	30	
2339		5.4	+1852	165	+14	Sb	G0*	+ 2,361	+ 2,262	2 a	40	Abs. lines somewhat broodened.
2300		16.5	+85 49	95	+28	E1	G5	+ 1,946	+ 2,150	3a	30	One plate by Minkowski.
2379		24.2	+33 55	153	+23	E0	G1	+ 4,030	+ 3,994	la	65	
2403		32.0	+65 43	118	+30	Sc	F2*	+ 70	+ 187	5 a	40	
2460	7	52.7	+60 31	124	+32	Sb	G2*	+ 1,442	+ 1,533	$2 a$	50	
2532	8	7.0	+34 6	155	+32	Sc	F8*	+ 5,153	+ 5,111	la	50	Abs. lines are weak and poorly defined.
2535		8.2	+25 22	165	+30	Sb	F5*	+ 4,243	+ 4,153	la	75.	Abs. lines are very weak.
2537		9.7	+46 9	141	+35	Sc	Em	+ 397	+ 415	$2 \mathrm{a}, 1 \mathrm{~b}$	20	Brightest em patch np center.
2549		15.0	$+5758$	127	+35	SO	G4	+ 1,082	+ 1,157	la	75	Observed by Hubble.
2562		17.5	+21 18	170	+30	Sa	G5	+ 4,963	+ 4,852	la	50	This and next one are members of a group.
2563		17.7	+21 14	170	+30	SO	G2	+ 4,775	+ 4,664	2a	50	
2613		31.2	-22 48	213	+12	Sb	GI	+ 1,710	+ 1,438	2a	40	
2608		32.2	+28 38	163	+36	Sa	F5	+ 2,119	+ 2,041	la	100	
2623		35.4	+25 56	167	+35	SBc	A5*	+ 5,435	+ 5,342	2a	40	Observed by Minkowski as possible radio sourse.
2639		40.1	+50 23	136	+40	Sa	G5	+ 3,314	+ 3,350	la	75	
2654		44.3	+60 28	123	+39	Sa	G5	+ 1,360	+ 1,450	la	65	
2672		46.5	+19 16	175	+36	E1	G4	+ 4,223	+ 4,100	la	100	
2673		46.6	+19 16	175	+36	EO	G3	+ 3,792	+ 3,669	la	65	
2655		49.2	+78 25	102	+33	SOp	G1*	+ 1,299	+ 1,473	la	65	
2683		49.6	+33 37	158	+40	Sb	G0*	+ 336	+ 285	la	65	
2681		50.0	+5130	134	+41	Sa	F8	+ 703	+ 748	16	30	Observed by Hubble.
2685		52.2	+5859	125	+40	SOp	G5*	+ 884	+ 961	la, lb	40	
2693		53.5	+51 33	134	+41	E2	G2	+ 4,956	+ 4,998	la	50	
2694		53.5	+51 32	134	+41	E0	G4	+ 5,123	+ 5,165	la	75	
2716		55.0	+ 317	194	+31	Sa	G1	+ 3,537	+ 3,342	la	50	
Anon		55.3	+ 323	194	+31	Sb	F5*	+30,403	+30,208	la	50	For this and next one see note 4 at end of table.
Anon		55.4	+ 321	194	+31	Sa	F8*	+20,575	+20,380	la	50	
2712		56.2	+45 6	143	+42	SBb	G1	+ 1,840	+ 1,849	la	200	Abs. lines shallow and not well defined.
2723	8	57.7	+ 323	184	+31	S0	G2	+ 3,725	+ 3,530	la	65	
2744	9	1.8	+18 40	178	+39	Sb	F8"	+ 3,450	+ 3,325	la	50	Abs. lines are very weak.
2749		2.5	+1831	178	+39	E2	G0*	+ 4,203	+ 4,076	2a	40	Abs. lines are wide and rather shallow.
2775		7.7	+ 715	191	+35	Sa	G3	+ 1,135	+ 958	la	75	
2768		7.8	+60 15	122	+42	SO	G5	+ 1,408	+ 1,497	la	175	
2782		11.0	+40 19	149	+45	Sa	F0"	+ 2,517	+ 2,502	$1 \mathrm{a}, 1 \mathrm{~b}$	20	$\lambda 3727$ strong. Lines show rotational inclination.
2811		13.9	-16 6	214	+23	Sa.	G3	+ 2,514	+ 2,256	la	75	Observed by Hubble.
2798		14.4	+42 10	147	+46	SBa	F5"	+ 1,708	+ 1,699	la	75	
2787		14.9	+69 25	111	+39	SBa	G5	+ 639	+ 768	2a	40	
Anon		15.7	-1153	211	+26	So	F5*	+16,160	+15,914	la	60	Observed by Minkowski as possible radio source.
2831		16.8	+33 59	159	+46	El	G5	+ 5,155	+ 5,104	la	65	This and next one are members of a group.
2832		16.8	+33 59	159	+46	E2	G0	+ 6,946	+ 6,895	2a	50	
2841		18.6	+51 12	134	+45	Sb	G0*	+ 584	+ 625	$2 \mathrm{a}, 1 \mathrm{~b}$	40	
2855		19.1	-1141	212	+27	So	G3*	+ 1,908	+ 1,652	2a	50	One plate by Hubble, one by MinkowskL
2865		21.2	-22 58	221	+20	E4	G2	+ 2,714	+ 2,441	la	75	Observed by Hubble.
2859		21.3	+34 44	158	+47	SBO	G3	+ 1,694	+ 1,649	la	100	
2880		25.7	+62 44	118	+43	SBO	G4	+ 1,514	+ 1,616	la	50	
2903		29.3	+21 44	177	+46	Sc	F0*	+ 642	+ 531	la	65	
2911		31.0	+1022	191	+42	SOp	F8*	+ 3,140	+ 2,978	la	75	Abs. lines broad and not well defined.
2914		31.4	+1020	191	+42	Sa	F8	+ 3,370	+ 3,208	la	100	
. 2950		39.0	+59 5	122	+46	SBO	G2	+ 1,430	+ 1,512	la	50	
2964		40.0	+32 5	162	+51	Sc	F5"	+ 1,340	+ 1,286	la	50	Abs. lines are weak.
2974		40.0	- 329	208	+36	E4	G5*	+ 2,013	+ 1,797	la	50	
2983		41.3	-20 14	223	+25	SBa	G5	+ 2,015	+ 1,748	la	100	
2986		41.8	-21 3	223	+25	E2	G7	+ 2,397	+ 2,130	la	100	
3003	9	45.6	+33 39	160	+52	Sb	F0*	+ 1,476	+ 1,428	2a	60	Abs. lines are weak.

table i. REDSHIFTS OF EXTRAGALACTIC NEBULAE. NON-CLUSTER OBJECTS

NGC	1950					Type		Redshift $c \Delta \lambda / \lambda$ (8)	Corr Redshift (9)	Plts Disp (10)	Est Error (11)	
*IC (1)		R A (2)	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)					
								$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$		$\mathrm{km} / \mathrm{sec}$	
2985	$9^{\text {h }}$	46.0	+72 ${ }^{\circ} 1^{1}$	106°	+39 ${ }^{\circ}$	Sb	G3	+ 1,277	+ 1,424	la		
3032		49.2	+29 28	168	+52	SO	G2	+ 1,568	+ 1,496	la	150	Observed by Hubble.
3031		51.5	+69 18	109	+42	Sb	G3*	- 55	+ 77	2 b	20	One plate by Hubble, one by Minkowski.
3034		51.9	+69 56	108	+41	Irr	A5	+ 263	$+400$	1 b	75	Observed by Minkowski.
Anon		52.8	+ 837	19\%	+46	Pec	Em	+ 1,283	+1,118	la	100	Observed by Minkowski as possible radio source.
3067		55.4	+32 37	162	+54	Sb	F2*	+ 1,506	+ 1,452	2a	50	Abs. very shallow, spectrum almost continuous.
3078	9	56.2	-26 41	230	+22	E2	G0	+ 2,481	+ 2,203	la	50	
3115	10	2.8	- 728	216	+38	E7	G5	+ 648	+ 423	$1 \mathrm{~b}, 1 \mathrm{c}$	12	
Sex		8.7	- 428	215	+41	Irr	Em	+ 369	+ 156	la	30	Empatch l'. 8 sf brightest star within limits of syst.
Sex		8.7	- 428	215	+41	Irr	Em	$+371$	+ 158	la	30	Em very close to and nf above. Possible mem local gr .
3162		10.8	+22 59	179	+56	Sc	F5	+ 1,456	+ 1,363	la	65	Abs. lines are weak. Observed by Minkowski.
3158		10.9	+39 1	150	$+57$	E3	G3	+ 7,024	+7,008	la	50	Member of a group.
3166		11.2	+ 340	207	+47	Sa	G1*	+ 1,381	+ 1,201	la	50	
3169		11.7	$+343$	207	+47	Sa	G5*	+ 1,281	+ 1,101	2a	60	Observed by Hubble.
3147		12.8	+73 39	103	+40	Sb	G7	+ 2,721	+ 2,874	la	80	
3177		13.8	+21 23	182	+56	Sb	F8	+ 1,220	$+1,118$	la	65	Abs. lines are not well defined.
3125		14.9	+2156	181	+56	SBa	F5*	+1,241	+ 1,142	2a	65	Abs. lines weak, spectrum almost continuous.
3184		15.2	+4140	145	+5,	Sc	F3*	$+443$	+ 443	la	100	Abs. lines weak, spectrum almost continuous.
3190		15.4	+22 5	181	+56	Sa	G3*	+ 1,319	+ 1,220	1 b	60	Observed by Hubble.
3193		15.7	+22 9	181	+57	E2	G1	+ 1,371	+1,272	la	50	
3222		19.8	+20 8	185	+57	SBO	G0	+ 5,577	+ 5,472	$1 \mathrm{a}, 1 \mathrm{~b}$	40	One plate by Hubble.
3226		20.7	+20 9	185	+57	El	G2*	+ 1,338	+ 1,233	4a	15	
3227		20.7	+20 7	185	+57	Sb	F3"	+ 1,111	+ 1,006	2 b	20	Abs. lines are very weak. One plate by Hubble.
3245		24.5	+28 46	170	+60	SO	G2	+ 1,261	+ 1,198	$1 \mathrm{a}, \mathrm{lb}$	30	One plate by Hubble.
3254		26.5	+29 45	168	+60	Sb	G4*	+ 1,228	+ 1,168	la	60	
3277		30.3	+28 47	170	+61	Sa	F5*	+ 1,460	+ 1,399	la	75	Abs. lines are weak.
3301		34.2	+22 9	184	+61	Sa	G2*	+ 1,333	+ 1,241	la	75	
3310		35.7	+53 46	123	+55	Sb	A8'	+ 1,039	+ 1,104	la	30	Abs. lines are weak and shallow.
3344		40.8	+25 11	178	+63	Sc	F5*	+ 579	+ 504	la	150	Abs. lines are broad and weak.
3351		41.3	+1158	203	+58	SBb	F5	+ 688	+ 553	la	200	
3348		43.4	+73 6	101	+42	EO	G5	+ 2,855	+ 3,011	la	75	
3367		44.0	+14 1	200	+59	SBc	F5*	+ 2,879	+ 2,753	la	100	Observed by Minkowski.
3368		44.1	+12 5	203	+58	Sa	G0	+ 927	+ 792	1 b	40	Observed by Hubble.
3377		45.1	+14 15	200	+60	E6	G2	+ 718	+ 595	2a	40	
3379		45.2	+1251	203	+59	E0	G7	+ 862	+ 730	16	30	Observed by Hubble.
3384		45.7	+1254	203	+59	SBO	G5	+ 781	+ 649	la, lb	30	
3412		48.3	+13 41	202	+60	SBO	G0	+ 861	+ 735	la	75	
3414		48.6	+28 14	172	+65	SBO	G5	+ 1,449	+ 1,392	la	100	
Anon		55.4	+57 3	115	+55	E1	G3	+19,150	+19,237	la	100	See note 5 at end of table.
3486		57.7	+29 15	170	+67	Sc	G3	+ 1,116	+ 1,065	la	100	
3489	10	57.7	+14 10	204	+62	SOp	G0*	+ 692	+ 572	la	65	
3504	11	0.5	+28 15	173	+68	SBb	F3"	+ 1,513	+ 1,459	la	50	Abs. lines are broad and shallow.
Anon		1.0	+415	141	+65	Pec	Em	+10,346	+10,355	la	60	Observed by Minkowski as possible radio source.
3521		3.3	+ 014	225	+54	Sb	G3	+ 789	$+615$	1 b	30	
3516		3.4	+72 50	99	$+43$	SBO	F0	+ 2,614	+ 2,770	1 b	50	Observed and measured by Seyfert.
3556		8.6	+55 57	114	+57	Sc	FO"	$+636$	+ 720	la	75	Abs. lines are broad and shallow.
3585		10.9	-26 29	246	+31	E6	G3	+ 1,491	+ 1,233	la	75	Observed by Hubble.
3593		12.0	+13 5	210	+64	SOp	F5*	+ 547	+ 427	la	75	Abs. lines are weak and not well defined.
3605		14.2	+18 17	200	+68	E4	G3	+ 693	+ 600	la	65	
3607		14.3	+1819	200	+68	SO	G3	+ 951	+ 858	2a	40	
3608		14.4	+1826	200	+68	E1	G0	+ 1,210	+ 1,117	la	50	
3611		14.9	+ 450	223	+59	Sa	F5*	+ 1,754	+ 1,602	la	75	Abs. lines are weak.
3610		15.6	+59 4	109	+55	SBO	G2	+ 1,765	+ 1,867	la	50	This and next one are members of UMa cld.
3613		15.7	+58 17	110	+56	E5	G3	+ 2,054	+ 2,150	la	75	
3623		16.3	+1322	211	+65	Sa	G0*	+ 705	+ 588	la	50	
3619		16.5	+58 2	110	+56	SO	G3*	+ 1,649	+ 1,745	la	75	Member of UMa cld. Observed by Minkowski.
3626		17.5	+1838	200	+69	Sa	G0	+ 1,452	+ 1,362	la	100.	
3627		17.6	+1316	212	+66	Sb	G2	+ 744	+ 633	1 b	50	Observed by Hubble.
3640		18.5	+ 331	226	+58	E2	G4	+ 1,354	+ 1,198	2a	40	
3642	11	19.5	+59 21	108	+55	Sb	G0*	+ 1,623	+ 1,727	la	50	Member of UMa cld.

TABLE 1. REDSHIFTS OF EXTRAGALACTIC NEBULAE. NON-CLUSTER OBJECTS

NGC	1950			Gal		Type		Redshift			Est	
*IC (1)		R A (2)	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)	$\underset{(8)}{c \Delta \lambda} \lambda_{0}$	Redshift (9)	Disp (10)	Error (11)	
								$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$		$\mathrm{km} / \mathrm{sec}$	
3665	$11^{\text {h }}$	2290	$+39^{\circ} 2^{\prime}$	140°	$+70^{\circ}$	SO	G1	+ 2,002	+ 2,011	la	50	This and next one are members of UMa cld.
3675		23.4	+43 52	129	+67	Sb	G2	+ 688	+ 721	2a	40	
3681		23.9	+17 9	206	+69	Sb	G3	+ 1,314	+ 1,221	la	65	
3684		24.6	+17 18	206	+69	Sc	F0	+ 1,422	+ 1,329	la	75	Abs lines are rather broad.
3686		25.1	+1730	206	+69	Sb	F3"	+ 1,022	+ 929	la	60	Both em and abs are weak.
3718		29.8	+53 21	113	+61	Sop	G0*	+ 1,050	+ 1,128	la	100	Abs lines broad. This and next one members UMa cld.
3726		30.7	+47 19	121	+66	Sc	A8*	+ 948	+ 999	la	75	
3810		38.4	+1145	224	+68	Sc	G0	+ 972	+ 862	la	65	
3818		39.4	- 553	243	+53	E5	G5	+ 1,498	+ 1,318	la	65	Observed by Hubble.
3872		43.2	+14 3	222	+70	E3	G1	+ 3,109	+ 3,009	la	75	
Anon		44.5	- 334	224	+55	SBb	F2"	+ 5,108	+ 4,940	ia	50	sp of 3 . Wild connecting triple system.
Anon		44.7	- 334	224	+55	Sb	?"	+ 5,008	+ 4,840	la	50	Brightest and middle of 3 .
Anon		44.8	- 335	224	+55	Sc	F0"	+ 5,396	+ 5,228	la	75	nf of 3.
3893		46.1	+49 0	113	+86	Sc	F2"	+ 1,042	+ 1,108	2a	40	This and next one are members of UMa cld.
3898		46.6	+56 22	105	+60	Sa	G5*	+ 1,038	+ 1,134	la	75	
3900		46.6	+27 17	179	+78	Sa	G1	+ 1,702	+ 1,666	la	50	
3904		46.7	-29 2	256	+32	E2	G3	+ 1,613	+ 1,376	1a	75	
3923		48.5	-28 33	256	+32	E4	G5	+ 1,788	+ 1,551	la	65	
3941		50.3	+37 16	136	+76	SB0	G7	+ 972	+ 984	la	50	This and next three are members of UMa cld.
3945		50.7	+6057	101	+56	SBO	G3	+ 1,220	+ 1,337	la	75	
3949		51.1	+48 8	113	+67	Sc	G0	+ 681	+ 744	1 a	150	
3953		51.2	+52 37	107	+63	SBb	G3	+ 938	+ 1,022	20	50	
3962		52.1	-13 42	252	+47	El	G2*	+ 1,794	+ 1,599	la	65	
3992		55.0	+53 39	105	+63	SBb	G4	+ 1,059	+ 1,146	la	100	This and next three are members of UMa cld.
3998		55.4	+55 44	104	+61	SO	G1*	+ i, 109	+ 1,205	la	50	$\lambda 3727$ very strong.
4026		56.9	+51 14	107	+65	So	G5	+ 878	+ 956	la	75	
4036		58.9	+62 10	99	+55	SO	G2*	+ 1,382	+ 1,506	20	50	
4038		59.5	-18 36	256	+43	Sc	F0*	+ 1,673	+ 1,469	la	75	Observed by Minkowski as possible radio source.
4039	11	59.5	-18 37	256	+43	Sc	F5*	+ 1,660	+ 1,456	2a	50	Forms pair with above. One plate by Minkowski.
4051	12	0.6	+44 48	113	+71	Sb	A5"	+ 627	+ 679	2 b	20	This and next one are members of UMa cld.
4102		3.8	+52 59	103	+64	Sa	F8*	+ 908	+ 996	la	50	
4105		4.1	-29 30	260	+32	E2	G5*	+ 1,895	+ 1,664	la	50	
4106		4.2	-29 31	260	+32	SBO	G7*	+ 2,178	+ 1,947	la	50	
4111		4.5	+43 21	114	+72	SO	G3*	+ 784	+ 832	lb, lc	15	This and next one are members of UMa cld.
4125		5.6	+65 27	96	+52	E6	G5	+ 1,305	+ 1,445	2 a	50	
4136		6.7	+30 12	160	+82	Sc	F8*	+ 445	+ 433	la	50	
4138		7.0	+4357	111	+72	Sa	G2	+ 1,039	+ 1,092	la	100	This and next one are members of UMa cld.
4143		7.1	+42 49	113	+73	SBO	G5	+ 784	+ 830	la	100	
4150		8.0	+30 41	157	+82	SO	G2*	+ 244	+ 235	la	50	
4151		8.0	+39 41	119	+76	Sa	A8"	+ 960	+ 990	3	8	Member of UMa cld. See note 6 at end of table.
4203		12.6	+33 29	136	+81	SBO	G3	+ 1,001	+ 1,009	la	150	
4214		13.1	+36 36	123	+79	Irr	Em	+ 295	+ 317	la	30	Bright em patch at center.
4220		13.7	+48 10	103	+69	Sa	G2	+ 979	+1,051	la	50	Abs lines weak. Member of UMa cld.
4245		15.1	+29 53	157	+84	SBa	G0	+ 890	+ 882	la	65	Abs lines weak.
4251		15.6	+28 27	171	+84	SO	G3	+ 1,014	+ 998	la	75	
4258		16.5	+47 35	102	+69	Sb	G0"	+ 420	+ 494	1 b	40	Observed by Hubble. Member of UMa cld.
4274		17.3	+29 54	160	+84	Sa	G3	+ 767	+ 758	la	150	
4278		17.6	+29 34	160	+84	El	G5*	+ 624	+ 615	2 a	40	
4283		17.8	+29 35	159	+84	E0	G8	+ 1,071	+ 1,062	1 b	65	Observed by Hubble.
4291		18.1	+7540	92	+42	E2	G3	+ 1,785	+ 1,963	la	50	
4314		20.0	+30 10	152	+85	SBa	G2	+ 883	+ 880	la	85	
4414		24.0	+31 30	136	+85	Sc	G2	+ 715	+ 718	la	100	
4448		25.8	+2854	162	+86	Sb	G2*	+ 693	+ 687	la	65	
4449		25.8	+44 22	100	+73	Irr	F0"	+ 206	+ 268	la	50	Spectrum of bright central part.
4490		28.2	+4155	101	+76	Sc	A5*	+ 625	+ 675	la, lb	50	Abs lines somewhat broadened.
4494		28.9	+26 3	207	+87	E1	G7	+ 1,333	$+1,318$	la	65	
*3481		30.3	+1140	259	+74	E3	G0	+ 7,086	+7,011	la	80	np of 3. Zwicky connected system.
Anon		30.5	+1140	260	+74	SO	F5*	+ 7,304	+ 7,229	la	65	sf IC 3481, connected with. See note 7, end of table.
4565		33.9	+26 16	216	+87	Sb	G0	+ 1,223	+ 1,213	la	100	
4589	12	35.5	+7428	91	+42	El	G5	+ 1,825	+ 2,003	la	75	

table i. redshifts of extragalactic nebulae. non-Cluster objects

NGC	1950			Gal		Type		Redshift $c \Delta \lambda \lambda$ (8)	Corr Redshif (9)	Plts Disp (10)	$\underset{\text { Error }}{\text { Est }}$ (ii)	
*IC (1)		A	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)					
								$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$		km/s	
4631	$12^{\text {h }}$	39.98	$+32^{\circ} 49^{\prime}$	97°	$+85^{\circ}$	Sc	Em	+ 591	+ 611	la	65	Brightest em patch 1:3 f center.
4725		48.0	+25 46	302	+88	Sb	G4	+ 1,114	+ 1,108	la	65	
4736		48.5	+41 24	85	+76	Sb	G0*	+ 282	+ 345	la	50	
4800		52.4	+46 48	85	+71	Sb	F8*	+ 746	+ 830	la	50	Abs lines are shallow.
4814		53.3	+58 37	88	+59	Sb	G3	+ 2,531	+ 2,660	la	65	
4826		54.3	+21 57	295	+83	Sb	G7*	+ 382	+ 364	lb	30	Observed by Hubble.
Anon		54.5	+32 42	63	+84	Pec	F8*	+13,418	+13,448	2 a	50	Zwicky neb. Cont very weak. $\lambda 3727$ strong.
4915	12	58.8	- 416	278	+58	E0	G5	+ 3,152	+ 3,036	20	40	One plate by Minkowski.
5005	13	8.6	+3720	62	+79	Sb	G0	+ 1,013	+ 1,069	la	65	
5018		10.3	-19 15	279	+43	E4	G7	+ 2,897	+ 2,739	la	75	
5033		11.2	+36 51	58	+78	Sc	Gi	+ 924	+ 987	lb	40	Observed by Hubble.
5049		13.3	-16 8	281	+46	so	G2	+ 2,744	+ 2,600	la	65	
5055		13.6	+42 18	69	+75	Sb	F8*	+ 500	+ 575	ib	30	
5077		16.9	-12 24	283	+49	E3	G2*	+ 2,647	+ 2,515	la	100	
5087		17.8	-20 21	281	+41	SO	G2	+ 1,832	+ 1,675	la	150	Observed by Hubble.
5128		22.4	-42 46	278	+19	Ep	F8*	+ 468	+ 261	2 a	40	
5173		26.3	+46 50	69	+69	E0	G4*	+ 2,404	+ 2,506	la	50	
5194		27.8	+4727	69	+68	Sc	F8"	+ 438	+ 546	la, 1b	35	One plate by Hubble.
5195		27.9	+4731	69	+68	Ep	F5*	+ 542	+ 650	2a, 1b	35	One plate by Hubble.
5198		28.1	+46 56	69	+68	E1	G2	+ 2,482	+ 2,590	la	50	
5236		34.2	-29 37	283	+31	Sc	F0"	+ 491	+ 319	1 l	30	Observed by Hubble.
5248		35.0	+98	306	+68	Sc	F8	+ 1,176	+ 1,140	la	50	
5253		37.1	-31 23	283	+29	1 Irr	Em	+ 432	+ 258	$1 \mathrm{la}, 1 \mathrm{~b}$	30	One plate by Hubble.
5273		39.9	+35 54	38	+75	S0	FO"	+ 1,022	+ 1,095	1 l	20	Abs lines very weak and narrow.
5308		45.4	+61 14	77	+55	SO	G5	+ 2,046	+ 2,206	la	75	Observed by Hubble.
5322		47.6	+60 26	76	+55	E4	G8	+ 1,902	+ 2,063	la	75	
5353		51.4	+40 32	47	+71	So	G3	+ 2,188	+ 2,284	la	65	
5363		53.6	+ 530	310	+62	Irr	G0*	+ 1,138	+ 1,102	la	50	
5371		53.6	+40 44	46	+70	Sb	G3*	+ 2,551	+ 2,652	2 a	40	
5364		53.7	+ 515	310	+62	Sc	G2	+ 1,393	+ 1,357	la	150	
5377		54.3	+4728	59	+66	Sa	F8*	+ 1,830	+ 1,951	la	100	Abs lines broad and shallow.
5394	13	56.4	+37 41	38	+72	Sb	F0*	+ 3,558	+ 3,651	la	100	Abs lines are very weak and shallow.
5448	14	1.0	+49 25	60	+64	Sa	G2*	+ 1,970	+ 2, 102	la	50	
5457		1.4	+54 35	67	+60	Sc	F8*	+ 247	+ 394	la, 1b	30	One plate by Miller.
5461		1.9	+54 33	67	+60	Sc	Em	+ 298	+ 495	la, lb	30	Em patch in NGC 5457. One plate by Seyfert.
5473		3.0	+55 8	68	+59	SBO	G3	+ 1,976	+ 2,127	la	50	
5485		5.5	+55 14	67	+59	SO	G5	+ 1,985	+ 2,136	la	50	
5493		8.9	-4 48	306	+51	Sa	G5	$+2,627$	+ 2,565	la	75	Observed by Hubble.
Anon		9.8	+5235	63	+60		F8*	+ 8,733	+ 8,880	10	75	Observed by Minkowski as possible radio source.
5533		14.0	+35 35	28	$+69$	Sb	G0*	$+3,781$	+ 3,877	la	60	
5548		15.7	+25 22	359	+69	Sa	F5"	+ 4,930	+ 4,990	la, lb	50	Em lines are broad, no abs. One plate by Hubble.
5557		16.4	+3643	30	+68	El	G3	+ 3,195	+ 3,297	la	60	Em lines are broad, no abs. One plare by Hubble.
5566		17.8	+ 411	318	+57	SBa	G5	+ 1,455	+1,436	la	150	
5574		18.4	+ 328	318	+57	SBO	G0	+ 1,716	+ 1,694	la	50	
5576		18.5	+ 330	318	+57	E4	G1	+ 1,528	+ 1,509	la	100	Observed by Hubble.
5614		22.0	+35 5	25	+68	Sa	G4	+ 3,872	+ 3,969	ia	75	
5631		25.0	+56 48	65	+56	so	G3*	+ 1,979	+ 2,144	la	60	Observed by Seyfert.
5633		25.6	+46 22	49	+62	Sb	F5*	+ 2,316	+ 2,457	la	50	Abs lines are narrow and weak.
5638		27.1	+ 327	320	+55	E1	G3	+ 1,677	+ 1,662	la	50	
5672		30.5	+31 53	17	+66	Sb	F5*	+3,701	+ 3,797	la	65	
5668		30.9	+ 440	323	+55	Sc	F0*	+ 1,780	+ 1,771	la	50	Abs lines are weak.
5687		33.3	+54 42	62	+56	E3	G3	+ 2,119	+ 2, 286	la	75	Observed by Hubble.
5689		33.7	+4858	52	+60	So	G2	+ 2,205	+ 2,354	la	50	
5713		37.7	-0 5	320	+51	Sb	F2"	+ 1,870	+ 1,853	la	100	Abs lines are not well defined.
5746		42.4	+ 210	324	+52	Sb	G2*	+ 1,789	+ 1,783	2a	40	
Anon		48.0	+26 23	4	+62	E0	G5	+35,084	+35,174	la	60	$s p$ one of faint pair.
Anon		48.0	+26 23		+62	E3	G5	+35,506	+35,596	la	60	8 " n of above neb.
5820		57.2	+54 5	56	+54	So	G4	+ 3,269	+ 3,444	la	60	Observed by Hubble.
5806		57.5	+25	327	+49	Sb	G0	$+1,301$	+ 1,307	la	65	
5812	14	58.3	-716	318	+42	El	G7	+ 2,066	+ 2,039	la	50	

table I. redshifts of extragalactic nebulae. non-cluster objects

NGC	1950			Gal		Type		Redshift $c \Delta \lambda / \lambda_{0}$ (8)	Corr Redshift (9)	Plts Disp (10)	Est Error (11)	
*IC (1)			$\begin{aligned} & \text { Dec } \\ & \text { (3) } \end{aligned}$	Long (4)	$\begin{aligned} & \text { Lat } \\ & \text { (5) } \end{aligned}$	Neb (6)	Spec (7)					
								$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$		$\mathrm{km} / \mathrm{sec}$	
5813	$14^{\text {h }}$	58.7	$+1^{\circ} 54^{\prime}$	$327{ }^{\circ}$	$+48^{\circ}$	El	G5	+ 1,882	+ 1,890	la	65	Observed by Hubble.
5831	15	1.6	+ 124	328	+48	E3	G5	+ 1,684	+ 1,696	la	50	
5838		2.9	+ 218	329	+48	So	G2	+ 1,427	+ 1,441	la	50	
5846		4.0	+ 148	329	+47	EO	G0*	+ 1,768	+ 1,782	la	50	Abs lines broad and shallow.
Anon		4.0	$+147$	329	+47	E2	G2	+ 2,278	+ 2,292	la, 1 b	40	40 " s of NGC 5846.
5850		4.6	+ 144	329	+47	SBb	G4*	+ 2,319	+ 2,333	1 a	50	
5866		5.1	+55 57	58	+52	so	G2*	+ 740	+ 924	2 a	40	$\lambda 3727$ very weak.
5857		5.2	+19 47	354	$+57$	Sb	G2	+ 4,616	+ 4,695	la	150	
5854		5.3	+ 245	330	+48	SBa	GI	+ 1,626	+ 1,644	la	65	
5859		5.3	+1946	354	+57	Sb	G0	+ 4,664	+ 4,743	la	150	
5879		8.5	+57 11	59	+51	Sb	F8*	+ 876	+ 1,064	la	65	
5878		11.0	-14 5	315	+35	Sb	G8	+ 2,111	+ 2,068	la	65	
5899		13.3	+42 14	35	+56	Sb	F5"	+ 2,549	+ 2,706	la	50	
5907		14.6	+56 31	58	+51	Sb	G3	+ 553	+ 741	la	75	This and next three observed by Hubble.
5898		15.3	-23 55	309	+27	E0	G2	+ 2,304	+ 2,231	la	200	
5903		15.7	-23 51	309	+27	E2	G3	+ 2,612	+ 2,539	la	150	
5921		19.5	+ 515	336	+46	SBb	G0	+ 1,389	+ 1,430	la	150	
5962		34.2	+1646	354	+49	Sc	G0	+ 1,993	+ 2,089	1 a	75	
5970		36.1	+1220	348	+47	SBb	F8	+ 2,034	+ 2,115	20	50	
5982		37.6	+5931	59	+46	E4	G7	+ 2,864	+ 3,07i	10a	10	
5985		38.6	+59 30	59	+47	Sb	G0*	+ 2,467	+ 2,674	2 a	40	
6015		50.7	+62 28	62	+44	Sc	F8*	+ 646	+ 860	la	50	
6027(a)		57.0	+20 54	2	+45	Sa	G2	+ 4,031	+ 4,159	la	50	This and $6027(\mathrm{~d})$ members of Seyfert group.
6027(d)		57.0	+20 54	2	+45	Sc	G2	+ 4,415	+ 4,543	la	50	
6070	16	7.4	+ 050	340	+34	Sc	F8	+ 2,091	+ 2,157	la	125	
6181		30.1	+19 56	4	+38	Sc	G2	+ 2,158	+ 2,307	1	250	Dispersion used $1000 \mathrm{~A} / \mathrm{mm}$.
6217		34.8	+78 18	78	+33	Sc	F8"	+ 1,386	+ 1,617	16	30	Observed and measured by Seyfert.
6207		41.3	+36 55	26	+40	Sc	F8"	+ 869	+ 1,073	la	40	$\lambda 3727$ is very strong.
Anon	16	48.2	+4533	38	+38	So	G3*	+ 7,386	+ 9,608	la	50	Zwicky connecting triple system. Brighter of 3 .
6340	17	11.1	+72 22	70	+33	Sa	G3	+ 2,109	+ 2,351	1	300	Dispersion used $1000 \mathrm{~A} / \mathrm{mm}$.
6359		17.4	+6150	58	+34	El	G5	+ 2,948	+ 3,197	1 b	75	
6384		30.0	+76	358	+19	Sb	G5	+ 1,784	+ 1,940	la	50	
6478		47.5	+5111	45	+30	Sc	G2	+ 6,857	+7,113	la	50	
6482	17	49.8	+23 5	16	+22	E3	G0	+ 3,922	+ 4, 138	2 a	60	
6574	18	9.6	+1458	10	+14	Sb	F8*	+ 2,355	+ 2,559	20	50	
6627		20.4	+15 39	11	+12	SBb	G0*	+ 5,206	+ 5,416	1 l	100	
6643		21.2	+74 33	72	+28	Sb	G0*	+ 1,494	+ 1,748	la	50	
6658		31.9	+22 50	19	+13	So	G0*	+ 4,270	+ 4,507	la	50	
6661		32.5	+22 52	19	+12	so	G7	+ 4,370	+ 4,607	la	50	
6674		36.5	+25 20	22	+13	SBb	G5	+ 3,502	+ 3,747	1 a	50	
6702		45.5	+45 39	42	+19	E2	G3	+ 4,749	+ 5,025	la	65	
6703		45.9	+45 30	42	+19	So	G3	+ 2,316	+ 2,592	2 a	40	
6710	18	48.6	+26 46	25	+11	Sa	G5	+ 4,556	+ 4,811	2 a	50	
1302	19	29.0	+35 39	36	+ 7	Sb	F8	+ 4,575	+ 4,857	la	50	Member of a group.
6814		40.0	-10 26	357	-17	Sb	F0"	+ 1,437	+ 1,590	10	40	Abs lines are weak.
6822		42.1	-14 53	353	-20	1 lr	Em	- 34	+ 98	2 b	20	Em V,Plate II, Hubble, E. , 1925, Ap. J. ,62,409.
*1308		42.3	-14 51	353	-20	Irr	Em	- 30	+ 102	16	30	In 6822 a member of local group.
6824		42.6	+55 59	56	+15	Sb	G0*	+ 3,386	+ 3,676	la, 1 b	30	
Anon	19	57.7	+40 35	44	+ 5	?	Em"	+16,804	+17,098	5a	30	Obs,measured by Minkowski as radio source.
6921	20	26.4	+25 33	35	-9	Sa	G0*	+ 4,317	+ 4,596	20	40	
Anon		30.2	+942	22	-18	E7	G5	+ 4,419	+ 4,659	1	250	Dispersion $1000 \mathrm{~A} / \mathrm{mm}$. This and next 3 in group.
6927		30.2	+943	22	-18	So	G3	+ 4,277	+ 4,517	la	50	Anon above is $2: 0 \mathrm{sp} 5927$.
6928		30.4	+945	22	-18	Sa	G0	+ 4,754	+ 4,994	la	75	
6930		30.6	+941	22	-19	Sb	G3*	+4,182	+4,419	la	75	
6946		33.9	+59 58	63	+11	Sc	F5*	+ 38	+ 330	2 a	50	Possible member local group.
6946		34.1	+59 59	63	$+11$	Sc	Em	- 70	+ 222	1 b	25	Em patch 4: 1 nf nucleus of 6946.
6944		35.9	+ 649	20	-21	El	G3	+ 4,375	+ 4,604	3 a	40	
6954		41.6	+ 31	18	-24	Sb	F5	+4,011	+ 4,231	la	100	Abs lines somewhat broad and shallow.
6962		44.7	+08	15	-27	Sb	G0*	+ 4,183	+ 4,387	la	75	
6963	20	44.8	+ 020	16	-27	EO	G0	+ 4,351	+ 4,555	la	50	

