THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

SPECTRAL CLASSIFICATION OF THE HIGH-VELOCITY STARS*

Philip C. Keenan and Geoffrey Keller
Perkins Observatory
Received October 1, 1952

Abstract

Spectral types and absolute magnitudes are determined for 108 suspected high-velocity stars; 83 of these are accepted as probable members of the high-velocity group defined by a minimum space motion of $85 \mathrm{~km} / \mathrm{sec}$.

In their distribution over the spectrum-luminosity diagram, these stars appear to be intermediate between normal low-velocity stars and the stars which are members of globular clusters.

For stars of types G and K the spectral peculiarities associated with high velocity are termed the "cyanogen discrepancy" for convenience and are evaluated by several criteria, of which the most sensitive is the line ratio $4172 / 4216$ in the range from G6 to K4. Stars of a given type and luminosity show a considerable range of values of the cyanogen discrepancy, which accordingly appears as an additional variable of classification.

I. THE PROBLEM OF CLASSIFICATION

The construction of a spectrum-luminosity diagram for the stars with high space velocities involves difficulties peculiar to these objects. In the first place, the course of the giant branch cannot be directly established by trigonometric parallaxes, for in the entire northern sky there are only about five giants and subgiants which have both accurately known parallaxes and large space velocities. At the same time, the very definition of the high-velocity group rules out most of the usual statistical methods of finding mean distances by the use of radial or tangential velocities. Such methods assume that the peculiar motions have small dispersion and (usually) random distributionconditions which are known to be violated when the stars are selected by their high speeds.

For these reasons the present investigation attacks the problem by direct spectroscopic estimates of the luminosities of stars belonging to the group. This method is also open to objection, for the spectra of the high-velocity stars are known to exhibit peculiarities in the strengths of some of the features which are normally used as criteria of classification. The more serious effects are the general weakening of the lines of hydrogen and the metals in spectra of types F5-G5, ${ }^{1}$ and the marked weakening of the bands of

[^0]$C N$ in types G8-K3. ${ }^{2}$ The change in absorption within the $\lambda 4216$ band affects the intensities of most of the metallic lines between 4143 A and 4216 A .

The essential question is whether criteria can be found in which the effects of the highvelocity peculiarities are either very slight or tend to counterbalance one another. Examination of the spectra of the near-by standard stars of high velocity (listed in Table 1) showed that these requirements are met by the following spectral features:

1. Ratios $H \delta / C a 4226, H \gamma / 4325$, and strength of the G band. Useful for assigning types in the range F5-K0. In stars later than G5 some weight is given also to the absolute intensities of the metallic lines.
2. Ratios $\mathrm{Cr} 4254 / \mathrm{Fe} 4250$ and Fe 4260 . Useful for assigning types in the range G8-K5.
3. Absolute intensities of the TiO bands. Define subdivisions of type M.
4. Ratios Sr II $4077 / \mathrm{Fe} 4045, \mathrm{Fe} 4063$, and Fe 4071. Useful for estimating luminosities in the range F5-M5.

TABLE 1
High-Velocity Stars at Known Distances

Star	m_{v}	Parallax (p)	Source of Parallax	M_{v}	Type	Space Velocity (Km/Sec)
μ Cas.	5.26	0 0" 136	Trig.	$+5.9$	G5 V+	145
γ Leo A	2.61	. 017	Trig. + dyn.	-1.2	K0 III-	113
γ Leo B	3.80	. 017	Trig. + dyn.	0.0	G7 III+	113
HR 4550	6.46	. 116	Trig.	+6.8	G7 V+	290
a Boo	0.24	. 090	Trig.	0.0	K1 III	103
HD 135204	7.5	. 056	Trig.	+6.2	G8 V	108
31 Aql.	5.23	. 059	Trig.	+4.1	G8 IV	120
η Cep	3.59	. 071	Trig.	$+2.7$	K0 IV	87
61 Cyg A	5.57	0.292	Trig.	$+7.9$	K5 V	88

5. Ratio $4172 / 4185$. Each of these two absorption features is a blend of several atomic lines and lies within the area affected by the $4216 C N$ bands. Nevertheless, their ratio remains a useful criterion of luminosity in the range G5-K2. In using this criterion, correction must be made for the slightly enhanced intensity of 4172 in the high-velocity stars.

The first four of the above criteria are well known and are generally employed in the classification of normal stars. It should always be remembered that all these criteria were chosen for their applicability to spectrograms with scales $\approx 100 \mathrm{~A} / \mathrm{mm}$. If one wishes to classify high-velocity stars on plates differing greatly from this moderately low dispersion, the criteria must be re-examined.

II. OBSERVATIONAL MATERIAL

The spectrograms employed in this investigation were taken with the two-prism spectrograph on the 69 -inch reflector during the period July, 1948, to August, 1952. About 25 per cent of the spectrograms were made with the $\mathrm{P} \beta$ camera, which gives a scale of $54 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$; but, after it was found that the images obtained with the new PG γ camera (scale $104 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$) were very satisfactory for classification, the remainder of the program was carried out with this camera. For the great majority of the suspected high-velocity stars on the program, at least two good spectrograms of each were obtained. Altogether, more than 240 spectrograms of the program stars were judged

[^1]satisfactory for classification and were compared with several hundred comparison spectrograms of standard stars with either MKK types from the Atlas of Stellar Spectra or additional types on the same system.

