# THE SPECTRA AND ROTATIONAL VELOCITIES OF THE BRIGHT STARS OF DRAPER TYPES A3-G0 

Arne Slettebak<br>Perkins Observatory<br>Received October 28, 1954


#### Abstract

Rotational velocities ( $v \sin i$ 's) have been determined by spectroscopic means for the bright stars of Draper types A3-G0, plus a few standards of spectral type later than G0. The total number of stars considered was 215. Spectral types and luminosity classes on the MK system were estimated for all stars not already MK standards. The principal results of this and a previous investigation for 159 stars which were judged to be normal main-sequence and intermediate-luminosity stars in the range A3-G0 are as follows: 1. As has been generally known, axial rotation decreases along the main sequence from the middle A-type stars to the late F-type and early G-type stars. Main-sequence stars later than about F5 have very little axial rotation. 2. Axial rotation also decreases from the middle A-type to the late F- and early G-type stars of intermediate luminosity but persists to later spectral types than for the main-sequence stars. 3. The stars of intermediate luminosity have generally greater axial rotation than the corresponding main-sequence stars in the range F0-G0. Among the middle A-type stars, the two groups probably have about the same axial rotation.

Axial rotation is also discussed for a number of groups of stars not included in the afore-mentioned discussion, including the luminous giant and supergiant stars, the metallic-line stars, the peculiar A stars, and the stars with composite spectra. The variation of axial rotation across the H-R diagram as determined from the present investigation and two previous investigations by the writer is summarized.


## I. INTRODUCTION

The present paper is the last in a series which has as its aim the description of the variation of stellar axial rotation across the $\mathrm{H}-\mathrm{R}$ diagram. The other papers in this series treated the B8-A2 stars (1954) and the B2-B5 stars (Slettebak and Howard 1955). An earlier investigation dealt with the Be stars (1949).

On the observational side, there has been little interest in stellar axial rotation since the pioneering work of Struve, Shajn, Elvey, and Miss Westgate, until recent years. The recent work of Huang (1953) and of Herbig and Spalding (1953, 1955) is particularly significant. Huang's work is an extension of Miss Westgate's catalogues (1933a, b, 1934), and includes line widths of 1550 stars. Unfortunately, two-dimensional spectral types are lacking for most of his stars, but his paper contains an enormous amount of material for future statistical studies of stellar axial rotation when MK spectral types and luminosity classes become available for his stars. Herbig and Spalding have determined rotational velocities for 656 stars of spectral types F0-K5 on the MK system. Their work and the present investigation overlap to some extent, and the material in common yields substantially the same results.

## II. THE OBSERVATIONS

The observational selection was as follows: spectrograms of all stars with Henry Draper spectral types between A3 and G0, brighter than magnitude 5.01, and north of declination $-15^{\circ}$ were taken. In addition, a number of stars outside these limits were observed as standards of spectral type. The total number of stars observed was 215.

All spectrograms were obtained with the two-prism spectrograph attached to the 69inch telescope of the Perkins Observatory, giving a dispersion of $21 \mathrm{~A} / \mathrm{mm}$ at $\lambda 4071$, $28 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$, and $32 \mathrm{~A} / \mathrm{mm}$ at $\lambda 4481$. The first 31 stars observed were taken on

Eastman 103-O plates, developed in D19 for $3 \frac{1}{2}$ minutes at $68^{\circ} \mathrm{F}$.; the remaining spectra were taken on Eastman II $a$-O plates, developed in Promicrol for 12 minutes at $69^{\circ} \mathrm{F}$. All spectrograms were widened to a width of 1.5 mm , with the exception of a very few of the fainter stars; this served the double purpose of enabling a more accurate spectral classification and making possible two independent microphotometer tracings of each stellar spectrum; even when only one usable spectrogram was available. All plates were calibrated in the dome of the Perkins Observatory with the aid of a small spectral sensitometer and were traced with the Perkins Microphotometer, using a magnification of 120.

Figure 1 illustrates the spectrograms employed in this study, showing examples of line broadening by axial rotation for some representative stars.

## III. METHODS

## 1. THE ROTATIONAL VELOCITIES

Equatorial rotational velocities multiplied by the sine of the angle of inclination of the axes of rotation ( $v \sin i$ ) were determined by spectroscopic means for all stars. For the large majority of the stars included, this was done by obtaining profiles of selected

TABLE 1
Data on Sharp-lined Standard Stars and Computed Line Profiles

| Star | Sp(MK) | Employed for Spectral Types: | Line | $u_{\lambda}$ | Equatorial Velocities Corresponding to Computed Profiles ( $\mathrm{Km} / \mathrm{Sec}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\theta$ Leo | A2 V | A3-A7 | Mg II 4481 | 0.73 | $25,50,75,100,125,150,200,250,300,400$ |
| $\gamma$ Vir N | F0 V | A5-F2 | Mg II 4481 | . 76 | $25,50,75,100,125,150,200,250,300,400$ |
| $\sigma$ Boo | F2 V | F0-F5 | $F e$ I 4071 | . 82 | $25,50,75,100,125,150,200$ |
| ${ }^{\iota} \mathrm{Peg}$ | F5 V | F2-F8 | $F e \mathrm{I} 4071$ | . 84 | $25,50,75,100,125,150$ |
| $\beta \mathrm{CV}$ <br> $\eta$ Cas | G0 V | F7-G5 | Fe I 4071 | 0.87 | $25,50,75,100,125,150$ |

stellar absorption lines and comparing with a sequence of line profiles computed for varying degrees of rotational broadening, following the graphical technique of Shajn and Struve (1929).

The selection of the stellar absorption lines to be used was complicated by the fact that nearly all strong lines are blended for the stars under consideration, with the resolution available at the Perkins Observatory. It was finally decided to use $M g$ II 4481.2, which is blended with $F e$ I 4482.2 for stars of type F 0 and later, and $F e$ I 4071.8 , which is blended with $F e$ I 4070.8 and $F e$ I 4072.5. The range of spectral types A3-G0 was then broken down into smaller groups, and sharp-lined stars selected in each group to serve as zero rotational velocity standard stars. The latter are listed in Table 1, with their MK spectral types, the range of spectral types for which they were employed, the absorption line used for the $v \sin i$ determinations, the stellar limb-darkening coefficient $u_{\lambda}$ (Münch and Chandrasekhar 1949) used in the line-broadening computations, and the values of the equatorial rotational velocities for which the line profiles were computed. Values of $v \sin i$ for the A3-A7 stars had to be interpolated from comparisons of line profiles with A2 and F0 computed profiles, since none of the normal A3-A7 III-V stars included in this study were found to have sharp lines.

For all stars showing any degree of rotational line broadening, then, two independent observed line profiles were obtained and compared with the appropriate set or sets of


Fig. 1.-Line broadening by axial rotation in some representative F-type and early G-type stars of intermediate luminosity. The
sharp-lined standard stars, $\eta$ Cassiopeiae and $\iota$ Pegasi, are shown for comparison.
computed line profiles, after normalization to the same equivalent width as the latter. The average of the two values of $v \sin i$ obtained in this way was recorded as the tentative rotational velocity of the star. The final step was a careful visual inspection and intercomparison of all of the spectrograms involved, great care being taken to use spectrograms of similar density and stars of similar spectral type and luminosity class in making the intercomparisons. This technique was found to be especially valuable for stars with relatively small line broadening, since individual line profiles for one of these stars sometimes gave results which were inconsistent with those of other stars of similar line broadening. All the values of $v \sin i$ determined through the use of line contours define a sort of zero point for the system of rotational velocities; the final visual intercomparison is then a smoothing process, making the individual rotational velocities mutually consistent. The final $v \sin i$ values for all stars are listed in Table 2.