TABLE I. REDSHIFTS OF EXTRAGALACTIC NEBULAE. NON-CLUSTER OBJECTS

NGC	1950			Gal		Type		Redshift	Corr	Plts	Est	
*IC (1)	R A (2)		Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)	$c \Delta \lambda / \lambda_{0}$ (8)	Redshift (9)	Disp (10)	Error (11)	
	$0^{\text {h }}$	448						$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$	la	$\mathrm{km} / \mathrm{sec}$	
6964	20	44.8	$+0^{\circ} 7^{\circ}$	15°	-27 ${ }^{\circ}$	E4	G2	+ 3,832	+ 4,036	la		
Anon		58.5	+16 7	32	-20	El	G5	+ 9,148	+ 9,408	1	250	Dispersion 1000 A mm. 11.6 np NGC 7006.
Anon		58.8	+15 56	32	-20	Sa	G5	+11,255	+11,515	la	50	6! 8 sp NGC 7006.
Anon	20	59.6	+15 56	32	-20	SO	G3	+11,965	+12,225	la	50	$7!9$ sf NGC 7006.
7171	21	58.3	-13 31	12	-49	Sb	G0	+ 2,632	+ 2,776	la	50	
7177		58.3	+1729	44	-30	Sb	G0*	+ 1,105	+ 1,360	1a	75	
7217	22	5.6	+31 7	55	-20	Sb	G7*	+ 911	+ 1,192	$2 \mathrm{a}, 1 \mathrm{~b}$	30	
Anon		13.2	+37 2	60	-16	SO	G0	+ 5,984	+ 6,272	1 a	75	3.'6 sp NGC 7242. May be 7240.
7242		13.5	+37 3	60	-16	E3	F8	+ 5,684	+ 5,972	la	100	Brightest of small group, v small neb. 0.5 nf .
7252		18.0	-24 56	356	-58	SO	F3*	+ 4,733	+ 4,815	la	65	
7302		29.7	-1423	16	-56	So	G7	+ 2,586	+ 2,716	la	65	
7314		33.0	-26 18	355	-61	Sc	F8"	+ 1,766	+ 1,838	la	50	
7317		33.6	+33 41	61	-21	E4	G5	+ 6,736	+ 7,014	la	65	This and next three members of a group.
7318(a)		33.7	+33 42	61	-21	E2	G5	+ 6,638	+ 6,916	2 a	50	p one of double neb.
7318(b)		33.7	+33 42	61	-21	SBb	G5	+ 5,638	+ 5,916	3 a	40	f of pair.
7319		33.8	+33 43	61	-21	SBb	G0"	+ 6,657	+ 6,935	la	50	
7331		34.8	+34 9	62	-21	Sb	G8*	+ 780	+ 1,058	$3 \mathrm{a}, 1 \mathrm{~b}$	20	
7332		35.0	+23 32	56	-30	SO	G3	+ 1,204	+ 1,464	la	50	
7335		35.0	+34 11	62	-20	Sa	G5	+ 6,298	+ 6,576	la	60	Probably member of group near NGC 7318 (above).
7343		36.4	+3348	62	-22	E3	G2	+ 1,216	+ 1,492	ia	200	Very poor value, redshift uncertain.
7377		45.1	-22 35	4	-63	SOp	G2	+ 3,416	+ 3,501	10	65	
7385		47.4	+1121	50	-41	E0	G1	+ 7,829	+ 8,054	la	65	
7386		47.6	+1126	50	-41	SO	G2	+ 7,198	+ 7,423	la	65	
1460		54.5	+ 425	47	-49	SO	F5	+ 7,262	+ 7,457	la	75	
7448		57.6	+1543	56	-40	Sc	G2	+ 2,419	+ 2,649	1	250	Dispersion used $1000 \mathrm{~A} / \mathrm{mm}$.
7457	22	58.6	+29 53	65	-27	SO	G2	+ 525	+ 788	1	250	Dispersion used $1000 \mathrm{~A} / \mathrm{mm}$.
7469	23	0.7	+ 836	52	-46	Sa	F5"	+ 4,780	+ 4,988	lb	40	Observed and measured by Seyfert. Broad em.
7479		2.4	+12 3	55	-43	SBb	G3*	+ 2,492	+ 2,711	la	65	
7507		9.4	-28 49	351	-70	EO	G5	+ 1,637	+ 1,684	la	75	
7541		12.2	+ 416	52	-51	Sc	F2	+ 2,672	+ 2,860	la	100	Abs lines are poor.
7576		14.8	- 50	43	-59	Sa	G2	+ 3,616	+ 3,766	2 a	50	One plate by Hubble.
7585		15.4	-455	44	-59	SOp	G0	+ 3,333	+ 3,485	la	65	
7600		16.3	- 751	40	-62	E5	G3	+ 3,391	+ 3,527	la	60	
7606		16.5	- 846	39	-62	Sc	G2	+ 2,341	+ 2,477	la	75	
7611		17.1	$+747$	57	-49	SO	G7	+ 3,383	+ 3,579	la	65	This and next four members of a group.
7617		17.6	+ 753	57	-49	So	G3	+ 4,072	+ 4,268	la	150	
7619		17.8	+ 756	57	-49	E3	G5	+ 3,757	+ 3,953	la	50	
7623		18.0	$+87$	57	-49	E4	G3	+ 3,463	+ 3,659	la	65	
7626		18.2	+ 756	57	-49	E1	G3	+ 3,357	+ 3,553	la	50	
7625		18.0	+1657	63	-41	SO	G1*	+ 1,706	+ 1,930	la	100	
7678		26.1	+22 9	68	-37	Sc	F5"	+ 3,446	+ 3,676	la	65	
7679		26. 2	+ 314	56	-54	SO	F5*	+ 5,202	+ 5,378	2a	40	
7716		33.9	+ 01	56	-58	Sb	G8	+ 2,546	+ 2,705	la	150	
7727		37.3	-12 34	41	-69	Sa	G8*	+ 1,839	+ 1,943	3 a	30	
Anon		39.3	- 354	55	-62	Sc	G3	$+6,777$	+ 6,918	la	60	Zwicky connecting pair. 6'8 sf IC 1505.
Anon		39.5	- 350	55	-62	Sb	F5"	+ 7,016	+ 7,157	la	60	nf of pair. 5.'8 sf IC 1505.
7741		41.4	+25 48	73	-34	SBc	F2	+ 729	+ 965	la	50	Abs lines weak.
7742		41.8	+1029	67	-49	Sb	G0*	+ 1,629	+ 1,821	2a	40	
7743		41.8	+ 939	66	-50	SBa	G0*	+ 1,802	+ 1,991	2a	65	
7785		52.8	+ 538	68	-55	E5	G5	+ 3,846	+ 4,014	la	65	
7793		55.9	-32 51	330	-79	Sc	F5	+ 286	+ 292	2a	200	Observed and measured by Hubble.
WLM	23	59.2	-1543	48	-74	Irr	F5	78	$+3$	$3 \mathrm{a}, 1 \mathrm{~b}$	20	Possible member local group. See note 8.

NOTES TO TABLE I

1. A very faint field nebula. Not a member of $\mathrm{Cl} 0025+2223$. Object No. 9 on identification chart No. 1 .
2. The previously published velocity of $+2600 \mathrm{~km} / \mathrm{sec}$ in Mt. W. Contr. 531 is an error.
3. Two very faint field nebulae. First one is No. 1, second one is No. 2 on chart No. 2.
4. Two very faint field nebulae. Not members of $\mathrm{Cl} 0855+0321$. First one is No. 10 , second one No. 11 on chart No. 7. 5. A faint field nebula. Not a member of $\mathrm{Cl} 1055+5702$. Object No. 1 on chart No. 9.
5. Emission bands in NGC 4151 measured to determine constancy of $\Delta \lambda \lambda$ for nebular redshifts. Wilson, O. C. 1949,Pub. A. S. P., 61, 132.
6. Zwicky believes IC3483 also connected with this pair. The discrepancy in the velocities, however, indicates that 3483 is a member of the Virgo Cl and not physically connected with this pair. See Table 2 for redshift of 3483.
7. Wolf-Lundmark-Melotte system. Redshift is the mean from 2 em patches n of center and cluster p center.

	1950			Gal		Type		Redshift	Corr Redshift (9)	Plts Disp (10)	Est Error (11)	
*IC (1)		R A (2)	Dec (3)	Long (4)	Lat (5)	Neb (6)	Spec (7)	$c \Delta \lambda / \lambda_{0}$ (8)				
	PERSEUS CLUSTER							km/sec	km/sec		km/s	
1270	$3{ }^{\text {n }}$	15.\%	+41 ${ }^{\circ} 18^{\prime}$	118°	-12	E3	G4	+ 4,905	+ 5,038	2a	65	
1273		16.1	+41 22	118	-12	El	G2	+ 5,354	+ 5,487	la	50	
1275		16.5	+41 20	118	-12	Irr	?"	+ 5,160	+ 5,293	2 b	40	Neb. type $\mathrm{Sc}+\mathrm{Sb}$? Wide em bands. Radio source.
1277		16.6	+41 24	119	-12	E4	G3	+ 4,974	+ 5,104	1 a	50	
1278	3	16.6	+4123	119	-12	El	G3	+6,115	+ 6,245	2a	50	
	VIRGO CLUSTER											
4179	12	10.3	+ 135	252	+63	E7	F8	+ 1,279	+ 1,149	1a	50	
4192		11.3	+15 11	238	+75	Sb	G0*	- 124	- 202	2 a	40	Pease vel (+1150) in Mt. W. Contr. 426 is an error.
4216		13.4	+1325	242	+74	Sb	G3	+ 32	- 49	$1 \mathrm{la}, \mathrm{lb}$	40	
4254		16.3	+14 42	244	+75	Sc	G2	+ 2,485	+ 2,408	la	50	
4261		16.8	$+66$	253	+68	E3	G7	+ 2,202	+ 2,094	la	75	
4267		17.2	+13 3	247	+74	SBO	G3	+ 1,260	$+1,179$	la	75	
4270		17.3	+ 545	254	+67	E7	G5	+ 2,347	+ 2,236	1 a	50	
4273		17.4	+ 537	254	+67	Sc	F5"	+ 2,302	+ 2,191	2 a	40	Abs lines are weak.
4281		17.8	$+540$	254	+67	SO	G3	+ 2,602	+ 2,492	la	50	
4303		19.4	$+445$	255	+66	Sc	G1	+ 1,671	+ 1,557	la	150	
4321		20.4	+16 6	245	+77	Sc	F5	$+1,617$	+ 1,551	$l a$	75	
4324		20.6	+ 531	256	+67	Sa	G5	+ 1,714	+ 1,605	la	50	
4339		21.0	$+622$	256	+68	EO	G3	+ 1,278.	+ 1,173	la	100	
4343		21.1	$+716$	255	+69	S0	G3	+ 714	+ 614	la	50	20.0 sp NGC 4365.
4350		21.4	+1658	245	+78	SO	G5	+ 1,184	+ 1,122	la	60	
4365		21.9	$+736$	255	+69	E2	G5	+1,17i	+ 1,069	4 a	30	
4374		22.5	+13 10	251	+75	SO	G5*	+ 954	+ 880	la	50	
4382		22.9	+1828	243	+80	S0	G5	+ 773	+ 721	lb	30	
4387		23.2	+13 5	252	+75	E4	G3	+ 511	+ 439	la	65	
4394		23.4	+1829	243	+80	SBb	G3	+ 772	+ 720	1 a	150	
4406		23.7	$+1313$	252	$+74$	E3	G7	- 374	- 452	1 a	50	
4421		24.5	+1544	250	+77	SBa	G3	+ 1,692	+ 1,628	1	250	Disp $1000 \mathrm{~A} / \mathrm{mm}$. Observed and measured by Sinclair Smith.
4425		24.7	+13 1	253	+75	Sa	G2	+ 1,883	+ 1,809	la	50	
4429		24.9	$+1123$	255	+72	SO	G3	+ 1,114	+ 1,027	la	65	
4435		25.1	$+1321$	253	+75	SBO	G5	+ 869	+ 796	la	100	
4438		25.2	+13 17	253	+75	Sap	G3	- 32	- 105	la	75	
4442		25.5	+10 5	256	+72	SB0	G5	+ 580	+ 493	la	100	
4450		25.9	+1721	249	+79	Sb	G3	+ 2,048	+ 1,995	la	150	
4458		26.4	+13 31	254	+75	EO	G7	+ 383	+ 309	1	250	Disp $1000 \mathrm{~A} / \mathrm{mm}$. Observed and measured by Sinclair Smith.
4459		26.5	+14 15	254	+76	SO	G3	+1,111	+ 1,042	la	75	
4461		26.5	+1328	254	+75	SO	G5	+ 1,887	+ 1,813	2a	40	
4464		26.8	+ 826	258	+70	E3	G3	+1,199	+1,104	la	50	
4467		27.0	+ 816	258	+70	E2	G5	+ 1,474	+ 1,379	1	300	Disp $1000 \mathrm{~A} / \mathrm{mm}$. Observed and measured by Sinclair Smith.
4472		27.2	+ 816	258	+70	E1	G7	+1,013	+ 918	1 b	50	Observed by Hubble.
4473		27.3	+13 42	255	+76	E5	G7	+ 2,241	+ 2,173	lb	75	
4474		27.4	+1421	255	+76	SO	G3	+ 1,526	+ 1,458	1a	50	
4477		27.5	+1355	255	+76	SBO	G3	+ 1,263	+ 1,195	la	75	
4478		27.8	+1236	256	+75	E2	G5	+1,482	+ 1,410	la	75	
4479		27.8	+1351	255	+76	SO	F8	+ 822	+ 753	la	100	Observed by Minkowski. Abs lines very weak.
Anon		27.9	$+1247$	256	+75	EO	G5	+1,486	+ 1,414	la	50	7:3 n p NGC 4486.
4486		28.3	+1240	256	+75	EO	G5*	+ 1,290	+ 1,218	4a, 2 b	20	Two plates by Minkowski.
4492		28.4	+ 821	260	+70	Sa	G3	+ 1,735	+ 1,642	la	200	
4501		29.5	+14 42	255	+78	Sc	G5	+ 2,120	+ 2,060	la	100	
Anon		30.1	+927	260	+72	EO	G2	+ 1,317	+ 1,233	1	300	Disp $1000 \mathrm{~A} / \mathrm{mm}$. Obs,meas by S. Smith. 4. $8 \mathrm{n}, 3: 0 \mathrm{l}$ P $\mathrm{CD}+9^{\circ} 2637$.
3483		30.6	+1137	260	+74	Scp	G0	+ 108	+ 33	2a	40	See note 7 at end of Table 1.
4526		31.5	$+758$	263	+70	SO	G4	+ 447	+ 357	la	50	Abs lines somewhat wide and shallow.
4527		31.6	+256	263	+65	Sb	G2	+ 1,727	+ 1,615	la, 1 b	75	
4535		31.8	+ 828	262	+71	Sc	FO"	+1,930	+ 1,843	lc	20	Observed by Minkowski.
4546		32.9	-331	265	+59	SBO	G3*	$+1,014$	+ 882	2a	40	Southern extension of Virgo Cluster.
4548		32.9	+1446	260	+77	SBb	G5*	+ 433	$+\quad 372$	la	50	
4550		33.0	+1230	261	+75	E7	G3*	+ 350	+ 280	la	50	
4551		33.1	+1231	261	+75	E4	G5	+ 978	+ 908	1	300	Disp $1000 \mathrm{~A} / \mathrm{mm}$. Observed, measured by Sinclair Smith.
4552		33.1	+1250	261	+76	E0	G7	+ 276	+ 210	la	65	
4569		34.3	+1326	262	+76	Sb	G0*	+ 960	+ 896	la	50	Vel in Mt. W. Contr. 531 is that of a star projected on nucl.
4570	12	34.4	+ 731	264	+70	E7	G7	+ 1,730	+ 1,640	la	75	

Tables I and II are alike in form and contain the following information.
Column I. The NGC and IC numbers. The latter are indicated by an asterisk. Uncatalogued objects have been designated "anonymous." Their location with respect to known objects is given in the notes. Locations of the fainter ob-
jects are shown on identification charts, Plates I and II.

Columns 2, 3. The right ascensions and declinations for the equinox 1950 computed from the NGC.

Columns 4, 5. The galactic coordinates computed from the Lund Observatory tables (Ohls-

Cluster (1)	Neb No. (2)	1950			Gal		Redshift $c \Delta \lambda / \lambda_{0}$ (7)	Corr Redshift (8)	No. Plts (9)	$\begin{gathered} \text { Est } \\ \text { Error } \\ \text { (10) } \end{gathered}$	Ident Chart (11)	
			R A (3)	Dec (4)	Long (5)	Lat (6)						
0025+2223	4		24.7	+22*23	85^{\bullet}	-40 ${ }^{\circ}$	$\mathrm{km} / \mathrm{sec}$ $+47,796$	$\mathrm{km} / \mathrm{sec}$ $+47,994$	1	75	1	48-inch Sky Survey cluster.
	8		24.9	+22 23			+47,479	+47,677	2	40		$\lambda 3727$ appears in spectrum of No. 8.
0106-1536	1	1	6.3	-15 36	116	-77	+15,440	+15,473	1	60	3	Cluster Haufen A. 1 and 2 form a close pair.
	2		6.3	-15 36			+16,057	+16,090	1	60		Larger and n f one of pair.
0138+1840	1	1	37.9	+1840	108	-42	+51,773	+51,908	1	75	4	48-inch Sky Survey cluster.
0348+0613	1	3	48.2	+ 610	150	-34	+25,662	+25,644	1	100	5	48-inch Sky Survey cluster. Cluster membership in doubt.
0705+3506		7	4.4	+35 8	150	+20	+23,690	+23,666	3	50	6	Gemini Cluster. No. 1 is Anon 3, No. 2 is
	2		5.0	+35 4			+23,089	+23,065	2	60		Anon 4 in Mt. W. Contr. 531.
0855+0321	1	8	55.1	+ 323	194	+31	+61,241	+61,046	1	100	7	Hydra Cluster.
	2		55.1	+ 323			+60,964	+60,769	1	50		$\lambda 3727$ appears in spectrum of No. 2.
	$8+9$		55.3	+ 322			+60,959	+60,764	3	150		Redshift from the blended spectra of 8 and 9.
0925+2044	1	9	25.7	+20 45	178	+45	+57,612	+57,498	1	100	8	48-inch Sky Survey cluster.
1024+1039	1	10	24.4	$+1039$	201	+54	+19,636	+19,489	2	50		Leo Cluster. Identification on Plate VIII, Mt. W. Contr. 426.
1055+5702	2	10	55.1	+57 2	116	+55	+39,914	+40,001	1	100	9	Ursa Major Cluster No. 2.
	3		55.7	+57 2			+41,631	+41,718	1	300		No. 3 is Anon 6 in Mt. W. Contr. 531.
$1145+5559$	48	11	44.5	+55 59	106	$+60$	+14,982	+15,076	1	50	10	Ursa Major Cluster No. I. Baade numbers.
	25		44.7	+55 58			+14,688	+14,782	1	60		
	24		44.7	+56 1			+15,459	+15,553	2	50		No. 24 is Anon 7 in Mr. W. Contr. 531.
	7		45.8	+56 3			+15,572	+15,666	1	60		
1153+2341	1	11	53.3	+23 41	197	+78	+42,844	+42,796	1	100	11	48-inch Sky Survey cluster. I and 1A a close pair.
	1A		53.3	+23 41			+42,819	+42,771	1	100		Smaller, fainter, and n one of pair.
$1228+1050$	1	12	28.4	+10 50	258	+73	+50,402	+50,321	1	200	12	1 and 2 form a double. No. 1 is $n \mathrm{p}$ of pair.
	2		28.4	+10 50			+48,788	+48,707	1	200		No. 2 is $s f$ of pair.
1239+1852	4	12	38.7	+1851	264	+81	+21,094	+21,052	2	50	13	
	5		38.8	+1852			+22,056	+22,014	1	75		
1253+4422	2	12	53.9	+44 20	83	+73	+59,304	+59,382	1	40	14	48-inch Sky Survey cluster. $\lambda 3727$ present.
1304+3110	1+1A	13	3.5	+31 9	38	+84	+54,887	+54,917	1	100	15	48-inch Sky Survey cluster. Spectra $1+1$ A blended.
1309-0105	1+2	13	9.3	-14	284	+61	+52,458	+52,362	1	300	16	48-inch Sky Survey cluster. Spectrogram quality poor.
$1431+3146$	1	14	30.6	+3147	16	+66	+39,046	+39,142	2	50	17	Bootes Cluster. No. 1 is Anon 9 in Mr. W. Contr. 531.
	4		30.6	+3149			+39,496	+39,592	1	65		
1513+0433	1	15	13.1	$+433$	334	+47	+28,300	+28,333	1	60	18	Cluster in Shane cld. A. J., 59, 285, 1954.
1520+2754	1	15	20.0	+2751	10	+55	+19,522	+19,643	1	65	19	Corona Borealis Cluster.
	15		20.2	+2752			+20,984	+21, 105	1	100		
	3		20.3	+2755			+23,812	+23,933	2	65		
	2		20.3	+2754			+20,775	+20,896	3	50		No. 2 is Anon 10 in Mt. W. Contr. 53 I .
	5		20.4	+2752			+20,840	+20,961	1	75		
	6		20.5	+2753			+21,841	+21,962	1	150		
	8		20.6	+2751			+22,088	+22,209	1	75		
	9		20.6	+27 51			+22,380	+22,501	1	75		
1534+3749	1	15	34.4	+3748	27	+53	+45,706	+45,865	1	100	20	48-inch Sky Survey cluster.
	4		34.4	+37 42			+46,114	+46,273	1	75		
	5		34.8	+3751			+45,557	+45,716	1	200		
2322+1425	8	23	22.0	+1424	63	-44	+12,514	+12,727	1	75	21	48-inch Sky Survey cluster. No. 8 is NGC 7649.
	7		22.2	+14 24			+13,434	+13,647	1	50		

son 1932) and based on the galactic pole R.A. $12^{\mathrm{h}} 40^{\mathrm{m}}$, Dec. $+28^{\circ}$ (1900).

Column 6. Hubble's estimate of nebular type.
Column 7. Spectral types, except where emission patches in nebulae were observed. These have been indicated "Em," denoting an emissiontype spectrum.

Column 8. Measured redshifts, $c \Delta \lambda / \lambda_{0}$, expressed on the convenient scale of velocities. All have been reduced to the sun and, when necessary, corrected for the curvature of the spectrograph slit.

Column 9. Redshifts corrected for the solar motion with respect to the local group, obtained
by adding $300 \cos \left(l-55^{\circ}\right) \cos b \mathrm{~km} / \mathrm{sec}$ to the values in column 8.

Column Iо. Number of plates and dispersion. The number of plates from which the redshift was derived is shown by the Arabic numeral ; the order of the dispersion at $\lambda 4350$, by the letter. Included under "a" are dispersions ranging from 350 to $500 \mathrm{~A} / \mathrm{mm}$; under " b " those from I 70 to $230 \mathrm{~A} / \mathrm{mm}$; "c" indicates a dispersion of ino A / mm; and " d ," a dispersion of $70 \mathrm{~A} / \mathrm{mm}$. About 85 per cent of the observations were made with the "a" dispersion.

Column II. The estimated error of the redshifts which is not a formally computed value. Formal analysis of the errors is discussed in the text.

After the correction for solar motion with respect to the local group was made, there remained in Tables I and II twelve nebulae with negative displacements. Eight are in Table I, and of these seven are members of the local group, within which Hubble's law of the redshifts is inoperative. The eighth is the nearby nebula NGC 253.

The four negative values in Table II are all from members of the Virgo cluster. They are not unexpected, as the range in velocity within this cluster is large enough for some few negative values to occur.

The arrangement of Table III differs in some details from that of Tables I and II, mainly because the nebulae are faint and uncatalogued. The present practice is to identify a cluster of nebulae by the 1950 position of its center, as in column I , and to assign a number to the observed cluster member, as in column 2.

Column I. Contains the 1950 right ascension and declination of the center of the cluster. The first two figures are the hours, the next two figures the minutes, of right ascension. The sign of the declination is then shown and is followed by four figures giving the degrees and minutes of declination.

Column 2. The number assigned to the observed individual cluster nebula. When two figures are shown, both objects were on the slit and the measured redshift is from their blended spectra. Identifications for the objects are shown in Plates I and II.

Columns 3, 4, 5, 6, 7, 8. Contain the same data as columns $2,3,4,5,8,9$ of Tables I and II.

Column 9 . The number of plates. The dispersion for all plates is of the order of $370 \mathrm{~A} / \mathrm{mm}$ at $\lambda 4350$.

Column Io. Same data as column II of Tables I and II.

Column II. The number of the identification chart shown in Plates I and II. Charts have been provided as the only permanent means of identifying the objects observed. With one exception the direction is north at the top. For chart 20 east is at the top, north at the right. Estimates of relative brightness cannot be made from the charts as the exposure times, emulsions, and telescopes are in many cases not the same.

Nebula No. 8 in $\mathrm{Cl} 2322+1425$ is the only catalogued object in the table. It has been identified as NGC 7649.

TABLE IVA. MEAN SPECTRAL TYPES FOR THE DIFFERENT GROUPS OF NEBULAE

Type	Number	Spec.	Type	Number	Spec.
Eo-7	178	G 3.7	$\mathrm{Sb}+\mathrm{SBb}$	IO2	F 9.6
$\mathrm{So}+\mathrm{SBo}$	$\mathrm{II7}$	G 2.2	$\mathrm{Sc}+\mathrm{SBc}$	65	$\mathrm{~F} 6 . \mathrm{I}$
$\mathrm{Sa}+\mathrm{SBa}$	84	$\mathrm{GI.4}$	All	546	$\mathrm{G} \mathbf{1 . 4}$

table ivb. PERCENTAGE OCCURRENCE OF EMISSION λ_{3727}

Type	Sample	$\lambda 3727$	Type	Sample	λ_{3727}
$\mathrm{Eo}-7$	82	18%	$\mathrm{Sb}+\mathrm{SBb}$	66	80%
$\mathrm{So}+\mathrm{SBb}$	52	48%	$\mathrm{Sc}+\mathrm{SBc}$	4 I	85%
$\mathrm{Sa}+\mathrm{SBa}$	37	62%	All	278	54%

The apparent photographic magnitudes of several nebulae in Table III are fainter than $\mathbf{1 9 . 5}$ and required extended exposures on fast blue plates. As fainter nebulae are observed, the spectroscopic observations are becoming more difficult

No. (5). The Fo-type spectrum of an Sc nebula with small dispersion. Absorption lines are not narrow as in (3). Hydrogen is strong and the emission feature $\lambda 3727$ is seen at the far left. H and K are near their normal position, as the redshift of NGC 1003 is small.
No. (6). $\mathrm{Cl}_{5} 520+2754$, Nebula No. 5 in the Corona Borealis Cluster. Only the narrow spectrum in the center is that of the nebula. The uncorrected redshift is $+20,840 \mathrm{~km} / \mathrm{sec}$. The wide emission feature to the red of $\lambda_{3} 889$ is a nightsky band.
No. (7). Cl I43I +3 I46, Nebula No. I in the Bootes Cluster. H and K are shifted to the region of $\lambda 447 \mathrm{I}$. The uncorrected redshift is $+39,046 \mathrm{~km} / \mathrm{sec}$. Only the narrow spectrum at the center is that of the nebula. The faint wide background spectrum is from the night sky.
No. (8). $\mathrm{Cl} 0855+\mathrm{O} 2 \mathrm{I}$, Nebulae Nos. I and 2 in the Hydra Cluster. The narrow spectrum of Nebula No. I is below; the narrow spectrum of No. 2 is above. The strong, wide spectrum is that of the night sky, which almost blots out the nebular spectra. Nebula No. 2 has a bluer color index than 1 . The emission feature, $\lambda 3727$, is present and can be seen just to the red of the $H e$ comparison line $\lambda 447 \mathrm{I}$. The nebular type of this object is probably Sb . Nebula No. I, below, is an elliptical. H and K are not easily discernible as they are partially filled in by the spectrum of the night sky. They appear to the red of the $H e$ comparison line $\lambda 47 \mathrm{I} 3$. The uncorrected redshift of Nebula No. I, as measured from the absorption features H and K, is $+61,24 \mathrm{Ikm} / \mathrm{sec}$; that for number 2 , as measured from the emission feature $\lambda 3727$, is $+60,964 \mathrm{~km} / \mathrm{sec}$.

Plate I. Identification Charts for Faint Nebulae

Plate II. Identification Charts for Faint Nebulae
and time-consuming. Interference from the nightsky spectrum is already seriously large ; its greater intensity on more extended exposures would almost completely obliterate the weak spectrum of a very faint nebula.

Also contributing toward longer exposures will be the greater redshifts of faint nebulae. Largest displacements so far measured move the H and K lines to the region of $\lambda 4700$. Greater displacements will move them beyond the long wavelength limit of fast blue emulsions, and necessitate use of the slower panchromatic emulsions.

What seems at the present time to be the most promising method of obtaining larger redshifts is the observation of the emission line $\lambda 3727$. While this feature appears frequently in the spectra of nebulae with relatively blue color indices, the identification of such objects in faint clusters has proved uncertain. Within the limits of the Hydra Cluster three such objects were found from intercomparison of blue and yellow direct photographs. Each of these was tested as a possible candidate for cluster membership. Although $\lambda 3727$ was observed in the spectrum of all three, the wave-length displacement showed that only one of the three was a member of the cluster. The other two were foreground nebulae and considerably less distant. In spite of this uncertainty, however, observation of an emission line is advantageous for several reasons: (I) identification of an emission line is more positive than for an absorption feature; (2) the night-sky spectrum builds up an emission feature and tends to make it stand above the background spectrum ; (3) an emission feature will register on a relatively shorter exposure ; (4) the error of measurement is considerably smaller. These advantages are illustrated in the spectrum of the two faint members of the Hydra Cluster (Plate III, No. 8) where a blue and a red nebula were observed simultaneously. Emission $\lambda 3727$ shows in the spectrum of the blue nebula while absorption H and K is present in the spectrum of the red. The redshift for both objects is the same.

Although the spectroscopic observation of still fainter nebulae is costly in the matter of telescope time, the present plan is to make observations in one, or possibly two, very faint clusters. A first attempt to obtain a readable spectrum from a member of a faint cluster has, in fact, been made. Although not successful, it did indicate that, at the 200-inch, exposure times for a nebula of apparent magnitude about 20.5 will be of the order of 50 hours or more.

PART II. LICK LIST OF REDSHIFTS
Program. Upon completion of a nebular spectrograph for the Crossley reflector in 1935, a program of spectroscopic work, mainly on the brighter extragalactic nebulae, was initiated. The decision to undertake such work resulted directly from advances made at Mount Wilson (Hubble 1929; Hubble and Humason 193I; Humason 193I) in this field, which at that time was almost virgin territory for spectroscopy. The present section gives the principal Lick observational results in the form of a table of redshifts, with extensive notes describing in more detail the various spectral features.