The observing list for the high-velocity group was made up chiefly of stars with estimated space motions in Miczaika's catalogue ${ }^{3}$ exceeding $80 \mathrm{~km} / \mathrm{sec}$, or with radial velocities exceeding $60 \mathrm{~km} / \mathrm{sec}$ if the space velocity had not previously been estimated. The published radial velocities of Moore's catalogue, ${ }^{4}$ Redman, ${ }^{5}$ Shajn and Albitzky, ${ }^{6}$ Joy and Wilson, ${ }^{7}$ and Moore and Paddock ${ }^{8}$ were drawn upon. The stars chosen were mostly brighter than the eighth visual magnitude and north of -20° declination. Stars earlier than F0, variable stars, and $C H$ stars, for all of which the spectroscopic criteria of luminosity are of doubtful validity, were excluded. Although no claim of completeness even within these limits is made, the group chosen appears to be representative of the brighter nonvariable stars with relatively large space motions.

Of this group, the spectra of 108 stars proved suitable for classification, and spectral types and luminosity classes were assigned. The quality of the plates permitted interpolation to about a third of a subdivision in both co-ordinates. The luminosity classes were then converted to visual absolute magnitudes by means of the reduction table given by Keenan and Morgan. ${ }^{9}$ This table was constructed chiefly from data for stars having normally low velocities, and its application to the luminosity classes defined by the slightly different criteria of the high-velocity stars might be expected to lead to some systematic errors in the derived absolute magnitudes. For this reason it is important to take into account every bit of evidence which might give clues to the detection of such systematic effects.

The first check on the luminosities of the giant branch was furnished by the 21 high velocity giants and subgiants with apparent magnitudes between 3.5 and 5.5 and types later than G0. The trigonometric parallaxes of these stars are not large enough to define their individual distances precisely, but the group mean should be significant. The mean trigonometric parallax of the group, reduced to the fourth magnitude, is 0 ". 031 . The mean spectroscopic reduced parallax is 0 ". 027 , giving a difference $\bar{P}_{s}-\bar{P}_{t}=-0 \prime 004$ with a mean error of $\pm 0 \prime 0031$. The difference implies that our spectroscopic estimates make the luminosity too bright by 0.3 mag . Since, however, the difference is comparable to its error and nearly all the negative excess comes from the two stars η Sct and 31 Aql , we do not feel justified in applying any systematic correction. Rather, the comparison suggests that the spectroscopic absolute magnitudes of the high-velocity stars are comparable in accuracy to those of normal low-velocity stars. We shall, therefore, assume a probable error of 0.8 mag . in discussing the observations.

This comparison with the trigonometric data serves to confirm the luminosity scale for absolute magnitudes up to $M_{v} \approx 0$, but says very little about any stars which may lie above the middle of the usual giant branch. The possible existence of such objects among the high-velocity stars bears upon the question of their relationship to the members of globular clusters. Both groups have been generally considered as belonging to population type II, as defined by Baade, ${ }^{10}$ particularly since Popper ${ }^{11}$ noted some similarities in their spectral peculiarities on his low-dispersion plates.

[^2]Spectrograms of several of the brightest stars in M3 and M92, taken on a scale of $38 \mathrm{~A} / \mathrm{mm}$, have been discussed by Baum, ${ }^{12}$ and these plates were made available to us for comparison with the material on the high-velocity stars. ${ }^{13}$ The cluster spectra showed peculiarities, such as the weakening of $C N$ and metallic lines, developed to a much greater degree than in the spectra of high-velocity stars. Judged by the distance moduli given by Baum, the values of M_{v} for these most luminous cluster members must be close to -3 .

The comparison of the plates established the fact that no stars very similar to these are included among the high-velocity objects studied here. The two stars from the Perkins list which were assigned the highest luminosity are HR 965 ($M_{v}=-1.5$:) and HR $1908\left(M_{v}=-2.5\right)$; and each of these has much closer spectroscopic resemblance to ordinary supergiants of low velocity than to the bright cluster stars. Thus the classification of even the brightest high-velocity stars should not be greatly in error, though additional comparisons with somewhat fainter cluster stars should be made whenever spectrograms of the latter can be obtained. ${ }^{14}$ One modification in the criteria of luminosity has already been indicated by the cluster spectra, which show that in such objects the intensity of $S r$ II 4077 does not continue to increase with luminosity as rapidly as in standard supergiants. At least an incipient effect of this sort might be looked for in those high-velocity stars which show the characteristic peculiarities most strongly. Accordingly, we have taken into account other criteria, such as the intensity of the G band and the ratio 4376/4383, which begin to become sensitive at the higher luminosities, in classifying any high-velocity stars which are suspected of being brighter than an average giant. The resulting changes in assigned luminosities never amounted to more than a few tenths of a magnitude.