## 2. THE SPECTRAL TYPES

All spectral types are on the Revised Atlas system of spectral classification, or MK system (Johnson and Morgan 1953). As pointed out in the notes to Table 2, several sources for these types were used, but the great bulk came from the afore-mentioned paper, which defines the MK system. These stars were used as standards to classify the remaining stars for which no MK spectral types were available. The spectral classification was carried out at the Perkins Observatory by the writer (with the help of Dr. P. C. Keenan for some of the late-type stars), using the same plates employed for the $v \sin i$ determinations. Because the dispersion of these spectrograms is rather high for spectral classification purposes, all classification was carried out by viewing the plates directly, without aid of magnification, and it was felt that quite accurate results were possible in this way.

## Iv. THE ACCURACY OF THE OBSERVATIONS

## 1. THE ROTATIONAL VELOCITIES

An estimate of the probable error of a $v \sin i$ determination is not possible, in view of the method used to arrive at the final $v \sin i$, as described. It is probable that the maximum errors of the measured rotational velocities run about the same as those estimated for the B2-B5 stars (Slettebak and Howard 1955, Table 2).

The smaller rotational velocities, taken individually, are not too reliable, in view of the low resolution employed. In particular, owing to slight differences in the quality of the spectrograms, it was decided not to attempt to distinguish varying degrees of axial rotation below $25 \mathrm{~km} / \mathrm{sec}$. There is no question but that the relatively sharp-lined stars must be treated with high dispersion in order to obtain accurate individual values. The writer would like to point out again that the present dispersion, although admittedly inadequate for accurate determinations of $v \sin i$ for the sharpest-lined stars, was chosen for measuring a very wide range of rotational velocities, including values as high as 400 and $500 \mathrm{~km} / \mathrm{sec}$.

The "sharp-lined" standard stars at spectral type F0, $\gamma$ Virginis N and S, and not really sharp-lined stars: $\gamma$ Virginis N has very slight rotational line broadening, while $\gamma$ Virginis S has an estimated $v \sin i$ of $30 \mathrm{~km} / \mathrm{sec}$. This makes the computed broadened line profiles at F0 broader than they should be for a given rotational velocity, and it tends to underestimate velocities obtained with the use of these profiles. The effect is small for all but the lowest $v \sin i$ 's, however, and all discrepancies were adjusted in ths visual intercomparison of spectrograms already referred to. Rotational velocities de rived from all other sharp-lined standard stars gave consistent results. Values of $v \sin$ were also obtained from both Fe I 4071 and Mg i 4481 contours for a number of F0 anc F2 stars and were found to be consistent.

Several comparisons of rotational velocities of stars in common with other investiga

SPECTRAL TYPES AND ROTATIONAL VELOCITIES OF THE A3-GO STARS

|  | Star | $\alpha$ (1900) | $\delta(1900)$ | $m_{\square}$ | Sp(MK) | Source | $\left(\begin{array}{c} \nabla \sin 1 \\ (\mathrm{Km} / \mathrm{sec}) \end{array}\right.$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\beta \mathrm{Cas}$ | $0^{\text {h }} 3.8$ | $+58^{\circ} 36^{\prime}$ | 2.42 | F2IV | 1 | 70 |  |
| 2 | 22 And | 05.1 | +4531 | 5.08 | F2II | 1 | 40 |  |
| 3 | $\eta$ Cas | 043.1 | +57 17 | 3. 64 | GOV | 1 | <25 |  |
| 4 | HR 244 | 047.1 | +60 35 | 4.93 | F8V |  | $<25$ |  |
| 5 | $\theta$ Cas | 15.0 | +54 37 | 4.52 | A7V | 1 | 110 |  |
| $6^{*}$ | $\phi$ Cas | 113.8 | +57 42 | 5.25 | FOIa | 1 | $\leq 25$ |  |
| 7 | $\delta$ Cas | 119.3 | +59 43 | 3.0-3.1 | A5V | 1 | 120 |  |
| 8 | $\omega$ And | 121.7 | +44 53 | 4.96 | F4IV |  | 75 |  |
| 9 | $v$ And | 130.9 | +40 54 | 4.18 | F8V | 1 | <25 |  |
| 10 | $x$ Cet | 144.7 | -11 11 | 4.77 | F2IV |  | 60 |  |
| 11 | $\alpha$ Tri | 147.4 | +29 6 | 3.58 | F6IV | 1 | 90 | S.B., $P=1.74$ |
| 12 | $\beta$ Ari | 149.1 | +20 19 | 2.72 | A5V | 1 | 70 | S.B., P=1070 |
| 13 | $\lambda \operatorname{Ari}$ (br) | 152.4 | +23 7 | 4.83 | FOIV |  | 95 |  |
| 14 | 48 Cas | 153.7 | +70 25 | 4.61 | A4V |  | 80 |  |
| 15 | $\beta \mathrm{Tri}$ | 23.6 | +34 31 | 3.08 | A5III | 1 | 80 | S. B., P $=31.4$ |
| 16 | 14 Ari | 23.7 | +25 28 | 5.07 | Frill | 1 | 150 |  |
| $17^{*}$ | $\stackrel{C a s}{ }$ | 220.8 | +66 57 | 4.59 | A5p |  | 55 |  |
| 18 | 12 Per | 235.9 | +39 46 | 4.99 | F9V |  | < 25 | S.B., $P=331{ }_{0}^{\text {d }} 0$ |
| 19 | $\theta$ Per | 237.4 | +48 48 | 4.22 | F7V | 1 | <25 |  |
| 20 | $\mu \mathrm{Cet}$ | 239.5 | + 942 | 4.36 | FOIV | 1 | 55 |  |
| 21 | 16 Per | 244.3 | +3754 | 4.27 | F2III | 1 | 155 |  |
| 22** | $\tau$ Per | 247.2 | +52 21 | 4.06 | Comp. |  | $<25$ | S. $\mathrm{B}_{6}, P=1516^{\text {d }}$ |
| $23 *$ | $\gamma$ Per | 257.6 | +53 7 | 3.08 | Comp |  | $<25$ | S.B. |
| 24 | $\checkmark$ Per | 31.9 | +49 14 | 4.17 | GOV | 2 | $<25$ |  |
| 25* | 5 Eri | 311.0 | - 911 | 4.90 | Am |  | 65 | S.B. |
| 26 | $\alpha$ Per | 317.2 | +49 30 | 1.90 | F5Ib | 1 | $<25$ |  |
| 27 | 36 Per | 325.5 | +45 43 | 5.35 | F4III | 1 | <25 |  |
| 28* | HR 1129 | 337.3 | +63 2 | 4.96 | Comp |  | $<25$ |  |
| 29 | $\nu$ Per | 3 38.4 | +42 16 | 3.93 | F5II | 1 | 30 |  |
| 30 | HR 1242 | 356.1 | +58 53 | 5.07 | FOII | 1 | $<25$ |  |
| 31 | $0^{2}$ Eri | 47.0 | $-76$ | 4.14 | F2II-III |  | 110 |  |
| 32 | $\mu$ Per | 47.6 | +48 9 | 4.28 | GOIb | 1 | <25 | S. $\mathrm{B}_{6}, \mathrm{P}=283 \mathrm{C}_{3}$ |
| $33^{*}$ | 52 Per | 48.1 | +40 14 | 4.89 | Comp. |  | <25 | S.B. |
| 34 | 46 Tau | 48.2 | $+728$ | 5. 35 | F3V | 1 | 60 | Close V.B. |
| 35 | HR 1327 | 411.3 | +64 54 | 5.40 | G5III | 1 | $<25$ |  |
| 36* | ${ }^{\text {w }}$ Tau | 411.4 | +20 20 | 4.80 | Am |  | 60 |  |
| 37 | $\delta$ Tau | 417.2 | +17 18 | 3.93 | KOIII | 1 | $<25$ |  |
| 38 | 64 Tau | 418.3 | +1713 | 4.84 | A7V |  | 60 |  |
| 39 | $x$ Tau | 419.4 | +22 4 | 4.36 | A7V |  | 80 |  |
| 40 | v Tau | 420.3 | +22 35 | 4.40 | FOIII-IV |  | 215 |  |
| 41 | 71 Tau | 420.7 | +15 23 | 4.60 | FOV |  | 225 | S.B. ${ }_{\text {c }}$ |
| 42 | $\theta^{2}$ Tau | 423.0 | +15 39 | 3.62 | A7III | 1 | 70 | S.B., P=140\%8 |
| 43 | HR 1427 | 424.8 | +15 59 | 4.84 | A7V |  | 60 |  |
| 44 * | $\rho$ Tau | 428.2 | +14 38 | 4.75 | FOV |  | 130 |  |
| 45* | 58 Per | 429.8 | +41 4 | 4.46 | Comp. |  | $<25$ | S.B., $P=6270^{\text {d }}$ |
| 46* | 88 Tau | 430.2 | $+957$ | 4.38 | Am |  | $<25$ | S. $B_{0}, P=3{ }_{6}{ }_{57}$ |
| 47 | 90 Tau | 432.6 | +12 19 | 4.30 | A5V |  | 80 | S.B. |
| 48 | $\sigma^{2}$ Tau | 433.6 | +15 43 | 4.85 | A5V |  | 130 |  |
| 49 | $\pi^{3} \mathrm{Ori}$ | 444.4 | $+647$ | 3.31 | F6V | 1 | <25 |  |
| 50 | $\omega$ Eri | 448.0 | - 537 | 4.45 | A9IV |  | 170 |  |
| 51 | $\beta \mathrm{Cam}$ | 454.5 | +60 18 | 4.22 | GOIb | 1 | $<25$ |  |
| 52* | $\in$ Aur | 454.8 | +43 41 | 3.3-4.1 | FOIa | 4 | 30 | S.B., $\mathrm{P}=27 \mathrm{Z} 08$ |
| 53 | 64 Eri | 455.3 | -12 41 | 4.85 | FOIV |  | 190 |  |
| 54 | ᄂ Tau | 457.1 | +21 27 | 4.70 | A7V |  | 130 |  |
| 55 | 9 Aur | 458.9 | +5128 | 4.99 | FOV |  | $<25$ |  |