The initial Crossley observing lists were closely correlated with the work at Mount Wilson, where Hubble gave invaluable advice, guidance, and help in the selection of nebulae to be observed. The original list of nearly 200 objects comprised three groups. The first two were assembled from the Shapley-Ames catalogue, the third from then unpublished material by Hubble. These groups were as follows:

Group I: all catalogued nebulae, unobserved spectroscopically, north of the roo-inch limit of observation : 47 nebulae with $\delta>+64^{\circ}$;

Group II : previously unobserved bright nebulae: 35 with $m_{p g}<$ II. 6 and $\delta>-30^{\circ}$;

Group III: nebulae for which Hubble had made estimates of apparent magnitudes of the brightest, resolved stars: II6 spirals.

By March, 1942 , spectrograms had been obtained for all of the 82 nebulae in groups I and II, and for many of those in group III. After the war, work was resumed in November, 1945, on a revised and shorter group III list kindly provided by Hubble. He had concluded, from more and better Ioo-inch plates, that many of the spirals on the original list are beyond its limit of resolution for individual stars, and the number of resolved spirals was reduced to 66. By 1950 the 148 nebulae on the three lists had been observed. During 1935 to 1950, however, there occurred new developments and interests that are reflected in the present twofold greater list of 300 redshifts (Table V). Examples of extraprogram observations are redshifts for: (I) possible new members in the groups around the Galaxy and the nearer giant spirals M 5I, M 81, and M IOI; (2) brighter nebulae in the nearer groups and clusters; (3) nebulae of intermediate brightness observed primarily for sense of spectroscopic rotation and measurement of inclined

Plate III. Mount Wilson-Palomar Spectra of Extragalactic Nebulae

Notes. Numbers I and 2 are prism spectra obtained with the roo-inch telescope. The dispersion is at H_{γ}; the comparison spectrum is $F e$. All of the others are grating spectra obtained with the 2oo-inch telescope. The comparison spectrum is $H e+H$.
No. (1). Absorption lines in the spectrum of NGC 221 are wide but well defined. The spectra of most elliptical nebulae are very similar in character.
No. (2). In NGC 224 the absorption features are not well defined, and are approximately twice as wide as those in the
spectrum of NGC 221. These characteristics appear in the spectra of many Sb nebulae.
No. (3). In the spectrum of IC 342 the hydrogen lines $H \beta$ and $H \gamma$ are bright. Other absorption features are narrow and sharp. Spectra of many Sc nebulae are like that of IC 342.
No. (4). Small dispersion spectrum of an elliptical nebula. On a larger scale this spectrum would be like that of (I). Continued on page IIJ.
spectrum lines; (4) objects of special or unusual interest, such as those of uncertain nature in low galactic latitudes, or of peculiar character noted on Crossley or 20 -inch astrograph plates.

There were originally two main objectives of the cooperative program. The first was an investigation of the luminosity function on the basis of residuals in the redshift-magnitude relation for all the brighter nebulae having $\delta>-30^{\circ}$ and $m_{p g}<$ I2.I. The second was a solution for the motion of the Galaxy and of the velocity dispersion among the nearer nebulae whose distances were to be estimated, for removal of the redshift term, from apparent magnitudes of brightest resolved stars. During the earliest stage of the Lick program, Hubble published a detailed discussion, based mainly on Mount Wilson material, of the luminosity function of nebulae (Hubble 1936b, 1936c) as well as a preliminary solution, which included some of the first Lick redshifts, for the motion of the Galaxy (Hubble 1939).
Since 1939 ideas concerning those two objectives have changed considerably. More recent developments indicate that study of the luminosity function by means of redshifts and magnitudes may be useful mainly for determining its form for the brighter and intermediate luminosities, because of observational selection. For the galactic motion, the situation is also changed, but for a different reason. This is the recent realization that, for many of the nearer spirals beyond the local group, resolution into brightest, non-variable stars is difficult even with the 200inch (Sandage 1954a).
Although the original objectives of the Lick nebular spectroscopic program have to some extent become superseded by these recent developments, the spectrograms of the relatively large number of intermediate- and late-type spirals are useful for other purposes. Among these are: (I) spectrographic rotations, for estimates of periods, masses, and direction of rotation, (2) redshifts for estimates of relative distances and of velocity dispersions of multiples, groups, and clusters, and (3) spectral characteristics such as energy distribution, occurrence of emission radiations, and visibility of absorption lines. Data in category (3) may become useful for broad studies of stellar content, particularly of the relative abundance of Baade's stellar population Types I and II in different parts of the same nebula and among nebulae of different classes. For a number of nebulae, preliminary results have been published, or the spectroscopic data communicated to others who requested them for special pur-
poses; references to such cases are contained in the Notes accompanying Table V.

Spectrograph. Although details of the initial operation and later improvement (Mayall 1935; Mayall and Wyse 1941) of this instrument have been described, there are some general remarks that may be made about its performance as the result of experience acquired during 20 years. In the first place, its location at the primary focus of the 36 -inch $f / 5.8$ Crossley reflector has been advantageous because of: (I) optical efficiency, resulting from absence of one or more auxiliary mirrors that may lose light by reflection and scattering, distort images, and brighten the sky background; (2) convenient scale of 38 " $6 / \mathrm{mm}$ that is suitable for bright and medium-bright nebulae whose brightest parts-nuclear region and inner spiral structure - have apparent diameters from about I^{\prime} to 15^{\prime}, which is a range conveniently covered by the maximum slit length of 6^{\prime}; (3) mechanical and operating conditions, such as fewer difficulties from flexure in a supporting structure that works more nearly vertically than horizontally, ease of setting the slit in various position angles, less risk of disturbance during long exposures, and reduced possibility of damage to the spectrograph by the observing platform. No difficulties have been experienced as the result of operating the spectrograph at the prime focus in such routine actions as adjusting the slit for width, length and position angle, keeping the slit in the focus of the main mirror, locating an off-axis guide star, changing plate holders, exposing the comparison spectrum, or finding faint objects.

Observing Technique. For a number of nebulae in Table V the slit was placed on faint or invisible condensations, which in many cases proved to be emission patches. Such objects are particularly useful for the measurement of redshifts in the spectra of late-type spirals, because the latter often have absorption lines that are difficult to see and, if measured, yield results of low accuracy. Whenever possible, therefore, the slit was given the proper length and orientation in position angle to include both the nuclear region and some condensation judged likely to show emission lines.

In this connection, the operation of placing the slit on a very faint or invisible object deserves consideration. The first requirement is a direct photograph showing the faint object whose spectrum is desired. Next, there is selected a nearby reference star that can be seen in the field on the slit, and its position with respect to the faint
object is determined. In principle, either rectangular or polar coordinates may be used, but in practice position angle and distance have regularly been used with the Crossley nebular spectrograph. The reason is that it has been easier to detect, during long exposures, displacements due to differential refraction and instrumental flexure, between object and guide star, which may be more than a degree off-axis. Thus, even if the guide star is kept fixed on the crosswire intersection, the object sometimes moves to the edge, and possibly out of, the slit. But if the slit is oriented on the line joining object and nearby reference star, the latter becomes visible. When this relative motion occurs, the reference star is again centered in the slit, and the position of the crosswire intersection re-adjusted until it coincides with the bright apex of the comatic image of the guide star.

Visibility of Faint Objects. The problem of seeing very faint objects becomes all-important if a moderate-sized telescope is used to obtain, in the nearer spirals, slit spectrograms of the brighter components, such as star clouds, emission patches, globular star clusters, brightest stars, or novae, all of which usually are fainter than the 15 th magnitude. Bowen (1947) has investigated the optical conditions that determine the visibility of very faint objects in the field of a reflector. He concluded that maximum visibility occurs when the field is viewed with a magnification of $30 \times$ for each inch of telescope aperture. In addition to meeting this optical condition, the Crossley nebular spectrograph incorporates an instrumental feature that has proved invaluable in setting the slit on images of threshold visibility. This is provision for viewing the slit from behind with a power of approximately $1000 \times$, which is nearly Bowen's figure for the Crossley. Thus a very faint object appears in a field that is dark except for the narrow line of night-sky light coming through the slit. By this means, viewing conditions approach those in experiments made many years ago by H. D. Curtis (1903) and by H. N. Russell (1917), who investigated the limiting visual magnitude for stars. Moreover, the optical system for viewing the slit from behind consists only of a small collimating lens and total reflection prism, whereas that for viewing the slit from the front involves reflection from the slit jaws and passage through a larger collimating lens and three total-reflection prisms; for both systems there is a common viewing telescope at the side of the tube. Under these conditions, and with all air-glass surfaces coated with non-reflect-
ing films and the curved, polished stellite slit jaws aluminized, objects nearly one magnitude fainter can be seen behind the slit than in front. The limiting visual magnitude is about 17 , for good seeing and transparency; depending on their color indices, stars of $\mathrm{I} 7 \frac{1}{2}$ to I 8 photographic magnitude may be seen, but for safety in such cases, the slit usually has been set on them by the use of a reference star and polar coordinates. Objects in the range from 15 to $17 \frac{1}{2}$ photographic magnitude generally were centered and kept in the slit only by intermittent use of the rearward slit viewing system, in combination, of course, with an off-axis guide star.

Measurement of the Spectrograms. All the plates were measured by making micrometer-wire settings on spectrum lines, with a measuring engine, Toepfer Serial No. 445, having a screw of 0.5 mm pitch. When sufficient plates had been measured to indicate the range in settings on comparison lines for a fiducial position of the plate on the screw, averages were formed and a standard dispersion table was computed in the usual way by the Hartmann formula. Wave lengths for lines in the nebular spectra were determined by successive approximation, with starting values obtained from laboratory, solar, or stellar sources. Since the spectra of spirals show a high degree of compositeness (Plate IV), the normal or unshif ted wave lengths of the spectral features may be expected to show considerable variation, and there is evidence in the measurements for real differences amounting to several angstroms. It was not found possible, however, to relate in any systematic way different wave lengths of the same feature with some other characteristic, such as nebular type. Instead, a system of mean wave lengths was deduced for emission and absorption features by applying to the initial values average systematic corrections determined from residuals in $\mathrm{km} / \mathrm{sec}$ from the preliminary means for each plate. The results are given in Table VI, where the second decimal has little significance beyond that of a guard figure. This table omits the wave lengths found for some infrequently-measured spectral features, generally shortward of 3900 ; these are blends whose components are so variable in intensity that their average wave lengths are too uncertain for consistent redshift determinations.

The most frequently-measured absorption features were the H and K lines of $C a \mathrm{Ir}$, and blends in the vicinity of the G-band and $H \delta$; in emission, 3727 of [O II] generally was the predominating feature (Mayall 1939; Humason 1947), but for

Plate IV. Representative Spectra of Extragalactic Nebulae. Enlarged $8.8 \times$ from the original negatives on which the linear dispersion is $430 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$, with slit lengths ranging from I^{\prime} to 6^{\prime}. The comparison spectrum consists of spark lines due to $P d, P b, S n$ and $C d$, with the shortest (left) and longest (right) wave lengths of $3460 P d$ and $5085 C d$. In the nebular spectra the most prominent shortward emission is 3727 [O II], while the longward ones are $H \beta, 4958$ and 5006 [O III]. The H and K absorption lines of $C a$ II are conspicuous in NGC i888-9(h) and in 4649 (s, upper spectrum), those of hydrogen in 205 and in 3034.
the emission patches bright hydrogen lines, the [$N e$ III] wide pair at 3967 and 3868, and the [$O_{\text {III }}$] lines near $H \beta$ were also measured whenever possible. At the time each spectral feature was measured, it was assigned a weight, ranging from $\frac{1}{2}$ to 3 , which was intended to include allowance for such factors as intensity, width, blending, and dispersion, in so far as they might affect the reliability of the measured redshift. The number of lines measured, and the sum of their weights, are given for each plate in Table V. In those cases where only one or two lines were measured, their identification is given in the Notes to the table.
Accuracy of the Measurements. Although formal probable errors of the mean redshift from individual lines were computed for some of the earlier plates, their values were considerably smaller, generally by factors of 2 or 3 , than the differences between the means for duplicate plates of the same nebula. Under these circumstances, with single-plate probable errors evidently much smaller than obscure systematic errors, and obtainable from only a few lines per plate, it seems inappropriate to use a precision index that implies numerous residuals distributed according to a normal error function. Instead, average deviations (A.D.) have been computed for each plate, on the assumption that they may give a more realistic indication of the accuracy of the tabulated redshifts. These values of A.D. in column (II) of Table V are distributed as follows:

A.D. $(\mathrm{km} / \mathrm{sec})$	No.	A.D. $(\mathrm{km} / \mathrm{sec})$	No.
$0-20$	32	$12 \mathrm{I}-\mathrm{I} 40$	22
$2 \mathrm{I}-40$	8 I	$14 \mathrm{I}-\mathrm{I} 60$	10
$4 \mathrm{I}-60$	80	$16 \mathrm{I}-\mathrm{I} 80$	II
$6 \mathrm{I}-80$	8 I	$\mathrm{I} 8 \mathrm{I}-200$	2
$8 \mathrm{I}-100$	58	$20 \mathrm{I}-220$	2
$\mathrm{IOI}-120$	28	$22 \mathrm{I}-240$	2
		Total	405

The range is from 2 to $234 \mathrm{~km} / \mathrm{sec}$, and the mean $72 \mathrm{~km} / \mathrm{sec}$; for 99 per cent of the plates the A.D. is less than $200 \mathrm{~km} / \mathrm{sec}$, and for 81 per cent, less than $100 \mathrm{~km} / \mathrm{sec}$. These figures show that the internal precision is not high by stellar radialvelocity standards; but, percentagewise for nebular redshifts, the accuracy is satisfactory for all but the few nearest nebulae, particularly those in the local group. For them, higher dispersion, or more extensive low-dispersion spectrographic observations are desirable, and a program (Humason 1954) has recently been completed to provide such data of relatively high accuracy.
Although the foregoing discussion is intended
to give some idea of the internal accuracy of the redshifts in Table V, it leaves unanswered the question of the external or systematic errors. These, of course, are best investigated by comparison of independent sets of observations. The Mount Wilson-Palomar two-fold greater list of redshifts in Tables I and II provides the necessary material to examine the systematic errors, on the basis of more than roo nebulae observed in common at Mount Wilson and at Mount Hamilton, and the detailed comparison is given after Table V.

Spectral Characteristics. For reasons related to the original Crossley program that included a large number of resolved spirals, Table V contains a relatively high percentage of late-type normal and barred spirals, those in Hubble's classes Sc and SB . Their spectra frequently show emission radiations in varying intensity for different objects and for different regions of the same object, absorption features ranging from some easy to see to others very difficult to detect, and continua suggestive of moderately early to late spectral type. That is to say, the spectra give more the impression of diversity than of uniformity. This wide range in spectral characteristics of late-type spirals has already been foreshadowed by previous work, especially from spectral types (Humason 1936, Fig. 1) and from colors measured photoelectrically by Stebbins and Whitford (1937, 1952). Many of these spectral types and colors, however, refer to small areas located, in general, around the brighter nuclear regions. This was especially the case for the Mount Wilson spectrograms, which were obtained for many of the nebulae at the Cassegrain focus of the roo-inch where the scale is eight times greater than that of the prime focus of the Crossley. As a result, the two series of spectroscopic observations represent coverage by slit lengths measured in a few seconds of arc in one case (Mount Wilson), and in a few minutes of arc in the other (Lick). Under these different circumstances, estimates of spectral type for the same nebula may be appreciably different, since they would refer respectively to small nuclear regions and to larger portions of the main bodies. A striking example of this effect is that already reported for M 33 (Mayall and Aller 1942), with estimated spectral types of A_{7} for the $\mathrm{o}^{\prime \prime}$ diameter nucleus, and Go for the innermost, surrounding spiral structure of 6^{\prime} diameter. Moreover, for many of the Crossley spectra of principal parts of spirals it would be difficult, or possibly misleading, to give estimates of spectral types, be-
cause different absorption features in the same spectrum of ten indicate different types, while the frequent occurrence of emission radiations in patches or throughout the spiral adds to the confusion. For these two reasons-variation and compositeness in spectral characteristics-no column of spectral types is included in Table V. Instead, some supplementary information is given in the Notes for those nebulae whose spectra show abnormal features, such as barely visible, unusually broad, or exceptionally strong absorption or emission lines. Plate IV shows a number of fairly typical spectra of spirals, as well as some of the extremes of absorption- and emission-line intensities and widths.

Table of Redshifts. Table V contains nearly all the observational results obtained from the Crossley spectrograms. Omitted data are the detailed measurements of spectrum-line inclinations with the sense of spectrographic rotation, previously reported in preliminary form (Mayall 1948a) and more complete information regarding the distribution and occurrence of emission radiation; these data will be given in later papers.

In addition to the column descriptions and Notes for Table V, given below, there are a few general remarks that may be made about the basic material. As in many extended programs, the early observations are considerably inferior in quality to the later ones. Thus, plates taken before 1942 are in general weaker and more grainy than those obtained after 1945 , when the remarkably fast and fine-grained Eastman IIa-O emulsion came into regular use. For a number of nebulae the earlier plates were replaced, or supplemented, with later ones taken with shorter exposure and a narrower slit. For most objects re-observed in this way the improvement in plate quality was very worth while as shown in Plate IVu and v, NGC 5713. Although it would be satisfying to replace nearly all the older plates with new ones, to do so would require an amount of observing time disproportionate with respect to expected new results.

Finally, the fact should be noted that some of the earliest plates were obtained with a straight slit, so that correction of the measurements for prismatic curvature is necessary. Table V includes redshifts from 25 straight-slit plates, for which there are 13 corresponding curved-slit plates. The average systematic difference, curved minus straight, is $+36 \mathrm{~km} / \mathrm{sec}$, with a range from - II 5 to $+\mathrm{I} 86 \mathrm{~km} / \mathrm{sec}$. Although the mean value is thus not accurately determined, a correction
of $+36 \mathrm{~km} / \mathrm{sec}$ to the straight-slit results for M 3 I and M 32 appreciably improves the agreement with the curved-slit results, and with the Mount Wilson results based on more spectra of greater dispersion (Table I). Accordingly, the observed redshifts in Table V obtained from straight-slit plates have been corrected by +36 $\mathrm{km} / \mathrm{sec}$.

Detailed data for the columns of Table V are as follows:

Column I. NGC or IC number, when available; otherwise, a more detailed description or location given in the Notes, with charts in Plate V for the few faintest nebulae.

Column 2. Nebular type assigned by Hubble, as quoted in Pettit's (1954) list of photoelectric magnitudes and colors; where these types differ from those in Pettit's paper, they represent unpublished, later revisions by Hubble; those in brackets [] are by Sandage.

Columns 3, 4, 5. Date, exposure time, and emulsion; for the latter, IES $=$ Imperial Eclipse. Soft, generally H and D 850, but with a few 1200; Ilf = Ilford; Agf = Agfa Spectral Blau Ultra Rapid; and Ia-O, ıозa-O, IIa-O = Eastman spectroscopic emulsions for the astronomical level of intensities.

Columns 6, 7, 8. Slit width, length, and position angle ; an asterisk (*) with the slit-length figure denotes early plates obtained with a straight slit, while the same symbol with the position angle indicates that the slit was along the major axis; in a number of cases, supplementary information regarding the orientation of the slit is given in the Notes.

Columns 9, IO, II. Number of lines measured, their total assigned weight, and average deviation ; when 3727 [O II] was present in measurable strength, this fact is indicated on the figure for the number of lines by an asterisk $\left(^{*}\right)$ when the emission appears to be generally present throughout the nuclear region or main body, and by a dagger (\dagger) when it is localized in one or more emission patches; the same figure underlined means the lines are rotationally inclined.

Column I2. Residuals for (a) individual plates, when two or more plates were used to obtain a mean redshift for column (13) with the weights in column (Io), and (b) for individual condensations referred to the mean or nuclear-region redshift, when several objects were measured in the same nebula; in both cases, parentheses signify that the results were not used for the deter-

Plate V. Identification charts of nebulae and emission patches for which the descriptions may be insufficient in the Notes to Table V. For each chart north is up, east is left, and the field size is approximately $13^{\prime} \times 16^{\prime}$.

Table V. Redshifts of 300 Extragalactic Nebulae.

Table V．Continued．

$\underset{*}{\text { NGC }}$	Neb． Type	Date Mean UT		Exp． Hr．	Emul． Type	W		PA	No．	Lines Wt．	AD	Pl． Res．	Redshift $\mathrm{c} \cdot \Delta \lambda / \lambda_{0}$		$\begin{aligned} & \text { ctic } \\ & \text { Lat. } \end{aligned}$	$\begin{gathered} 100 \\ \operatorname{Cos} \mathrm{~A} \end{gathered}$	Corr． Redshift	Note No．
（1）	（2）	（3）		（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）
1042	Sc	41 Sept	22.4	4.0	103aO	$6{ }^{\prime \prime}$	3^{\prime}	101°	2	$2 \frac{1}{2}$	125		＋ 355	152°	-56°	－07	＋ 334	
1052	E3	35 Dec	23.2	2.8	IES	4	$\frac{1}{2}$＊	90	5＊	$4 \frac{1}{2}$	36		＋ 1523	150	－57	－05	＋ 1508	15
1058	Sc	41 Nov	23.3	8.6	Ilf	6	2	76	5	6	76		＋ 80	115	－20	＋47	＋ 221	
$\begin{aligned} & 1068 \\ & (\mathrm{M} 77) \end{aligned}$	Sb	38 Jan	25.2	1.3	IES	6	1	90	8＊	$7 \frac{1}{2}$	75		＋ 1121	141	－51	＋06	＋ 1133	16
1073	SBc	41 Nov	17.2	8.5	Ilf	6	2	63	3	$3 \frac{1}{2}$	52		＋ 1874	139	－50	＋07	＋ 1895	17
1097	SBb	53 Dec	3.3	3.0	IIaO	5	6	145＊	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 101 \\ 3 \end{array}$	$\begin{aligned} & -136 \\ & +191 \end{aligned}$	＋ 1424	194	－63	－34	＋ 1322	$\begin{aligned} & 18 \\ & 19 \end{aligned}$
1187	Sc	$\begin{aligned} & 48 \mathrm{Jan} \\ & 48 \mathrm{Jan} \end{aligned}$	$\begin{aligned} & 12.2 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{HaO} \\ & \mathrm{HaO} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 90 \\ 107 \end{array}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 167 \\ 83 \end{array}$	$\begin{array}{r} +98 \\ +\quad 70 \end{array}$	＋ 1579	179	－58	－30	＋ 1429	20
1232	Sc	36 Nov	15.3	5.0	IES	7	1	90	4	4	67		＋ 1820	176	－57	－28	＋ 1736	
1300	SBb	$\begin{aligned} & 47 \text { Jan } \\ & 53 \text { Oct } \end{aligned}$	$\begin{aligned} & 22.2 \\ & 12.4 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\underset{\text { IaO }}{\mathrm{IIaO}}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{array}{r} 90 \\ 106 \end{array}$	$\begin{aligned} & 5^{*} \\ & 5 * \end{aligned}$	$\begin{aligned} & 6 \frac{1}{2} \\ & 5 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & -28 \\ & +33 \end{aligned}$	＋ 1625	175	－55	－29	＋ 1538	21
1331	E2	46 Oct	21.4	3.0	IIaO	5	6	115	3		38		＋ 1408	180	－53	－34	＋ 1306	22
1332	So							115＊	3	$2 \frac{1}{2}$	29		＋ 1573				＋ 1471	22
1359	SBb	48 Jan	11.2	3.5	IIaO	5	2	97	8＊	8	54		＋ 1992	176	－51	－32	＋ 1896	23
1385	Sc	46 Jan	28.2	2.0	IIaO	6	2	90	6	5＊	180		＋ 2012	186	－51	－42	＋ 1886	24
1395	E2	35 Oct	24.5	3.0	IES	4	$\frac{1}{2}$＊	90	5	4	86		＋ 1820	183	－50	－40	＋ 1700	
1398	SBb	$\begin{aligned} & 36 \mathrm{Jan} \\ & 47 \mathrm{Jan} \end{aligned}$	$\begin{aligned} & 21.2 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { IES } \\ & \text { IaO } \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\frac{1}{2} *$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 95 \\ & 43 \end{aligned}$	$\begin{array}{r} -\quad 4 \\ +\quad 5 \end{array}$	＋ 1524	189	－52	－43	＋ 1395	
＊342	Sc	38 Dec	16.3	3.5	Agfa	6	1	90	5＊	$3 \frac{1}{2}$	101		＋ 34	106	＋11	＋62	＋ 220	25
1453	E1	47 Jan	16.2	4.0	па二	5	2	90	4＊	$5 \frac{1}{2}$	47		＋ 4035	160	－41	－20	＋ 3975	
1518	Scp	47 Jan	21.2	3.5	паO	6	3	18	8＊	$7 \frac{1}{2}$	82		＋ 1027	184	－43	－46	＋ 889	26
1569	Irr	$\begin{aligned} & 35 \mathrm{Oct} \\ & 40 \mathrm{Dec} \end{aligned}$	$\begin{array}{r} 28.4 \\ 6.5 \end{array}$	$\begin{aligned} & 4.0 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \text { IES } \\ & \text { I } 1200 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\frac{1}{6}_{6}^{*}$	$\begin{aligned} & 117 * \\ & 118^{*} \end{aligned}$	$\begin{aligned} & 9 * \\ & 9 * \end{aligned}$	$\begin{gathered} 9 \\ 12 \frac{1}{2} \end{gathered}$	$\begin{aligned} & 51 \\ & 39 \end{aligned}$	$\begin{array}{r} +77 \\ +56 \end{array}$	－ 58	111	＋12	＋55	＋ 107	27
1637	Sc	45 Nov	8.9	5.5	HaO	6	1	90	2	2	8		＋ 528	167	－30	－32	＋ 432	28
1640	SBb	$\begin{aligned} & 46 \mathrm{Jan} \\ & 46 \text { Oct } \end{aligned}$	$\begin{aligned} & 31.2 \\ & 29.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{IaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & 4^{*} \\ & 6 \end{aligned}$	$6^{\frac{1}{2}}$	$\begin{array}{r} 88 \\ 103 \end{array}$	$\begin{array}{r} -50 \\ +\quad 29 \end{array}$	＋ 1676	187	－36	－54	＋ 1514	29
＊391	Sb	35 Nov	25.4	5.0	IES	4	$\frac{1}{2}$＊	90	1＊	1	\ldots		＋ 1607	101	＋22	＋64	＋ 1799	30
1744	Sc	49 Feb	1.2	4.0	па二	5	3	174	4＊	4	100		＋ 676	194	－33	－63	＋ 487	31
$\begin{aligned} & 1888 \\ & 1889 \end{aligned}$	$\begin{aligned} & \text { Sb } \\ & \text { Eo } \end{aligned}$	47 Jan	17.2	4.0	па二	5	2	70	4	$5 \frac{1}{2}$	25		$\begin{aligned} & +2557 \\ & +2557 \end{aligned}$	181	－23	－54	$\begin{aligned} & +2395 \\ & +2395 \end{aligned}$	32 32
1961	Sb	52 Nov	25.5	4.8	па二	5	2	70＊	6＊	$4 \frac{1}{2}$	147		＋ 3870	110	＋21	＋54	＋ 4032	
1964	Sb	46 Oct	31.5	3.0	HaO	6	2	25＊	3	$2 \frac{1}{2}$	78	，	＋ 1849	193	－25	－67	＋ 1648	33
2139	SBc	46 Oct	30.5	2.5	па二	6	2	90	9＊	$8 \frac{1}{2}$	103		＋ 1913	198	－20	－75	＋ 1688	34
2146	Sap	49 Nov	25.4	5.0	па二	4	3	138＊	$\underline{4}^{*}$	$4 \frac{1}{2}$	24		＋ 784	103	＋25	＋61	＋ 967	35
2217	SBa	47 Jan	18.3	2.8	ПаО	5	2	90	5＊	6	44		＋ 1573	202	－17	－80	＋ 1333	
2268	Sc	36 Jan	22.7	7.5	IES	4	$\frac{1}{2}$＊	90	4＊	4	51		＋ 2337	96	＋28	＋66	＋ 2535	
2276	Sc	47 Apr	16.3	5.0	IIaO	5	2	114	$\begin{aligned} & 3 \\ & 4 \dagger \end{aligned}$	$\begin{aligned} & 4 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 66 \\ & 69 \end{aligned}$	$\begin{aligned} & -48 \\ & +53 \end{aligned}$	＋2391	95	＋28	＋68	＋ 2595	36
2300	E1	35 Nov 51 July	$\begin{array}{r} 27.5 \\ 27.3 \end{array}$	$\begin{aligned} & 3.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \text { IES } \\ & \text { ПaO } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\frac{1}{2} *$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 142 \\ & 103 \end{aligned}$	$\begin{array}{r} +94 \\ +\quad 57 \end{array}$	＋ 2088	95	＋28	＋68	＋ 2292	37
2314	E3	36 Jan	23.4	5.5	IES	4	$\frac{1}{2}$＊	90	6	$4 \frac{1}{2}$	47		＋ 3951	107	＋28	＋54	＋ 4113	
2336	Sbc	36 Dec	9.5	4.8	IES	6	1	90	4	$3 \frac{1}{2}$	103		＋ 2252	102	＋29	＋60	＋ 2432	
2347	Sb	47 Jan	17.4	3.0	паO	5	2	90	5＊	5	80		＋ 4521	118	＋28	＋40	＋ 4641	
2366	Irr	35 Oct	3.5	2.0	IES	4	$\frac{1}{2}$＊	90	$10 \dagger$	10	36		＋ 194	114	＋29	＋45	＋ 229	38
2389	Sc	47 Jan	16.4	4.1	паО	6	2	90＊	6＊	$5 \frac{1}{2}$	147		＋ 3816	153	＋23	＋13	＋ 3858	

Table V. Continued.