The spectroscopic absolute magnitudes of the high-velocity stars, given in column 6 of Tables 2 and 3, are the spectroscopic values except for the near-by stars. Trigonometric parallaxes (designated by " t ") are given when they exceed 0 " 060 and for a few F - and G-type dwarfs in which the weakening of the metallic lines is so pronounced that no reliable spectroscopic estimates of luminosity could be made. If the mean of the spectroscopic and trigonometric parallaxes lay in the range between 0 ". 020 and $0 " 059$, this mean is given in the tables, followed by the symbol "s, t." Thus the adopted parallaxes and absolute magnitudes in Tables 2 and 3 differ in a few cases from the trigonometric values of the calibration stars in Table 1.

There is also the possibility of errors in the assignment of types. For the stars later than G5 there is no reason to expect appreciable errors, for the relative intensities of lines of the several metals give consistent results. For the earlier stars there is a more serious possibility of systematic effects, since there is evidence that the hydrogen lines are enhanced relative to the metallic lines. ${ }^{14 \mathrm{a}}$ When the Balmer lines are used for classification, the resulting type is too early as compared to the type obtained from relative intensities of metallic lines or from color temperatures. The effect is greatest in the small group of high-velocity dwarfs which have sometimes been assigned to type A, but for which later types are indicated by their colors and by analyses of their atmospheres. ${ }^{15}$ Of these stars only HD 140283 is included in Table 2, since the luminosities of the others are uncertain. For HD 140283 the trigonometric parallax of 0.03 has been used, together with the type A8. ${ }^{16}$
${ }^{12}$ A.J., 57, 222, 1952.
${ }^{13}$ We are greatly indebted to Dr. Baum and to Dr. O. C. Wilson for sending these plates for examination.
${ }^{14}$ The importance of such comparisons has been particularly emphasized by Dr. Baade in discussions with the authors.
${ }^{14 \mathrm{a}}$ M. and B. Schwarzschild, $A p$. J., 112, 248, 1950; cf. also the notes to Table 2 following.
${ }^{15}$ Chamberlain and Aller, Ap.J., 114, 52, 1951.
${ }^{16} \mathrm{Dr}$. J. L. Greenstein has kindly made available his unpublished estimate that the relative intensities of lines on coudé spectrograms of this star indicate a type within the range A6-F0.