TABLE 2 (Continued)
SPECTRAL TYPES AND ROTATIONAL VELOCITIES OF THE A3-GO STARS

|  | Star | $\alpha(1900)$ | $\delta(1900)$ | $\mathrm{m}_{\nabla}$ | $\mathrm{Sp}(\mathrm{MK})$ | Source | $\left(\frac{\nabla}{\sin / \mathrm{sec}}\right)^{i}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 56 | $\beta \mathrm{Eri}$ | $5^{\text {h }} 2^{\frac{m}{9}}$ | $-5^{\circ} 13^{\prime}$ | 2.92 | A3III | 1 | 200 |  |
| 57 | 15 Ori | 54.0 | +1528 | 4.86 | F2IV |  | 50 |  |
| $58 *$ | $\mu$ Aur | 56.6 | +3822 | 4.78 | Am |  | 90 |  |
| 59 | $\lambda$ Aur | 512.1 | +40 1 | 4.85 | GOV | 2 | $<25$ |  |
| 60 | 19 Aur | 513.4 | +33 51 | 5.16 | A5II | 1 | <25 |  |
| 61 | $\alpha$ Lep | 528.3 | -17 54 | 2.69 | FOIb | 1 | < 25 |  |
| 62 | 49 Ori | 534.1 | -716 | 4.88 | A4IV |  | 190 |  |
| 63 | $\mathrm{x}^{1} \mathrm{Ori}$ | 548.5 | +20 15 | 4.62 | GOV |  | <25 |  |
| 64 | $\eta$ Lep | 551.9 | -14 11 | 3.77 | FOV |  | $<25$ |  |
| 65 | 8 Mon(br) | 618.5 | + 439 | 4.48 | A5IV |  | 125 |  |
| 66 | ) Gem | 639.7 | +130 | 3.40 | F5IV |  | 75 |  |
| 67 | 15 Ign | 648.6 | +5833 | 4.54 | G5III-IV |  | $<25$ | Close $\mathrm{V}_{\text {- }} \mathrm{B}_{\text {c }}$ |
| 68* | 38 Gem | 649.0 | +13 18 | 4.70 | FOVp |  | 130 | S.B. |
|  | ${ }^{\omega}$ Gem | 656.3 | +24 21 | 5.21 | G5II | 1 | $<25$ |  |
| 70* | $\zeta \mathrm{Gem}$ | 658.2 | +20 43 | 3.7-4.1 | Cep. |  | $<25$ |  |
| 71 | $\delta$ Gem | 714.2 | +22 10 | 3.51 | FOIV |  | 120 |  |
| 72 | $\rho$ Gem | 722.7 | +3159 | 4.18 | FOV | 1 | 60 |  |
| 73 | - Gem | 732.6 | +34 49 | 4.92 | F3III |  | 90 |  |
| 74 | $\alpha \mathrm{CMi}$ | 734.1 | + 529 | 0.48 | F5IV-V | 2 | $<25$ |  |
| 75 | $\rho$ Pup | 8 3.3 | -24 1 | 2.88 | F6II | 4 | $<25$ |  |
| 76 | $\zeta$ Mon | 83.6 | - 242 | 4.41 | G2Tb | 1 | $<25$ |  |
| 77 | - UMa | 822.0 | +61 3 | 3.47 | G4II-III |  | $<25$ |  |
| 78 | HR 3459 | 838.8 | - 652 | 4.70 | G2Ib | 3 | $<25$ |  |
| 79 | $\epsilon \mathrm{Hya}(\mathrm{A}+\mathrm{B})$ | 841.5 | + 647 | 3.48 | GOIII-IV |  | <25 | Close V. $\mathrm{B}_{\text {d }}$ |
| 80 | $\checkmark$ UMa | 852.4 | +4826 | 3.12 | A7V | 1 | 145 |  |
| 81* | $\alpha$ Cnc | 853.0 | +12 15 | 4.27 | Am |  | 70 |  |
|  | HR 3579 | 854.2 | +42 11 | 4.09 | F5V | 2 | $<25$ | Close V. $\mathrm{B}_{\text {¢ }}$ |
| 83 | $\sigma^{2} \mathrm{JMa}$ | 91.6 | +6732 | 4.87 | FrIV-V | 2 | <25 |  |
| 84** | 15 UMa | 91.8 | +52 0 | 4.54 | Am |  | 30 |  |
| 85* | ᄃ UNa | 92.7 | +63 55 | 4.74 | Am |  | <25 | S.B. |
| 86 | 18 UMa | 9 9.0 | +54 26 | 4.89 | A5V |  | 175 |  |
| 87 | 23 MMa | 923.7 | +63 30 | 3.75 | FOIV | 5 | 150 |  |
| 88 |  | 924.1 | -220 | 4.78 | F6V |  | 30 |  |
| 89 | 24 UMa | 925.6 | +70 16 | 4.57 | G4III-IV |  | $<25$ |  |
| 90 | $\theta$ UMa | 926.2 | +52 8 | 3.26 | F6IV | 1 | $<25$ |  |
| 91 * | $\tau^{2}$ Hya | 926.9 | -0 45 | 4.50 | A3III |  | 70 |  |
| $92^{*}$ | - Leo | 935.8 | +10 21 | 3.76 | Comp. |  | $<25$ | S.B., P=1 |
| 93 | $\epsilon$ Leo | 940.2 | +24 14 | 3.12 | GOII | 1 | $<25$ |  |
| 94 | $\checkmark$ UMa | 943.9 | +59 31 | 3.89 | F2IV | 1 | 110 |  |
| 95 | 21 LMi | 101.5 | +35 44 | 4.47 | A7V | 1 | 155 |  |
| 96 | $\zeta$ Leo | 1011.1 | +23 55 | 3.65 | FOIII | 1 | 80 |  |
| 97 | 40 Leo | 1014.3 | +19 59 | 4.97 | F6IV | 1 | <25 |  |
| 98 | 30 LMi | 1020.2 | +34 18 | 4.83 | FOV |  | 30 |  |
| 99 | 36 JMa | 1024.2 | +56 30 | 4.84 | F8V | 2 | <25 |  |
| 100 | HR 4132 | 1027.4 | +40 56 | 4.84 | A7IV |  | 140 | S.B. |
| 101 | 37 LMI | 1033.1 | +32 30 | 4.77 | GOII |  | $<25$ |  |
| 102 | $\chi$ Ieo | 1059.9 | +753 | 4.66 | F2III-IV |  | $<25$ |  |
| 103 | $\delta$ Leo | 118.8 | +21 4 | 2.58 | A4V | 1 | 200 |  |
| 104 | $\phi$ Leo | 1111.6 | -36 | 4.58 | A7III-IV |  | 250 |  |
| 105* | $1 \mathrm{UMa}(\mathrm{A}+\mathrm{B})$ | 1112.9 | +32 6 | 3.86 | GOV |  | <25 | Close V.I |
| 106 | ${ }^{1}$ Leo | 1118.7 | +11 5 | 4.03 | F2IV | 5 | $<25$ |  |
| 107* | 93 Leo | 1142.8 | +20 46 | 4.54 | Comp. |  | $<25$ | S.B., $P=$ |
| 108 | $\beta$ Vir | 1145.5 | +220 | 3.80 | F8V | 1 | $<25$ |  |
| 109* | TVir | 1155.8 | + 710 | 4.57 | $\mathrm{A}_{4} \mathrm{~V}$ |  | 70 | S. B. |
| 110* | 12 Com | 1217.5 | +26 24 | 4.78 | Сотр. |  | $<25$ | S.B., $P=$ |