$\begin{gathered} \text { NGC }{ }_{\text {FIC }} \\ \text { (1) } \end{gathered}$	Neb. Type (2)	Dat Mean (3)		Exp. Hr. (4)	Emul. Type (5)	W (6)	$\begin{aligned} & \text { Slit } \\ & \text { L } \\ & (7) \end{aligned}$	PA (8)	No. (9)	Lines Wt. (10)	$\begin{gathered} \text { AD } \\ \text { (11) } \end{gathered}$	Pl. Res. (12)	Redshift $c \cdot \Delta \lambda / \lambda_{0}$ (13)	Gala Long. (14)	ctic Lat. (15)	$\begin{gathered} 100 \\ \operatorname{Cos} \mathrm{~A} \\ (16) \end{gathered}$	Corr. Redshift (17)	Note No. (18)
2441	Sc	42 Jan	14.4	7.5	103aO	$8{ }^{\prime \prime}$	2^{\prime}	157°	4	4	89		+ 3623	109°	$+36{ }^{\circ}$	+47	+ 3764	
2475	[E3]	50 Mar	15.3	1.5	IIaO	4	2	40	3	$2 \frac{1}{2}$	45		+ 5019	132	+32	+19	+ 5076	39
2500	Sc	$\begin{aligned} & 49 \mathrm{Jan} \\ & 49 \mathrm{Feb} \end{aligned}$	$\begin{aligned} & 30.3 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \mathrm{IIaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 62 \\ & 27 \end{aligned}$	$\begin{aligned} & 4^{*} \\ & 6 \dagger \end{aligned}$	$\begin{aligned} & 4 \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{array}{r} 143 \\ 66 \end{array}$	$\begin{array}{r} -55 \\ +42 \end{array}$	+ 470	136	+33	+13	+ 509	40
2523	SBb	47 Apr	20.3	5.0	HaO	5	2	120	5	$6 \frac{1}{2}$	140		+ 3448	107	+33	+52	+ 3604	42
2525	SBc	47 Jan	21.5	4.0	HaO	6	3	18	3	3	99		+ 2064	200	+12	-80	+ 1824	43
2537	Sc	36 Nov	13.5	3.2	IES	6	1	90	$3 \dagger$	$2 \frac{1}{2}$	40		+ 290	141	+34	+03	+ 299	44
Ho II	[Irr]	$\begin{aligned} & 53 \mathrm{Apr} \\ & 53 \mathrm{May} \end{aligned}$	$\begin{array}{r} 21.3 \\ 3.7 \end{array}$	$\begin{aligned} & 4.0 \\ & 6.2 \end{aligned}$	$\begin{aligned} & \mathrm{IIaO} \\ & \mathrm{HaO} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 174 \\ 12 \end{array}$	$\begin{aligned} & 8 \dagger \\ & 7 \dagger \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & +11 \\ & +11 \end{aligned}$	+ 220	111	+34	+46	+ 358	45 46
2551	Sab	36 Nov	20.5	3.5	IES	6	1	90	4	4	26		+ 2296	107	+33	+52	+ 2452	
2613	Sb	42 Feb	12.3	4.1	.103aO	6	2	112*	3	$2 \frac{1}{2}$	58		+ 1555	213	+11	-91	+ 1282	
2633	SBb	$\begin{aligned} & 36 \mathrm{Dec} \\ & 54 \mathrm{Jan} \end{aligned}$	$\begin{aligned} & 18.5 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { IES } \\ & \text { IIaO } \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 90 \\ 175 * \end{gathered}$	$\begin{aligned} & 4^{*} \\ & 4 * \\ & 1 \dagger \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \frac{1}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & 37 \\ & 70 \end{aligned}$	$\begin{gathered} +15 \\ -13 \\ (-77) \end{gathered}$	+ 2228	106	+35	+52	+ 2384	$\begin{aligned} & 47 \\ & 48 \\ & 49 \end{aligned}$
2642	SBb	46 Nov	30.5	3.3	IIaO	5	1	90	3	$4 \frac{1}{2}$	32		+ 4439	198	+23	-74	+ 4217	
2389	SBo	45 Nov	30.4	5.0	IIaO	6	1	90	6	$6 \frac{1}{2}$	100		+ 2632	107	+35	+50	+ 2782	50
2646	SBo	45 Dec	9.4	5.0	IIaO	6	1	90	4	4	45		+ 3546	106	+35	+52	+ 3702	51
2681	Sa	45 Nov	9.5	1.5	IIaO	6	1	90	9	$9 \frac{1}{2}$	42		+736	134	+41	+14	+ 778	52
2683	Sb	$\begin{aligned} & 41 \mathrm{Apr} \\ & 41 \mathrm{Apr} \end{aligned}$	$\begin{array}{r} 19.8 \\ 23.8 \end{array}$	$\begin{array}{r} 10.0 \\ 9.0 \end{array}$	$\begin{aligned} & \text { I1200 } \\ & \text { I1200 } \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 42^{*} \\ & 42^{*} \end{aligned}$	$\begin{aligned} & 4^{*} \\ & \underline{5}^{*} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 78 \\ & 26 \end{aligned}$	$\begin{array}{r} -59 \\ +\quad 59 \end{array}$	+ 335	158	+40	-17	+ 284	
2715	Sc	48 Feb	15.3	5.0	IaO	6	6	18*	4*	4	48		+ 1158	102	+34	+57	+ 1329	53
2732	So	41 Feb	4.5	5.0	I1200	6	2	67*	3	$2 \frac{1}{2}$	8		+ 2121	100	+33	+59	+ 2298	
2748	Sc	47 Feb	24.3	5.0	IaO	5	3	40*	6*	$5 \frac{1}{2}$	48		+ 1489	104	+35	+54	+ 1651	
2776	Sc	48 May	12.3	4.0	IIaO	5	3	115	4	$5 \frac{1}{2}$	134		+ 2673	144	+44	+01	+ 2676	54
2784	So	42 Jan	17.4	4.0	103aO	6	2	90	$\underline{3}$	$2 \frac{1}{2}$	52		+ 708	220	+17	-92	+ 432	
2787	SBa	39 Apr	22.2	4.0	IES	6	1	90	3	$3 \frac{1}{2}$	79		+ 551	111	+39	+44	+ 683	
2805	[Sc]	53 Mar	8.3	6.5	IIaO	6	2	90	7*	6	54		+ 1916	117	+41	+35	+ 2021	55
2835	Sc	48 Jan	13.4	4.2	IIaO	5	6	20*	$\begin{aligned} & 2 \\ & 3 \dagger \\ & 1 \dagger \\ & 3 \dagger \\ & 8 \dagger \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \frac{1}{2} \\ & 1 \\ & 3 \frac{1}{2} \\ & 7 \end{aligned}$	$\begin{array}{r} 175 \\ 10 \\ \ddot{60} \\ 93 \end{array}$	$\begin{aligned} & +39 \\ & +104 \\ & +67 \\ & +20 \\ & +27 \end{aligned}$	+ 909	220	+20	-91	+ 636	$\begin{aligned} & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$
2841	Sb	47 Feb	23.2	4.0	IIaO	5	6	150*	5*	6	30		+ 740	134	+45	+14	+ 782	
2903	Sc	50 Mar	12.3	5.0	IIaO	4	6	26*	6*	4	68		+ 645	177	+45	-38	+ 531	61
2950	SBo	54 Jan	13.5	3.5	IIaO	4	2	160	$\underline{3}$	$4 \frac{1}{2}$	32		+ 1339	122	+46	+27	+ 1420	62
2967	Sc	$\begin{aligned} & 42 \mathrm{Jan} \\ & 42 \mathrm{Feb} \end{aligned}$	$\begin{aligned} & 20.4 \\ & 14.3 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \text { Ilf } \\ & 103 a O \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \frac{1}{2} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 67 \\ & 83 \end{aligned}$	$\begin{array}{r} -78 \\ +\quad 79 \end{array}$	+ 2245	205	+38	-68	+ 2041	
2976	Sc	$\begin{gathered} 47 \mathrm{Feb} \\ 47 \mathrm{Apr} \\ \mathrm{Feb} \\ \mathrm{Apr} \\ \mathrm{Feb} \\ \mathrm{Apr} \end{gathered}$	$\begin{aligned} & 22.3 \\ & 23.3 \\ & 22.3 \\ & 23.3 \\ & 22.3 \\ & 23.3 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \mathrm{IIaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 145^{*} \\ & 145^{*} \end{aligned}$	$5 \dagger$ $5 \dagger$ $5 \dagger$ $6 \dagger$ $1 \dagger$ $1 \dagger$	$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \\ & 1 \\ & 1 \end{aligned}$	75 68 27 71 .	$\begin{aligned} & -41 \\ & +45 \\ & -\quad 7 \\ & +\quad 10 \\ & -39 \\ & -33 \end{aligned}$	+ 42	110	+42	+43	+ 171	63 63 64 64 65 65
3027	[Sc]	53 Feb 53 Mar Feb Mar Mar Feb Mar	$\begin{array}{r} 17.4 \\ 9.3 \\ 17.4 \\ 9.3 \\ 9.3 \\ 9.3 \\ 17.4 \\ 9.3 \end{array}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \mathrm{HaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 120^{*} \\ & 120^{*} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \\ & 1 \\ & 1 \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & 1 \\ & 1 \end{aligned}$	$\ddot{20}$	$\begin{gathered} +23 \\ +16 \\ (-66) \\ (-81) \\ (-52) \\ (+216) \\ (+112) \\ (+156) \end{gathered}$	+ 1079	105	+40	+49	+ 1226	66 66 67 67 68 69 70 70
$\begin{aligned} & 3031 \\ & (\text { M81 }) \end{aligned}$	Sb	$\begin{aligned} & 38 \mathrm{Jan} \\ & 38 \mathrm{Mar} \end{aligned}$	$\begin{aligned} & 26.5 \\ & 26.9 \end{aligned}$	$\begin{array}{r} 5.7 \\ 17.0 \end{array}$	$\underset{\text { IES }}{\text { IES }}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 155^{*} \\ & 155^{*} \end{aligned}$	$\begin{aligned} & 4^{*} \\ & \underline{4}^{*} \end{aligned}$	$\begin{aligned} & 5 \frac{1}{2} \\ & 5 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{array}{r} +20 \\ +\quad 34 \end{array}$	- 64	108	+42	+45	+ 71	71 71

Table V. Continued.

NGC (1)	Neb. Type (2)	Date Mean UT (3)		Exp. Hr . (4)	Emul. Type (5)	(6)		PA (8)	No. (9)	Lines Wt. (10)	$\begin{aligned} & \text { AD } \\ & \text { (11) } \end{aligned}$	P1. Res. (12)	$\begin{gathered} \text { Redshift } \\ c \cdot \Delta \lambda / \lambda_{0} \end{gathered}$ (13)	Galactic Long. Lat.		100$\operatorname{Cos} \mathrm{~A}$ (16)	Corr. Redshift (17)	Note No. (18)	
				Long. (14)										(15)					
		38 Apr 50 Feb	$\begin{array}{r} 2.8 \\ 16.2 \end{array}$		6.5 3.5	IES	$\begin{aligned} & 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 6^{\prime} \\ & 6 \end{aligned}$	$\begin{array}{r} 65^{\circ} \\ 150^{*} \end{array}$	$\begin{aligned} & 4^{*} \\ & \underline{4}^{*} \end{aligned}$	$\begin{aligned} & 5 \frac{1}{2} \\ & 7 \frac{1}{2} \end{aligned}$		$+\quad 3$ $+\quad 9$						71
$\begin{gathered} 3034 \\ \text { (M82) } \end{gathered}$	Irr	39 Mar	15.2	4.0	IES	6	6	65*					+ 275	108°	$+42^{\circ}$	+45	+ 410	72	
		46 Apr	24.3	6.0	IIaO	6	6	65*										73	
		46 Apr	27.3	6.0	IIaO	6	6	65*										74	
		46 Apr	28.3	6.0	IIaO	4	6	65*										75	
3055	Sc	39 Apr	20.3	5.0	IES	8	3	72*	5*	6	139		+ 1913	203	+44	-61	+ 1730	76	
3065	So	47 Feb	25.2	4.0	II O	5	6	155	4*	$5 \frac{1}{2}$	67		+ 2051	105	+40	+50	+ 2201	77	
3066	Sb	47 Feb	25.2	4.0	IIaO	5	6	155	4*	$4 \frac{1}{2}$	84		+ 2132	105	+40	+50	+ 2282		
3077	Irr	36 Dec	22.5	5.0	IES	6	1	90	7*	$6 \frac{1}{2}$	39		- 158	109	+42	+44	- 26	78	
3079	Sc	50 May	7.3	4.5	IIaO	4	3	168*	$\begin{aligned} & 4^{*} \\ & 4^{*} \end{aligned}$	$\begin{aligned} & 4 \frac{1}{2} \\ & 4 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 83 \\ & 79 \end{aligned}$	(+359)	+ 1171	126	+50	+21	+ 1234	79 80	
3109	Irr	46 Jan	28.4	3.0	IIaO	6		111	$1 \dagger$	1	.	- 19	+ 441	231	+24	-91	+ 168	81	
		46 Jan	31.4	3.0	IIaO	6	6	90	$1 \dagger$	1		+ 19							
3145	Sb	49 Apr	1.2	4.5	IIaO	6	2	20*	4*	$5 \frac{1}{2}$	114		+ 3855	221	+35	-80	+ 3615		
Sex Dw	Irr	$\begin{aligned} & 47 \mathrm{Jan} \\ & 47 \mathrm{Feb} \end{aligned}$	$\begin{array}{r} 28.4 \\ 20.4 \end{array}$	$\begin{aligned} & 3 \pm \pm \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { ПaO } \\ & \text { ПаО } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 2 \dagger \\ & 3 \dagger \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 37 \\ & 18 \end{aligned}$	$\begin{array}{r} +46 \\ +40 \end{array}$	+ 436	215	+40	-72	+ 220	83	
3159	[E2]	54 Feb	5.5	4.5	HaO	4	2	82	3	$4 \frac{1}{2}$	179		+ 6950	150	+57	-05	+ 6935	84	
3161	[E3]	54 Feb	5.5	4.5	IIaO	4	2	82	4*	$4 \frac{1}{2}$	56		+ 6204	150	+57	-05	+ 6189	84	
3163	[E1]	54 Feb	9.5	5.0	IIaO	4	2	90	4	5	115		+ 6245	150	+57	-05	+ 6230	85	
3169	Sa	54 Jan	10.4	3.5	IIaO	4	2	50*	7*	7	76		+ 1312	207	+47	-60	+ 1132		
3184	Sc	40 Mar	13.3	8.0	I 1200	6	1	90	2	2	42		+ 395	145	+57		+ 395	86	
3190	Sa	41 Jan 41 Jan	$\begin{aligned} & 29.5 \\ & 30.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { I } 1200 \\ & \text { I } 1200 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 116^{*} \\ & 116^{*} \end{aligned}$	$\begin{aligned} & 4 \\ & \underline{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 106 \\ 41 \end{array}$	$\begin{array}{r} -68 \\ +\quad 57 \end{array}$	+ 1380	180	+56	-32	+ 1284		
3198	Sc	48 Jan	11.4	6.0	IIaO	5	6	42*	5*	4	87		+ 649	138	+56	+07	+ 670		
3239	Irr	47 May	14.2	3.0	IIaO	5	3	125	$\begin{aligned} & 2^{*} \\ & 8 \dagger \end{aligned}$	$7^{\frac{1}{2}}$	$\begin{aligned} & 11 \\ & 60 \end{aligned}$	$\begin{array}{r} -64 \\ +\quad 14 \end{array}$	+ 880	189	+56	-39	+ 763	87 88	
*2574	[Irr]	$\begin{aligned} & 47 \mathrm{Feb} \\ & 47 \mathrm{Feb} \end{aligned}$	$\begin{aligned} & 14.3 \\ & 21.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\underset{\mathrm{\Pi aO}}{\mathrm{\Pi aO}}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 90 \\ 131 \end{array}$	$\begin{array}{r} 10 \dagger \\ 10 \dagger \\ 6 \dagger \end{array}$	$\begin{aligned} & 8 \\ & 8 \\ & 5 \frac{1}{2} \end{aligned}$	69 30 64	$\begin{aligned} & +44 \\ & -24 \\ & -30 \end{aligned}$	+ 28	106	+44	+46	+ 166	89 90 90	
3259	Sb	48 Feb	15.5	4.0	HaO	5	3	18*	5*	6	77		+ 1866	110	+47	+39	+ 1983		
3294	Sc	48 Jan	14.4	5.0	IIaO	5	2	87	$\stackrel{3}{6 \dagger}$	$5^{2 \frac{1}{2}}$	$\begin{array}{r} 116 \\ 59 \end{array}$	$\begin{array}{r} 53 \\ +\quad 27 \end{array}$	+ 1469	150	+61	-04	+ 1457	91 92	
3310	Sb	36 Mar 37 Dec	26.3 3.5	3.0 2.5	IES	4 6	$\begin{aligned} & \frac{1}{2} * \\ & 1 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 7^{*} \\ 10^{*} \end{array}$	$10^{6 \frac{1}{2}}$	$\begin{aligned} & 142 \\ & 107 \end{aligned}$	$\begin{array}{r} -91 \\ +\quad 59 \end{array}$	+ 998	124	+55	+21	+ 1061	93	
		37 Dec	3.5	2.5	IES	6													
3319	SBc	49 Apr	27.3	5.0	IIaO	4	2	135	$9 \dagger$ $8 \dagger$	$77^{\frac{1}{2}}$	39 44	$\begin{aligned} & (-191) \\ & (-208) \end{aligned}$						94 95	
		54 Apr	30.3	$5 \pm$	IIaO	4	3	40*	5*	5	72		+ 826	144	+61	+01	+ 829	96	
3338	Sc	48 Feb	13.3	5.0	IIaO	5	3	90*	3	$3 \frac{1}{2}$	90		+ 1330	200	+58	-43	+ 1201		
3359	SBc	48 Mar	1.2	5.0	IIaO	5	2	14*	$\begin{aligned} & 4 * \\ & 2 \dagger \\ & 3 \dagger \\ & 3 \dagger \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 3 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 68 \\ & 37 \\ & 85 \\ & 56 \end{aligned}$	$\begin{aligned} & (+35) \\ & (+134) \\ & (-100) \end{aligned}$	+ 1008	110	+50	+37	+ 1119	97 98 99 100	
3370	Sc	48 Mar	8.2	3.5	па二	5	3	150*	5*	$4 \frac{1}{2}$	78		$+1400$	195	+61	-37	+ 1289		
3389	Sc	48 Mar	3.4	4.0	HaO	5	3	96*	6*	$5 \frac{1}{2}$	54		+ 1334	203	+59	-44	+ 1202	101	
$\begin{aligned} & 3395 \\ & 3396 \end{aligned}$	Sc $\begin{aligned} & \mathrm{SC} \\ & \mathrm{Sc} \end{aligned}$	48 Mar	3.2	3.0	IIaO	5	3	70	4**	$\begin{aligned} & 4 \\ & 5 \frac{1}{2} \end{aligned}$	30 99		$\begin{aligned} & +1751 \\ & +1643 \end{aligned}$	161	+64	-12	$\begin{aligned} & +1715 \\ & +1607 \end{aligned}$	102	
3403	Sc	48 Feb	16.4	5.5	HaO	5	3	73*	4*	4	55		+ 1244	100	+42	+52	+ 1400	103	
3419	[So]	48 Apr	1.3	2.0	HaO	5	2	90	7	$5 \frac{1}{2}$	127		+ 2982	201	+60	-42	+ 2856	104	
3430	Sc	48 Mar	2.2	5.0	HaO	5	3	32*	4*	3	185		+ 1742	162	+65	-12	+ 1706		
3432	Sc	41 Jan	31.5	4.8	I1200	6	6	41*	7*	$6 \frac{1}{2}$	75		+ 609	154	+65	-07	+ 588	105	

Table V. Continued.

Table V. Continued.

$\begin{gathered} \text { NGC }{ }_{\text {FIC }} \\ \text { (1) } \end{gathered}$	Neb. Type (2)	Dat Mean (3)		Exp. Hr. (4)	Emul. Type (5)	W (6)	$\begin{aligned} & \text { Slit } \\ & \mathrm{L} \\ & (7) \end{aligned}$	PA (8)	No. (9)	Lines Wt. (10)	$\begin{aligned} & \mathrm{AD} \\ & (11) \end{aligned}$	Pl. Res. (12)	$\begin{gathered} \text { Redshift } \\ c \cdot \Delta \lambda / \lambda_{0} \end{gathered}$ (13)	Gala Long. (14)	ctic Lat. (15)	$\begin{gathered} 100 \\ \operatorname{CosA} \\ (16) \end{gathered}$	Corr. Redshift (17)	Note No. (18)
									$5 \dagger$	5	73	- 33						155
4781	Sc	47 May	22.3	4.0	IIaO	$5{ }^{\prime \prime}$	3^{\prime}	118*	3*	$3 \frac{1}{2}$	67		+ 895	$273{ }^{\circ}$	$+52^{\circ}$	-48	+ 751	
4789	[E5]	$\begin{aligned} & 52 \mathrm{Feb} \\ & 53 \mathrm{Apr} \end{aligned}$	$\begin{array}{r} 25.4 \\ 6.4 \end{array}$	$\begin{aligned} & 2.0 \\ & 2 \pm \end{aligned}$	$\begin{aligned} & \mathrm{IIaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	1	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \frac{1}{2} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 73 \\ & 77 \end{aligned}$	$\begin{array}{r} 69 \\ +\quad 69 \\ -160 \end{array}$	+ 8372	123	+88	+01	+ 8375	156
4793	Sc	49 May	4.4	5.0	IIaO	5	2	55*	$6 \dagger$	6	68		+ 2529	30	+87	+05	+ 2544	157
4848	[pec]	51 Jun	3.3	5.0	IIaO	5	2	150*	3*	4	97		+ 7209	67	+87	+05	+ 7224	
3949	[So]	51 Jun	7.3	5.0	山аO	5	2	74	2	2	14		+ 7526	8	+87	+04	+ 7538	158
Anon	[pec]	51 Jun	27.3	4.0	IIaO	4	1	90	1*	..	.		+13457	62	+84	+10	+13487	159
4861	Irr	47 Jun	18.3	2.5	HaO	5	1	64	$11 \dagger$	$11 \frac{1}{2}$	65		+ 793	70	+83	+12	+ 829	160
4889	E4	41 Mar	7.5	4.0	I 1200	6	1	90	3	$2 \frac{1}{2}$	152		+ 6585	5	+86	+04	+ 6597	
4900	Sc	47 May	16.3	3.5	па二	5	2	141	9*	$7 \frac{1}{2}$	69		+ 1054	279	+64	-32	+ 958	161
4902	SBb	48 Feb	13.5	4.0	IIaO	5	3	67	4	$5 \frac{1}{2}$	70		+ 2758	276	+47	-51	+ 2605	162
4040	[Spec]	51 Jun	3.3	5.0	IIaO	5	2	150	5*	$4 \frac{1}{2}$	131		+ 7515	11	+87	+04	+ 7527	
4907	SBb	$\begin{aligned} & 51 \text { May } \\ & 51 \text { May } \end{aligned}$	$\begin{array}{r} 9.3 \\ 30.3 \end{array}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{IIaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 31 \\ & 31 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$2 \frac{1}{2}$	37	$\begin{array}{r} +100 \\ -\quad 40 \end{array}$	+ 5868	12	+86	+05	+ 5883	163
4911	Sb	51 May	28.8	10.0	IIaO	5	2	90	4	$5 \frac{1}{2}$	48		+ 8006	6	+86	+05	+ 8021	
4921	Sa	51 May	7.3	5.5	HaO	4	2	90	5	$4 \frac{1}{2}$	51		+ 5459	7	+86	+05	+ 5474	
Anon	[Sc]	47 May	13.3	4.0	IIaO	5	3	105	$2 \dagger$	3	56		+ 1350	279	+59	-37	+ 1239	164
4952	[E5]	53 Apr	7.2	3.0	IIaO	5	1	30	3	$2 \frac{1}{2}$	32		+ 5865	21	+85	+07	+ 5886	
4995	Sb	47 May	18.3	4.0	IIaO	5	2	80*	6*	$7 \frac{1}{2}$	66		+ 1835	281	+55	-40	+ 1715	
5005	Sb	50 Apr	19.3	7.0	IIaO	4	6	70*	6*	$7 \frac{1}{2}$	46		+ 1041	62	+79	+19	+ 1098	
5033.	Sc	46 May	7.4	3.0	IIaO	6	3	0*	5*	6	46	-	+ 908	58	+78	+20	+ 968	165
$\begin{aligned} & 5055 \\ & (\mathrm{M} 63) \end{aligned}$	Sb	38 May 50 Apr 50 May	$\begin{array}{r} 24.8 \\ 21.2 \\ 9.3 \end{array}$	$\begin{aligned} & 7.0 \\ & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \text { IES } \\ & \text { IIaO } \\ & \text { IIaO } \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & 104^{*} \\ & 104 * \\ & 104^{*} \end{aligned}$	$\begin{aligned} & \frac{5 *}{4^{*}} \\ & 5^{*} \end{aligned}$	$\begin{aligned} & 5 \frac{1}{2} \\ & 5^{2} \\ & \end{aligned}$	$\begin{aligned} & 75 \\ & 38 \\ & 47 \end{aligned}$	$\begin{array}{r} -26 \\ -50 \\ +\quad 67 \end{array}$	+ 538	68	+74	+26	+ 616	
5061	Eo	47 May	17.3	1.0	IIaO	5	2	148	4	$5 \frac{1}{2}$	46		+ 2065	279	+35	-59	+ 1888	
5068	SBc	47 May	22.3	4.0	IIaO	5	2	155	4*	4	164		+ 570	280	+40	-54	+ 408	166
5198	E1	40 Jun	4.3	3.8	I 1200	8	1	90	3	$2 \frac{1}{2}$	36		+ 2562	68	+69	+35	+ 2667	
5204	Sc	47 Jun	19.3	4.0	HaO	5	3	71	$6 \dagger$	$6 \frac{1}{2}$	48		+ 272	80	+58	+48	+ 416	167
5248	Sc	47 Feb	20.6	1.5	IHaO	5	2	90	6	6	33		+ 1232	306	+67	-13	+ 1193	168
5301	[Sc]	50 Apr	18.3	6.0	IIaO	4	6	150*	3	3	53		+ 1702	60	+68	+37	+ 1813	169
5308	So	49 Jun	28.3	4.0	IIaO	4	3	60*	3	$4 \frac{1}{2}$	14		+ 2035	77	+55	+53	+ 2194	
HoIV	[Irr]	53 May	12.3	5.5	HaO	5	3	29*	$5 \dagger$	6	21		+ 149	69	+61	+47	+ 290	170
5363	Irr	51 Apr	8.4	6.5	IIaO	4	2	143*	6*	$6 \frac{1}{2}$	72		+ 1138	310	+62	-12	+ 1102	
5371	Sb	40 May 51 July	$\begin{aligned} & 10.4 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{I} 1200 \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 * \end{aligned}$	$6^{2 \frac{1}{2}}$	$\begin{array}{r} 147 \\ 34 \end{array}$	$\begin{array}{r} +117 \\ -\quad 49 \end{array}$	+2633	45	+70	+34	+ 2735	
5468	Sc	$\begin{aligned} & 47 \text { Jun } \\ & 48 \text { May } \end{aligned}$	$\begin{array}{r} 16.3 \\ 5.4 \end{array}$	$\begin{aligned} & 3.5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{IIaO} \\ & \mathrm{IIaO} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} 12 \\ 5 \end{array}$	$\begin{aligned} & 1 \dagger \\ & 5 \dagger \\ & 4 * \\ & 3 \dagger \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \frac{1}{2} \\ & 3 \\ & 3 \end{aligned}$	$\begin{array}{r} \ddot{88} \\ 73 \\ 106 \end{array}$	$\begin{aligned} & +19 \\ & +78 \\ & +27 \\ & -104 \end{aligned}$	+ 2856	305	+51	-22	+ 2790	171 172 173 174
5473	SBo	49 Jun	29.3	4.0	IIaO	4	3	80	3	$4 \frac{1}{2}$	79		+ 2141	66	+59	+50	+ 2291	175
5474	Sc	$\begin{aligned} & 40 \text { May } \\ & \text { May } \end{aligned}$	$\begin{aligned} & 12.3 \\ & 27.6 \end{aligned}$	$\begin{array}{r} 7.0 \\ 8.5 \end{array}$	$\begin{aligned} & \text { I } 1200 \\ & \text { I } 1200 \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 3^{*} \\ & 4^{*} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 22 \\ 106 \end{array}$	$\begin{aligned} & -30 \\ & +\quad 26 \end{aligned}$	+ 247	65	+60	+49	+ 394	176
5585	Sc	42 Apr	18.3	7.0	103aO	6	2	118	4*	$6 \frac{1}{2}$	139		+ 304	65	+57	+54	+ 466	177
5533	Sb	47 Feb	21.5	4.0	IIaO	5	2	90	9	8	71		+ 2390	49	+62	+47	+ 2531	
5653	Sc	52 July	28.2	2.5	IIaO	5	3	90	6*	$4 \frac{1}{2}$	118		+ 3557	16	+67	+30	+ 3647	178

Table V. Continued.

Table V. Continued.

NOTES

Note No.	$\underset{* \mathrm{IC}}{\mathrm{NGC}}$	
I.	Anon	Faint field nebulae observed in connection
		with a search for possible far outlying globu-
		lar clusters associated with the Andromeda
		nebula (Mayall and Eggen 1953) ; positions
		for 1950 are:
		[E2]: $0^{\text {h }} 23^{\mathrm{m}} 14.4,+40^{\circ} 40^{\prime} \cdot 7$ (Plate Va) ;
		[EI]: 026 28.0, +39 12.I (Plate Vb).
2.	no	Faint field nebulae observed in connecti

for emission patches associated with the Andromeda nebula (Mayall 1950), since Baade had found them to be relatively blue on color-filter photographs taken in his survey of the spiral for emission objects (Baade 1945 and 1951); the object of smaller redshift carries Baade's discovery designation in M3I as "a" s pr ext $\mathrm{I}_{2} / \mathrm{II}_{2}$, the one of larger redshift, "b" s pr ext $\mathrm{I}_{2} / \mathrm{II}_{2}$; for the

Note No.	${ }_{* \mathrm{IC}}^{\mathrm{NGC}}$	
		latter only a fairly strong 3727 could be
		measured on the spectrograms at a wave
		length of about 4065A (Plate IVa) ; en-
		hanced auroral line at 3914; positions for
		1950 and identifying configurations are
		33.8 ; brighter star $55^{\prime \prime}$ NE ; actually "a",
		consists of two Sb's in contact; Nebula "b,"
		$\mathrm{o}^{\mathrm{h}} 35^{\mathrm{m}}$ 08s.9, $+39^{\circ} 38^{\prime} .3$; fainter star $18^{\prime \prime}$
		NW, brighter star $58^{\prime \prime}$ W, and fainter, dif-
		fuse nebula $48^{\prime \prime}$ SE.
3.	185	Strong auroral spectrum superimposed.
4.	205	Hydrogen lines unusually strong (Plate IVb).
5.	214	Only H and K measured.
6.	224	Nucleus, drifted length of slit for all plates.
7.	224	On major axis, I4'.o s pr nucleus; absorption
		lines in unresolved nebulosity.
8.	255	Absorption lines broad and indistinct.
9.	278	Strong hydrogen absorption lines.
10.	*79	Brightest member in group discussed by Shapley and Boyd (1940).
11.	428	Only 3727 in two emission patches $42^{\prime \prime}$ NW
		and $48^{\prime \prime}$ SE of center, on major axis.
12.	604	Brightest emission patch in M33; plates
		taken to check earlier velocity that indicated
		departure from rotational velocity curve
		(Mayall and Aller 1942).
13.	864	Narrow nuclear spectrum; early-type continuum, faint H and K , with $3727, H \delta, H \gamma$,
		and $H \beta$ in emission (Plate IVc).
14.	Anon	Brightest (n pr) of close pair of "disrupted
		galaxies" described by Zwicky (letter Oct.
		16, 1953) ; redshift measured from emission
		lines $H \beta, H \gamma$, and 3727, the latter also being
		present in the fainter (sf) component; posi-
		tion for 1950 is $2^{\text {h }} 36^{\mathrm{m}} \cdot 4,+18^{\circ} 9^{\prime}$.
15.	1052	Spectrum previously described (Mayall
		(1936) in connection with performance of
16.	1068	Emission spectrum (Plate IVd); broad,
		bright bands studied spectrophotometrically
		by Seyfert (1943) ; apparent absence of ab-
		sorption H line of $C a \mathrm{II}$, although K line is
		present, is due to superposition of emission
		from the longward component of the wide
		pair 3868 and 3967 of [Ne III].
17.	1073	Slit on central bar.
18.	1097	North-preceding part of double nucleus.
19.	1097	South-following part of double nucleus.
20.	II 87	Nuclear absorption lines of poor visibility;
		$H \beta$ and $H \gamma$ in emission (Plate IVe).
21.	1300I 33 I ,	Slit on bar.
		1332 Slit simultaneously on both nebulae.
23.	I 359	Slit on bar and two emission patches; strong emission spectrum (Plate IVf).
24.	1385	Early-type absorption spectrum, with $H \beta$ in emission.
25.	*342	Early-type continuous nuclear spectrum
		with $H \beta$ in emission and absorption lines
		nearly invisible; the plate listed is the only
		one of four suitable for measurement of redshift; the others are:
		194I Sept. 29.4, $4^{\text {h }}$, Ilf, $6^{\prime \prime} \times \mathrm{I}^{\prime}, 90^{\circ}$; nuclear continuous spectrum that shows only $H \beta$ in weak emission.
		194 I Nov. 19.3, $8^{\text {b }}$, Ilf, $6^{\prime \prime} \times 3^{\prime}, 98^{\circ}$) Slit on
		1941 Nov. 22.3, $6^{\text {h }}$, Ilf, $6^{\prime \prime} \times 6^{\prime}, 35^{\circ}$ Stic
		nucleus and oriented to cover several
		condensations in the spiral ; no emis-
		sion lines show on these plates.
		The probable absence of condensations hav-
		ing strong emission lines is also indicated by
		a slitless grating spectrogram, kindly taken

Note No.	$\begin{gathered} \text { NGC } \\ \text { IC } \end{gathered}$	
		by G. H. Herbig, which included the whole
		of this unusually large spiral (Shapley and
		Seyfert 1935).
26.	1518	Early-type spectrum (Plate IVg) with broad
		hydrogen absorption lines; one part of neb-
		ula shows faint emission at $H \beta$ and the
		[O III] chief nebular lines (N_{1} and N 2) ; slit
		oriented on brightest part, which may be a
		making a small angle with the major
27.	I 569	Emission spectrum; preliminary result pub-
		lished (Mayall 1935).
28.	1637	Only H and K in nuclear spectrum.
29.	1640	Slit on bright central bar for both plates.
30.	*391	Only 3727 ; observed to determine whether galactic or extragalactic (Baade 193I).
3 I .	1744	Slit on central bar.
32.	I 888 ,	889 Slit on both members of close pair;
		spectra measured as of one object since lines
		in both nebulae have very nearly the same redshift (Plate IVh).
33.	1964	Has a foreground star $3^{\prime \prime}$ following nucleus
		(Hubble, letter Jan. 9, 1947).
34.	2139	Slit on bright central bar; fairly strong 3727
		and night sky spectrum (Plate IVi).
35.	2146	Spectrum reproduced by G. de Vaucouleurs (1950), who used inclination of 3727 to
		determine sense of rotation with respect to spiral structure.
36.	2276	Slit oriented through nucleus and emission
		patch $42^{\prime \prime} \mathrm{NW}$ (Plate IVj) ; the smaller red-
		shift is from absorption lines in the nucleus,
		the larger from emission lines in the patch;
		the difference of IoI $\mathrm{km} / \mathrm{sec}$ probably is
		entirely accidental and is not due to rota-
		tion, because the spiral is nearly normal to the line of sight.
37.	2300	The inclusion of this elliptical nebula with
		resolved nebulae (Hubble 1936b, Table II)
		was due to a misidentification; the object
		listed by Hubble is 2276 .
38.	2366	Irregular nebula in M8x group investigated
		by Holmberg (1950); brightest emission
		patch in spr end; preliminary result published (Mayall 1935).
39.	2475	Slit on both members of close pair 2474-75;
		weak exposure with clouds shows only spectrum of brightest component in measurable
		strength.
40.	2500	Slit on nucleus and double condensation $57{ }^{\prime \prime}$
		SW.
41.	2500	Slit on nucleus and double emission patch
		$33^{\prime \prime}$ NE.
2.	2523	Slit on bright central bar.
43.	2525	Slit on nucleus and through several very
		faint condensations, none of which show emission lines.
44.	2537	Brightest emission patch approximately $22^{\prime \prime}$
		NW of center. .
45.	HoII	Brightest emission patch approximately in
		center of system; pB star $20^{\prime \prime} \mathrm{SE}$; nebula is a dwarf in the M8I group described by
		Holmberg (I950).
46.	HoII	Row of three faint emission patches near
		SE side of system; star $30^{\prime \prime} \mathrm{NW}$ of central patch (Plate IVk).
	2633	Nuclear spectrum, absorption lines only.
48	2633	Slit on bar; nuclear spectrum of absorption
		lines plus 3727. . .
49.	2633	Faint emission region in arm that crossed
		slit $55^{\prime \prime} \mathrm{N}$ of nucleus; only 3727 measurable and, since the nuclear spectrum lines

Note No.	${ }_{*}^{\mathrm{NGC}}$
50.	*2389
51.	2646
52.	268I
53.	2715
54.	2776
55.	2805
56.	2835
57.	2835
58.	2835
59.	2835
60.	2835
61.	2903

are inclined, its velocity was not used in the mean redshift.
Spectrum confused with faint foreground star that is close to nuclear region in which both absorption and emission lines occur.
Absorption lines broad and faint.
Plate overexposed; early-type spectrum with strong hydrogen lines.
Absorption lines broad and faint.
Slit on nucleus and through faint condensation $65^{\prime \prime} \mathrm{NE}$, which shows no emission lines. from area where slit crossed spiral arm approximately $35^{\prime \prime} \mathrm{W}$ of nucleus; nebula is among those listed by Holmberg (1950) as possible members of the M8I group; the redshift rules out membership.
Nucleus, absorption $H \delta$ and $\mathrm{H}+H \epsilon$; redshift is mean of all measures (Plate IV1).
835 Emission patch I $35^{\prime \prime}$ SW nucleus.
Emission patch $40^{\prime \prime}$ SW nucleus (3727 only). Emission patch $60^{\prime \prime}$ NE nucleus.
Emission patch I $35^{\prime \prime}$ NE nucleus.
Hydrogen absorption lines wide and strong; faint condensation $7!8 \mathrm{SW}$ of nucleus on major axis shows no emission lines on a plate taken 1950 Mar I3.3, $6^{\text {h }}$, IIa-O, slit $4^{\prime \prime} \times 2^{\prime}$ in position angle 130°.
62. 295
63. 297
64. 2976
65. 2976
66. 3027
67. 3027 Faint emission patch $95^{\prime \prime} \mathrm{NW}$; faint foreground star almost superimposed; only 3727.
68. 3027
69. 3027
70. 3027 Faint emission patch about $110^{\prime \prime}$ SE where
71. 303I Plates by H. W. Babcock; that of Apr 2.8 was taken with the slit on the minor axis.
72. 3034 Redshift is the result of a large number of measurements of velocity in different points in the nebula, made for investigation of its rotation; the value listed gives a symmetrical distribution of differential velocities in the nebula; the detailed measurements will be published separately.
73. 3034 Slit centered on SW end of nebula; strong auroral spectrum recorded.
Slit centered on NE end of nebula.
Taken with the narrowest slit, this plate shows to best advantage the uncommonly strong hydrogen absorption lines, which indicate a spectral type around A5 (Plate IVm).
76. 3055 Weak exposure that shows $H \beta, H \gamma$, and 3727 as emission features.
$\underset{\text { Note }}{\text { No. }} \quad{ }_{\text {* }}^{\text {IC }}$
77. 3065 Exposed simultaneously with 3066 ; there is some indication that a stronger exposure might show this wide pair connected by 3727 , which is present in considerable intensity throughout both nebulae.
78. 3077 Irregular nebula in M8I group studied by Holmberg (1950); early-type spectrum with $\mathrm{Ni}, \mathrm{N} 2, H \beta, H \gamma$, and 3727 in emission.
79. 3079 Nuclear region, with very broad, poorlydefined absorption lines, probably inclined by rotation.
80. 3079 Condensation approximately $60^{\prime \prime}$. SE that shows 3727 as the only faint emission; there probably is a real difference in velocity between the nucleus and this condensation, but the lines are so poor and difficult to measure that the amount is quite uncertain.
81. 3109 Only 3727 in several very faint emission patches (Plate Vd; I, 2, and 3).
82. 3109 Only 3727 in two very faint emission patches (Plate Vd; 2 and 3).
83. Sex dw Faint emission patch in dwarf system found by Zwicky (1942), but previously mentioned by Hubble (I94I) and by Baade (1940). Patch observed is on SE edge of system and may be identified by proximity to a faint, probably foreground, star approximately Io ${ }^{\prime \prime}$ NW.
84. 3I59, 3I6I Exposed simultaneously; faint absorption lines in 3I6I; the redshifts of these two nebulae and of 3163 indicate membership in the group including 3158 as the brightest object.
85. 3I63 Plate shows trace of spectrum, with approximately the same redshift, of a faint companion $15^{\prime \prime}$ E.
86. 3 I 84 Weak plate, only H and K measurable in absorption spectrum of nucleus.
87. 3239 Slit on central region, possibly nucleus, and bright emission patch; two lines measured are 3727 and emission $H \beta$.
88. 3239 Brightest emission patch $60^{\prime \prime}$ SE of central condensation (nucleus?), and $50^{\prime \prime} \mathrm{E}$ of a fairly bright foreground star.
89. *2574 Brightest emission patch in system, whose redshift indicates that it is a dwarf member of the M8I group studied by Holmberg (1950) ; plate also shows, at extreme end of slit, emission spectrum of fainter patch $30^{\prime \prime}$ E of bright patch.
90. *2574 Slit on brightest patch and another faint one $33^{\prime \prime}$ SE.
91. 3294 Slit on nucleus and brightest emission patch. 92. 3294 Brightest emission patch $35^{\prime \prime} \mathrm{W}$ of nucleus; difference in redshifts probably not significant for rotation, because patch is nearly equidistant from major and minor axes.
93. 33IO Early-type continuum with strong 3727, and ${ }_{S} \gamma$ and $H \beta$ in emission.
94. 3319 Slit on two emission patches SW of central bar; larger and brighter of two patches.
95. 33 I9 Smaller and fainter of two patches.
96. 33I9 Slit on central bar; fairly strong, broad hydrogen absorption lines; difference in velocity between bar and patches probably due to rotation.
97. 3359 Nucleus in patchy central bar; fairly strong hydrogen absorption lines.
98. 3359 Emission patch near end of bar approximately $30^{\prime \prime} \mathrm{S}$ of nucleus. Emission patch approximately $10^{\prime \prime} \mathrm{N}$ of nucleus.
\vdots
\vdots
0
0
0
-1
$\begin{array}{cc}\text { Note } & \text { NGC } \\ \text { No. } & \\ \text { *IC } \\ \text { Io. } & 3359\end{array}$
IOI. 3389
102. 3395, 3396 Slit simultaneously on both nebulae; strong, early-type continuum with numerous emission lines (Plate IVn).
103. 3403 Very broad faint absorption lines.