TABLE 2
NON-VARIABLE HIGH-VELOCITY STARS

	Star	a (1950)	O(1950)	m_{V}		Type	${ }_{\square}^{*}$	p		V	\mathbf{w}_{0}	$\mathrm{w}_{0}-r_{w}$
HD	26	$0^{h_{0}} 2 .{ }^{\text {m }} 8$	$+8^{0} 30^{1}$	8.2	G4p	?				-213		
HD	2901	030.0	+53 51	7.10	K?	III	+0.3	. 0044	s	-107	131	129
E	And	035.9	+29 02	4.52	G5	III+	+1.6	. 026	s, t	- 84	103	88
HD	5780	056.8	+ 031	7.78	K5	II-III	-1.4	. 0015	,	-103	348	290
HR	316	104.0	+56 40	6.58	K2	III+	+0.8	. 0069	s	- 94	133	106
μ	Cas	104.9	+54 41	5.26	G5	V+	+5.5	. 136	t	- 97	145	14.
HD	6755	106.5	+61 17	7.8	F8	V	+4.1:	. 018	s	-325	352	32こ
HD	6833	107.2	+54 28	7.10	G8	III	+0.3	.0043	s	-257	259	257
HR	375	116.1	+7718	6.38	G5	III+	+1. 2	. 0087	S	- 73	90	74
HR	452	132.9	+40 49	6.39	K1	III	+0.6	. 0069	3	+ 66	105	82
56	And	153.2	+3700	5.82	G8	III+	+0.9	. 0105	s	+ 59	91	78
HR	645	210.3	+50 50	5.40	G8	III:	+0.3	. 0095	s	+ 28	176	113
27	Ari	$? 28.1$	+1729	6.41	G5	III-IV	+1.8	. 012	s	-117	126	123
HD	16397	235.5	+30 36	7.21	GO	V	+4.6	. 030	s,t	-100	145	119
HR	965	320.1	+84 44	5.78	G3p	:II	-1.5:	. 0035	s	$+33$	188:	122
HD	21910	332.7	+74 36	7.60	98	III+	+1.0	. 0048	s	-104		
14	Tau	340.9	+1931	6.34	G8	III	+0.3	. 0063	s	+ 78	110	85
HD	23841	345.8	+930	6.95	K1	III	+0.1	. 0043	s	-80	119	101
HD	28424	426.7	+13 47	7.76	K1	III+	+0.4:	. 0033	s	+94	236	
40	$\varphi^{2} 0 \times 1$	534.2	+ 916	4.39	O6	III-IV	+1.6	.027	s, t	+ 99	94	87
HR	1908	534.3	+1100	6.10	K4	II	-2.5	. 0019	s	-11?	173	141
δ	Lep	549.2	-20 53	3.90	G8+	III	+0.3	. 019	8	+99	185	128
HR	2065	552.4	-1147	5.81	K3+	III-	-1.0:	. 0043	s	$+87$	110	102
HR	2153	604.9	+41 04	6.42	G9	III+	+0.9	. 0080	8	- 86	94	89
θ	CMa	651.9	-1158	4.25	K3+	III	+0.6	. 018	s, t	$+97$	85	81
32	$v^{2} \mathrm{Cnc}$	830.0	+24 15	6.41	K0	III	0.0	. 0052	s	$+75$	90	74
HR	3578	856.4	-15 56	5.92	F6	V	+3.2	. 029	s,t	$+172$	196	118
HD	77236	858.7	-222	7.87	KO	III	+0. 2	. 2329	s	+142	130	129
HD	77408	900.2	+33 05	7.08	F6	IV	+2.9	. 0144	8	$+70$	139	99
HD	81192	921.9	+20 00	6.67	G7	III+	+0.6	. 2061	s	+136	161	14.
γ	Leo A	1017.2	+20 06	2.61	Kо	III-	-1.2	. 017	t, d	- 37	113	77
γ	Leo B	1017.2	+20 06	3.80	G7	III+	0.0	. 017	t, d	- 37	113	77
HD	94088	1048.8	+20 33	8.1	F4	$\mathrm{V}+$:	+3.8:	.014:	,	+62	180	175
HD	94190	1051.3	+7721	7.04	M3	III-	-1.0	. 0025	s	- 90	87	80
75	Leo	1114.7	$+217$	5.44	MO	III+	+0.4	. 0098	s	- 59	96	76
HD	100041	1128.3	+28 44	7.00	M3	III+	0.0	. 0040	s	$+85$	121	99
HR	4550	1150.1	+38 05	6.46	G7	V+	+6.8	. 116	t	- 98	290	286
HR	4609	1202.7	+77 11	5.96	G9	III	+0.2	. 0070	s	- 19	131	83
HR	4657	1212.6	-10 01	6.12	F5	V	+3.4	. 029	s,t	+ 6	165	104
16	Vir	1217.8	$+335$	5.10	K1	III+	+0.5	. 012	s	$+36$	106	72
HD	107760	1220.1	+73 31	8.2	G7	V	+5.7	. 032	s,t	- 98	92	89
HD	108910	1228.1	- 347	7.06	K3+	III	0.0	. 0039	,	$+84$	111	95
33	Vir	1243.3	+953	5.86	K1	III-IV	+1.9	. 0159	s	+ 51	169	114
HR	5102	1330.4	+24 36	6.18	G8	III	+0.5	. 0073	s	+ 7	141	90
87	Vir	1344.2	-1734	5.79	M2+	III-	-0.9	. 0046	s	$+63$	105	82
α	Boo	1413.4	+19 27	0.24	K1	III	0.0	. 090	t	- 5	103	97
HR	5455	1434.3	-12 96	6.24	F5	V	+3.5	. 032	s, t	- 70	146	101
HR	5464	1436.3	+43 51	5.92	K2	III	0.0	. 0065	s	- 48	118	78
11	Lib	1448.2	-2 05	5.05	G8+	III-	-0.5	. 0077	s	$+83$	149	116
HD	134063	1505.1	+22 45	7.7	G5	III+	+1.2	. 0050	s	-108		
HD	134088	1505.5	- 743	8.1	Go	V :	+4.4	. 018	8	- 59	123	119
HD	135204	1511.4	- 109	6.7:	98	V	+5.5	. 058	s, t	- 70	114	108
5	Ser	1516.7	$+157$	5.18	F8	III-IV	+2.6	. 030	s, t	$+54$	122	91
HD	140283	1540.4	-10 46	7.26	A8	V	+4.7	. 031	t	-170	231	$2)^{3}$
HR	6014	1606.7	+ 631	6.02	K1+	III-IV	+2.6	. 021	s, t	- 3	163	103
HR	6128	1625.0	-729	5.45	M2+	III:	-1.0	. 0051	s	+100	180	152
HD	148816	1628.0	+ 418	7.45	F8	V+	+4.5	. 026	s,t	- 52	256	161
48	Her	1647.3	+30 02	6.68	K1	II-III	-1.5	. 0023	s	- 43	205	131
HR	6286	1651.9	+4730	6.30	K2	III	0.0	. 0055	s	- 62	96	70
HR	6364	1704.2	+22 09	5.72	K3+	III	-0.2	. 0066	3	- 96	107	88