SPECTRAL TYPES AND ROTATIONAL VELOCITIES OF THE A3-GO STARS

|  | Star | $\alpha$ (1900) | $\delta(1900)$ | $\mathrm{m}_{\mathrm{v}}$ | $\mathrm{Sp}(\mathrm{MK})$ | Source | $\left(\begin{array}{l} V \sin f \\ (\mathrm{Km} / \mathrm{sec}) \end{array}\right.$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 111 | $\beta \mathrm{CVn}$ | $12^{\mathrm{h}} 29{ }^{\text {m }}$ | $+41^{\circ} 54{ }^{\prime}$ | 4.32 | GOV | 1 | <25 |  |
| 112 | $\gamma$ Vir N | 1236.6 | -0 54 | 3.65 | FOV | 1 | <25 |  |
| 113 | $\gamma$ Virs | 1236.6 | - 054 | 3.68 | FOV | 1 | 30 |  |
| 114 | 31 Com | 1246.8 | +28 5 | 5.07 | GOIII | 1 | 70 |  |
| 115 | 78 UMa | 1256.4 | +56 54 | 4.89 | F2V | 1 | 90 |  |
| 116* | $\beta$ Com | 137.2 | +28 23 | 4.32 | Gov | 1 | $<25$ |  |
| 117* | 20 CVn | 1313.1 | +41 6 | 4.66 | FOII-IIIp |  | <25 |  |
| 118 | 80 UMa | 1321.2 | +55 31 | 4.02 | A5V | 1 | 240 |  |
| 119 | HR 5110 | 13 30.3 | +37 42 | 4.96 | F2IV |  | <25 | S. $\mathrm{B}_{\text {. , }} \quad P=2.61$ |
| 120 | 24 CVn | 13 30.4 | +49 32 | 4.63 | A4V |  | 160 |  |
| 121 | 25 CVn | 1333.0 | +36 48 | 4.92 | A7III |  | 240 | Close V.B. |
| 122 | ${ }^{\text {¢ }} \mathrm{BoO}$ | 1342.5 | +1757 | 4.51 | FrV | 2 | $<25$ | Closo V.B. |
| 123** | ${ }^{7} \mathrm{~B}$ Boo | 1349.9 | +1854 | 2.80 | GOIV | 1 | <25 | S.B., $P=495^{\text {d }}$ |
| 124* | $\begin{array}{rl}12 \mathrm{BoO} \\ \mathrm{k} & \mathrm{BoO}(\mathrm{br})\end{array}$ | $\begin{array}{ll}14 & 5.8 \\ 14 & 9.9\end{array}$ | +25 34 +5215 | 4.82 | F8IV |  | $<25$ | S. $\mathrm{B}_{\text {. }}, \mathrm{P}=9 \mathrm{~d} 60$ |
| 125 | $k \mathrm{Boo}(\mathrm{br})$ | $14 \quad 9.9$ | +52 15 | 4.60 | A7IV |  | 135 |  |
| 126 | ${ }^{1} \mathrm{Vir}$ | 1410.8 | - 531 | 4.16 | FYIII-IV |  | $<25$ |  |
| 127 | $\checkmark$ Boo | 1412.6 | +5150 | 4.78 | A7V |  | 130 |  |
| 128 | $\stackrel{\ominus}{\text { - }}$ Boo | 1421.8 | +5219 | 4.06 | FrV | 1 | 30 |  |
| 129 | $\gamma$ Boo | 1428.1 | +38 45 | 3.00 | A7III | 1 | 135 |  |
| 130 | $\sigma$ Boo | 1430.3 | +30 11 | 4.48 | F2V | 1 | $<25$ |  |
| 131 | $\mu \mathrm{Vir}$ | 1437.8 | - 513 | 3.95 | F3IV |  | 50 |  |
| 132 | 16 Lib | 1452.0 | - 356 | 4.59 | FOIV |  | 120 |  |
| 133 | 45 Boo | 152.9 | +25 16 | 5.03 | F5V | 1 | 35 |  |
| 134** | $\mu \mathrm{Boo}(\mathrm{br})$ | 1520.7 | +3744 | 4.47 | FOV |  | 90 |  |
| 135* | $\beta \mathrm{CrB}$ | 1523.7 | +29 27 | 3.72 | FOp |  | $<25$ |  |
| 136 | $\delta \mathrm{Ser}(\mathrm{br})$ | 1530.0 | +10 52 | 4.23 | FOIV |  | 80 |  |
| 137 | $\lambda$ Ser | 1541.6 | + 740 | 4.12 | GOV | 2 | $<25$ |  |
| 138 | $x$ Her | 1549.2 | +42 44 | 4.61 | F9V | 2 | $<25$ |  |
| 139 | $\gamma$ Ser | 1551.8 | +15 59 | 3.86 | F6V | 1 | <25 |  |
| 140 | HR 5960 | 15 55.4 | +55 2 | 4.96 | FOIV |  | 135 |  |
| 141 | ${ }^{2} \mathrm{Sco}$ | 1558.9 | -11 6 | 4.16 | F5IV |  | <25 | Close V.B |
| 142 | $\theta$ Dra | 160.0 | +58 50 | 4.11 | F8IV-V | 2 | 30 | S. $\mathrm{B}_{\bullet}, \mathrm{P}=3{ }^{\text {a }} 07$ |
| 143 | $\sigma$ Ser | 1617.0 | $+116$ | 4.80 | FOV |  | 80 |  |
| 144 | $\gamma$ Her | 1617.5 | +1923 | 3.79 | A9III | 1 | 140 |  |
| 145 | $\zeta$ Her | 1637.5 | +31 47 | 3.00 | GOIV | I | <25 | Close V. ${ }_{\text {c }}$ |
| 146 | HR 6237 | 16 43.4: | +5658 | 4.88 | F2V |  | 55 |  |
| 147 | 20 Oph | 1644.3 | -10 36 | 4.73 | F5IV-V |  | $<25$ |  |
| 148 | 19 Dra | 1655.5 | +65 17 | 4.82 | F6V |  | $<25$ | S. $\mathrm{B}_{\text {, , }} \mathrm{P}=52.1$ |
| 149 | 60 Her | 170.7 | +1253 | 4.91 | A3IV |  | 115 |  |
| 150 | HR 6493 | 1721.3 | -5 0 | 4.61 | F3V |  | + | S.B., $P=26 . \mathrm{Z}$ |
| 151 | $\underset{\nu^{2}}{\boldsymbol{\beta}}$ Dra | 1728.2 | +52 23 | 2.99 | G2II | 1 | $<25$ |  |
| $153 *$ | 䲞 ${ }^{2} \mathrm{Dra}$ | 1730.2 17 170.3 | +5515 +5514 | 4.98 4.95 | ${ }_{\text {Am }}^{\text {Am }}$ |  | 65 |  |
| 154 | $\alpha$ Oph | 1730.3 | + +12128 | 2.14 | ${ }_{\text {Am }}^{\text {A5III }}$ | 1 | 540 |  |
| 155 | $\omega$ Dra | 1737.5 | +68 48 | 4.87 | F'5V |  | $<25$ | S. B., $P=5 \mathrm{C}_{2}$ |
| 156 | $\mu \mathrm{Her}$ | 1742.6 | +2747 | 3.48 | G5IV | 1 | $<25$ |  |
| 157 | $\Psi \mathrm{Dra}$ (br) | 1743.7 | +72 12 | 4.90 | F5IV-V |  | $<25$ |  |
| 158 | $\nu$ Her | 1754.7 | +3012 | 4.48 | F2II | 1 | $<25$ |  |
| 159 | $\zeta \mathrm{Ser}$ | 1755.2 | - 341 | 4.60 | F3V | 2 | 75 |  |
| 160 | 72 0ph | 182.6 | +933 | 3.73 | A4V |  | 75 |  |
| 161 | $\chi$ Dra | 1822.9 | +7241 | 3.69 | F7V | 1 | $<25$ | S. $\mathrm{B}_{0}, \mathrm{P}=280{ }^{\text {d }} 5$ |
| 162 | $\gamma$ Sct | 1823.5 | -14 38 | 4.73 | A3V |  | 260 | S.B., $P=280.5$ |
| 163 | 45 Dra | 1830.9 | +56 58 | 4.95 | F7Ib | 3 | $<25$ |  |
| 164* | $\delta$ Sct | 1836.8 | -9 9 | 5.0-5.2 | F3III-IV |  | 35 |  |
| 165 | $\zeta \operatorname{Lyr}$ (br) | 1841.3 | +37 30 | 4.29 | Am |  | 30 |  |