IO4. 3419 Strong hydrogen absorption lines and early-
105. 3432 Very strong 3727 with early-type continuum, and $H \gamma$ and $H \beta$ in emission (Plate IVo).
io6. 3510 Broad, poor absorption lines.
107. 3512 Absorption lines of poor visibility (Plate IVp).
108. 3516 This nebula is one of the uncommon, highly concentrated type whose nucleus shows a spectrum of very broad bright bands; it is one of those studied spectrophotometrically by Seyfert (1943).
109. 3556 Redshift is for approximate center of system; $H \beta$ and $H \gamma$ present in faint emission.
110. 3628 Slit on brighter nuclear region north of dark lane.
iII. 3646 Only H and K in nucleus.
112. 3646 Emission $H \beta$ and 3727 in emission patch $70^{\prime \prime}$ SW of nucleus; patch fell on extreme end of slit, so difference in redshift is not very reliable; nevertheless, the SW end probably is approaching with respect to center.
113. 3672 Faint nebular spectrum confused with strong night-sky spectrum; redshift uncertain.
114. 3887 Nucleus only; absorption lines are faint and redshift is uncertain.
115. 3938 Only H and K in nucleus; slit across nucleus and two outlying emission patches (Plate IVq).
116. $3938{ }^{2} \gamma$ and 3727 in emission patch $90^{\prime \prime} \mathrm{SW}$ nucleus.
117. 3938 Only 3727 in emission patch $130^{\prime \prime}$ NE of nucleus.
118. 3990 On slit simultaneously with 3998; faint auroral spectrum superimposed.
119. 3995 Early-type continuum with strong 3727; $H \beta$ and 3868 [$N e \mathrm{III}$] in faint emission; absorption lines of poor visibility.
120. 4030 Slit on nucleus and emission patch in arm $40^{\prime \prime} \mathrm{SE}$ of center; redshift is mean of all lines measurable in nucleus and patch, since slit was oriented only about 30° from minor axis; spectrum is progressively out of focus toward $H \beta$ because of presence of emulsion lump at end of plate.
121. 4064 Slit on bright central bar; broad and faint absorption lines.
122. 4088 Nuclear region; absorption lines broad and faint.
123. 4088 Condensation in arm approximately $1 \mathbf{1 o}^{\prime \prime}$ NE of nucleus; difference in velocity probably is real and due to rotation, but amount is uncertain because of poor quality of lines.
124. 4102 Slit along bright, elongated central region.
125. 4II6 Slit along bright central bar, which makes only a small angle with major axis; broad, nearly invisible absorption lines, with $H \beta$ and H_{γ} in emission in small, bright nucleus near center of bar.
126. 415 I This nebula is the brightest of those uncommon, highly concentrated spirals whose nuclei show emission bands. It has been exten-

Note NGC
No. \quad NIC
sively observed; for its principal spectral features (Mayall 1934), for a possible difference in redshift determined by a grating (Adams and Humason 1936), for a check on the constancy of $\Delta \lambda / \lambda_{0}$ with λ_{0} (O. C. Wilson 1949), and for detailed emission-band profiles (Seyfert 1943).
127. 4178 Bright central bar; redshift from absorptionline spectrum.
128. 4178 Emission patch approximately 100" $^{\prime \prime} \mathrm{SW}$ of center of bar; difference in velocity between bar and patch is so small that its interpretation as rotational motion is uncertain.
129. 4194 This highly concentrated peculiar spiral, observed with three-prism dispersion, shows a strong, early-type continuum with broad hydrogen absorption lines beginning with $H \delta$; emission features are: strong 3727, and much weaker 5006 and 4958 [O III] and $H \beta$ and $H \gamma$.
I30. 4212 Slit on nucleus and condensation $40^{\prime \prime} \mathrm{NE}$, which appears to be a foreground star projected on faint nebulosity of the spiral.
131. 4214 Slit on two brightest patches in bright central bar; strong emission-line spectrum (Plate IVr).
132. 4236 Brightest emission patch in SE end, approximately $5!5$ from center of system; redshift may be affected by rotation.
I33. 4244 Redshift is for approximate center of system.
I34. 4293 Only H and K measured; auroral spectrum superimposed.
I35. 440I Brightest of two emission patches approximately $125^{\prime \prime}$ SE of center of system, which is catalogued as 4395 ; the two lines measured are 3727 and $H \gamma$.
I36. 440I Fainter of two emission patches approximately $50^{\prime \prime}$ SW of brighter one.
Slit on nucleus and ray structure NW; scale of Crossley almost too small for good separation of spectra of nucleus and ray; also, the ray continuous spectrum is so narrow that it is uncertain whether there are any faint absorption features that have the same redshift as the nucleus; however, the ray spectrum is different in not showing 3727 ; the structure and Humason's spectra of this nebula have been discussed by Baade and Minkowski (1954) in connection with its identification as a radio source.
138. 4517 Slit on two emission patches on north side of central part of dark lane; brighter and preceding of two.
139. 4517 Fainter and following of two; a bright foreground star is $20^{\prime \prime} \mathrm{NW}$ of this patch; 3727 may be faintly present, and slightly inclined, across full length of slit.
140. 4519 Slit on nucleus and several condensations, which do not show emission.
141. 4535 Nuclear absorption spectrum, with broad, faint lines.
142. 4536 Slit on nucleus and emission patch; redshift is for nucleus only, since rotation may affect result for patch.
143. 4536 Emission patch approximately $75^{\prime \prime} \mathrm{E}$ of nucleus.
144. 4567,4568 Slit simultaneously on both nebulae.
145. 4605 Strong 3727 and broad, faint absorption lines.

Note No.	$\underset{{ }^{\mathrm{NGC}}}{\mathrm{NGC}}$		Note No.	$\underset{*_{\mathrm{IC}}}{\mathrm{NGC}}$	
146.	4618	Slit on central bar; strong 3727 and conspicuous hydrogen absorption lines.	172.	5468	Emission patch 55" S of nucleus; stronger plate shows numerous emission lines.
147.	4643	Slit on bright central bar.	173.	5468	Nucleus.
148.		49 Slit simultaneously on both nebulae	174	5468	Emission patch $33^{\prime \prime} \mathrm{N}$ of nucleus.
		(Plate IVs)	175	5473	Slit on bright central bar, which is nearly the minor axis.
	465	ent nuclear region, which is at the SW end of the brighter half of the nebula.	I76.	5474	The redshift indicates that this nebula is a member of the Mior group studied by Holmberg (1950).
150.	4713	Nuclear region and involved faint emission patch approximately $15^{\prime \prime} \mathrm{E}$ of nucleus, which has broad hydrogen absorption lines of poor visibility.	177. 178.	5585 5653	Slit on nucleus and condensation $50^{\prime \prime} \mathrm{SE}$, which does not show emission lines. Nucleus and adjacent faint emission patch in this peculiar-type spiral noted by C. D.
I5I.	4736	Nuclear region; redshift from absorption lines and 3727 .	179.	5668	Shane on a 20 -inch astrograph plate. Slit on nucleus and condensation $35^{\prime \prime} \mathrm{NE}$,
152.	4736	Brighter part of spiral-arc ring $50^{\prime \prime}$ NW of nucleus; 3727 and emission $H \gamma$ and $H \beta$, which give velocities affected by rotation.	I80.	5678	which shows weak emission $H \gamma$ and 3727 . Absorption lines are of very poor visibility and were difficult to measure.
153.	4736	Fainter part of spiral-arc ring $60^{\prime \prime} \mathrm{SE}$ of nucleus; only 3727 , which gives an uncertain velocity affected by rotation.	18I.	5713	Slit on three condensations in center of nebula; the central one that shows 3727, $H \gamma$, and $H \beta$ in emission may be the nucleus;
I 54.	4775	Slit on nucleus and emission patch; redshift is average of measurements for both, since spiral is nearly normal to line of sight.			auroral spectrum superimposed (Plate IVu); early plate taken with wider slit and longer exposure is much inferior (Plate IVv).
15	477	Emission patch $30^{\prime \prime} \mathrm{S}$ of nucleus.	182.	5846	Slit on 5846 and close companion; 3727 very
156.	4789	Only H and K measured.			faint in 5846.
157.	4793	Emission in region of arm $30^{\prime \prime} \mathrm{NE}$ of nucleus; 3727, $H \gamma$ and $H \beta$ are the emission lines measured.	$\begin{aligned} & 183 . \\ & 184 . \end{aligned}$	$\begin{aligned} & 846 \\ & 850 \end{aligned}$	Companion $40^{\prime \prime} \mathrm{S}$ of 5846. Slit on faint central bar; 3727 very faint in nuclear spectrum.
I 58. I 59.	$\begin{aligned} & \text { *3949 } \\ & \text { Anon } \end{aligned}$	Only H and K measured. Humason and Zwicky (1947) blue object No. 46; strong early-type continuum with intense 3727 as the only measurable feature.	185.	5857	Slit on elongated nuclear region, which corresponds closely with major axis; lines may be inclined, but inclination is uncertain because of weak plate.
160.	4861	Bright emission patch in SW end of system; redshift may be affected by rotation.	186.	Anon	These two nebulae are in a cloud described by Shane and Wirtanen (1950); the 1950
161.	4900	Slit on short, bright and elongated nuclear region; faint absorption lines.			position for the two objects, which are separated by $123^{\prime \prime}$ in position angle 45°, is $15^{\text {b }}$
162	4902	Slit on central bar.			$20^{m} 4,+8^{\circ} 47^{\prime}$; the first one listed appears
163.	4907	Slit on central bar; weak plate, only G-band measured.			to be the brightest and largest in this clustered region of the cloud (Plate Ve, r), and
164.	Anon	Irregular spiral or possible dwarf system at $13^{\mathrm{h}} 2^{\mathrm{m}} \mathrm{O},-3^{\circ} \mathrm{I}^{\prime} 8^{\prime}$ (1950) noted by C. D. Shane on 20 -inch astrograph plate; weak spectrum, showing only 3727 and H_{γ} in measurable strength, is of emission patch			there are two fainter nebulae near it in the following relative locations: one $15^{\prime \prime} \mathrm{NW}$, the other $45^{\prime \prime} \mathrm{SW}$; preliminary values of the redshifts were quoted by Shane and Wirtanen (1950).
		approximately $60^{\prime \prime} \mathrm{S}$ of center of system; faint star $30^{\prime \prime}$ NE of patch.	187.	5970	Slit on central bar, which nearly corresponds to major axis.
165.	5033	Auroral spectrum superimposed.	188.	5982	Only H and K used for redshift; wide slit and dark plate obscure other lines.
166.	5068	Slit on short central bar; broad absorption lines on strong night sky spectrum (Plate IVt).	189	27	Brightest nebula in compact group described by Seyfert (195I).
167.	5204	Peculiar-type spiral in Mior group studied by Holmberg (1950); slit on two emission patches approximately $30^{\prime \prime} \mathrm{SW}$ of center of system; patches are $20^{\prime \prime}$ apart and nearly in line with a foreground star, which is distant $50^{\prime \prime}$ in position angle 70° from the nearer patch.	190. 191. 192.	$6027 a$ 6070 6070	Second brightest nebula in compact group described by Seyfert (I95I). Slit on nucleus and emission patch; redshift from nuclear spectrum of absorption lines. Emission patch $70^{\prime \prime}$ NE of nucleus; differenial velocity probably partly due to rotation, since patch is not far off major axis.
168.	5248	Broad absorption lines, fainter ones of poor visibility.	193.	6217	Nuclear spectrum of early-type continuum with absorption lines of very poor visibility;
169.	5301	Weak plate that shows broad, faint absorption lines whose measurement was uncertain.		6239	redshift from 3727 and the K line (Plate IVw). Redshift from strong emission spectrum of
170.	HoIV	Dwarf nebula in M8i group described by Holmberg (1950); redshift is for slightly brighter of two emission patches located each side of center of system; brighter patch is approximately $50^{\prime \prime} \mathrm{NE}$ of center, fainter one $70^{\prime \prime} \mathrm{SW}$.	195.	6412	patchy, central bar. Slit on nucleus and condensation $35^{\prime \prime} \mathrm{N}$, which shows no emission lines except possibly a very faint 3727 ; absorption lines of poor visibility, with only 3727 and H line measurable in nucleus for redshift.
17 I .	5468	Emission patch $55^{\prime \prime}$ S of nucleus; weak plate on which only 3727 was measured.	196.	6503	Auroral and dawn spectra confused with nebular spectrum.

mination of the redshift in column (I3), generally because of the possibility of rotation affecting the measurements.

Column I3. The observed redshift, $c \Delta \lambda / \lambda_{0}$, expressed in $\mathrm{km} / \mathrm{sec}$, in accordance with current Mount Wilson-Palomar practice (Bowen 1953); this procedure has the advantage of giving observational results in familiar and convenient units, without involving the moot question of radial motion; for, if the redshifts are velocities of recession, second-order corrections become appreciable for the larger velocities, and these correc-

Note No.	$\underset{{ }_{\mathrm{IC}}}{\mathrm{NGC}}$	
217.	7640	Bright emission patch approximately $225^{\prime \prime}$ SE of nuclear region; a brighter star is $2 \mathrm{O}^{\prime \prime}$ NE of this patch.
218.	7640	Very faint emission patch in arm approximately $52^{\prime \prime}$ SE of nuclear region.
219.	7640	Faint emission patch in arm approximately $23^{\prime \prime}$ NW of nuclear region.
220.	7640	Nuclear region; redshift is from 3727 and absorption lines.
221.	7679	This highly concentrated nebula has an early-type continuum with strong hydrogen absorption lines; the emission lines are 3727, $H \beta$, and Ni of [O III].
222.	7714	Slit simultaneously on nuclear regions of both members of close pair; strong earlytype continuum with numerous emission lines, from which the redshift was determined.
223.	7715	Faint spectrum of apparently broad and faint absorption lines, which give a lowprecision redshift.
224.	7723	Weak spectrum of semi-stellar nucleus that shows broad and faint absorption lines, with a very faint 3727 .
225.	7723	Slit on nucleus and faint central bar; only blended $\mathrm{H}+H \epsilon$ and K measured in the nucleus.
226.	7723	Slit on major axis as estimated from elliptical outline of faint outer parts of spiral; nebular spectrum of faint absorption lines and 3727 confused with strong night-sky spectrum that least affects $\mathrm{H}+\mathrm{H} \epsilon$, which appears to be slightly inclined.
227.	7769	Spectrum shows hydrogen absorption lines of poor visibility and a very weak 3727 .
228.	7770	Strong early-type continuum and 3727 , possibly inclined; broad and faint H and K lines were measured with considerable uncertainty, which accounts for the large A.D.; nebular type in Pettit's (1954) list probably interchanged with that for 777I.
229.	7771	Slit on patchy central bar, which shows no emission except for a weak 3727 in the nucleus; nuclear spectrum is an early-type continuum with hydrogen absorption lines becoming conspicuous from $H \delta$ to the ultraviolet.
230.	7793	Slit on nucleus and condensation approximately $95^{\prime \prime}$ SW, which shows only a very faint 3727; this spiral has been studied photometrically by Shapley and Mohr (1938).

tions are different depending on whether or not relativity theory is used.

Columns I4, I5. Galactic longitude, l, latitude, b, generally taken from the Shapley-Ames catalogue, or computed from Ohlsson's tables (1932) based on the Harvard pole at $\alpha=12^{\mathrm{h}} 4 \mathrm{O}^{\mathrm{m}}$ and $\delta=+28^{\circ}$ (1900).

Column 16. 100 $\cos A$, where A is the angle from the nebula to an apex at $l=55^{\circ}$ and $b=0^{\circ}$; these coordinates, and a solar motion of $300 \mathrm{~km} / \mathrm{sec}$, represent rounded-off values differing less than their probable errors in the preferred
solution of Humason and Wahlquist (1955) for the solar motion referred to the local group nebulae; the tabulated numbers multiplied by 3 therefore give the solar-motion corrections applied to the observed redshifts in column (I3) to give the corrected redshifts in column (17).

Column I7. Redshift corrected for solar motion and given to the nearest $\mathrm{km} / \mathrm{sec}$ only in case subsequent small corrections are applied; the general order of accuracy is indicated by the A.D. in column (ii).

Column 18. Numbered notes that give addi-
tional information regarding more accurate locations in case of uncatalogued or very faint nebulae, detailed spectral characteristics when these appear to be of unusual or special interest, slit orientation with respect to features in the projected nebular image, and references to published reports or descriptions that contain supplementary information.

Systematic Differences in the Redshift Lists. A comparison of Tables I and II with V shows that II4 nebulae were observed in common at Mount Wilson-Palomar and at Lick. For these nebulae

TABLE VI. MEAN WAVE LENGTHS OF SPECTRAL FEATURES

Table VII is a histogram of the catalogue numbers, for differences within intervals of $50 \mathrm{~km} / \mathrm{sec}$. The frequency distribution is somewhat skewed, with an excess of positive differences obtained in the sense Lick minus Mount Wilson-Palomar. These differences range from -177 to $+229 \mathrm{~km} /$ sec, and their mean with respect to sign is +28.4 $\mathrm{km} / \mathrm{sec}$. This systematic difference means that, on the average, redshifts on Crossley spectrograms were measured greater by $28 \mathrm{~km} / \mathrm{sec}$.
To try to find the source of this systematic difference, detailed information regarding wave lengths, measurements of individual spectral features, and plate quality was exchanged. No consistent explanation was obtained from comparison of the particular wave lengths or lines used, but there was found the expected correlation between spectrogram quality and size of difference. When one or both redshifts for the same nebula depended on plates that were weakly exposed or poor for other reasons, differences tended to be large, with a preponderance of positive ones for inferior Crossley plates. For example, the three largest positive differences, +229 (7318b), +223 (6944) and + r88(6643), involve Crossley plates that are respectively underexposed, affected by night sky (io hours), and dark and grainy (experimental Ia-O emulsion). While similar cases might also be cited for some of the Mount Wilson-Palomar plates to account for some large differences of either sign, there is little advantage to carry the detailed comparison much further. The reason is that a systematic difference of $28 \mathrm{~km} / \mathrm{sec}$ between the two sets of redshifts represents a nearly negligible quantity when considered in terms of displacement on the plates. For a dispersion of 300 to $400 \mathrm{~A} / \mathrm{mm}$ in the ordinary photographic region, $28 \mathrm{~km} / \mathrm{sec}$
corresponds to about one micron, which is close to the limit of measurement, especially for spectral features of inherently poor visibility.

A systematic difference of $28 \mathrm{~km} / \mathrm{sec}$ also appears small when compared with the redshift estimated errors in Tables I and II and the average deviations in Table V. If the two series of redshift observations are assumed to be of comparable accuracy, with the differences for objects in common treated as residuals, then the probable error of a single difference is ± 62 $\mathrm{km} / \mathrm{sec}$.

As a result of the foregoing comparison, no systematic correction was applied to one series of redshifts in order to reduce it to the other. Thus the redshifts used in Part III for the correlation plots are straight means for those nebulae observed in common at Mount Wilson-Palomar and at Lick.

Observational Selection of the Redshifts. Since the relationship between redshift and magnitude has been investigated in Part III separately for the various types of field nebulae, it seems worth while to indicate in some detail how representative the spectrographic data are for the different classes of the brighter nebulae. For this statistical purpose, the Shapley-Ames catalogue may be used, first, because it still is the only available photometry of the brighter nebulae over the whole sky, and second, because it has been shown, initially by Stebbins and Whitford (1937, 1952) and later by Pettit (1954), that its magnitude scale and zero point are substantially correct in terms of modern photoelectric standards. A1though some of the catalogue magnitudes differ by I to $1 \frac{1}{2}$ mag. from the photoelectric ones, and the catalogue zero point appears to require a correction of -0.1 to -0.2 mag., neither of these

TABLE VIII. COMPARISON OF NUMBERS OF REDSHIFTS/NEBULAE FOR $\delta>-30^{\circ}$

Cat. Mag.	$\begin{aligned} & \text { Totals } \\ & \text { < I } 1.6 \end{aligned}$		II 1.8 II. 9	12.0 12.1	12.2 12.3	12.4 12.5	12.6 12.7	12.8 12.9	Totals	\%
E	19/19	13/13	5/5	6/7	9/10	10/II	20/24	18/23	100/II2	89
So	8/8	5/5	4/4	7/9	3/5	9/11	5/6	13/26	54/74	73
Sa	5/5	4/5	4/5	5/6	$2 / 3$	II/17	3/6	9/18	43/65	66
Sb	28/28	7/7	8/13	5/12	8/13	6/16	II $/ 25$	9/32	82/146	56
Sc	40/40	*13/I4	16/22	10/19	13/29	17/36	$13 / 41$	12/55	134/256	52
SBo, a	8/8	4/4	4/4	5/7	5/7	I/3	5/II	6/14	38/58	66
${ }_{\text {SBb }}$	\%/0	2/2	3/4	I/3	I/3	3/9	5/7	2/14	$2 \mathrm{I} / 46$	46
Sbc	8/8	I/I	I/I	I/2	4/5	3/3	I/I	I/2	12/I5	80
Irr		0/0	I/I	0/I	0/I	2/2	2/4	I/4	14/2I	67
All	120/120	*49/5I	46/59	40/66	45/76	62/108	65/125	71/r88	498/793	63
\%	100	96	78	6 I	59	57	52	38		
$\mathrm{MtW}+\mathrm{P}$	97	32	35	30	32	4 I	49	54	370	
Lick	67	25	20	16	16	27	25	27	223	
Common	44	9	9	6	3	6	9	10	96	

* Includes redshift for NGC 4027 observed only by Struve and Linke (1940).
circumstances is likely to affect seriously the following statistics on the brighter nebulae observed for redshift. The reason is that over the five-magnitude range from approximately 8.0 to I3.0 pg. mag., mean differences between the catalogue and photoelectric magnitudes show no systematic trend. Undoubtedly a complete photoelectric photometry of the brighter nebulae would change the numbers in the following table, but, on the basis of the comparisons that have been made by the photoelectric observers mentioned, there is little reason to expect changes so drastic as to invalidate the statistics. Table VIII gives the numbers of redshifts and of nebulae, arranged according to classifications by Hubble, for intervals of 0.2 mag. in the Shapley-Ames catalogue.

Since the figures to the left and right of the slant lines are numbers of redshifts and of nebulae, respectively, their comparison shows the proportional completeness of the redshift data. Cumulative totals also are included to catalogue magnitudes <II. 6 and <I3.0, respectively, in the second and in the next-to-last column; for the latter the numbers are expressed in per cent in the last column. The lowest three lines show the number of redshifts determined in the two series, and those in common.

Because the numbers are rather small for nebulae of a given type and magnitude, except possibly for E, Sb, and Sc , the proportional completeness is not accurately established for the data subdivided so finely. There is definite evidence, however, that a larger proportion of the earlier types was observed for redshift, but the preponderance is not by a large factor. Even in the faintest magnitude group, I 2.8 and I 2.9 , the $\mathrm{E}+$ So nebulae are better represented than those of types $\mathrm{Sb}+\mathrm{Sc}$ only by the factor $(3 \mathrm{I} / 49) /(2 \mathrm{I} / 87)=$ 2.6. On a cumulative basis to 13.0 mag., as shown in the last column, the percentage completeness of redshifts for the different types ranges from 46 to 89 per cent, or by a factor of 1.8 . But this smaller factor is, of course, due in large measure to the much more complete coverage for the brighter magnitudes.

A more realistic indication of the observational selection in the redshifts according to magnitude and for all types probably is given by the percentages in the fourth line from the bottom of the table. These figures show that the redshift observations are essentially complete down to in. 6 mag., but that near the end of the next whole magnitude interval the spectrographic data fail of completeness by about 50 per cent.

A fair appraisal of observational selection in
the redshifts probably would be the statement that Table VIII shows no large gaps in the sampling to 13.0 mag., and that to this limit there are available in round numbers 500 redshifts out of a possible 8oo, for an overall completeness of 63 per cent. This result is not expected to be greatly changed by more accurate magnitudes for individual nebulae, but eventual inclusion of the 200-odd nebulae south of declination -30° may appreciably revise upward some of the completeness ratios in Table VIII.

PART III. DISCUSSION OF THE SPECTROGRAPHIC AND PHOTOMETRIC DATA

Introduction. The new redshift data have been reported in Parts I and II of the present paper. The measured apparent magnitudes by Pettit (1954) and by Stebbins and Whitford (1952) have been reported elsewhere. Systematic errors exist in these published magnitudes depending upon the ratio of the measuring aperture to the angular diameter of the nebula. This aperture effect has been removed from the published magnitudes by the method discussed in Appendix A. Table Ai of this appendix gives the corrected photographic magnitudes for 576 nebulae for which redshifts are available. These magnitudes are referred to a standard isophote of about 25 mag. per sq. sec. of arc.

Although it is becoming increasingly evident that the nebular distribution is characterized by a predominant tendency to cluster (Zwicky i938, Neyman and Scott 1952, first of a series; Shane and Wirtanen 1954, first of a series), the present discussion may conveniently be treated on the basis of the much simplified picture of nebulae in the general field with occasional great clusters superposed. On the more elaborate statistical model of complete clustering, this separation into field and cluster nebulae is merely one according to the size of the cluster. On this theoretical picture, clusters with only one member are possible and these would be considered here as truly isolated objects. We shall treat all aggregates containing from I to 50 members as field nebulae. All richer aggregates are considered with the cluster data.

The philosophy behind the present discussion is governed by the observational approach. Two numbers, $z\left(\equiv \Delta \lambda / \lambda_{0}\right)$ and m, are observed. Corrections are made to both quantities to free them from effects extraneous to the problem at hand. The redshifts are corrected for the solar motion with respect to the centroid of the local group.

This correction is made because it appears likely that the systematic redshift does not operate within the local group (Hubble 1936a; Humason and Wahlquist 1955) and that the measured redshifts of its members reflect the motion of the sun with respect to these nebulae. The correction for solar motion is described in Parts I and II. The observed magnitudes are freed from the latitude-effect caused by obscuration in our own galaxy by the equations $\Delta \mathrm{P}(b)=0.25$ ($\csc b-\mathrm{I}$) for photographic magnitudes and $\Delta \mathrm{V}(b)=0.18$ $(\csc b-\mathbf{I})$ for photovisual magnitudes. These heterochromatic magnitudes are further changed to a bolometric magnitude scale by the K correction, which accounts for the effects of redshift. The theory and computation of the K correction for P and V magnitudes is given in appendix B for the case where the Stebbins-Whitford effect (1948) is zero. Discussion of the modification to the value of K due to the presence of this effect is also given. The K correction accounts only for the selective effects caused by the redshift. Other corrections to the magnitudes, such as the socalled energy and number effects, are not made, as was once the custom, since such effects are absorbed into the theoretical equations used for the interpretation of the data.

The sequel is divided into three sections. These contain the $[\log c z, m]$ relation for (I) the field nebulae, (2) selected isolated groups, and (3) the nebular clusters. Appendix C contains the calibration of these relations in terms of distance with a provisional value of the redshift parameter H.

The redshift catalogues of Tables I and V, together with the magnitudes in Table Ai, provide the data for discussion of the $[\log c z, m]$ relation for the field nebulae. Humason's redshift values in Table III and the magnitudes reported in Table XII provide the data for the clusters.

The Field Nebulae. For a linear redshift-distance relation of the form $c z=H r$, with r defined by

$$
\log r=[m-\Delta m(b)-K-M+5] / 5
$$

the relation between $m-\Delta m(b)-K$, called m_{C} in the following, and z will be of the form

$$
\begin{equation*}
m_{\mathrm{C}}=5 \log c z+(M-5-5 \log H) \tag{I}
\end{equation*}
$$

Here all of the refinements required for a proper definition of distance are glossed over. Both Robertson (1955) and McVittie (1956) treat this problem, and their results are implicitly contained in a later equation used for the cluster
data. For the relatively close field nebulae such refinement is unnecessary. Equation (I) neglects another effect. Due to the finite speed of light, we look back in time to events when light now observed was emitted from nebulae at different distances. Thus, the observed pairs $[\log c z, m]$ refer to the condition of the universe at different cosmic times (see e.g. Robertson (1933) for a definition of cosmic time), the difference being just the light-travel time between the source and the observer. To transform the observed "world picture" to the so-called "world map"--the condition of the universe at any given cosmic timerequires knowledge of the form of the expansion. Formulae based upon the method of Taylor series (Robertson 1955) are employed for this problem. This time effect is not important for distances such that $z \ll I$, and this is the case for the majority of the field nebulae. Interpretation of the $[\log c z, m]$ relation for the nearby field nebulae with the simplified equation (I) is adequate for the present discussion.

The nebulae in the general field have been divided into 7 groups for analysis according to nebular type. Figures 3 to io show the correlation between the corrected photographic magnitude $\mathrm{P}_{\mathrm{C}} \equiv \mathrm{P}-\Delta \mathrm{P}(b)-K$ and $\log c z \equiv \log c \Delta \lambda / \lambda_{0}$ for each group. Linear relations of the form $\mathrm{P}_{\mathrm{C}}=A \log c z+B$ were fitted to the data by least squares. The linearity of the redshift-distance relation is tested by the closeness of the value of A precisely to 5 . Differences in the mean absolute magnitude $\overline{M(m)}$ for the nebular types are obtained from the differences in B, on the assumption that the value of H is unique. Two solutions were made for each group. Both solutions include all the data, but Solution I considers A and B as unknowns, while Solution 2 adopts A as 5.000 and treats B as unknown. Table IX gives the resulting solutions and probable errors. The lines drawn in Figures 3 to ro are those of Solution 2 since this case is the only one compatible with current theories. The computed probable errors are merely formal and are somewhat unrealistic, due to the nature of the scatter in the $[\log c z, m]$ pairs.