TABLE 2 - Continued
NON-VARIABLE HIGH-VELOCITY STARS

Star	a(1950)	O(1950)	m_{v}		ype	M_{V}	p		V	W_{0}	$W_{o}-r_{w}$
HD 157089	$17^{\mathrm{h}} 18 . \mathrm{m}$	$+1^{\circ} 29{ }^{1}$	6.96	F9	V	+4.5	. 032	s, t	-162	152	146
HD 162756	1750.3	- 754	7.60	GO	IV-V	+3.8	. 018	8	-125	140	121
HD 165401	1803.2	+ 439	6.83	GO	V	+4.8	. 040	s, t	-124	109	106
HR 6840	1814.2	- 301	.6.11	G3	III-	-0.3:	. 0053	s	$+1$	240	152
HR 6853	1815.5	+40 54	6.10	G8	III	+0.5	. 0076	s	- 74	125	88
$35 \nu^{2} \mathrm{Sgr}$	1852.0	-22 44	5.04	K3+p			. 037	t	-110		
31 Aql	1922.5	+1150	5.23	G8	IV	+3.8	. 052	s,t	-100	120	96
a Vul	1926.7	+24 34	4.63	MO+	III	-0.4	. 010	s	- 86	106	82
HD 184499	1931.6	+33 05	6.61	GO	V	+4.3	. 035	s,t	-162	161	155
HR 7523	1943.1	+40 36	6.44	M3	III	-0.5	. 0041	8	- 96	101	85
HR 7680	2003.0	+15 21	6.56	M?+	III-	-0.9	. 0032	3	-110:	103	94
HD 191046	2003.6	+36 05	7.17	G9	III+	+0.6	. 0048	s	-100		
HD 195019	2026.0	+18 36	6.85	G3	IV-V	+4.2	. 0295	s	- 93	89	81
HR 7841	2028.3	+45 45	6.59	K2+	III:	0.0:	.0048:	s	- 31	158	100
η Cop	2044.3	+61 39	3.59	KO	IV	+2.8	.071	t	- 87	87	85
HD 199191	2051.9	+5420	7.16	G8	III+	+0.9	. 0055	s	-195	233	195
61 Cyg A	2104.7	+38 30	5.57	K5	V	+7.9	. 292	t	- 65	89	88
61 Cyg B	2104.7	+38 30	6.28	K6	V	+8.6	. 292	t	- 63	88	87
HR 8165	2118.8	+23 38	5.82	K1	III	+0.2	.0071	s	- 89	180	125
HR 8325	2144.1	+25 19	6.48	K3-	III-III+	+0.4	. 0061	s	- 45	123	81
HD 213893	2232.0	$+020$	7.02	K $5+$	III	-0.3	. 0034	3	- 89	136	104
$\gamma \mathrm{Psc}$	2314.6	+301	3.85	G5	III	$+0.7$. 023	s,t	- 13	140	89
HR 8875	2317.3	+48 05	6.35	K1	III+	+0.5	. 0068	s	$+23$	133	86
14 And	2328.8	+38 58	5.34	KO	III+	+0.7	. 012	s	- 59	111	79
HD 221830	23 33.0	+30 44	6.72	F9	V	+4.4	. 035	8	-103	119	103

Remarks on the Spectra

HD 26	Very peciliar; similar to CH sta
HD 2901	CN weak; $\mathrm{H}_{\delta}, \mathrm{H}_{r}, 4172$ slightly strong.
\in And	Most lines weak; CN weak; 4172 and CH strong.
HD 5780	CN slightly weak; 4143 strong.
HR 316	Normal except 4172 slightly strong; 4352 strong.
HD 6755	Atomic lines very weak; CH strong. Classified from Mt. Wilson spectrograms.
HD 6833	CN quite weak; 4172 strong.
HR 375	CN slightly weak; 4172 and CH strong.
HR 452	H_{δ} slightly strong.
56 And	$C N$ slightly weak? 4172 slightly strong.
HR 645	CN strong.
27 Ari	4172 slightly strong.
HR 965	CH strong; CN and 4077 consistent in indicating luminosity class II.
HD 21910	4172 slightly strong. No proper motion pablished.
14 Tau	4172 strong.
$40 \phi^{2} 0 \mathrm{rl}$	Atomic lines and CN weak.
HR 1908	CN slightly weak: 4172 strong.
δ Lep	CN weak; 4172 slightly strong.
HR 2065	CN slightly woak.
- CMz	CN weak; 4172 slightly strong?
$32 v^{2}$ Cnc	CN strong.
HR 3578	Weak lines.
HD 77236	CN weak; $\mathrm{H}_{\delta}, 4172,4143$ strong.
HD $8119 ?$	PGC 2527. CN and metallic lines weak; 4172 slightly strong.
γ Leo A	CN slightly weak; 4143 strong.
γ Leo B	CN slightly weak; 4172 slightly strong.
HR 4550	Groombridge 1830. Normal dwarf spectrum except that CH may be slightly weak.
HR 4609	CN slightly weak; 4172, H_{6} slightly strong; 4143 strong.
16 Vir	CN slightly weak; 4172 strong.
HD 108910	CN weak.

TABLE 2 - Continued

Remarks on the Spectra

```
Vir CN woak.
87 Vir Ca 42P6 weak; 4172 slightly strong? Ho strong.
a Boo CN slightly weak; 4172 strong.
HR 5464 CN weak; Hg, H
11 Lib CN slightly weak; 4172 strong; H8 slightly strong.
HD 134063 Metallic lines weak; CH and 4016 strong.
Ser 4172 slightly strong?
HD 140283 Metallic lines very weak.
HR 6014 CN weak; 4172 strong.
HR 6128 CN weak; H
HD }148816\mathrm{ Lines slightly weak.
48 Her CN weak! 4172, 4025 strong.
HR 6286 Ho slightly strong; 4172 slightly strong?
HD 157089 CH slightly strong?
HD 162756 CH slightly strong?
HD 165401 All lines except 4172, 4187 slightly weak.
HR 6840 Lines slightly weak; CH strong.
HR 6853 CN weak! Atomic ilnes silghtly weak? CH slightly strong.
35 \mp@subsup{\nu}{}{2}}\textrm{Sgr
    uncertain; H\delta, H
31 Aql Ho, HY, Mg4167 strong. 4172 slightly strong?
HD 184499 All lines weak; 4077 narrow.
HD 191046 CN weak; 4172, 4143 strong; H% slightly strong. No proper motion in G.C.
HR 7841 H8, 4172 slightly strong.
n Cop 4172 slightly strong.
HD 199191 CN weak! Other lines slightly weak? 4l72 strong; 4143 slightly strong. Color
may be abnormally red for type.
Y Psc Cof, Hifghtly weak strong?
Y PgC CN slightly weak.
CN slightly weak; 4172 strong.
HD 2?1830 CH slightly strong.
```