TABLE 2 (Continued)
SPECTRAL TYPES AND ROTATIONAL VELOCITIES OF THE A3-GO STARS

|  |  | Star | $\alpha$ (1900) | $\delta(1900)$ | $\mathrm{m}_{\nabla}$ | Sp (MK) | Source | $\left(\frac{\nabla}{\mathrm{km} / \mathrm{sec})}{ }^{1}\right.$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 166 | 110 | Her | $18^{\mathrm{h}} 41{ }^{\text {m }}$ 4 | $+20^{\circ} 27^{\prime}$ | 4.26 | F6V | 1 | < 25 |  |
| 167 | $\beta$ | Sct | 1841.9 | -451 | 4.47 | G5II | 1 | $<25$ | S. B., Pme834 ${ }^{\text {d }}$ |
| 168 | 111 | Her | 1842.6 | +18 4 | 4.37 | A3V |  | 80 |  |
| 169* | 113 | Her | 1850.5 | +22 31 | 4.56 | Comp. |  | $<25$ | S.B., $P=245^{\text {® }}$ |
| 170 |  | Ser (br) | 1851.3 | +4 4 | 4.50 | A5V |  | 130 |  |
| 171 |  | AqI | 1920.5 | $+255$ | 3.44 | FOIV |  | 80 | S.B. |
| 172 |  | Aql | 1921.4 | + 08 | 4.86 | F2Ib | 1 | $<25$ |  |
| 173 | $\theta$ | Cyg | 1933.8 | +49 59 | 4.64 | F4V |  | <25 |  |
| 174 |  | Sge | 1935.6 | +1747 | 4.37 | GOII | 1 | <25 |  |
| 175 |  | Aq1 | 1945.9 | + 836 | 0.89 | A7IV, V | 2 | 240 |  |
| 176 |  | Cyg | 1953.1 | +52 10 | 4.90 | A3IV, V |  | 300 |  |
| 177* |  |  | 1957.0 | +27 29 | 4.74 | Am |  | <25 |  |
| 178 |  | Cyg | 2011.1 | +5616 | 4.32 | A3IV, $V$ |  | 300 | S. ${ }_{0}$ |
| 179 |  | ${ }^{1}$ Cap | 2012.1 | -12 49 | 4.55 | G3Ib | 3 | <25 |  |
| 180* |  | $0^{2} \mathrm{Cyg}$ | 2012.4 | +4724 | 4.16 | Сотр. |  | $<25$ | S.B., $P=1170^{\text {d }}$ |
| 181 | $\gamma$ | Cyg | 2018.6 | +39 56 | 2.32 | F8Ib | 1 | $<25$ |  |
| 182 |  |  | 2085.3 | +30 2 | 4.09 | F5II | 1 | <25 |  |
| $183 *$ | $\bigcirc$ | Cep | 2027.9 | +62 39 | 4.28 | Am |  | 40 | S. B. |
| 184* | 47 | Cgg | 2030.0 | +34 54 | 4.85 | Comp. |  | <25 |  |
| 185 |  | Del | 2032.9 | +1415 | 3.72 | F5IV | 5 | 70 | Close V. $\mathrm{B}_{\text {c }}$ |
| 186 | $\delta$ | Del | 2038.8 | +14 43 | 4.53 | A7III |  | 35 |  |
| 187 | HR 7 | 7955 | 2042.9 | +57 13 | 4.63 | F8IV-V | 5 | <25 |  |
| 188** |  | $\mu \mathrm{Aqr}$ | 2047.3 | -922 | 4.80 | Am |  | 50 |  |
| 189* |  | Equ | 215.5 | +944 | 4.76 | FOp |  | <25 |  |
| 190 |  | Equ | 219.6 | +936 | 4.61 | FrV |  | <25 | Close V.B. |
| 191* |  | Cyg | 2110.8 | +37 37 | 3.82 | FOIV |  | 95 | S.B. |
| 192* |  | Equ | 2110.8 | +450 | 4.14 | Corm. |  | $<25$ | S.B. |
| 193 |  | Cep | 2116.2 | +62 10 | 2.60 | A7IV, ${ }^{\text {V }}$ | 2 | 240 |  |
| 194 |  | Aqr | 2126.3 | - 61 | 3.07 | GOIb | 1 | <25 |  |
| 195 |  | Aqr | 2132.4 | - 818 | 4.78 | ATV |  | 165 |  |
| 196 |  | Cyg(br) | 2139.7 | +28 17 | 4.73 | F6V |  | $<25$ |  |
| 197 |  | Peg | 2140.7 | +25 11 | 4.27 | F5IV |  | 35 | Close V.B. |
| 198* |  |  | 220.7 | - 048 | 3.19 | G2Ib | 1 | $<25$ |  |
| 199 200 | + | ${ }_{\text {Peg }}^{\text {Cop }}$ (br) | $\begin{array}{ll}22 & 0.9 \\ 22 & 2.4\end{array}$ | +648 <br> +24 | 4.57 3.96 | ${ }_{\text {Fsf }}^{\text {Am }}$ | 1 | 50 $<25$ | S.B., $P=10{ }^{2} 2$ |
| 201 |  | Peg | 225.6 | +32 41 | 4.38 | F5II-III |  | 145 |  |
| 202* |  |  | 2211.3 | +56 33 | 4.23 | FOIV | 1 | 85 |  |
| $203 *$ |  | Aqr ( $\mathrm{A}+\mathrm{B}$ ) | 2223.7 | - 032 | 3.74 | F2IV |  | $\leqslant 55$ | Close V.B. |
| 204 | 9 | Lac | 2233.3 | +51 2 | 4.83 | A7IV |  | 90 | S. $\mathrm{B}_{\text {。 }}$ |
| 205 |  | Peg | 2238.3 | +29 42 | 3.10 | G2II-III | 2 | <25 | $S_{0} B_{0}, P=818^{\text {d }}$ |
| 206 |  | Peg | 2241.7 | +1140 | 4.31 | F\%V | 2 | $<25$ |  |
| 207* |  | Peg | 2247.3 | + 918 | 5.30 | F7IV | 1 | <25 |  |
| $208 *$ |  | Cep | 234 | +74 51 | 4.56 | G2III |  | 25 |  |
| 209 |  | And | 2380 | +48 52 | 4.62 | FOV |  | 65 | S. $\mathrm{B}_{0}$ |
| 210 |  | Peg | 2315.7 | +23 12 | 4.65 | A5IV |  | 150 |  |
| 211 |  | Peg | 2320.4 | +22 51 | 4.57 | F8IV | 1 | 85 |  |
| 212 | $\llcorner$ | Psc | 2334.8 | $+55$ | 4.23 | F\%V | 1 | $<25$ |  |
| 213* | $\lambda$ | Psc | 2337.0 | +114 | 4.61 | A7V | 5 | 60 |  |
| $214 *$ | $\rho$ | Cas | 23 49.4 | +5657 | 4.4-5.1 | pec. |  | <25 |  |
| 215 | $\omega$ | Psc | 2354.2 | + 619 | 4.03 | F4IV |  | 30 | S.B. |