This scatter is caused by at least four effects. (I) The large spread in absolute magnitude among the nebulae appears in the correlations as a spread in apparent magnitude at a given $\log c z$. Indeed, early attempts (Hubble 1936c) were made to derive the luminosity function for nebulae from the residuals of the $[\log c z, m]$ plot, but the results were affected by the highly selective

Figure 3. The redshift-magnitude relation for E nebulae in the general field. The apparent magnitudes have been corrected to the galactic pole and for the selective effects of redshifts. The redshifts themselves have been corrected for the solar motion with respect to the local group.
nature of the data. (2) Redshifts represent the sum of the systematic distance effect and the random motion of the nebulae themselves. The exact size of these random motions is not known yet, but they seem to be of the order of 200 to $300 \mathrm{~km} / \mathrm{sec}$. When they are of the same size as
the distance effect, unsymmetrical deviations from the $[\log c z, m]$ relation will occur if the peculiar motions themselves are symmetrical about the distance effect. This circumstance explains part of the large scatter at $\log c z$ less than 3.0. (3) The other part of the larger scatter at
small $c z$ is explained by a selectivity effect favoring the nearer of the intrinsically faint nebulae. Objects such as the dwarf irregulars of low surface brightness are difficult to identify and observe at large distances, and hence these points are missing from the diagrams for larger redshifts than about $1000 \mathrm{~km} / \mathrm{sec}$. (4) The values of m and z themselves contain errors of observation, but the discussion in Parts I, II, and Appendix A shows these errors to be small compared with the observed scatter.

Within the total uncertainties of the solutions, all data in the first 8 groups of Table IX are consistent with a linear law. The solution of greatest weight, $N=474$, gives the computed A as $5.028 \pm$ o.II 6 compared with the predicted value of 5.000 .

To check the isotropy of the redshift law, correlations were made for nebulae in the north and south galactic polar regions with $|b| \geqslant 30^{\circ}$. The last two solutions of Table IX, together with Figures II and I2, show the result. A significant, and as yet unexplained, difference exists between the two hemispheres. The A values differ from each other, but even more serious is the difference

Figure 4. The redshift-magnitude relation for So field nebulae.

of 0.70 mag. in B between the hemispheres for Solution 2. The southern nebulae appear to be brighter than the northern ones at the same redshift. Part of this difference is probably due to observational selection, since many nebulae in the south galactic polar cap are in high southern declinations not reachable from these latitudes. Table VIII of Part II shows that the redshift catalogues are essentially complete for nebulae brighter than $m_{p g}=11.6$ north of $\delta=-30^{\circ}$. South of this declination very few redshifts are available. The scarcity of points in Figure 12 for nebulae brighter than $\mathrm{P}_{\mathrm{C}}=\mathrm{II}$ is a result of this selective effect. Comparison of the north with the south galactic hemisphere is therefore biased, since the data for the northern hemisphere are more complete. Counts in the Shapley-Ames catalogue show that 37 nebulae brighter than $m_{p g}=$ in. 6 are south of $\delta=-30^{\circ}$. All of these do not satisfy $b>30^{\circ} \mathrm{S}$ but none satisfy $b>30^{\circ} \mathrm{N}$. It would be of interest and importance to assemble $[\log c z, m]$ data for these bright southern nebulae so that an unbiased test of the isotropy could be made with the field nebulae. Observatories in the southern hemisphere could contribute sig-

Figure 5. The redshift-magnitude relation for Sa field nebulae.

Figure 6. The redshift-magnitude relation for Sb field nebulae.
nificantly toward answering this fundamental question of isotropy.

A small part of the difference in Figures II and I 2 may be due to photometric difficulties. Many nebulae south of $b=-30^{\circ}$ are at high southern declinations. This is a difficult region to reach with high photometric precision from Mount Wilson due to the strong Los Angeles lights in
the south and west quadrants. No check on this suggestion is possible at present because of the lack of overlap in Pettit's, Stebbins and Whitford's, and Holmberg's magnitude catalogues in the south latitudes.

Whatever the cause of the difference between Figure II and I2, strong evidence against appreciable anisotropy of the redshift law is provided

Figure 7. The redshift-magnitude relation for Sc plus SBc field nebulae.
from the high degree of isotropy in the cluster data. Further work on the field nebulae is required for a satisfactory solution.

Figure 9. The redshift-magnitude relation for SBb field nebulae.

Figure 8. The redshfit-magnitude relation for SBo plus SBa field nebulae.

To the extent that observational selection in the present sample is comparable for the various types of nebulae, differences in their mean absolute magnitudes are reflected in the differences

TABLE IX. SOLUTIONS FOR THE FIELD NEBULAE

Neb. Type	Solution I		Solution 2		
	A	B	A	B	N
E	$\begin{array}{r} 5.882 \\ \pm .347 \end{array}$	$\begin{array}{r} -7.400 \\ \pm .246 \end{array}$	5.000	$\begin{array}{r} -4.375 \\ \pm .212 \end{array}$	I 17
So	$\begin{array}{r} 4.630 \\ \pm .378 \end{array}$	$\begin{array}{r} -2.843 \\ \pm .234 \end{array}$	5.000	$\begin{array}{r} -4.070 \\ \pm .253 \end{array}$	67
Sa	$\begin{array}{r} 4.717 \\ \pm .312 \end{array}$	$\begin{array}{r} -3.40 \mathrm{I} \\ \pm .229 \end{array}$	5.000	$\begin{array}{r} -4.360 \\ \pm .243 \end{array}$	54
Sb	$\begin{array}{r} 5.181 \\ \pm .337 \end{array}$	$\begin{array}{r} -4.974 \\ \pm .182 \end{array}$	5.000	$\begin{array}{r} -4.400 \\ \pm .175 \end{array}$	76
$\mathrm{Sc}+\mathrm{SBc}$	$\begin{array}{r} 4.329 \\ \pm .377 \end{array}$	$\begin{array}{r} -\mathrm{I} .93 \mathrm{I} \\ \pm .307 \end{array}$	5.000	$\begin{array}{r} -4.030 \\ \pm .358 \end{array}$	90
$\mathrm{SBo}+\mathrm{SBa}$	$\begin{array}{r} 4.854 \\ \pm .385 \end{array}$	$\begin{array}{r} -3.466 \\ \pm .252 \end{array}$	5.000	$\begin{array}{r} -3.950 \\ \pm .260 \end{array}$	36
SBb	$\begin{array}{r} 5.6 \mathrm{I} 8 \\ \pm .672 \end{array}$	$\begin{array}{r} -6.618 \\ \pm .26 I \end{array}$	5.000	$\begin{array}{r} -4.570 \\ \pm .233 \end{array}$	27
All Types	$\begin{array}{r} 5.028 \\ \pm .116 \end{array}$	$\begin{array}{r} -4.324 \\ \pm .129 \end{array}$	5.000	$\begin{array}{r} -4.235 \\ \pm .128 \end{array}$	474
All Types $b \geqslant+30^{\circ}$	5.102 $\pm .208$	$\begin{array}{r} -4.250 \\ \pm .169 \end{array}$	5.000	$\begin{array}{r} -3.895 \\ \pm .165 \end{array}$	257
All Types $b \leqslant-30^{\circ}$	$\begin{array}{r} 6.757 \\ \pm .412 \end{array}$	$\begin{array}{r} -10.636 \\ \pm .283 \end{array}$	5.000	$\begin{array}{r} -4.595 \\ \pm .219 \end{array}$	132

between the values of B from Solution 2 tabu- ences, normalized so that $\overline{\Delta M}=0.00$ mag. for lated in Table IX. Table X exhibits these differ- the solution using all data. Tabulated again are

Figure 10. The redshift-magnitude relation for 474 field nebulae of all nebular types.
the number of nebulae N in each group; negative signs for $\overline{\Delta M}$ indicate higher luminosities.

table x. differences in \bar{M} for field nebulae		
Type	$\overline{\Delta M}$	N
SBb	-. 33	27
Sb	-.16	76
E	-. 14	117
Sa	-. 12	54
All Types	. 0	474
So	$+.17$	67
$\mathrm{Sc}+\mathrm{SBc}$	+.21	90
$\mathrm{SBo}+\mathrm{SBa}$	+. 29	36

According to this table, the SBb are statistically the brightest while the SBo's and SBa's are the faintest. The total range of the differences is 0.62 mag. With the SBb's excluded, for which only 27 nebulae are available, the range becomes 0.43 mag . The sizes of the probable errors for B, ranging from ± 0.21 mag. for the E nebulae to ± 0.36 mag. for the Sc plus SBc , show that most of the computed differences in \bar{M} are illusory, and that the mean absolute magnitudes of nebulae along the entire sequence of classifi-

Figure II. The redshift-magnitude relation for field nebulae of all types north of galactic latitude $+30^{\circ}$.

Figure 12. The redshift-magnitude relation for field nebulae of all types south of galactic latitude -30°.
cation, excluding the irregulars which show a very large dispersion, are nearly constant for this particular sample. Due to the effects of observational selection, these results may, however, be different for different samples.

Isolated Groups. There exist in space several well-known, isolated, physical groups of nebulae such as the local group, the nearby M81 and Mioi groups, the Leo group, and Stephan's Quintet. Many of these aggregates were suspected from the geometrical aspects of the grouping before the redshift data became available. The redshift lists provide a powerful method for confirming such groups and for discovering new ones. While the general problem of the small-scale nebular distribution for nearby
systems is not considered here, it is evident that steps toward its solution may now be taken with the present redshift data.

The large scatter in Figures 3 to I2 is primarily due to the spread in the luminosity function for nebulae. If some a priori means were available for selecting nebulae with similar absolute magnitudes, this scatter would become smaller and a more refined analysis of the data would be possible. It is reasonable to expect that such a homogeneous nebular sample might be found among the brightest objects in physical aggregates of moderate to large population, since such nebulae would be chosen from a definite part of the luminosity function. This expectation was tested and confirmed by analysis of 27 groups

found with the redshift data. The $[\log c z, m]$ relation for the first-ranked member of each group not only has smaller scatter than Figure Io, but it shows preference for high absolute magnitudes. The brightest member nebula for 23 of the 27 groups is at least 0.5 mag . brighter than the mean line of Figure 10 . The points for 19 of the 27 groups are at least i.o mag. brighter than the mean line, while 8 are more than 1.5 mag. brighter, and 5 more than 2.0 mag. brighter than this line. The increased homogeneity, gained by restricting attention to the brightest nebulae of populous aggregates, is important in the discussion of the cluster data.

Table XI gives the data for the 27 groups studied. Listed in column one are the group designations taken from the NGC number of the brightest member, the estimated group population, and the mean redshift. The remaining columns contain the NGC number, the photographic magnitude corrected for latitude and K effect, the redshift corrected for solar motion, and the rank of the member nebula. Only two of the 27 groups are closer to us than the Virgo Cluster. These are the NGC 1023 and the Leo groups with mean redshifts of +5 I 3 and $+788 \mathrm{~km} / \mathrm{sec}$, respectively. Due to their proximity, these groups will eventually be important in evaluating the redshift parameter H.

The Cluster Data. For a given apparent magnitude, data for the brightest members of the great clusters of nebulae permit the deepest penetration into space. Furthermore, these same nebulae provide the homogeneity of sample so important in the search for a possible second-order term in the redshift law. The $[\log c z, m]$ relation can, therefore, be carried farther and be more precisely defined with the cluster data.

Tables II and III of Part I give redshifts for 26 clusters. Photometric data are available for I 8 of these from the following sources. (I) Individual members of the nearby Virgo Cluster were measured photoelectrically by Whitford (1936) and by Stebbins and Whitford (1952), and with photographic methods by Bigay (195I). (2) Photoelectric measures were made by Pettit in 9 and by Sandage in 2 of the bright clusters with the 60- and roo-inch telescopes. (3) Magnitudes in the 6 faintest clusters were determined with schraffierkassette methods by Sandage using the 200-inch telescope.

The problem of the measuring apertures is paramount for these photometric data, since any large systematic magnitude error, depending on distance, would invalidate an attempt to find a
second-order term in the redshift-magnitude relation. The procedure for aperture correction discussed in Appendix A can be applied with success for nebulae with redshifts less than about $25,000 \mathrm{~km} / \mathrm{sec}$. For more distant clusters this procedure fails, because the angular sizes of nebulae become too small for measurement on the 48 -inch Schmidt plates. To discuss possible systematic magnitude errors for faint clusters, description of the schraffierkassette measuring technique is necessary.

A schraffierkassette plate contains square images of uniform density obtained by moving a photographic plate in a rectangular pattern by a mechanical device called a jiggle-camera. For large enough squares, the images of stars and nebulae are indistinguishable. After proper calibration, measurement of the densities of the images gives the magnitudes of the objects. Squares of $\mathrm{I}, 2$, and 4 mm on a side can be made with the present equipment. Thorough tests of this technique and present equipment were made before the start of the current program. First, schraffierkassette plates of Selected Areas 6I and 68, taken with the 200 -inch, were measured to check the internal consistency of the method. Residuals from the calibration curves drawn with the standard magnitudes of Stebbins, Whitford, and Johnson (1950) were small; the mean residual without regard to sign was 0.02 mag . This procedure tested only the uniformity of the schraffierkassette images plus the measuring accuracy for the plates. A second test, using diffuse objects of appreciable diameter, was made on selected globular clusters in M3I. Plates calibrated with field stars of known magnitude gave magnitudes that did not differ systematically from those of Nassau and Seyfert (1945), with a distribution of residuals whose dispersion was o. Io mag. These tests were considered satisfactory and the current program was begun.

Schraffierkassette plates were taken for the 6 faint clusters and were calibrated by stars in each field whose magnitudes were determined by photographic intercomparison with S.A. 57 and 68 (Stebbins, Whitford, and Johnson 1950). An average of three independent intercomparisons in two colors was made for these standard stars and the internal magnitude agreement was good. Magnitudes for 4 of the 6 faintest clusters were measured on plates made with jiggle-camera throws of 2 mm . The two faintest clusters 0855+ 032 I and $0925+2044$ were measured from $\mathrm{I}-\mathrm{mm}$ squares, since $2-\mathrm{mm}$ images were too faint for satisfactory results.

The question arises of the adequacy of the sizes of these jiggle-camera squares for a check on the aperture effect in these faint nebular magnitudes. Experience, both by Hubble (i936c) and from the tests on the M3I objects, has shown that squares of 2.5 times the apparent diameter of diffuse objects give magnitudes that differ by less than o.i mag. from those measured photoelectrically with large apertures. Do squares of 1 and 2 mm for the 6 faint clusters satisfy this criterion? The scale at the 200 -inch prime focus is III. O 7 per mm with the Ross $f / 3.67$ corrector lens, so that schraffierkassette images of 2 mm are $22^{\prime \prime}$. I on a side. The nearest of the 6 faint clusters is Bootes ($143 \mathrm{I}+3 \mathrm{I} 46$) with a redshift of $+39,400 \mathrm{~km} / \mathrm{sec}$. The diameters of the member nebulae of this cluster are too small to be determined on the 48 -inch Schmidt plates, but they may be computed by assuming that ratios of angular diameters vary inversely with the redshift. This procedure assumes a linear law and neglects relativity effects. The apertures that give magnitudes to the standard isophote for the brightest nebulae of the Virgo Cluster are about Io'. Whitford's aperture for NGC 4594 was $7{ }^{\prime} 5$. Since the mean redshift for this cluster is +1136 $\mathrm{km} / \mathrm{sec}$, the corresponding angular aperture at the Bootes Cluster is about $\mathrm{I} 7^{\prime \prime}$. A throw of 2 mm is, therefore, inadequate by a factor of $(17 \times 2.5) /$ $22.1=1.9$ to give magnitudes for the brightest Bootes Cluster members on the same isophotal system as the nearby clusters. The curves of Appendix A give an estimate of about 0.2 mag. for the aperture effect of the brightest nebula of the Bootes Cluster. This error approaches zero
for the ioth brightest nebula because these fainter nebulae average about $2 / 3$ the diameter of the first ranked.

The cluster oi38 3840 is the most distant cluster measured with $2-\mathrm{mm}$ squares. Since the redshift is $+5 \mathrm{I}, 900 \mathrm{~km} / \mathrm{sec}$, the aperture of the standard isophote for the largest nebula would be about $13^{\prime \prime}$. An aperture effect also exists in the measured magnitudes but it is smaller, since the factor is I.5. For the Hydra Cluster ($0855+$ 032 I), with a redshift of $+60,500 \mathrm{~km} / \mathrm{sec}, \mathrm{I}-\mathrm{mm}$ squares are inadequate to a somewhat greater degree than are $2-\mathrm{mm}$ squares for the Bootes Cluster, since the aperture factor is 2.5 . Because of the uncertainty in the size of the effect, no aperture corrections have been made in the tabulated data for these 6 clusters, i.e., the directlydetermined magnitudes are given in the data table. In the discussion of the second-order term in the redshift law it is therefore important to remember that the tabulated magnitudes for the 6 faintest clusters are too faint by values ranging from 0.0 to 0.2 mag., depending upon the rank of the cluster member. The existence of this small systematic error is not too serious because the sign of the correction strengthens the secondorder trend found in the sequel.

Table XII gives the data now available for the I 8 clusters. The first 3 columns are self-explanatory. Column 4 gives the mean redshift, corrected for solar motion, computed from Table II or III of Part I. This redshift is a combination of (I) the systematic distance effect, (2) that part of the internal velocity dispersion remaining in the mean of the redshifts of the cluster members, and

Name	l	b		P (uncorrected for latitude and K effect)				V (uncorrected for latitude and K effect)			
			$\overline{c \Delta \lambda / \lambda_{0}}$	Ist	3 rd	5th	10th	Ist	3 rd	5th	roth
Virgo*	256°	$+75^{\circ}$	1,136	9.2	9.8	9.9	10.3	8.3	8.9	9.1	9.4
Perseus*	118	-12	5,433	13.02	14.47	14.49	14.75	12.24	13.24	13.35	13.54
Coma*	10	$+87$	6,657	12.90	13.31	13.60	14.52	11. 69	12.16	12.55	13.60
Hercules	359	+43	10,400		14.8 I		15.77		13.74		14.55
$2308+0720$	53	-48	12,82 I	14.85	15.47	16.13		13.70	14.22	14.82	
$2322+1425$	63	-44	13,187	15.34	15.87	16.22	16.60	14.37	14.87	15.17	15.63
$1145+5559$	106	+60	15,519	15.88		16.89		14.77	...	15.78	
0106-1536	116	-77	15,781	15.20	15.74	16.70	16.80	14.12	15.01	I5.77	16.04
$1024+1039$	201	+54	19,489	16.25				15.08			
$1239+1852$	264	+81	21,533	15.41	16.14	16.32	16.89	14.10	14.86	I5.39	15.72
$1520+2754$	10	$+55$	21,651	16.57	16.67	16.96		15.38	15.66	15.83	. . .
$0705+3506$	150	+20	23,365	17.11				16.00			
$143 \mathrm{I}+3 \mathrm{I} 46$	16	+66	39,367	(17.93)	(18.36)	(18.78)	(19.26)	16.57	17.00	17.42	17.90
$1055+5702$	116	$+55$	40,360	(18.22)	(18.33)	(18.73)	(19.25)	16.86	16.97	17.37	17.89
$0025+2223$	85	-40	47,835	18.59	18.80	18.88	19.38	17.04	17.35	17.62	17.90
$0138+1840$	108	-42	51,908	18.40	18.55	18.84	19.14	17.32	17.65	17.79	18.13
$0925+2044$	178	+45	57,498	(18.58)	(19.15)	(19.30)	(19.72)	17.08	17.65	17.80	18.22
$0855+032 \mathrm{I}$	194	$+3 \mathrm{I}$	60,526	(19.26)	(19.56)	(19.66)	(20.16)	17.70	18.00	18.10	18.60
* Virgo		1-3-5-10	459	86, 4382	4374						
Perseus		I-3-5-10	127	70, I278	I273						
Coma		I-3-5-10	488	89, 4921	4853						

TABLE XIII. CORRECTED PHOTOMETRIC DATA FOR I8 CLUSTERS							
Cluster (I)	$\begin{gathered} z \\ (2) \end{gathered}$	$\Delta \mathrm{P}(b)$ (3) mag.	$\begin{gathered} K\left(z, t_{0}\right)_{\mathrm{P}} \\ (4) \\ \text { mag. } \end{gathered}$	$\begin{aligned} & \overline{\mathrm{P}}_{\mathrm{C}}{ }^{*} \\ & (5) \\ & \text { mag. } \end{aligned}$	$\Delta \mathrm{V}(b)$ (6) mag.	$\begin{gathered} K\left(z, t_{0}\right)_{\mathrm{V}} \\ (7) \\ \text { mag. } \end{gathered}$	$\begin{gathered} \overline{\mathrm{V}}_{\mathrm{c}}{ }^{*} \\ \text { (8) } \\ \text { mag. } \end{gathered}$
Virgo	. 004	. OI	. 02	9.16	. OI	. OI	8.27
Perseus	. 018	. 95	. 08	12.51	. 68	. 04	11.72
Coma	. 022	. 00	. 10	12.84	. 00	. 05	11.80
Hercules	. 035	. 12	. 16	14.12	. 09	. 08	13.09
$2308+0720$. 043	. 08	. 20	14.78	. 06	. 09	13.79
$2322+1425$. 044	. 11	. 21	15.04	. 08	. 10	14.18
$1145+5559$. 052	. 04	. 24	15.71	. 03	. 12	14.70
0106-1536	. 053	. OI	. 25	15.21	. OI	. 12	14.45
$1024+1039$. 065	. 06	. 30	15.88	. 04	. 15	14.89
$1239+1852$. 072	. 00	. 33	15.22	. 00	. 17	14.19
$1520+2754$. 072	. 05	. 33	15.93	. 04	. 17	14.96
$0705+3506$. 078	. 48	. 37	16.26	. 35	. 18	15.46
$143 \mathrm{I}+3146$. 131	. 02	. 61	17.31	. OI	. 35	16.21
$1055+5702$. 134	. 05	. 63	17.31	. 04	. 36	2. 516.22
$0025+2223$. 159	. 14	. 74	17.39	. 10	. 44	16.28
$0 \mathrm{I} 38+1840$. 173	. 12	.81	17.16	. 09	. 48	16.49
$0925+2044$. 192	. 10	. 90	17.54	. 07	. 54	16.41
$0855+032 \mathrm{I}$. 202	. 24	. 94	I 7.84	. 17	. 58	16.70

(3) the peculiar motion of the cluster itself. For all but the nearest three clusters, the effect of internal velocity dispersion should be small. For the Virgo Cluster, the spread in the redshifts for the individual members is about $2000 \mathrm{~km} / \mathrm{sec}$, which is larger than the systematic distance effect. This makes the adopted mean redshift of $+1136 \mathrm{~km} / \mathrm{sec}$ the most uncertain of the group as far as the systematic distance effect is concerned. No information is available on the size of the peculiar motions of the clusters themselves, but it appears to be small because of the small spread in the $[\log c z, m]$ correlations. Columns 5 to 12 of Table XII give the photographic and photovisual magnitudes of the 1st, 3rd, 5 th, and roth cluster members. The magnitudes for the first 12 clusters are corrected to the standard isophote by the procedure of Appendix A, while the values for the last 6 clusters are directly as measured. For 2 of the 6 faint clusters, both photographic and photovisual magnitudes were measured ; for the 4 for which only photovisual values were obtained, the photographic magnitudes were found by applying the color indices for these cluster nebulae determined by Stebbins and Whitford (1952) and by Whitford (1954) to the measured V. Magnitudes so determined are enclosed in parentheses in Table XII.

In analyzing the photometric data we have the choice either of treating the correlation of m with $\log c z$ for the 1st, 3 rd, 5 th, and roth nebulae separately, or of suitably combining the data into mean values of high weight. The latter method is to be preferred, since it uses all available material and tends to smooth any small differences in the luminosity functions for the various
clusters. The magnitudes of the 3 rd, 5 th, and roth nebulae were systematically reduced to that of the ist by subtracting the mean differences of 0.48 , o.80, and 1.29 mag. respectively from the P data, and $0.5 \mathrm{I}, 0.84$, and 1.27 mag . respectively from the V data. The resulting mean magnitudes, on the system of the first brightest, were then corrected for latitude and K effect by the values listed in columns 3, 4, 6 and 7 of Table XIII. The final magnitudes, $\mathrm{P}_{\mathrm{C}} \equiv \mathrm{P}-\Delta \mathrm{P}(b)-K_{\mathrm{P}}$ and $\mathrm{V}_{\mathrm{C}} \equiv \mathrm{V}-\Delta \mathrm{V}(b)-K_{\mathrm{V}}$, are listed in columns 5 and 8 of this Table. These constitute the final data for discussion of the $[\log c z, m]$ relation for the clusters.

Interpretation of Cluster Data. Robertson (1938) has shown that, in an expanding universe, the intensity of light received at time t_{0} from a source radiating at time t_{1} is given by

$$
\begin{equation*}
l_{\mathrm{bol}_{0}}=\frac{L_{\mathrm{bol}\left(t_{1}\right)}}{4 \pi R_{0}{ }^{2} \sigma^{2}(\mathrm{I}+z)^{2}} \tag{2}
\end{equation*}
$$

where R_{0} is the scale coefficient in the line element at the time of observation t_{0} and σ is related to the dimensionless radial coordinate. The relation connecting m_{bol} and z is then given by Robertson (1955) as

$$
\begin{align*}
m_{\mathrm{bol}}= & 5 \log c z \\
& +\mathrm{I} .086\left(\mathrm{I}+\frac{R_{0} \ddot{R}_{0}}{\dot{R}_{0}^{2}}-2 \mu\right) z+\text { const. } \tag{3}
\end{align*}
$$

Here, $\dot{R}_{0} / R_{0} \equiv H$ is the Hubble redshift parameter and \ddot{R}_{0} is the second time derivative of the metric scale factor, both evaluated at t_{0}. The quantity μ is related to the time rate of change of the absolute bolometric magnitude of the nebu-
lae, plus the rate of change of that part of the K correction due to the Stebbins-Whitford effect, and plus the effect of any intergalactic obscuration. This equation accounts for the difference in the light-travel time for the nearby and distant clusters, by reducing the "world picture" to the "world map."

Following this equation, the data have been analyzed in the form $m_{\mathrm{C}}=A \log c z+B z+D$ for both P_{C} and V_{C}. Least-squares solutions were made for 3 cases: (I) A, B, and D were treated as unknowns, (2) A was considered to be precisely 5 , with B and D as unknowns, and (3) A and D were considered unknowns, with $B=0$. Table XIV gives the results. The goodness of fit

Unknown	Case I	Case 2	Case 3
P data			
A	$5 \cdot 73$	5.000	5.029
			$\pm .12 \mathrm{I}$
B	-5.62	- I. 180	0.00
		$\pm .875$	
D	-8.55	$-5.8 \mathrm{I}$	-6.03
		$\pm .092$	$\pm .519$
σ_{0} (P) mag.	. 282	. 315	. 302
V data			
A	$5 \cdot 72$	5.000	4.925
			$\pm .138$
B	-6.34	- I. 976	0.00
		$\pm .895$	
D	-9.40	-6.71	-6.56
		$\pm .094$	$+.590$
$\sigma_{0}(\mathrm{~V})$ mag.	. 292	.323	. 344

in each case may be judged by the dispersions of the distributions of the magnitude residuals. These dispersions, σ_{0}, are also given in this Table. Case i fits the data best. Solutions in Cases 2 and 3 are the only ones compatible with equation (3), since in them $A=5$ by assumption for Case 2 and to within the probable error for Case 3. Case 2 is adopted in the following discussion.

There are at least 4 causes for the observed dispersion σ_{0} : (I) dispersion in the absolute magnitudes of the nebulae considered $\left(\sigma_{M}\right) ;(2)$ scatter in the redshift coordinate due to internal velocity dispersion and to the mean peculiar motions of the clusters themselves $\left(\sigma_{z}\right)$; (3) scatter due to possible patchy internebular obscuration in the direction of the 18 clusters $\left(\sigma_{F}\right)$; (4) measuring errors in both m and $z\left(\sigma_{\epsilon}\right)$. The observed σ_{0} of 0.32 mag . is compounded of these four separate dispersions. The remarkable smallness of σ_{0} shows that $\sigma_{M}, \sigma_{z}, \sigma_{F}$, and σ_{ϵ} must each be very small. In particular, this analysis provides little evidence for the existence of patchy internebular absorption in the direction of the 18
clusters. An upper limit of 0.30 mag. is placed for σ_{F} but the true value is undoubtedly smaller. No information on possible uniform internebular obscuration is contained in the present material, since only deviations from uniformity can be detected by study of the dispersions.

The term of greatest interest is B, because it describes deviations from linearity. The value of B from Solution 2 is only twice its probable error, but two uncertain elements not allowed for in the data should be emphasized. These are: (I) the aperture effect in the faint clusters, and (2) possible uniform internebular obscuration. Corrections for both effects not only preserve the negative sign of B, but they make its absolute value larger. That the aperture effect is indeed present may be seen by separate analysis of the $[\log c z, m]$ relation for the Ist and ioth brightest nebulae with the data of Table XII. A larger negative B is found with the ioth ranked nebulae, due to the smaller aperture correction required for the higher-ranked cluster members.

The data are plotted in Figures I3 and I4 with the solid lines drawn from Solutions 2. The difference in the B values between the photographic and photovisual solutions is undoubtedly caused in the following way by the StebbinsWhitford effect. The computed K corrections in Appendix B are those which would be valid in the absence of the SW effect. If this effect is due to stellar evolution, K will be a function of time as well as of redshift. The correct value to be applied is $K\left(z, t_{1}\right)$ instead of $K\left(z, t_{0}\right)$ as given in Appendix B. The difference between $K\left(z, t_{1}\right)$ and $K\left(z, t_{0}\right)$ is absorbed in μ of equation (3). This difference, when expressed in a Taylor series, enters μ by the term $\delta K / \delta t$. The excess reddening of the Stebbins-Whitford effect requires that $K_{\mathrm{P}}\left(z, t_{1}\right)-K_{\mathrm{V}}\left(z, t_{1}\right)>K_{\mathrm{P}}\left(z, t_{0}\right)-K_{\mathrm{V}}\left(z, t_{0}\right)$ and hence that $\delta K_{\mathrm{P}} / \delta t>\delta K_{\mathrm{V}} / \delta t$. Since μ has the form (Robertson 1955)

$$
\begin{equation*}
\mu=0.46[\dot{M}-\dot{K}(\lambda)-c F(\lambda)] H^{-1} \tag{4}
\end{equation*}
$$

equation (3) shows that the consequence of this inequality is $B_{\mathrm{P}}>B_{\mathrm{V}}$, as is actually observed. Here $\dot{K} \equiv \delta K / \delta t$ and $F(\lambda)$ is any possible internebular absorption expressed as F mag. per unit distance. If H^{-1} is expressed in IO^{9} years and the velocity of light, c, is in light years per year, then F must be expressed as magnitudes per Io 9 light years. Since K and F are functions of wave length, the reason for the observed dependence of B on wave length is clear.

We are now in a position to consider the results

Figure $\mathbf{1 3}$. The redshift-P magnitude relation for clusters of nebulae. The apparent photographic magnitudes have been corrected only for the latitude effect and for the selective effect of the redshift. The "energy" and "number" corrections are not included in the data but are introduced into the theoretical equations used for the interpretation.
contained in the $[\log c z, m]$ relations of Figures 13 and 14. This material suggests the following five major conclusions.
(1) The slope of the $[\log c z, m]$ correlation line for small z is as close to 5 as the probable errors of the determination. This conclusion rests upon (a) the small magnitude residuals of the solution for Case 2 with the slope assumed to be 5 , and (b) the direct determination of the slope as $5.029 \pm 0.12 \mathrm{I}$ and 4.925 ± 0.138 for Case 3. This result means that for small z, the redshift-distance relation is linear, on the supposition that there is no general internebular obscuration. If we postulate the existence of general uniform internebular absorption, the redshift-distance relation is non-linear. The absorption, expressed as F mag. per unit distance, must be of just the right amount to cancel the non-linearity of the redshift law so that the observed $[\log c z, m]$ relation remains linear. Such an interpretation is highly unlikely but cannot definitely be excluded.
(2) The expansion appears to be isotropic, since no separation of points occurs between the 12 clusters in north galactic latitudes and the 6 southern clusters. This is a stronger test than that for the field nebulae, since the cluster data (1) probably are less affected by observational selection and (2) show smaller scatter about the mean correlation line.

Figure 14. Same as 13 for photovisual magnitudes.
(3) The absolute magnitude of the brightest nebulae in clusters is nearly equal to the very brightest of the field nebulae. This near equality is seen if the line drawn in Figure 13 for the clusters is transferred to Figure io for the field nebulae. Such a line defines a limit above which few field nebulae occur. On this basis there appears to be an upper limit to the absolute magnitude of extragalactic nebulae close to that of the brightest cluster members.
(4) The departures from uniformity for any postulated intergalactic obscuration must be distributed with $0.30>\sigma_{F} \geqslant 0$ mag.
(5) The second-order term, B, in the redshift law is negative and appears to be statistically significant. Its value is -3.0 for the photovisual data and -2.2 for the photographic data if an allowance is made for an aperture correction of 0.20 mag. at the distance of the Hydra cluster. These values, together with equation (3), give

$$
\begin{align*}
& \frac{R_{0} \ddot{R}_{0}}{\dot{\vec{R}}_{0}^{2}}=-(3.0 \pm 0.8)+2 \mu_{\mathrm{P}} \tag{5}\\
& \frac{R_{0} \ddot{R}_{0}}{\dot{R}_{0}{ }^{2}}=-(3.7 \pm 0.8)+2 \mu_{\mathrm{V}} \tag{6}
\end{align*}
$$

where the subscripts P and V stand for photographic and photovisual wave lengths. If $2 \mu_{\mathrm{P}}>$ 3.0 or if $2 \mu_{\mathrm{v}}>3.7$, then \ddot{R}_{0} is positive and the expansion is accelerating; otherwise it is decelerating. For a decision we must evaluate the right member of equation (4) which involves \dot{M} and \dot{K} as the principal unknown quantities.