TABLE 3
DOJBTFTJ HIGH-VELOCITY STARS ($\mathrm{N}_{\mathrm{O}}-\mathrm{r}_{\mathrm{w}} 70 \mathrm{~km} / \mathrm{sec}$)

	Star	01950	81953	m_{V}		ype	M_{V}	p		V	W_{0}	$W_{0}-r_{\text {w }}$
μ	Psc	$1^{h_{2}} 27 \cdot 6$	$+5^{\circ} 53^{\prime}$	5.12	K3+	III+	+1.4	. 018	s,t	$+35$	67	47
25	Eri	342.4	- 027	5.34	K4	III+	+0.6	. 0091	,	+ 70	60	56
λ	Aur	515.0	+40 03	4.85	GO	IV-V	+4.0	. 067	s, t	+ 66	74	72
51	Ori	539.9	+ 127	5.24	K1-	III+	+0.9	. 014	3	$+88$	74	72
55	ψ^{4} Aur	639.4	+44 34	5.17	K5	III+	$+0.5$. 0115	s	- 75	83	81
20	Mon	707.7	- 409	5.02	K)-	III-IV	+1.7	. 022	s, t	+ 79	83	75
81	Gem	743.2	+18 38	5.02	K3+	III+	+1. ${ }^{\text {a }}$. 016	s	+ 82	72	70
θ	UMa	929.5	+5154	3.25	F6	III-IV	+1.9	. 052	t	$+15$	83	74
HR	4092	1023.1	- 648	5.85	$\mathrm{MO}+$	III+	+0.4:	.0081	3	+ 32	106	69
71	Leo	1119.5	+1742	7.04	K1	III-IV	+1.7	. 0988	s	+ 6	70	44
HR	4586	1157.7	+81 08	6.44	M3	III	-0.5	. 0041	s	$+31$	83	59
9	Drs	1258.2	+66 51	5.50	K0	III	+0. 4	. 010	s	- 31	53	36
HD	114960	1311.3	$+143$	6.76	K4	III+	+0.5	. 0958	8	$+10$	46	30
84	Vir	1340.5	+ 347	5.7	K1+	III-IV	+1.9	.017	9	- 42	74	52
HR	5541	1448.5	+3728	5.50	KO+	III-IV	+2.3	. 023	s, t	- 66	62	55
HR	5924	1552.3	+20 27	5.75	Mo	III-	-0.9	.0045	8	- 60	99	69°
¢	Ser	1554.9	+14 33	5.36	K2	III+	+1.2	. 0126	s	- 68	81	63
HR	6820	1811.1	+2151	6.25	K4	III	0.0	. 0057	s	- 66	78	58
n	Sct	1854.4	- 554	5.04	K1	III+	+2.0	. 025	s, t	- 93	78	76
69	Dra	2001.0	+76 20	6.13	M3:	III	-0.4	. 0043		- 68	101	75
HR	7810	2023.3	+09 54	6.46	K5:	III+	+0.2	. 0956	s	- 75	63	59
30	Vul	2042.7	+25 05	5.13	K2-	III+	+0.5	. 012	8	+ 31	86	65
HD	211076	2211.9	+16 56	6.59	K4	III+	+0.6:	. 0063 :	s	- 35	104	67

Remarks on the Spectra

μ	Psc	CN very slightly weak?
25	Eri	CN very slightly weak?
λ	Aur	Nearly normal; $\mathrm{H}_{\delta}, \mathrm{H}_{Y}$ slightly strong.
51	Ori	CN weak; H_{8}, H_{r} silightly strong?
20	Mon	CN slightly weak; 4172 slightly strong; 4143 strong.
31	Gem	CN weak; 4172 strong.
θ	UMa	Lines silightly weak.
71	Leo	4172 slightly strong.
HR	4586	H_{5} silightiy strong.
9	Dra	CN weak; 4172, 4143 slightly strong.
84	Vir	4172 slightly strong.
HR	5924	H_{0}, $\mathrm{H}_{\text {r }}$ silightly strong.
	7810	CN slightly weak?
HD	211076	H_{δ} slightly weak?

The remaining stars in Table 2 are all of type F5 or later, and these F- and G-type stars all show the G band. Since, as will be shown below, the $C H$ bands tend to be enhanced in the high-velocity stars, the strength of the G band through the range F5-G4 of their spectra corresponds to a later type than would be assigned from the ratios of hydrogen to metal lines. Thus the systematic effects in H and CH tend to cancel one another in classification, and it can be hoped that the types of these stars in Table 2 are at least reasonably consistent. Eventually it should be possible to use accurate colors and excitation temperatures to make any necessary systematic corrections.