| 117. | 20 CVn: | Mg II 4481 is abnormally strong. |
| :---: | :---: | :---: |
| 124. | 12 Boo : | Two spectra visible on the Perkins plate; both sets of lines are quite sharp. |
| 135. | $\beta \mathrm{CrB:}$ | Peculiar A-F star, of the chromium-europium type. The spectral type is due to Morgan (1943). |
| 152. | $\nu^{1}$ Draz | Metallicoline star: A4 K-line and A7 metallic spectrum. |
| 153. | $\nu^{2}$ Dra: | Metaliic-1ine star: A2 K-1ine and F2 metallic spectrum. |
| 165. | $\zeta$ Lyr (br) : | Metallic-line star: A4 K-line and FO metallic spectrum. |
| 169. | 113 Her: | Composite spectrum. Approximately A5 + G5III. |
| 177. | 15 Vul: | Metallic-line star: A6 K-Iine and F2 metallic spectrum. |
| 180. | $0^{2}$ Cyg: | Composite spectrum. The late type component is about K5Ib-II, according to P.C. Keenan (private conversation). |
| 183. | $\theta$ Cep: | Metallic-line star: A6 K-line and F2 metallic spectrum. |
| 184. | 47 Cyg: | Composite spectrum. The late type component is about K4Ib, according to P.C. Keenan (private conversation). |
| 188. | $\mu$ Aqre | Metallic-line star: A4 K-inne and F2 metalilc spectrum. |
| 189. | $\gamma$ Eque | Peculiar A-F star, of the strontiumeouropium type. The spectral type is due to Morgan (1943). |
| 192. | $\alpha$ Equ: | Composite spectrum. A + G5 giant, according to Morgan (1943). Deutsch (1954) has made a study of this system and arrives at a similar classification. |
| 199. | Cop(br): | Metallic-line star: A2 K-line and F2 metallic spectrum. |
| 203. | Aqr $(A+B)$ : | The rotational velocity given is an upper limit for the more rapidy rotating component. Herbig and Spalding (1955) find the two components to be rotating at the same speed: each with a $v$ sin $i=75 \mathrm{~km} / \mathrm{sec}$. |
| 208. | $\pi$ Cep: | The present rotational velocity ( $25 \mathrm{Km} / \mathrm{sec}$ ) is considerably smaller than that of $70 \mathrm{Km} / \mathrm{sec}$ originally announced for this star (Slettebak 1953), but still somewhat larger than that of $\leq 15 \mathrm{Km} / \mathrm{sec}$, given by Herbig and Spalding (1955). |
| 214. | $\rho$ Cas: | According to P.C. Keenan (private conversation) the type of this irregular variable star at the time of writing (September, 1954) is approximately GOIap. |

## ARNE SLETTEBAK

tors are possible. Figure 2 illustrates a comparison of the present data with that of Miss Westgate (1933b) for 53 A-type stars in common. As in similar comparisons with Miss Westgate for the B2-B5 and B8-A2 stars, a scale difference is present, in the sense that the present values run somewhat higher than those of Miss Westgate.

A comparison with the values of Huang (1953) for 104 stars in common is shown in Figure 3, where Huang's parameter $\gamma$ is set equal to 2 in converting his line widths to rotational velocities. A scale difference is also evident in this comparison, in the sense that the present values run somewhat lower than those of Huang for small and intermediate values of $v \sin i$, while the agreement is better for large values. A similar tendency was found in comparing the values of Slettebak and Howard (1955) with those of Huang


Fig. 2.-A comparison of rotational velocities measured at Perkins with those measured by Miss Westgate for 53 A-type stars in common.
(1953) for the B2-B5 stars. Also, in a comparison of their values with those of Huang for the F0-K5 stars, Herbig and Spalding (1955) find a similar scale difference and conclude that Huang's rotational velocities can be reduced to the scale of their paper by using $\gamma \simeq$ 1.4. In a recent conversation, Dr. Huang informed the writer that his parameter $\gamma$ should probably be given the value 1.25 for small velocities and 2 for large velocities in reducing his line widths to values of $v \sin i$.

Figure 4 illustrates a final comparison: between the present rotational velocities and those of Herbig and Spalding (1955) for 30 stars in common (stars with rotational velocities expressed as upper limits by either investigator were not plotted). The scatter is rather small, but a scale difference may be present in the sense that the present values run lower than those of Herbig and Spalding for $v \sin i$ 's up to about $110 \mathrm{~km} / \mathrm{sec}$ and somewhat higher for values in excess of this. The latter conclusion is quite uncertain, however, in view of the small number of stars in common.

Note added February 12, 1955.-At the time this manuscript was submitted, the writer was not aware of the work of J. B. Oke and Jesse L. Greenstein on the rotational velocities of A-, F-, and G-type giant stars (Ap.J., 120, 384, 1954), which was then in
press. I am indebted to Dr. Greenstein for sending me a copy of this paper in advance of publication. A comparison between $v \sin i$ 's as determined from high-dispersion plates by Oke and Greenstein with those of the present paper for 19 stars in common shows excellent agreement. The only two stars for which any discrepancy exists are $\gamma$ Herculis and $\beta$ Coronae Borealis, for which Oke and Greenstein obtained 171 and $43 \mathrm{~km} / \mathrm{sec}$, respectively, while the writer found 140 and $<25 \mathrm{~km} / \mathrm{sec}$.
2. THE SPECTRAL TYPES

A comparison between the writer's spectral types and luminosity classes and those of Miss Roman is possible for 25 common F- and G-type stars. Of these, 3 were classified by Miss Roman (1952) on the MK system, while the others were classified by her (1950) on the MKK system. The latter have been converted to the MK system by changing luminosity class III to IV and IV to IV-V for the F2-F8 stars (see Johnson and Morgan 1953; Roman 1952). The results of the comparison are shown in Figure 5. The agreement


Fig. 3.-A comparison of rotational velocities measured at Perkins with those measured by Huang for 104 stars in common.