Estimates of \dot{M} can, at present, come only by appeal to some theory of stellar evolution for systems of Population II. Current ideas for such evolution stem primarily from the work of M. Schwarzschild that has appeared in a series of papers with his collaborators (Oke and Schwarzschild 1952; Sandage and Schwarzschild 1952; Härm and Schwarzschild 1955). Application of these ideas to the particular case of the globular cluster M3 (Sandage 1954b) provides a basis for an estimate of \dot{M}. Within the framework of this theory, the observational data show that the M3 stars were formed about $5 \times 1 \mathbf{1 0}^{9}$ years ago. The theory predicts that the brightest stars in the cluster have moved from their original places on the main sequence in the H-R diagram into the giant region, and subsequently, after burning most of their fuel, have disappeared to faint luminosities. Presumably, the cluster was brighter in early times because of the presence of these bright stars. In the available time of 5×10^{9} years, all stars brighter than absolute bolometric magnitude +3.5 have evolved from the main sequence. We know with some certainty only the evolutionary tracks for the present time t_{0}. If we assume that tracks for slightly different luminosities are homologous, i.e. parallel in the $\log T_{\mathrm{e}^{-}}$ $M_{\text {bol }}$ plane, an evaluation of \dot{M} can be made. The change in the absolute magnitude of the main-sequence break-off point in time t_{1} to t_{0} is, for small t_{0} / t_{1},

$$
\begin{equation*}
\Delta M_{\text {bol }}=2.5 \log \mathfrak{T r}_{1} / \mathscr{T}_{0}+2.5 \log t_{0} / t_{1} \tag{7}
\end{equation*}
$$

where \mathscr{M}_{0} and \mathscr{N}_{1} are the respective masses of the stars at the break point. We wish to compute this change in the bolometric magnitude in the last one billion years. If $t_{0}=5 \times$ ro 9 yr., $t_{1}=$ $4 \times{ }_{10}{ }^{9} \mathrm{yr}$. and with the ratio $\mathfrak{M r}_{0} / \mathscr{M r}_{1}$ obtained by iteration from the mass-luminosity law, then $\Delta M_{\mathrm{bol}}=0.3 \mathrm{I}$ mag. For homologous evolutionary tracks this value also equals the change of the bolometric magnitude of the entire cluster if we assume that most of the light comes from stars brighter than $M_{\text {bol }}=+3.5$. If an appreciable fraction of the total light comes from stars fainter than $M_{\text {bol }}=+3.5$, then the $\Delta M_{\text {bol }}$ for the systenn will be less than 0.3 mag. This computation gives, therefore, an upper limit to \dot{M}. If the case for elliptical nebulae is similar to that of the globular clusters, then $\dot{M} \leqslant 0.3 \mathrm{mag}$. per $1 \mathrm{o}^{9} \mathrm{yr}$.

Estimates of \dot{K}_{P} and \dot{K}_{V} are more difficult. Precise values must await the results of Whitford's current six-color work with the 200 -inch in these distant clusters. Meanwhile, estimates may be made on the basis of his statement (Whitford
1953) that "the observed two-color excess could arise from additional radiation in the distant systems of a quality like that of a Type I Go supergiant." An energy curve determined from the $I(\lambda)$ for M ${ }_{32}$ (Stebbins and Whitford 1945) and from the $I(\lambda)$ for supergiant Go stars (Stebbins and Whitford 1945) permitted direct computation of $K\left(z, t_{1}\right)$ by the procedure described in Appendix B, with the result that $\dot{K}_{\mathrm{P}} \approx+0.3$ and $\dot{K}_{\mathrm{V}} \approx 0.0$ mag. per IO^{9} yr. These values agree fairly well with the observed StebbinsWhitford excess of $\dot{K}_{\mathrm{P}}-\dot{K}_{\mathrm{V}}=+\mathrm{o} .40 \mathrm{mag}$. for the Hydra Cluster (Whitford 1954).

Finally, to evaluate 2μ we need the value of the redshift parameter H. From the discussion in Appendix C, we adopt $H^{-1}=5.4 \times 10^{9}$ years. If the units of \dot{M} and \dot{K} are in mag. per 10^{9} yr. and F in mag. per 10 ${ }^{9}$ l.y., then equation (4) gives $2 \mu_{\mathrm{P}}=5.0\left[0.3-0.3-F_{\mathrm{P}}\right]$ and $2 \mu_{\mathrm{V}}=5.0$ $\left[0.3+0.0-F_{\mathrm{V}}\right]$. If $F=0$, then $2 \mu_{\mathrm{P}}=0.0$ and $2 \mu_{\mathrm{v}}=\mathrm{I} .5$. Equations (5) and (6) then give $\left(R_{0} \ddot{R}_{0} / \dot{R}_{0}{ }^{2}\right) \approx-3.0$ for P magnitudes and -2.2 for V magnitudes. The average is -2.6 . It is interesting to note that the presence of any general internebular obscuration will give \ddot{R}_{0} an even more negative value. For as small a value as $F_{\mathrm{P}}=0.30$ mag. per 1o ${ }^{9}$ l.y., $R_{0} \ddot{R}_{0} / \dot{R}_{0}{ }^{2}$ becomes about -5 .

The result that \ddot{R}_{0} is negative has such important cosmological implications that it is well to review the steps in its evaluation and to indicate the uncertainties at each point. The basic data are the $[\log c z, m]$ pairs. Of the two, observational errors are appreciable only in the magnitudes. Call these errors ϵ_{P} and ϵ_{v}. The expression for the second order term B, obtained by modifying equations (3) and (4), now becomes

$$
\begin{align*}
B_{\mathrm{P}, \mathrm{~V}}= & \mathrm{I} .086\left[\mathrm{I}+\frac{R_{0} \ddot{R}_{0}}{\dot{R}_{0}{ }^{2}}\right. \\
& \left.-5.0\left(\dot{M}-\dot{K}_{\mathrm{P}, \mathrm{~V}}-F_{\mathrm{P}, \mathrm{~V}}\right)+\epsilon_{\mathrm{P}, \mathrm{~V} / z}\right] \tag{8}
\end{align*}
$$

If we require that $\ddot{R}_{0} \geqslant \mathrm{o}$, then the inequality

$$
\begin{align*}
\frac{B_{\mathrm{P}, \mathrm{~V}}}{\mathrm{I} .086}-\mathrm{I}+5 . \mathrm{o}\left(\dot{M}-\dot{K}_{\mathrm{P}, \mathrm{~V}}-\right. & \left.F_{\mathrm{P}, \mathrm{~V}}\right) \\
& -\epsilon_{\mathrm{P}, \mathrm{~V} / z} \geqslant \mathrm{o} \tag{9}
\end{align*}
$$

must hold. With $B_{\mathrm{P}} / \mathrm{I} .086 \approx-2.0$ and $B_{\mathrm{V}} / \mathrm{I} .086$ ≈-2.7, as given by the observations, and with $\dot{M}=+\mathrm{o} .3, \dot{K}_{\mathrm{P}}=+\mathrm{o} .3$, and $\dot{K}_{\mathrm{V}}=\mathrm{o}$, equation (9) requires that $\left|\epsilon_{\mathrm{P}} / z\right| \geqslant 3.0 \mathrm{mag}$. and $\left|\epsilon_{\mathrm{V}} / z\right|$ $\geqslant 2.2 \mathrm{mag}$. The errors in the magnitudes of the faint clusters with $z \approx 0.20$ must then be
$\left|\epsilon_{\mathrm{P}}\right| \geqslant 0.6$ mag. and $\left|\epsilon_{\mathrm{V}}\right| \geqslant 0.4$ mag. These values probably are too large to be ascribed to observational uncertainty.
Incorrect estimates of \dot{M} and \dot{K} also affect the sign of \ddot{R}_{0}. Since, however, \dot{M} and \dot{K} enter equation (8) with opposite sign, and since we know that $\dot{K}_{\mathrm{P}}>$ o because the Stebbins-Whitford effect is an excess reddening and not a bluing, the upper limit to \dot{M} that satisfies equation (9) is large. If $\dot{K}_{\mathrm{P}}=\mathrm{o}$, then $\dot{M} \geqslant 0.6 \mathrm{mag} . / \mathrm{I} 0^{9}$ yr. for \ddot{R}_{0} to be positive. With the more realistic value of $\dot{K}_{\mathrm{P}}=+0.3 \mathrm{mag} . / \mathrm{ro}^{9} \mathrm{yr}$., the upper limit to \dot{M} becomes +0.9 mag. $/ \mathrm{ro}^{9} \mathrm{yr}$. These values seem quite high on any current theory of stellar evolution. While it is obviously true that present ideas on stellar evolution may prove to be either incorrect or non-applicable to the present case, and therefore that the basis of our present estimate that $\dot{M} \leqslant 0.3 \mathrm{mag} . / \mathrm{ro}^{9} \mathrm{yr}$. may be invalidated, nevertheless $\dot{M} \approx 0.9$ mag. $/ 10^{9} \mathrm{yr}$. is so high as to appear improbable.
The foregoing analysis therefore suggests that any reasonable estimates of the errors in the measured magnitudes and in the values of \dot{M} and \dot{K} require that \ddot{R}_{0} be negative and that the expansion is decelerating. This result cannot be considered as established, however, until accurate values of \dot{K} are available from Whitford's current work and until an adequate theory is worked out to explain the Stebbins-Whitford effect. If the excess reddening is a time effect, such a theory must predict from evolutionary tracks in the $M_{\text {bol }}, \log T_{\mathrm{e}}$ plane the details of the change with time of the spectral energy curves. Then it should be possible to estimate the value of \dot{M} and the sign of \ddot{R}_{0} with some confidence.
Although it would be appropriate to end this paper with a definite statement of the possible cosmological models consistent with the present data, such a statement cannot be given at present for the following reason. With the field equations of general relativity, a series of mathematical models are obtained for the character of the expansion. (See, e.g., Einstein 1945 or Bondi 1952.) These models show how the function $R(t)$ depends on time, and they differ from one another according to the sign of the space curvature ($\mathrm{I}, \mathrm{o},-\mathrm{I}$) and of the value of the cosmological constant Λ. Three of the crucial observational items required for a choice between the models are (I) the sign of \ddot{R}_{0}, (2) the value of I / H, and (3) independent knowledge of the "age of the universe"-really the time since the beginning of the expansion-from say an astrophysical theory for the age of the oldest stars or from a geological
age for the earth. When these three items are known, a weeding out of certain inconsistent models can be made. Unfortunately, the present uncertainty in the value of I / H and the imminent rediscussion of the sign of \ddot{R}_{0} with Whitford's anticipated results for computing $K\left(z, t_{1}\right)$ make such a discussion inappropriate at the present time.

Acknowledgments. For the Mount Wilson-Palomar lists of redshifts it is a pleasure to express sincere appreciation to Miss Alice Beach, who has participated in the measurement and reduction of the plates and, to a large extent, in the preparation of this complete paper; and also to Mrs. Mary Coffeen, Miss Sylvia Burd, and Miss Wilma Berkebile, whose contributions are greatly appreciated.

For the Lick list of redshifts (Table V), grateful acknowledgment is made to Mrs. C. Roger Lynds (Beverly Turner), who carried out the extensive reduction to a standard system of wave lengths, and to Mrs. Howard C. Cowan, who did the exacting job of typing on the IBM electric typewriter.

Part of the extensive computational work of Part III was done by Mr. Walter Bonsack of C.I.T. and his very efficient help is gratefully acknowledged. Mr. Harold Kinney did his usual fine job in preparing the line drawings for the press. It is also a pleasure to thank Drs. H. P. Robertson and A. E. Whitford for their critical reading of an early draft of Part III.

APPENDIX A. CORRECTIONS TO THE MAGNITUDES FOR APERTURE EFFECT

The total magnitude of an extragalactic nebula is difficult to measure by any technique because of the large angular size of the regions contributing appreciably to the total light. The diameters of nebulae are very much larger than revealed by visual inspection of well-exposed photographs. Nearly all early investigations of nebular magnitudes have been affected by this difficulty, because measures have usually been restricted to the regions of the nebulae seen on photographs. Because the observed magnitudes depend upon the aperture used in the photometry, a systematic error in the magnitudes is introduced that depends upon the nebular diameter itself. This systematic error has the effect of changing the slope of the regression line of redshift vs. apparent magnitude. The error must be removed from the basic magnitude measures before numerical results from the correlations are obtained.

It is clear that the corrections to the tabulated magnitudes in Pettit's and in Stebbins and Whitford's catalogues will be a function of the ratio of the aperture actually used to the angular diameter of the nebula. The determination of this function is the main objective of this appendix.

Hubble's (1930) investigation of the intensity distribution in elliptical nebulae showed the remarkable fact that the intensity function $I(r / a)$, where r is the distance measured along the major axis of the nebula and a is the value of r at $I=I_{0} / 4$, is very nearly the same for 15 nebulae studied. Hubble further showed that the isophotal contours are elliptical. These two results together with the form of $I(r / a)$ permit a derivation of the correction function $\Delta m=f\left(D_{\mathrm{p}} / D_{\mathrm{s}}\right)$, where Δm is the correction to be applied to the catalogue values of Pettit and of Stebbins and Whitford, D_{p} is the diameter of the diaphragm used by these observers, and D_{s} is the diameter estimated from a photograph.

The function Δm could be defined so as to correct the catalogue magnitudes either (I) to the total light of the nebula, or (2) to the light contained within a certain isophote. Ideally the desired quantity would be the total magnitude, but this is more difficult to obtain than the magnitude within a given isophote, for the following reason. The term total magnitude has the meaning of the magnitude approached asymptotically as $r / a \rightarrow \infty$. Since the form of $I(r / a)$ is not yet known for $r / a>50$, we do not have sufficient knowledge of the form of the asymptotic approach. Some investigators have even inferred that such a limiting magnitude does not exist. This conclusion results from extrapolation of Hubble's interpolation formula $I=I_{0} /[(r / a)+\mathrm{I}]^{2}$ to large r / a. Since the radial intensity given by this equation does not fall more rapidly than r^{-2}, the total intensity obtained by using this form is a divergent integral and consequently the total light of any given nebula would not be finite. The measures that Hubble considered reliable were taken only to $r / a=20$. To this point his equation fits the data well. Beyond $r / a=30$ there is no reason for expecting the interpolation equation to hold. Indeed, E. Dennison's recent photometry (Thesis, University of Michigan 1954) of NGC 3379 shows that beyond $r / a=20$ the observed $I(r / a)$ falls more rapidly than r^{-2}. G. de Vaucouleurs (1948) has also studied the problem and reaches the same conclusion. His measures for NGC 3379 extend only to $r / a=22$ which is not as far as $r / a=50$ reached by Dennison. For the E2 nebula NGC 4649, de Vaucouleurs has carried his

Figure AI. The radial intensity function $I(r / a)$ for the Eo nebula NGC 3379 as given by Dennison (1954).
measures to $r=190^{\prime \prime}$ along the major axis which corresponds to $r / a=26$. He finds that $I(r / a)$ goes approximately as $r^{-2.3}$ for this object. The decline is steeper than r^{-2} and this agrees with Dennison's measures in NGC 3379 beyond $r / a=$ 20. An asymptotic total magnitude therefore probably does exist. However, in view of the present lack of knowledge of $I(r / a)$ beyond $r / a=50$, a value for the asymptotic magnitude is not reliable. Consequently the correction function Δm will be derived to give the magnitude contained within some standard isophote.

Dennison's results are shown together with those of Hubble in Figure Ai. The agreement to $r / a=20$ is good. Similar agreement exists with de Vaucouleurs' results. Beyond this point, Dennison measures lower intensities than Hubble,

Figure A2. The increase in the apparent magnitude of NGC 3379 as a function of the measuring aperture. The $I(r / a)$ function of Figure A_{I} is adopted.
but the latter considered his own photometry beyond $r / a=20$ as somewhat uncertain. The unit of intensity in Figure AI is 27 magnitudes per square second of arc. In the sequel, Dennison's $I(r / a)$ is adopted as standard.
To obtain a general form for Δm we shall assume that the shape (but not necessarily the calibration) of Dennison's $I(r / a)$ function applies to all nebulae. The justification for this assumption lies in (I) Hubble's demonstration that the shapes of the $I(r / a)$ curves for 15 E nebulae studied were nearly identical and (2) in the fact that, except for the Sc and Irr nebulae, the disk of Population II stars which underlies the spiral structure is present in all nebular types and is elliptical in outline. This disk contributes eighty per cent or more to the total light (Holmberg 1950). Therefore $I(r / a)$ for So to Sb nebulae is assumed to be like that in E nebulae. The errors introduced by this assumption are small compared with the Δm corrections.

The dependence of the measured magnitude on aperture for the Eo nebula NGC 3379 is obtained from

$$
\begin{equation*}
m(r)=\text { const }-2.5 \log \int_{0}^{r} 2 \pi r I(r) d r \tag{A.I}
\end{equation*}
$$

Figure A2 shows the curves $[m, r$] for the case of Dennison's $I(r)$ and for the case of Hubble's formula extrapolated to large r. This figure shows the difficulty of obtaining the value of the asymptotic magnitude even from Dennison's function. The $[m, r]$ relation of Figure A_{2} permits the reduction of measured magnitudes to that magnitude which would have been measured if the

Figure A3. The magnitude correction curves for different apparent ellipticities of projected images as a function of the ratio of the measuring aperture to the apparent nebular diameter.
aperture had been a certain standard size. We must now decide what to use as this standard size.

Images of most extragalactic nebulae on photographic plates appear to have definite boundaries. While it is true that the apparent diameters become larger on plates of longer exposure times, it is also true that plates taken under identical conditions show the same diameters. This fact means that the limit of visual discrimination between a nebula and the sky background occurs at some definite isophote related to the exposure conditions on the plate. Holmberg (1945) has shown that the limit of discrimination also depends upon the gradient of I with r where r is measured in linear units on the plate (say mm). Fortunately this effect on the final Δm function is small and is neglected in what follows.

If a strictly homogeneous set of plates were available, it is clear that a homogeneous set of isophotic diameters could be obtained. A close approach to such a plate collection exists in the plates taken with the 48 -inch Schmidt for the Palomar-National Geographic Sky Survey, since every care has been taken for uniformity. With these plates, the diameter $D_{\text {s }}$ obtained by visual inspection will approach a system of isophotic diameters. The diameter of the apparent image of NGC 3379 on these Schmidt plates is $2 r=\mathbf{1} 2 \mathbf{I}^{\prime \prime}$, or $r / a=12.9$. Figure Ai shows that $\log I=1.74$ at this point. This isophote is at 22.6 mag. per square second, which is about 0.6 mag. fainter, on the average, than the light of the night sky.

The standard isophote to which the catalogue magnitudes will be corrected may be chosen arbitrarily, but, for convenience, it should be chosen so that the corrected magnitude will be close to $m_{\text {total }}$. For the purposes of this paper we shall define the standard isophote as that point in the nebula that has a radial distance from the nucleus of 2.5 times the maximum radius visible on the 48 -inch Schmidt plates. The value of $2.5 D_{\mathrm{s}}$ is $302^{\prime \prime}$ in NGC 3379 and this figure corresponds to $r / a=32.4$. The calibration of Figure Ai shows that this isophote has a surface brightness of about 25.1 mag./sq. sec.

The choice of the standard diameter of $2.5 D_{\mathrm{s}}$ now permits the calculation of $\Delta m=f\left(D_{\mathrm{p}} / 2.5 D_{\mathrm{s}}\right)$ from Figure A2. If NGC 3379 were measured with an aperture whose radius differed from $r=15 \mathrm{I}^{\prime \prime}$, the correction Δm must be applied to the measured value to give that which would have been measured with an aperture of $2.5 D_{\mathrm{s}}$. The values for Δm may be computed for any value of $r / \mathrm{I}_{5} \mathrm{I}$ from Figure A 2 by assigning
$\Delta m=0$ at $r=15 \mathbf{I}^{\prime \prime}$. The Δm function is plotted in Figure A_{3} as the correction curve for nebulae with ellipticities $\epsilon=0$. The curves for nebulae with ellipticities 3,5 , and 7 were obtained in the following manner. The intensity at every point of each elliptical image was obtained by assuming that the $I(r / a)$ function of Figure AI applies along the major axis and that the isophotes are elliptical. Numerical integration for the intensity within circular apertures placed upon the elliptical images gave the $[m, r]$ curves similar to the curve in Figure A2 for the Eo case of NGC 3379. The correction curves [$\Delta m, D_{\mathrm{p}} / 2.5 D_{\mathrm{s}}$] for each ellipticity derived from the $[m, r]$ curves are also shown in Figure A3.

Every nebula for which either Pettit or Stebbins and Whitford have a magnitude and for which a redshift exists was examined on the 48inch Schmidt plates to obtain the diameter $D_{\text {s }}$ and the ellipticity of the projected image. Pettit as well as Stebbins and Whitford give the aperture D_{p} to which their magnitude corresponds. Consequently $D_{\mathrm{p}} / 2.5 D_{\mathrm{s}}$ was found for each object and Δm was read from the appropriate curve in Figure A3. This value was applied to the cata-

Figure A_{4}. Histogram of the distribution of magnitude differences between Stebbins-Whitford's and Pettit's corrected catalogues.
logue magnitudes to give the magnitude corrected for aperture effect. In many cases the validity of the corrections could be tested from Pettit's catalogue, since two or more apertures were frequently used on a given object. This permitted two or more independent determinations of the corrected m. Surprisingly consistent values were obtained. Often the agreement was within \pm o. I mag. The corrected magnitudes for every object used in the field-nebulae correlations are given in Table Ai of this appendix. Magnitudes for individual members of the two great clusters in Virgo and Coma are also included in the table.

The success which has been achieved in removing the aperture effect from the magnitudes may be determined by study of the overlap between the catalogues of Pettit and of Stebbins and Whitford. These lists have 79 nebulae in common for which redshifts are available. Of these, 44 have color indices in common. After correction for the aperture effect, the mean residual in magnitude in the sense SW minus Pettit is $\overline{\Delta \mathrm{P}}=+0.026 \mathrm{mag}$. The dispersion of the distribution is $\sigma=0.19 \mathrm{I}$ mag. The lack of systematic difference and the relatively small size of the random difference shows that, for the purposes of this paper, the two basic catalogues may be used interchangeably. Figure A_{4} shows the distribution of $\Delta \mathrm{P}$ between the two lists.

Comparison for color differences of the 44 objects common to Pettit's and to Stebbins and Whitford's catalogues reveals the existence of a color equation. This result was expected, since Pettit's measures were not reduced to a standard system but were left on his natural instrumental system. A least-squares solution of the data gives

$$
\begin{aligned}
(\mathrm{CI})_{\text {Pettit }} & =0.018+1.056(\mathrm{CI})_{\mathrm{sw}} . \\
& \pm 0.027 \pm 0.033
\end{aligned}
$$

Comparison of Pettit's magnitudes, corrected for aperture effect, with magnitudes determined by Holmberg is also possible. For the past several years Holmberg has been measuring the colors and magnitudes of bright nebulae by a laborious but highly accurate photographic method. His final catalogue, based on plates taken with the Mount Wilson 60 -inch and roo-inch telescopes, will contain between 250 and 300 nebulae. By private communication Holmberg states that the mean error of his final magnitudes for objects measured to date (1955) is ± 0.04 mag. and the mean error of the final color is $\pm 0.05 \mathrm{mag}$. Holmberg also states that comparison of his magnitudes with those of Stebbins and Whitford
table al. MAGNITUDES for 576 Nebulae corrected for aperture effect.

NGC	m_{pg}	NGC	$m_{p g}$	NGC	m_{pg}	NGC	m_{pg}	NGC	mpg	NGC	$\mathrm{mpg}_{\mathrm{pg}}$
7814	11.7	751	14.1	1744	12.1	2787	11.7	3430	12.0	4192	10.5
16	13.2	753	12.9	1832	12.0	2798	13.0	3486	10.7	4203	11.5
23	13.0	772	11.2	1889	14.4	2811	12.4	3489	11.0	4214	10.2
68	14.6	788	12.4	1964	11.4	2831	14.8	3504	11.6	4216	11.1
69	15.9	821	12.0	2139	11.9	2832	13.5	3512	12.9	4220	12.2
71	14.8	864	11.6	2146	11.3	2841	10.0	3516	12.7	4244	10.3
72	14.7	871	14.1	2217	11.8	2855	12.6	3521	9.6	4245	12.3
Note (1)	15.9	877	12.4	2268	12.2	2859	12.0	3556	10.4	4251	11.6
80	13.9	890	12.6	Note (10)	17.1	2865	12.5	3585	11.0	4254	10.2
83	14.3	891	10.8	2276	12.0	2880	12.6	3593	11.6	4258	9.0
Note (2)	19.4	908	10.8	2300	12.2	2903	9.7	3605	14.0	4273	12.2
Note (3)	16.2	925	10.5	2314	13.3	2911	13.6	3607	11.0	4274	10.8
Note (4)	15.8	936	11.1	2336	11.2	2914	14.2	3608	12.1	4278	11.2
128	12.7	972	12.1	2339	12.5	2950	11.8	3610	11.9	4281	12.3
157	11.0	Note (8)	14.1	2347	13.1	2964	12.1	3611	12.8	4283	13.1
160	13.7	1003	12.1	2366	11.5	2974	11.9	3613	11.8	4291	12.4
Note (5)	16.9	1023	10.1	2379	14.6	2976	10.9	3619	12.6	4303	10.0
182	13.4	1052	11.6	2389	13.3	2983	12.6	3623	9.9	4314	11.5
194	13.3	1058	11.9	2403	8.8	2985	11.2	3626	11.0	4350	11.9
210	11.8	1068	9.9	2441	13.0	2986	12.2	3627	9.5	4365	10.9
214	'12.8	1073	11.7	2460	12.9	3003	12.0	3640	11.6	4374	10.5
227	13.5	1084	11.1	2500	12.0	3031	7.8	3642	11.6	4394	11.6
Note (6)	19.9	1087	11.4	2523	12.6	3032	12.8	3646	11.8	4406	10.3
Note (7)	18.4	1097	10.4	2525	12.0	3055	12.6	3665	11.9	4414	10.9
255	12.4	1140	12.8	2532	12.9	3065	12.9	3675	10.7	4421	11.8
278	11.5	1156	12.2	2535	13.2	3066	13.5	3681	12.5	4425	13.2
357	13.0	1201	11.7	2537	12.2	3067	12.6	3684	12.3	4429	10.9
375	15.9	1209	12.6	2549	12.1	3077	10.9	3686	11.7	4435	11.7
379	14.0	1232	10.5	2551	13.2	3078	12.1	3726	11.8	4438	11.2
380	14.0	1300	11.2	2562	14.0	3115	10.1	3810	11.1	4442	11.4
383	13.6	1302	11.1	2563	13.7	3147	11.4	3818	13.0	4448	11.7
384	14.6	1316	(10.0)	2608	12.8	3158	13.2	3872	13.0	4449	9.8
385	14.3	1317	(12.1)	2613	10.9	3166	11.2	3893	11.0	4459	11.5
386	15.7	1331	14.9	2633	12.8	3169	11.2	3898	11.7	4461	12.0
388	15.6	1332	11.0	2639	12.6	3184	10.2	3900	12.4	4473	11.3
404	11.4	1359	12.5	2642	(14.0)	3185	13.1	3904	12.1	4474	12.7
428	11.8	1380	11.0	2389*	13.9	3190	12. 1	3923	11.3	4477	11.4
474	13.0	1385	11.5	2646	13.1	3193	12.2	3941	11.3	4478	12.3
488	11.4	1395	11.4	2654	12.8	3222	13.8	3945	11.7	4479	13.6
495	14.2	1398	10.4	2655	10.8	3226	12.6	3949	11.3	Note (14)	15.4
499	13.2	1399	11.2	2672	13.2	3227	11.3	3953	10.7	4490	10.0
507	12.8	1400	12.3	2673	14.4	3245	11.8	3962	11.9	4492	13.2
514	12.3	1404	11.1	2681	11.0	3254	12.1	3990	13.6	4494	10.9
520	. 12.2	1407	11.2	2683	10.4	3277	12.4	3992	10.5	4526	10.6
524	11.6	1426	12.6	2685	12.3	3301	12.2	3998	11.2	4527	11.4
560	14.0	1439	12.9	2693	13.3	3310	10.8	4026	11.7	4546	11.4
564	13.8	1441	13.9	2694	15.5	3338	(12.3)	4036	11.6	4548	10.9
578	11.6	1449	14.6	2712	12.8	3344	10.4	4038-9	10.8	4550	12.6
584	11.4	1451	14.5	2715	11.9	3348	12.0	4051	11.0	4552	11.0
596	12.1	1453	12.9	2716	12.7	3351	10.5	4102	12.3	4569	10.5
628	9.8	1518	12.3	Note (11)	19.2	3359	10.9	4105	(12.0)	4570	11.8
1727*	12.3	1569	11.7	Note (12)	20.3	3367	11.9	4106	(12.4)	4578	12.3
636	12.4	1587	13.2	2732	12.7	3368	9.9	4111	11.6	4589	12.0
672	11.4	1600	12.2	2744	13.8	3377	11.3	4116	12.5	4594	9.1
681	12.8	1601	15.1	2748	12.3	3379	10.5	4125	10.9	4621	11.0
718	12.5	Note (9)	15.1	2749	13.5	3384	10.9	4138	12.4	4631	9.6
720	11.3	1637	11.6	2768	11.0	3389	12.1	4143	12.0	4636	10.6
736	13.6	1640	12.4	2775	11.3	3412	11.5	4150	12.6	4638	12.2
741	13.0	391*	12.9	2776	11.9	3414	12.0	4151	11.2	4647	12.1
750	13.7	1700	12.1	2782	12.5	Note (13)	18.0	4179	11.7	4649	9.9

TABLE AI. MAGNITUDES FOR 576 NEBULAE CORRECTED FOR APERTURE EFFECT.

NGC	$m_{\text {pg }}$	NGC	m_{pg}	NGC	$\mathrm{mpg}_{\mathrm{pg}}$	NGC	m_{pg}	NGC	m_{pg}	NGC	$m_{\text {pg }}$
4660	12.1	4902	11.7	5474	12.1	5898	12.6	6814	12.2	7392	12.6
4666	11.5	4907	14.7	5485	12.6	5899	12.5	6824	12.9	1460*	15.3
4697	10.4	4908	15.1	5493	12.5	5903	12.7	1317*	14.5	7448	12.0
4698	11.6	4045*	15.4	5533	12.7	5907	11.0	6921	14.7	7457	12.3
4699	10.2	4051*	14.8	5548	12.8	5921	11.6	6927	15.6	7469	12.7
4725	10.0	4911	13.6	5557	12.3	5962	12.1	6928	13.8	7479	11.6
4736	8.7	4915	13.0	5566	11.4	5970	12.2	6930	14.0	7499	15.1
4742	12.5	4921	13.6	5574	13.4	5982	12.4	6944	14.4	7501	15.5
4753	10.7	4941	12.0	5576	12.0	5985	11.9	6946	9.8	7503	14.7
4754	11.6	4958	11.5	5585	11.5	6015	11.6	6951	12.5	7507	11.6
4762	11.0	4995	11.9	5614	12.5	6027d	14.8	6954	14.1	7541	12.6
4789	13.3	5005	10.6	5631	12.6	1183*	15.8	6962	12.8	7562	12.9
4793	12.3	5018	12.2	5633	12.9	1185*	14.8	6963	15.2	7576	13.8
HZ46	15.2	5033	(10.6)	5638	12.4	1194*	15.4	6964	14.2	7585	12.7
4800	12.2	5049	13.8	5668	12.2	6070	12.3	7137	13.1	7600	13.0
4814	12.7	5055	9.0	5672	14.1	6181	12.3	Note (17)	15.4	7606	11.6
4826	9.2	5077	12.6	5676	11.7	6207	12.0	Note (18)	16.2	7611	13.6
4850	15.4	5087	12.1	5687	12.8	6217	11.9	Note (19)	16.5	7617	15.0
3946*	15.3	5173	13.8	5689	12.9	6239	12.9	7171	13.1	7619	12.4
4853	14.5	5194	8.6	5713	11.8	6314	14.0	7177	12.0	7623	14.0
4856	11.4	5195	(10.7)	5746	11.3	6340	12.0	7217	11.0	7625	13.2
4860	15.0	5198	13.0	5806	12.4	6359	13.8	7240	15.5	7626	12.7
4861	12.9	5204	11.7	5812	12.6	6384	11.4	7242	14.3	7640	11.7
4865	14.7	5248	11:0	5813	11.8	6412	12.4	7252	13.1	7671	13.8
4866	12.0	5273	12.5	5820	13.1	6482	13.1	7302	13.1	7678	12.5
4867	15.7	5308	12.2	5831	12.6	6503	10.7	7314	11.6	7679	13.2
4869	15.0	5322	11.0	5838	11.9	6627	14.4	7317	15.3	7716	12.9
4872	15.4	5353	12.1	Note (15)	11.3	6635	14.7	7318a	14.8	7723	11.8
4874	13.7	5363	11.2	Note (16)	14.1	6643	11.8	7318b	14.9	7727	11.6
4881	14.8	5364	11.0	5850	11.8	6654	12.5	7319	13.7	7741	12.3
4886	15.2	5371	11.4	5854	12.6	6658	14.1	7331	10.2	7742	12.2
4889	12.9	5377	12.0	5857	13.9	6661	13.2	7332	11.7	7743	12.3
4021**	15.8	5394	13.6	5859	13.2	6674	13.0	7343	14.5	7769	12.5
4895	14.3	5448	12.2	5866	10.9	6702	14.0	7377	12.4	7770	14.5
4896	15.1	5457	8.5	5878	12.4	6703	12.5	7385	14.1	7771	13.1
4900	11.9	5473	12.4	5879	11.9	6710	14.2	7386	14.6	7785	13.0

NOTES TO TABLE
(1) Anon. at $0016+2946$.
(2) Neb. No. 9 in foreground of $\mathrm{Cl} 0025+2223$.
(3) Anon. M 31 field at $0023+4042$. Mag. by Kron.
(4) Anon. M 31 field at $0026+3914$. Mag. by Kron.
(5) Baade "a" M 31 field. Spr ext $\mathrm{I}_{2} / 112$. Mag. by Kron.
(6) Anon. at $0047+4219$. Mag. by Whitford and Code.
(7) Anon. at $0047+4220$. Mag. by Whitford and Code.
(8) Anon. at $0234+3412$.
(9) 'Anon. at $0438+0409$.
(10) Anon. at $0705+3506$ (Brightest member of Gemini Cluster).
(1952), after applying a correction to the latter for aperture effect, gives a distribution of residuals whose dispersion is about o.io mag. Since this dispersion is less than $\sigma=0.19$ mag. obtained from the foregoing comparison of Pettit's and of Stebbins and Whitford's corrected magnitudes, a direct comparison of Pettit's corrected magnitudes with the precision data of Holmberg
(11) Neb. No. 10 in foreground of $\mathrm{Cl} 0855+0321$.
(12) Neb. No. 11 in foreground of $\mathrm{Cl} 0855+0321$.
(13) Neb. No. 1 in foreground of $\mathrm{Cl} 1055+5702$.
(14) Anon. at $1227+1247$.
(15) Mag. is for NGC 5846 plus anon. companion.
(16) Mag. is for anon. companion to 5846.
(17) Anon. at $2058+1607$.
(18) Anon. at $2058+1556$.
(19) Anon. at $2059+1556$.
is of interest. Holmberg has generously made his manuscript catalogue available for this comparison. The distribution of differences, in the sense Holmberg minus Pettit, is shown in Figure A_{5} for 56 nebulae in common. A normal error function is drawn with $\Delta \mathrm{P}=-0.04 \mathrm{mag}$. and $\sigma=$ 0.189 mag. This comparison of Pettit's values with Holmberg's gives results which are almost

Figure A5. Same as A4 for Holmberg's tabulated magnitudes minus Pettit's corrected values.
identical with those of the comparison of Pettit with Stebbins and Whitford. However, the value of $\sigma=0$. Io mag. from the comparison between Holmberg and Stebbins and Whitford shows that the accuracy of Pettit's magnitudes is lower than those of Holmberg or of Stebbins and Whitford, because $\sigma_{\text {Ho-P }} \approx \sigma_{\mathrm{SW}-\mathrm{P}}>\sigma_{\mathrm{Ho}-\mathrm{Sw}}$. It is evident, however, that Pettit's accuracy is entirely adequate for the present problem, since no systematic error is revealed by the available tests and since Pettit's inferred mean error is small compared with the spread in absolute magnitude of the nebulae themselves. The agreement of the comparison between the catalogues of Stebbins and Whitford and of Pettit with the comparison between those of Holmberg and of Pettit suggests that the gross systematic aperture effect has been removed from the basic magnitudes. This conclusion depends upon the assumption, however, that Holmberg's data require no correction for the large limiting diameters reached in his photometry.