There remains the question of which stars to accept as forming the high-velocity group. A limiting space motion $\left(W_{0}\right)$ in the vicinity of $60-70 \mathrm{~km} / \mathrm{sec}$ has been commonly used, ${ }^{17}$ though the frequency curves of stellar motions do not serve to define any velocity sharply separating the stars into distinct groups. On the other hand, the spectroscopic data indicate that the peculiarities characteristic of the spectra of the most rapidly moving stars become noticeable in a majority of the stars having velocities greater than about 80-85 $\mathrm{km} / \mathrm{sec}$ (see Fig. 4 and the notes to Tables 2 and 3), while, of the more slowly moving objects, only a few show any evidence of these peculiarities. On physical grounds, therefore, it is useful to make a separation near this velocity; and we shall somewhat arbitrarily set the limit at $W_{0} \geqslant 85 \mathrm{~km} / \mathrm{sec}$.

For our purpose of investigating the physical properties of the high-velocity group, it is not satisfactory to accept every star for which the estimated space motion exceeds this limit. It is important to select the sample so that it will not be contaminated by any considerable number of stars for which the true value of W_{0} is less than $85 \mathrm{~km} / \mathrm{sec}$, but for which the measured motion appears to exceed this amount because of the errors of observation. The individual errors in W_{0} will differ greatly from star to star. The radial velocities are usually known with probable errors not exceeding $2 \mathrm{~km} / \mathrm{sec}$; and any star with a measured radial velocity, corrected for the solar motion, of $87 \mathrm{~km} / \mathrm{sec}$ or more has a high probability of actually belonging to the high-velocity group as defined here. On the other hand, if almost all the motion of a star is tangential to its direction from the sun, the measured value is affected not only by the error in the proper motion but even more seriously by the uncertainty in the parallax. Thus an error of 1 mag . in M_{v}, which is not unlikely, changes the computed tangential motion by 60 per cent. It is chiefly for this reason that many of the space velocities in Table 2 differ greatly from those found by other investigators. For example, the space motion of μ Psc was given by Miczaika as $114 \mathrm{~km} / \mathrm{sec}$, on the basis of a parallax of $0^{\prime \prime} 011$. We estimate the luminosity of this K3 star as slightly, but definitely, below that of an average giant, and therefore assign it an absolute magnitude of +0.8 . The corresponding spectroscopic parallax is $0 ״ 014$. The trigonometric parallax is 0.021 ± 0.006, large enough to deserve consideration. We therefore take a mean parallax of 0.018 and find a corresponding space velocity of $67 \mathrm{~km} / \mathrm{sec}$, which necessarily removes the star from the high-velocity group.
Since many stars could similarly be shifted in or out of the group by quite reasonable adjustments in their measured distances, the aim of finding the properties of the real high-velocity stars can be attained best by rejecting those stars for which the probability of chance inclusion is greatest. Consequently, we shall require not only that $W_{0} \geqslant 85$ $\mathrm{km} / \mathrm{sec}$ but also that $W_{0}-r_{w} \geqslant 70 \mathrm{~km} / \mathrm{sec}$, where r_{w} is the probable error of the space velocity of that star. From the expression for the probable error of a function of observables, we have

$$
r_{w}=\frac{1}{W_{0}}\left[V^{2} r_{v}^{2}+T^{2}\left(\frac{4.74}{p}\right)^{2} r_{\mu}^{2}+\frac{T^{4}}{p^{2}} r_{p}^{2}\right]^{1 / 2}
$$

where T is the tangential velocity; r_{v} is the probable error of radial velocity; r_{μ} is the probable error of proper motion; and r_{p} is the probable error of parallax.

[^3]If the parallax is derived from a spectroscopic absolute magnitude, the last term under the root sign becomes

$$
\frac{T^{4} r_{M}^{2}}{25(\text { Mod. })^{2}}=\frac{T^{4} r_{M}^{2}}{4.70}
$$

where r_{M} is the probable error of absolute magnitude.
In computing the probable errors in the final columns of Tables 2 and 3 , a value of 0.8 mag. was assumed for r_{M} if the parallax of column 7 was obtained from our spectroscopic absolute magnitude, as indicated by the symbol "s." The same error was accepted for the means of trigonometric and spectroscopic parallaxes, except for a few cases where both values were rather large and agreed closely enough to justify adoption of the trigonometric error. All trigonometric parallaxes were taken from the Yale General Catalogue of Trigonometric Stellar Parallaxes.

In Table 3 are listed the stars which were observed but which failed to satisfy the velocity criteria for inclusion in the high-velocity group. These stars are excluded from the discussion of the following section.

III. THE LUMINOSITY-SPECTRUM DIAGRAM

Table 2 contains both luminosities and types for all the adopted high-velocity stars with the exception of HD 26 and $35 \nu^{2}$ Sgr. These two stars are notably peculiar for the strengths of the bands of the carbon compounds in their spectra and show similarities to the $B a$ II and $C H$ stars. ${ }^{18}$ The peculiarities preclude any significant spectroscopic estimate of their luminosities.

The luminosity-spectrum diagram for the remaining 83 stars of Table 2 is shown in Figure 1. Since the observing list contained relatively few stars with apparent magnitudes fainter than 7.5 , the cooler and fainter part of the main sequence is only sparsely represented. For the purpose of giving a better picture of the location of the main sequence, four dwarf stars, for which radial velocities exceeding $100 \mathrm{~km} / \mathrm{sec}$ were measured at Mount Wilson, ${ }^{19}$ have been added. The trigonometric absolute magnitudes and the Mount Wilson types of these four stars are plotted as crosses.