## ARNE SLETTEBAK

is quite satisfactory, although there may be a tendency for the writer's types to run somewhat earlier than Miss Roman's for spectral type F5 and earlier.

Unfortunately, no comparison is possible between the writer's spectral types and luminosity classes and those of other investigators for the A3-A7 stars. These were by far the most difficult to classify among the A3-G0 stars, particularly with regard to


Fig. 4.-A comparison of rotational velocities measured at Perkins with those measured by Herbig and Spalding for 30 stars in common.


Fig. 5.-A comparison of spectral types and luminosity classes estimated at Perkins with those of Miss Roman for 25 F - and G-type stars in common.
luminosity class. As has been pointed out by Morgan (Johnson and Morgan 1953), an indeterminateness exists between luminosity classes IV and V at type A7 for stars with very broad lines, and the writer feels that the same holds true for the A3-A5 stars.

## v. DISCUSSION

## 1. THE MAIN-SEQUENCE STARS

Seventy-four of the 215 stars considered were judged to be normal main-sequence stars in the range A3-G0. In addition, 13 normal main-sequence stars of types A3 and A5 as classified in the writer's B8-A2 rotation paper (1954) were included in the following discussion, making a total of 87 .

The sample is not overwhelmingly large, and it was therefore not possible to group them by individual spectral types in order to study the variation of axial rotation along the main sequence with the maximum resolution. The stars have, instead, been grouped to give an indication of axial rotation along the main sequence for the middle A types, the early F types, the middle F types, and the late F types. The results are tabulated in Table 3, where the mean true rotational velocity, $\bar{v}$, is $4 / \pi$ times the mean observed

TABLE 3
Axial Rotation in the Normal A3-G0 Stars

| Spectral Types | Luminosity Class V |  | $\begin{aligned} & \text { Luminosity } \\ & \text { Classes III, IV } \end{aligned}$ |  | Spectral Types | Luminosity Class V |  | Luminosity Classes III, IV |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{v}(\mathrm{Km} / \mathrm{Sec})$ | $N$ | $\overline{\mathrm{v}}$ ( $\mathrm{Km} / \mathrm{Sec}$ ) | $N$ |  | $\bar{v}(\mathrm{Km} / \mathrm{Sec})$ | $N$ | $\bar{v}(\mathrm{Km} / \mathrm{Sec})$ | $N$ |
| A3-A7 | 173 | 37 | 202 | 24 | F3-F6. | 31 | 14 | 67 | 14 |
| A9-F2. | 87 | 15 | 125 | 26 | F7-G0 | <25 | 21 | 34 | 8 |

rotational velocity, $v \sin i$, allowing for the effect of the random distribution of rotational axes (Chandrasekhar and Münch 1950). Those stars which are designated as having rotational velocities $<25 \mathrm{~km} / \mathrm{sec}$ in Table 2 have been arbitrarily assigned a $v \sin i$ of $10 \mathrm{~km} / \mathrm{sec}$ in forming the means in Table 3, as well as elsewhere in this paper.

Despite the rather small number of stars used in forming the means, there is no doubt that axial rotation decreases along the main sequence from the middle A-type stars to the late F-type and early G-type stars, as is generally known. The writer found no mainsequence star with a $v \sin i$ greater than $35 \mathrm{~km} / \mathrm{sec}$ later than F4. The main-sequence star of latest spectral type which still showed a measurable $v \sin i$ was the F7 star $\theta$ Bootis ( $30 \mathrm{~km} / \mathrm{sec}$ ). Herbig and Spalding $(1953,1955)$ have considered stars as late as K5 and have reached substantially the same conclusion (the main-sequence star of latest spectral type for which they find measurable axial rotation is the F8 star, 111 Tauri, with $v \sin i=25 \mathrm{~km} / \mathrm{sec})$.

## 2. THE STARS OF INTERMEDIATE LUMINOSITY

Sixty-four stars in Table 2 were classified as being of intermediate luminosity in the range A3-G0. In addition, 8 A3 stars of intermediate luminosity from the writer's B8A2 rotation paper (1954) are included in the following discussion, making a total of 72 stars. Stars of intermediate luminosity refer to those having luminosity classes II-III, III, III-IV, and IV. This grouping is necessitated by the small number of stars available. The stars of luminosity class II are considered separately with the supergiants in the following section. The stars of luminosity class IV-V are not included in the statistical discussion at all, nor are those four A-type stars with such pronounced line broadening that their luminosity classes are indeterminate.

Table 3 lists the mean true rotational velocities for the A3-G0 stars of intermediate luminosity, grouped by spectral types in the same manner as was done for the mainsequence stars. Two conclusions can be drawn:
a) Axial rotation decreases from the middle A-type to the late F-type stars of intermediate luminosity, just as it does for the main-sequence stars, but it appears to persist to later spectral types for the former. Extreme examples are the F8 IV star, $v$ Pegasi (85 $\mathrm{km} / \mathrm{sec}$ ), and the G0 III star, 31 Comae ( $70 \mathrm{~km} / \mathrm{sec}$ ); and, with less certainty, the G2 III star, $\pi$ Cephei ( $25 \mathrm{~km} / \mathrm{sec}$ ). This effect was pointed out earlier by Herbig and Spalding (1955) and by Slettebak (1953; 1954, n. 14).
b) The stars of intermediate luminosity have generally greater axial rotation than the corresponding main-sequence stars among the F-type stars. This was pointed out earlier by Herbig and Spalding $(1953,1955)$ and by Slettebak (1953; 1954, n. 14). Still earlier, Greenstein (1953) noted that broad lines are very common among A5 III-F5 III stars, and Herbig and Miss Turner (1953) pointed out that only a minority of giant stars in the interval F5-G2 have sharp lines.

Among the middle A-type stars, the dependence of axial rotation on luminosity is less clear. Table 3 shows that the stars of intermediate luminosity have somewhat greater axial rotation than the main-sequence stars; but this must be viewed with caution, in view of the difficulty of luminosity classification in the middle A-type stars. It is probably safe to say that the main-sequence stars and the stars of intermediate luminosity have about the same axial rotation in the middle A-type stars.

## 3. THE LUMINOUS GIANT AND SUPERGIANT STARS

Twenty-seven stars in Table 2 are of luminosity classes $\mathrm{I} a, \mathrm{I} b$, and II. Of these, it can only be said that none have very large line broadening; a complete study of these stars requires higher dispersion than that used in this investigation (see Herbig and Spalding 1955).

Line broadening was noted in a few luminous giant and supergiant stars, however. Among the luminosity class II stars, the F2 star, 22 Andromedae, and the F5 star, $\nu$ Persei, have broadened lines corresponding to rotational velocities of 40 and $30 \mathrm{~km} / \mathrm{sec}$, respectively. The F0 I $a$ stars, $\epsilon$ Aurigae and $\phi$ Cas, have broadened lines corresponding to $v \sin i$ 's of 30 and $\leq 25 \mathrm{~km} / \mathrm{sec}$, respectively. The determinations for the latter two stars were based on weak lines, since the strong lines appear to be largely turbulencebroadened. Incidentally, it should be pointed out that the assignment of $v \sin i$ 's to all stars of these luminosity classes is only to indicate the degree of line broadening; the extent of line broadening by axial rotation as against other broadening agents is uncertain.

## 4. THE METALLIC-LINE STARS

Fourteen metallic-line stars are included among the 215 stars listed in Table 2. The mean true rotational velocity, $\bar{v}$, of the group is $57 \mathrm{~km} / \mathrm{sec}$. This is in good agreement with the corresponding value for the 6 metallic-line stars included in the writer's B8-A2 rotation paper (1954): $51 \mathrm{~km} / \mathrm{sec}$. The conclusion reached earlier that the metallic-line stars as a group are characterized by rather small axial rotation still stands.