APPENDIX B. THE K CORRECTION

In the various theoretical treatments of the expanding universe it is customary to assume that pairs of numbers, [$\left.z, m_{\text {bol }}\right]$, characterizing
certain properties of extragalactic nebulae, are available from observational astronomy. The first of these numbers is the redshift $\Delta \lambda / \lambda_{0}$. It is directly obtained by spectroscopic observation. The second is the bolometric magnitude which, unfortunately, is not directly measured but which must be derived from observed heterochromatic magnitudes. The term to convert observed magnitudes to a bolometric scale is called K. Its evaluation is the subject of this appendix.

The bolometric magnitude of a radiating body is defined as the total energy, expressed as a magnitude, received from all wave lengths on a unit area outside the earth's atmosphere. Such a magnitude is never directly measured because of the selective spectral transmission of the atmosphere and response of the detecting device. Hence, bolometric corrections must be computed from the known properties of the source, atmosphere, and receiver. Evaluation of the K correction is made by computing the difference of the bolometric corrections for nebulae with different $\Delta \lambda / \lambda_{0}$. This difference is caused by the change in the heterochromatic energy received through the acceptance bands of the radiation detector due to the redshift of the nebular spectrum.

We shall first consider the idealized case where all nebulae of a given type with $z=0$ have the same spectral energy curves, and where these curves do not change with time. This assumption is known to be false from the existence of the Stebbins-Whitford effect (1948), but we shall later see how this idealized theory of the K correction may be modified to fit actual conditions.

Except for a normalizing factor, the bolometric intensity of a radiating source is equal to the total area under the energy-distribution curve $I_{z}(\lambda)$. Likewise the heterochromatic intensity is that part of $I_{z}(\lambda)$ contained within the acceptance bands of the receiver. Let $I_{z}(\lambda)$ be the energy-distribution function, outside the earth's atmosphere, for a nebula with redshift $z, S(\lambda)$ the sensitivity function of the atmosphere, telescope, and detecting device, l_{h} the observed heterochromatic intensity of the nebula, and $l_{\text {bol }}$ the bolometric intensity; hence by definition

$$
\begin{align*}
l_{\mathrm{bol}}(z) & =\mathrm{A} \int_{0}^{\infty} I_{z}(\lambda) d \lambda \tag{Bi}\\
l_{\mathrm{h}}(z) & =\mathrm{A} \int_{0}^{\infty} S(\lambda) I_{z}(\lambda) d \lambda, \tag{B2}
\end{align*}
$$

where A is a normalizing factor depending on the zero point of the magnitude scale. The bolometric correction $\Delta m(z)$ is defined by

$$
\begin{equation*}
l_{\mathrm{bol}}(z)=l_{\mathrm{h}}(z) \mathrm{IO}^{0.4[\Delta m(z)]} \tag{3}
\end{equation*}
$$

The difference in the observed heterochromatic magnitudes due to the redshift is the quantity of interest. From (B3),

$$
\begin{equation*}
\frac{l_{\mathrm{h}}(z)}{l_{\mathrm{h}}(\mathrm{o})}=\frac{l_{\mathrm{bol}}(z)}{l_{\mathrm{bol}}(\mathrm{o})} \mathrm{IO}^{-0.4 K} \tag{B4}
\end{equation*}
$$

where

$$
\begin{equation*}
K \equiv \Delta m(z)-\Delta m(\mathrm{o}) \tag{B5}
\end{equation*}
$$

From (B_{3}) and (B_{5}) it follows that

$$
\begin{equation*}
m_{\mathrm{bol}}(z)-\Delta m(\mathrm{o})=m_{\mathrm{h}}(z)-K \tag{B6}
\end{equation*}
$$

Since $\Delta m(0)$, which is the bolometric correction for zero shift, is assumed constant for any given nebular type, this equation shows that the bolometric magnitude is obtained to within a constant from the observed magnitude $m_{\mathrm{h}}(z)$ if K is known.

The value of K for different z may be computed from (B_{4}) with the aid of (BI_{1}) and (B_{2}), if $I_{z}(\lambda)$ and $S(\lambda)$ are known. These functions are obtained

$\lambda \times 10^{6} \mathrm{~cm}$	E BI	EnSIT	TY FU	S (λ)	
	Pettit			Stebbins and Whitford	
	Free	Blue	Yellow	Blue	Yellow
30	. 002	. 000			
31	. 028	. 014			
32	. 135	. 114			
33	. 243	. 208		. 000	
34	. 293	. 258		. 155	
35	. 331	. 294		. 442	
36	. 375	. 33 I		. 638	
37	. 402	. 354		. 823	
38	. 404	. 354		. 964	
39	. 42 I	. 370		I. 120	
40	. 441	. 387		I. 187	
4 I	. 440	. 392		I. 249	
42	. 426	. 378		I. 266	
43	. 408	. 349		I. 254	
44	. 384	. 310		I. 239	. 003
45	. 366	. 265	. 000	I. 148	. 008
46	. 341	. 217	. 008	I. 050	. 056
47	. 319	. 170	. 032	. 864	. 229
48	. 300	. 129	. 077	. 627	. 455
49	. 285	. 095	. 152	. 405	. 964
50	. 269	. 063	. 220	. 245	1.097
5 I	. 249	. 036	. 220	. 157	1.084
52	. 226	. 015	. 210	. 069	1.037
53	. 205	. 003	. 192	. 044	. 962
54	. 183	. 000	. 172	. OI3	. 875
55	. 163		. 152	. 009	. 723
56	.14I		. 129	. 008	. 609
57	. 11 I		. 101	. 000	. 405
58	. 083		. 075		. 305
59	.06I		. 057		. 209
60	. 042		. 042		. 165
61	. 027		. 027		. 10 I
62	. 016		. 016		. 072
63	. OII		. 011		. 037
64	. 009		. 009		. 019
65	. 007		. 007		. 009
66	. 005		. 005		. 000
67	. 004		. 004		
68	. 003		. 003		

as follows. Stebbins and Whitford's six-color curve (1948) for M32, reduced to intensity units, is taken as the standard $I_{0}(\lambda)$ for elliptical nebulae, since, according to these authors, the $I_{0}(\lambda)$ for M_{32} is representative for this nebular type. The sensitivity function $S(\lambda)$ is found from the product of (I) the spectral transmission of the atmosphere (Pettit I940), (2) the reflection coefficients for two reflections from aluminized mirrors (Pettit, reported by Seares 1943), and either (3) the sensitivity functions for Pettit's (1954) or Stebbins and Whitford's (1948) filters plus photoelectric equipment for magnitudes determined in this way, or (4) the sensitivity functions for the photographic plates plus filters for magnitudes determined with the jiggle-camera at the 200inch. For jiggle-camera magnitudes only one reflection from an aluminized mirror is involved, since photometry is done at the prime focus, but the transmission function of the Ross $f / 3.67$ corrector lens enters instead. However, since the removal of one aluminum reflection and the addition of the glass transmission nearly compensate in the wave-length regions considered, the $S(\lambda)$ computed for Stebbins and Whitford's equipment at the roo-inch is used for the jiggle-camera case. The adopted sensitivity functions are listed in Table Bi. The normalization of $S(\lambda)$ in this table is arbitrary, since only the form is required to compute K. Equations (B 4) and (B 2) give

$$
\begin{align*}
& K=2.5 \log \frac{l_{\mathrm{bol}}(z)}{l_{\mathrm{bol}}(\mathrm{o})} \\
&+2.5 \log \frac{\int_{0}^{\infty} S(\lambda) I_{0}(\lambda) d \lambda}{\int_{0}^{\infty} S(\lambda) I_{z}(\lambda) d \lambda} \tag{B7}
\end{align*}
$$

The second term of (B7) may be computed by simple quadrature, once $I_{z}(\lambda)$ is known. This function is constructed from $I_{0}(\lambda)$ by reading the intensity at a given λ and by plotting this intensity at $\lambda_{\text {new }}=\lambda(\mathrm{I}+z)$. With this procedure it is obvious that the area under the new curve, $I_{z}(\lambda)$, has been artificially increased by $\mathrm{I}+z$. Consequently the first term in (B7) is $2.5 \log$ $(\mathrm{I}+\mathrm{z})$.

Table BII tabulates the K corrections to the photographic (P) and photovisual (V) magnitudes, $K_{\mathrm{P}}(z)$ and $K_{\mathrm{V}}(z)$, computed from B7. The change in the color index, $\Delta(\mathrm{P}-\mathrm{V})$, due to the redshift is also given. This is obtained from $K_{\mathrm{P}}(z)-K_{\mathrm{V}}(z)$, and it is the color change predicted if the assumptions used in deriving K are true. It is known that this predicted color change

z	E Nebulae Pettit's $\mathrm{S}(\lambda)$			E Nebulae SW's $\mathrm{S}(\lambda)$		
	$\underset{\text { (mag.) }}{K_{\mathrm{P}}}$	$\underset{\text { (mag.) }}{\mathrm{Kv}}$	$\Delta \mathrm{CI}$	$\underset{(\mathrm{mag} .)}{K_{\mathrm{P}}}$	$\begin{gathered} K \mathrm{v} \\ (\mathrm{mag} .) \end{gathered}$	$\Delta \mathrm{CI}$
0.00	0.00	0.00	. 00	. 00	. 00	. 00
0.05	. 21	. II	. 10	. 22	. IO	. 12
0.10	. 47	. 25	. 22	. 44	. 25	. 19
0.15	. 71	. 41	. 30	. 66	. 41	. 25
0.20	. 93	. 57	. 36	. 89	. 59	. 30
0.25	I. 16	. 76	. 40	I. 10	. 76	. 34
0.30		. 94			. 95	
0.35		I. 13			I. 13	
	Sb Nebulae SW's S(λ)			$\begin{aligned} & \text { Sc Nebulae } \\ & \text { SW's S(} \lambda \text {) } \end{aligned}$		
z	$\underset{(\mathrm{mag} .)}{K_{\mathrm{P}}}$	$\underset{\text { (mag.) }}{K \mathrm{v}}$	$\triangle \mathrm{CI}$	$\underset{\text { (mag.) }}{K_{\mathrm{P}}}$	$\underset{\text { (mag.) }}{K \mathrm{v}}$	$\Delta \mathrm{CI}$
0.00	. 00	. 00	. 00	. 00	. 00	. 00
0.05	. 25	. 10	. 15	. 14	. 02	. 12
0.10	. 50	. 23	. 27	. 30	. 06	. 24
0.15	. 75	. 36	. 39	. 47	. 13	. 34
0.20	. 99	. 55	. 44	. 62	. 22	. 40
0.25	1.24	. 76	. 48	. 8 I	. 35	. 46
0.30		. 99			. 50	. 48
0.35		1.23			. 64	. 51

is less than that given by the observations, and the excess is known as the Stebbins-Whitford effect (Stebbins and Whitford 1948; Whitford 1954). One proposed explanation of the effect is that a change of $I_{z}(\lambda)$ with time is involved, which is caused by the evolution of the brightest stars comprising the nebula. If this hypothesis is true, it follows that K_{P} and K_{V} will be functions of $t_{0}-t_{1}$, where t_{0} is the time of receipt of the light signals emitted by a nebula at t_{1}.

By the above procedure we have evaluated K at t_{0}, whereas we actually need the function $K\left(z, t_{1}\right)$, which is the K correction derived from the energy curve extant at time t_{1}. With our present lack of knowledge of $I_{z}(\lambda)$ we assume the following expansion for the required function:

$$
\begin{equation*}
K\left(z, t_{1}\right)=K\left(z, t_{0}\right)+\frac{\delta K}{\delta t}\left(t_{1}-t_{0}\right) \tag{B8}
\end{equation*}
$$

This equation has the same form that Robertson assumes for the change in the total bolometric magnitude with time, and hence, by a redefinition of Robertson's quantity μ (Robertson 1955), the change in K caused by the Stebbins-Whitford effect can be incorporated into the theoretical equation connecting $m_{\text {bol }}$ and z. At the present time this seems to be the best procedure.

In 1948 Merle F. Walker computed K corrections by essentially the same method used here. His results were not published, but he has generously made them available for the purpose of comparison. The agreement between Walker's and the present values of K_{P} and K_{V} for E nebulae is fairly good. The average difference is 0.04 mag. Walker also computed K_{P} and K_{V} for Sb
and Sc nebulae, and these values are also tabulated in Table BII.

One important point made by Walker is that the size of the K correction depends strongly on wave length. By choosing effective wave lengths far enough to the red, the K correction can be made quite small for an appreciable range of z. Walker computed the optimum effective wave lengths for minimum K correction, over the range $z=0$ to $z=0.30$, and found them to be $\lambda=6300$ for E nebulae, $\lambda=6200$ for Sb nebulae, and $\lambda=$ 5500 for Sc nebulae. For these wave lengths the values of K do not exceed o.I mag. These results show that a proper choice of wave length will be important for future, more precise evaluation of the $[\log c z, m]$ relation and for studies of nebular counts.

APPENDIX C. EVALUATION OF H

The determination of the expansion parameter H is one of the most difficult problems in modern observational astronomy, since each step required for an accurate solution is just on the borderline of possibility. The difficulty, of course, lies in determining distances to resolved nebulae that are far enough away to have significant redshifts and yet are close enough to show distance indicators of suitable precision, such as novae, globular clusters, and the variable and non-variable stars of highest luminosity.

Hubble's calibration of 1936 was obtained from the $[\log c z, m]$ relation for the brightest resolved objects in a sample of nearby resolved nebulae. These objects were identified at that time as bright supergiant stars. The absolute magnitudes of those objects were assumed to be known from previous calibration of blue supergiants in M3I and in M_{33} with respect to the cepheid variables. The zero-point of the period-luminosity law for the cepheids was assumed known from the statistical parallax calibration first by Hertzsprung (1913) and later by Shapley (1918) and by R. E. Wilson (1923, 1939). Evidence accumulated in the past five years has shown the need to examine anew each step of this procedure.
H. Mineur (1945), and later Baade (1952), and Blaauw and H. R. Morgan (1954) have shown the need for revision of the zero-point of the period-luminosity relation for classical cepheids. The correction from Blaauw and Morgan's solution is $\Delta M=-\mathrm{I} .4 \pm 0.3$ mag., which is in good agreement with Baade's original estimate. This correction increases the apparent distance modulus for M3I and M33 and revises upward the
absolute magnitudes of the brightest stars in these systems.

With the availability of fast red-sensitive emulsions it has only recently been possible to test Hubble's assumption that the bright resolved knots in the spiral arms of nearby spirals are stars. The test procedure has been to take two plates with appropriate filters so as to isolate the $H \alpha$ region on one plate and a neighboring portion of the continuum on the other. Comparison of the two plates distinguishes the emission $H_{\text {II }}$ regions from the stars. Reproductions from two such photographs are shown in Plates VI and VII for NGC 4321, the brightest spiral in the Virgo Cluster. Plate VI shows the entire nebula taken with the 200 -inch on a ro3a-D plate behind a Schott GG 14 filter. This plate and filter combination isolates the spectral region from λ_{5} Ioo to $\lambda 6400$ which is free from strong emission lines. Plate VII shows a plate pair for part of a spiral arm of NGC 432I. The left side is from the a-D plate; the right from a $103 \mathrm{a}-\mathrm{E}$ plate plus RG 2 filter which has a band pass from $\lambda 6300$ to $\lambda 6700$. This region contains the $H \alpha$ emission line. From these photographs, the brightest resolved knots in the spiral arm of NGC 432 I are seen to be H II regions instead of resolved stars. Several prominent H iI regions are indicated by arrows on the right part of Plate VII. Similar identification of the brightest knots with H II regions has been made in all other resolved nebulae tested. Stars can be resolved in NGC 4321, but they begin to appear about 2 magnitudes fainter than the knots. The arrow on the left part of Plate VII points to two objects that are probably stars. Over the entire nebula about 15 of these objects appear. On blue-sensitive plates they are more conspicuous than on the yellow or red plates. All indications point to identification with stars. These objects begin to resolve in NGC 432 I at $m_{p v} \approx 20.8$, which is considerably fainter than Hubble's (1936b) value of $m_{p g}=$ i9.0. Hence, although it will be possible to use the brightest resolved stars as distance indicators, they are faint and must first be isolated from the H II regions. Use of such stars appears to be one good way eventually to determine H with precision. The long-term program now in progress calls first for this separation of the stars from the $H_{\text {II }}$ regions in all nebulae north of $\delta=-15^{\circ}$ that can be resolved with the 200 -inch telescope. Next, the absolute magnitudes of the stars will be recalibrated in the nearby systems of M3I, M33, NGC 6822, and the M8i and Mior groups by the cepheid criterion before apparent moduli
for the resolved systems are found. From these same calibrating systems the dependence of the upper luminosity of the involved stars on the luminosity of the nebulae will be investigated. The resulting distance moduli for the resolved systems, correlated with the redshift, ultimately may give H with fair precision. Although this approach is straightforward, it is obvious that any current discussion of the value of H must be considered provisional. Two ways of estimating the value of H, however, are possible at this time, and, because of its importance, the present evidence will now be discussed.

The well-defined limiting envelope for the field nebulae in Figure io indicates that an upper limit to nebular luminosity exists, which, if known, gives H. The brightest system with reasonably well known $M_{p g}$ is the Andromeda nebula, and one calibration method is to assume that this spiral is indeed one of the intrinsically brightest in the sky. Arbitrary as this assumption seems, the resulting value of H agrees with that determined from the resolved stars in NGC 432I, as described in the following paragraphs.

The absolute photographic magnitude of M3I is $M_{p g}=-\mathrm{I} 9.92$, which is obtained from Baade and Swope's (1954) apparent modulus $m-M$ $=24.25$ and Holmberg's (i950) apparent magnitude $m_{p g}=4.33$. This absolute magnitude is the asymptotic or total magnitude, since Holmberg's photometry is carried to an isophote of about $27 \mathrm{mag} . / \mathrm{sq}$. sec. All magnitudes in this paper, however, refer to an isophote of about 25 mag./sq. sec. Figure A3 of Appendix A shows that the conversion term between these two cases is about + o. Io mag. The absolute magnitude to be used with the present data is, therefore, $M_{p g}=-19.82$. The upper envelope line of Figure io for all types of field nebulae gives $H=2$ II $\mathrm{km} / \mathrm{sec}$ per $\mathrm{IO}^{6} \mathrm{pc}$ if we adopt -I 9.82 for the absolute photographic magnitude together with 0.25 mag . for the photographic half-thickness of our galaxy. The same criterion applied to the first-ranked cluster data of Figure 13 gives $H=$ $180 \mathrm{~km} / \mathrm{sec}$ per $10^{6} \mathrm{pc}$. The difference in the two values is due to the slightly brighter limiting absolute magnitude for the field nebulae.

The other method of calibration uses the apparent magnitude of the brightest resolved stars in NGC 4321. These stars appear at $m_{p v} \approx 20.8$. The absolute magnitude for brightest stars is obtained by comparison with those in M3I and M33. The brightest non-variable stars appear in these systems at photographic magnitudes 16.0 and 15.6 , respectively. With respective apparent

Plate VI. NGC 432 I taken with the 200 -inch Hale telescope with a 103 a-D plate behind a Schott GG in filter. The band pass of this combination is from $\lambda=5200$ to $\lambda=6300$.

Plate VII. Part of the spiral arm of NGC 432 I which is shown in the lower right of Plate VI. The exposure on the right was made with a Io3a-E plate behind a Schott RG 2 filter. This combination isolates $H \alpha$. The exposure on the left is the same as in Plate VI. Some conspicuous H II regions are marked on the right. Objects identified as stars are marked
on the left.
moduli of 24.25 and 24.15 , the stellar absolute magnitudes are -8.25 and -8.50 . Furthermore, the mean $M_{p g}$ at maximum light for the 5 blue, irregular variables in M3I and M33 (Hubble and Sandage 1953) is -8.7 . The mean of all these values is $M_{p g}=-8.5$, which will be used here. Since these stars have an average color index near zero, the corresponding $M_{p v}$ is -8.5 . A more accurate value is not available at present. Again using 0.25 mag. for the photographic half-thick-
ness for our galaxy, the true modulus of NGC 432 I is $m-M=29.05$. The mean redshift of the Virgo Cluster $+1136 \mathrm{~km} / \mathrm{sec}$ gives $H=176$ $\mathrm{km} / \mathrm{sec} 10^{6} \mathrm{pc}$. Although it is probably uncertain by 20 per cent, $H=180 \mathrm{~km} / \mathrm{sec} 10^{6} \mathrm{pc}, \mathrm{I} / H=$ 5.4×10^{9} years appears to be the best obtainable from the present data.

The $[\log c z, m]$ relation for the field and cluster nebulae may now be used to give mean absolute magnitudes for the various nebular groups. We

Field Nebulae*		Cluster Nebulae	
Class	$\overline{M(m)}_{\mathrm{P}_{\mathrm{C}}}-5 \log f$	Class	$\bar{M}_{0 \mathrm{Pr}_{\mathrm{C}}}-5 \log f$
Eo	$-\mathrm{I} 8.35 \pm .2 \mathrm{I}$	Brgst Fld Neb	-20.25
So	$-18.04 \pm .25$	Rank I	-19.78
Sa	$-\mathrm{I} 8.33 \pm .24$	Rank 3	-19.30
Sb	$-\mathrm{I} 8.37 \pm . \mathrm{I} 8$	Rank 5	-18.98
$\mathrm{Sc}+\mathrm{SBc}$	$-18.00 \pm .36$	Rank 10	- 18.49
$\mathrm{SBo}+\mathrm{SBa}$	$-17.92 \pm .26$		
SBb	-18.54 $\pm .23$		
All Types	$-\mathrm{I} 8.2 \mathrm{I} \pm . \mathrm{I} 3$		

* Tabulated are $\overline{M(m)}$ which is related to \bar{M}_{0} by $\overline{M(m)}=\bar{M}_{0}-\mathrm{I} .382 \sigma^{2}$.
shall assume that the true value of H is given by $180 \mathrm{fkm} / \mathrm{sec} \mathbf{I O}^{6} \mathrm{pc}$, where f is a correction factor at present unknown. The absolute magnitudes M_{C} computed with $H=\mathrm{I} 80 \mathrm{~km} / \mathrm{sec} 10^{6} \mathrm{pc}$ will be related to the true absolute magnitudes M_{T} by the equation $M_{\mathrm{C}}=M_{\mathrm{T}}-5 \log f$.

Solution 2 of Table XIV provides the data necessary to compute M_{C} for the field nebulae. The solution of Case 2 for the clusters, together with the magnitude differences between the ist, 3 rd, 5 th, and Ioth cluster members provide the necessary cluster data. Since the field nebulae were chosen according to apparent magnitude, the corresponding mean absolute magnitude $\overline{M(m)}$ differs from the mean per unit volume, \bar{M}_{0}, by the Malmquist (1920) relation $\overline{M(m)}=$ $\bar{M}_{0}-\mathrm{I} .382 \sigma^{2}$, where σ is the dispersion of the luminosity function. Since σ is not well known, only the directly determined $\overline{M(m)}-5 \log f$ is tabulated in Table CI containing the total results. It is clear that the values for the brightest field nebulae and for the cluster nebulae are M_{0}, and not $\overline{M(m)}$, since the statistical selection resulting in the Malmquist relation does not enter these cases.

REFERENCES
Adams, W. S., and Humason, M. L. 1936, Pub. A. S. P. 48, 107.

Baade, W. 193I, A. N. 243, 304.
——. 1940, Yearb. Carnegie Instn. 39, 20.
——. 1945, ibid. 44, 15.
——. 195I, Mich. Obs. Pub. X, 7.
-I952, Trans. I. A. U., Vol. VIII, 397.
Baade, W., and Minkowski, R. 1954, Ap.J. I19, 215.

Baade, W., and Swope, H. H. 1954, Yearb. Carnegie Instn. 53, 20.
Bigay, J. 195I, Ann. Astroph. 14, 319.
Blaauw, A., and Morgan, H. R. 1954, B. A. N. 12, 95.
Bondi, H. I952, Cosmology, Cambridge University Press.
Bowen, I. S. 1947, Pub. A. S. P. 59, 253.

- 1953, Yearb. Carnegie Instn. 52, 25.

Curtis, H. D. 1903, Lick Obs. Bull. 2, 67.
Dennison, E. 1954, Thesis University of Michigan, unpublished.
de Vaucouleurs, G. 1948, Ann. Astroph. 11, 247.
-. 1950, Ann. Astroph. 13, 362.
Einstein, A. 1945, The Meaning of Relativity, appendix for the second edition, Princeton University Press.
Härm, R., and Schwarzschild, M. 1955, Ap. J. 121, 445.
Hertzsprung, E. 1913, A. N. 196, 201.
Holmberg, E. 1945, Medd. Lunds Astr. Obs., Ser. II, No. 117.
-. 1950, ibid., No. 128.
Hubble, E. 1925, AP. J. 62, 409.
——. 1929, Proc. Nat. Acad. Sci. 15, 168.
-. 1930, Ap. J. 71, 23 I.
Pr. 1936a, The Realm of the Nebulae, Yale University Press, New Haven.
——. 1936b, Ap. J. 84, 158.
-. 1936c, Ap. J. 84, 270.
-. 1939, J. Franklin Inst. 228, I31.
-. 1941, Sci. Mon. 5I, 391.
-. 1953, M. N. 113, 658.
Hubble, E., and Humason, M. L. 1931, Ap. J. 74, 43.
Hubble, E., and Sandage, A. I953, Ap. J. $118,353$.
Humason, M. L. 1931, Ap. J. 74, 35.
-. 1936, Ap. J. 83, го.
--. 1947, Pub. A.S. P. 59, 180.
——. 1954, Yearb. Carnegie Instn. 53, 22.
Humason, M. L., and Wahlquist, H. D. 1955, A. J. 60, 254.

Humason, M. L., and Zwicky, F. 1947, Ap. J. то5, 85.
Malmquist, K. G. 1920, Medd. Lunds Astr. Obs., Ser. II, No. 22.
Mayall, N. U. 1934, Pub. A. S. P. 46, 134.
——. 1935, Pub. A. S. P. 47, 319.
——. 1936, Pub. A. S. P. 48, 14.
-. 1939, Lick Obs. Bull. 19, 33.
-_. 1948a, Sky and Telescope 8, 3.
——. 1948b, Pub. A. S. P. 60, 266.
-. 1950, Pub. Obs. Univ. Michigan 10, 19.
Mayall, N. U., and Aller, L. H. 1942, Ap. J. 95, 5.
Mayall, N. U., and Eggen, O. J. 1953, Pub. A.S. P. 65, 24.
Mayall, N. U., and Wyse, A. B. 194I, Pub. A. S. P. 53, 120.
McVittie, G. C. 1956, General Relativity and Cosmology, Chapman and Hill, London.
Mineur, H. 1945, C. R. Acad. Sci. Paris 220, 445.
Nassau, J. J., and Seyfert, C. K. 1945, Ap. J. 102, 377.
Neyman, J., and Scott, E. L. 1952, Ap. J. 116, 144.
Ohlsson, J. 1932, Ann. Obs. Lund, No. 3.
Oke, J.'B., and 'Schwarzschild, M. 1952, Ap. J. 116, 317.
Pease, F. G. 1918, Pub. A. S. P. 30, 255.
Pettit, E. 1940, Ap. J. 91, I59.
R-. 1954, Ap. J. 120, 413 .
Robertson, H. P. 1933, Rev. Mod. Phys. 5, 62.
-. 1938, Zs. Astroph. 15, 69.
-. 1955, Pub. A. S. P. 67, 82.
Russell, H. N. 1917, A p. J. 45, 60.
Sandage, A. R. 1954a, A.J. 59, 180.
—. 1954b, Liege Symposium Volume, Les Processus
nucleaires dans les Astres, p. 254.
Sandage, A. R., and Schwarzschild, M. 1952, Ap. J. ı16, 463.

Seares, F. 1943, Ap. J. 98, 302.
Seyfert, C. K. 1943, AP. J. 97, 28.

- 1951, Pub. A. S. P. 63, 72 .

Shane, C. D., and Wirtanen, C. A. 1950, Proc. Amer. Phil. Soc. 94, I3.
Sh. I954, A. J. 59, 285.
Shapley, H. ı9ı8, Ap. J.48, 89.

Shapley, H., and Seyfert, C. 1935, Bull. Astr. Obs. Harv., No. 899, 16.
Shapley, H., and Ames, A. 1932, Ann. Harv. Coll. Obs. 88, 43.

Shapley, H., and Boyd, C. 1940. Proc. Nat. Acad. Sci. 26, 41.
Shapley, H., and Mohr, J. 1938, Bull. Astr. Obs. Harv., No. 907, p. 6.
Stebbins, J., and Whitford, A. E. 1937, Ap. J. 86, 247.
——. 1945, ibid. 102, 318.
-. 1948, ibid. 108, 413.
-. 1952, ibid. $115,284$.
Stebbins, J., Whitford, A. E., and Johnson, H. L. 1950, Ap. J. 112, 469.
Strömberg, G. I925, Ap. J. 6i, 353.
Struve, O., and Linke, W. 1940, Pub. A. S. P. 52, 139.
Wilson, O. C. 1949, Pub. A.S. P. 6i, 132.
Wilson, R. E. 1923, A. J. 35, 35.
-. Ap. J. 89, 218.
Whitford, A. E. 1936, Ap. J. 83, 424.
-- 1953, A. J. 58, 49.
-. 1954, Ap. J. 120, 599.
Zwicky, F. 1938, Pub. A.S. P. 50, 218.
-. 1942, Phys. Rev. 61, 489.

> Mount Wilson-Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, and Lick Observatory, Mount Hamilton, University of California, I955 July.

MEASURES OF DOUBLE STARS *

By CHARLES E. WORLEY

Abstract. Measures of 130 double stars, made with the 12 -inch refractor of Lick Observatory, are presented.

The observations of double stars contained in Table I were made with the 12 -inch refractor of the Lick Observatory. The list contains 424 measures of 130 double stars, and the arrangement of the material in the table is self-explanatory. Asterisks denote remarks, which may be found at the end of the table. These are mainly comparisons with the latest available orbits, obtained from the catalog of Muller (1953) and its recent supplement (Muller 1954). A few comparisons are from other sources, in which case the reference is given.

The high quality of the 12 -inch refractor for double star work is well known; it is attested to by the many double star discoveries and measures made with it by Burnham, Aitken, Hussey, Kuiper, and others. Under good observing conditions, elongations of 0 ". 25 , or less, are detectable for bright, equal pairs. The micrometer used is the 12 -inch Clark, with the value 14 ". 059 for one
revolution of the micrometer screw. It, and the telescope, have been described fully elsewhere (Holden 1887). The magnification used was generally 600, with a few measures made with lower powers.

A method of measurement similar to that described by Aitken (1935) was used. However, for the position angles, the line joining the stars was placed alternately on either side of the wire, and the micrometer rotated until parallelism was obtained. For the distances, darkened wires were used when practicable. Ordinarily, four positionangle, and four double-distance settings were made.

The program of observation has been made up principally of pairs having distances less than $2^{\prime \prime} .0$, showing orbital motion. Certain wide pairs have been measured as a part of a continuing

[^1]
[^0]: * Mount Wilson and Palomar Observatories, Reprint No. 181. Lick Observatory Bulletin, No. 542.

[^1]: * Lick Observatory Bulletin, No. 54I.