## 5. THE PECULIAR A STARS

Only three peculiar A stars are included in the present sample, and, of these, only $\iota$ Cassiopeiae has a measurable rotational velocity: $55 \mathrm{~km} / \mathrm{sec}$. When these 3 peculiar A stars are added to the 16 studied in the writer's B8-A2 rotation investigation (1954), a value of $48 \mathrm{~km} / \mathrm{sec}$ for $\bar{v}$ is found for the group. The conclusion remains that the peculiar A-type stars have small axial rotation as a group, although values of $v \sin i$ up to 100 $\mathrm{km} / \mathrm{sec}$ have been measured for individual stars.

## 6. THE STARS WITH COMPOSITE SPECTRA

Twelve stars in Table 2 have composite spectra, showing an A-type plus a late-type component. Of these, 11 were known previously, and 1, 93 Leonis, was found on Perkins plates.

The rotational velocities listed for these stars in Table 2 refer in all cases to the latetype component. It can be said quite generally that no significant line broadening was visible for the late-type components of any of these composite systems. The A-type components were detectable in general by a weakening of the broad K line of the late-type component and a strengthening of the Balmer lines in the composite spectrum. In some cases the A-type component showed a sharp K line superimposed on the broad K line of the late-type component, which made possible a rough classification of the A-type star. A determination of the rotational velocities of the A-type components for these systems was not possible with the present observational material.

## 7. THE STRONG- AND WEAK-LINE STARS

Miss Roman $(1950,1952)$ has distinguished spectroscopically two groups of stars in the spectral range F5-G5, the strong- and weak-line stars, and has pointed out that these differ in their space-velocity characteristics. Sixty-two stars in Table 2 have been classified by Miss Roman as belonging to one of these two groups: 33 weak-line stars and 29 strong-line stars. All degrees of line broadening are found in both groups, although the strong-line stars have a few more rapidly rotating stars. A value of $\bar{v}=37 \mathrm{~km} / \mathrm{sec}$ was obtained for the strong-line stars, as compared with $24 \mathrm{~km} / \mathrm{sec}$ for the weak-line stars; but this difference is not significant, since no attempt was made to divide the stars into spectral types and luminosity classes, because of the small sample available. The conclusion that there is no significant difference in axial rotation between the strong- and weak-line stars had also been reached earlier by Herbig and Spalding $(1953,1955)$ and by Slettebak (1953). The limitations of the relatively low dispersion used in this paper should be kept in mind, however, in evaluating this conclusion.

## VI. SUMMARY AND CONCLUDING REMARKS

Including the 215 A3-G0 stars considered in this investigation, a total of 579 stars in the range of Henry Draper spectral types B2-G0 have been studied with respect to axial rotation and spectral type by the writer. Of these, 427 were treated in statistical discussions of the relation between axial rotation and spectral type and luminosity class. The latter stars were all judged to be normal in the sense that they could be located uniquely on the H-R diagram. Figure 6 summarizes these results: values of the mean true rotational velocity, $\bar{v}$, are listed for the various groups of stars considered, on a diagram in which bolometric absolute magnitude is plotted against the logarithm of the effective temperature. The following conclusions can be drawn:

1. On the main sequence, axial rotation appears to reach a maximum for the middle B-type stars, decreasing gradually through the middle A-type stars. Near F0, the rotational velocities drop rather sharply and are very small for the middle F-type stars. The main-sequence stars of late $F$ type and later have little or no axial rotation.
2. The variation of axial rotation with luminosity class is a function of spectral type. In the B1-A2 range, the main-sequence stars have greater axial rotation than the stars ot intermediate luminosity. Among the A3-A7 stars, the two groups probably have about the same axial rotation. In the range F0-G0, the stars of intermediate luminosity are characterized by greater axial rotation than the corresponding main-sequence stars.
3. There is a tendency for axial rotation to persist to later spectral types for the stars of intermediate luminosity, as compared with the main-sequence stars.

It is the hope of the writer that the results presented in Figure 6 may be of interest
to workers in the field of stellar evolution. With regard to the numbers listed there, however, the following should be remembered:

1. The samples considered for some of the groups of stars are small. Later investigations with more stars may change some of the $\bar{v}$ 's considerably.
2. Figure 6 is the result of three separate investigations. Although the writer checked various groups of stars against one another, the possibility remains of systematic differences in the rotational velocities of the groups considered.
3. The accuracy of spectral type and luminosity classifications varies across the H-R diagram. In the opinion of the writer, the most accurate classifications are those for the B1-B6 and F0-G0 stars. Without question, the B8-A7 stars are the most difficult to classify, particularly for luminosity class. The values of $\bar{v}$ for the latter range should therefore be considered the most uncertain and subject to change.

A few remarks concerning further observational work on stellar axial rotation might be appropriate. In the range of spectral types considered by the writer, larger samples


Fig. 6.-The variation of stellar axial rotation across the $M_{\text {bol }}$ versus $\log T_{0}$ diagram, as determined from measured rotational velocities of 427 normal B1-G0 stars. The values of the mean true rotational velocities, $\bar{v}$, are listed for each group of stars, and the numbers of stars discussed in each group are given in parentheses.
and a finer resolution into spectral types and luminosity classes would be very desirable. The major observational problem is not so much the rotational velocities (which can be estimated rather rapidly, as well as accurately, by visual means) as it is the accurate classification into spectral types and luminosity classes, as Herbig and Spalding (1955) have pointed out. Outside the range of spectral types considered by the writer, the latetype stars to spectral class K5 have been investigated by Herbig and Spalding (1955), but more work is necessary for the O-type and early B-type stars. Although line broadening is observed for stars of all luminosity classes in this region, the role of axial rotation as a broadening agent is still uncertain. Until it can be distinguished from largescale turbulence and any other broadening agents which may play a role, it will be diffcult to arrive at any statistical analysis of axial rotation in these stars.

I am extremely grateful to Dr. W. W. Morgan for valuable information regarding problems of spectral classification encountered in this investigation and, in general, for his continued interest and encouragement while this work was going on. Thanks are also due Dr. P. C. Keenan, for his help in the classification of the G-type and composite spectra, and Dr. George H. Herbig, for very kindly sending a copy of his and Mr. J. F. Spalding's paper in advance of publication. All the microphotometer tracings and a large part of the reductions were carried out by Mr. Robert F. Howard, whose help I gratefully acknowledge.

## REFERENCES

Chandrasekhar, S., and Münch, G. 1950, Ap. J., 111, 142.
Deutsch, A. J. 1954, Pub. A.S.P., 66, 58.
Greenstein, J. L. 1953, Ap. J., 117, 269.
Herbig, G. H., and Spalding, J. F., Jr. 1953, Pub. A.S.P., 65, 192.

- $1955, A p . J ., 121,118$.

Herbig, G. H., and Turner, B. A. 1953, Ap. J., 118, 477.
Huang, Su-Shu. 1953, Ap. J., 118, 285.
Johnson, H. L., and Morgan, W. W. 1953, Ap. J., 117, 313.
Morgan, W. W., Keenan, P. C., and Kellman, E. 1943, An Atlas of Stellar Spectra (Chicago: University of Chicago Press).
Morgan, W. W., and Roman, N. G. 1950, Ap. J., 112, 362.
Münch, G., and Chandrasekhar, S. 1949, Harvard Circ., No. 453.
Roman, N. G. 1950, Ap. J., 112, 554.
——. 1952, ibid., 116, 122.
Shajn, G., and Struve, O. 1929, M.N., 89, 222.
Slettebak, A. 1949, Ap. J., 110, 498.
-. 1953, A.J., 58, 228.
——. 1954, Ap. ${ }^{\text {. }}$, 119, 146.
Slettebak, A., and Howard, R. F. 1955, Ap. J., 121, 102.
Westgate, C. 1933a, Ap. J., 77, 141.
——. 1933b, ibid., 78, 46.
. 1934, ibid., 79, 357.