The first question to be asked about the diagram is the extent to which it is distorted by "spurious" high-velocity stars-either those which have slipped in because of errors of observation or stars which have the physical properties of "low-velocity stars" (population type I?) but happen to lie on the upper tail of whatever velocity-frequency-curve these objects may have. The observations of the spectral peculiarities again furnish the most direct evidence; for giants in the range G5-K2, about one-third of those with $85 \leqslant W_{0}<100$ show no clear peculiarities and are, therefore, suspicious cases. In Table 2 there are 13 stars of all types in this velocity range, and accordingly we might expect four or five points in Figure 1 which do not correspond to real "high-velocity stars." Actually two such objects, HR 645 and $32 v^{2}$ Cnc, can be singled out as probably spurious just because they are G8-K0 giants, which should show the peculiarities but definitely do not. Among the giants later than K2 and the dwarfs of types G and K , which make up about one-quarter of the stars in Figure 1, there could easily be a couple of spurious cases, though we have found no spectroscopic means of detecting them.

Further evidence that few of the large space velocities of Table 2 are the result of chance errors is furnished by Figure 2, which shows the distribution in longitude of the projections of the velocity vectors on the galactic plane. The components from lowvelocity stars are known to lie in all longitudes and would continue to do so if magnified by errors of observation. In Figure 2, however, no components exceeding $60 \mathrm{~km} / \mathrm{sec}$
${ }^{18}$ The peculiarities in the spectrum of $35 \nu^{2} \mathrm{Sgr}$ were noticed by Morgan and Bidelman on Yerkes plates.
${ }^{19}$ A. H. Joy, Ap. J., 105, 96, 1947.

Fig. 1.-Luminosity-spectrum diagram for the high-velocity stars. Spectroscopic absolute magnitudes are plotted as open circles, trigonometric (and dynamical) as filled circles, and means of both as halffilled circles. The four dwarf stars classified at Mount Wilson are shown as crosses.

Fig. 2.-Distribution in galactic longitude of the projected space motions of the high-velocity stars. The small circle is drawn at a radius of $60 \mathrm{~km} / \mathrm{sec}$. Two points lie outside the $300-\mathrm{km} / \mathrm{sec}$ circle.
occur in the range from 340° to 120°. This zone of avoidance agrees well with that found originally for the high-velocity stars by Oort. ${ }^{20}$

On the whole, then, Figure 1 should give a reasonably good picture of at least the upper part of the spectrum-luminosity distribution of the high-velocity stars.

Inspection of the figure shows at once several already well-known features of the highvelocity group: the relative scarcity of both early-type stars and very bright supergiants, and the apparent tendency of large velocities to occur often among stars at the lower edge of the main sequence. This last point is not certain, for observations of many more faint dwarfs are needed properly to define the main sequence for the group.

The dashed lines in Figure 1 mark the approximate centers of the giant and mainsequence branches for normal stars of low velocity. The positions of these lines were estimated from the calibration of MKK luminosity classes against absolute magnitude for standard stars, ${ }^{9}$ with some correction for the apparent centroid of the giant branch determined from the distribution of Mount Wilson ${ }^{21}$ and Victoria ${ }^{22}$ absolute magnitudes. The giant branch for high-velocity stars is also fairly well represented by the upper dashed line, though the real dispersion is large, as usual. When comparison is made with the steeply slanted giant branches for the stars in globular clusters, ${ }^{1,12}$ the distribution of the high-velocity stars could be described as intermediate between those of cluster stars and those of low-velocity stars in the vicinity of the sun. The major difference is the red giant branch extending well into type M for the high-velocity stars. It is worth noting that if the diagram is replotted to include only stars with space motions exceeding some larger amount, say $120 \mathrm{~km} / \mathrm{sec}$, the distribution of the remaining stars is not much different from that of Figure 1.

IV. SPECTRAL CHARACTERISTICS

The notes at the end of Table 2 summarize the spectroscopic differences remarked between the individual high-velocity stars and standard stars of the same type and luminosity. For main-sequence stars later than $G 5$ and for M-type giants no consistent peculiarities are observed on the low-dispersion spectrograms. Among the remaining stars the following characteristics tend to accompany large space velocities:

1. General weakening of atomic lines.-This characteristic of both giants and dwarfs in the range F5-G5 has been studied by Miss Roman, ${ }^{1}$ who found a correlation with space motion in the sense that, while stars with low velocities might have either normal or weak absorption lines, "the conventional 'high-velocity' stars occur only in the weakline group."

Among the giants (F5-G6) in Table 2, the general weakening of lines is noted in more than half (five out of nine). The effect is less striking among the main-sequence stars, where it is noted in only four out of fourteen dwarfs. These results do not mean that line weakening is definitely absent for the negative cases but merely that in such stars any such effect was not conspicuous enough to be noticed in the process of classification.

Among the giants of later type, general weakening of lines was observed in only three stars, all near type G8.
2. Strengthening of the G band of CH. -In Table 2, six out of the nine giants (F5-G6) are noted as having the G band unusually strong. In two of the stars (HD 6755 and $\left.35 \nu^{2} \mathrm{Sgr}\right)$ the enhancement is so pronounced that it is possible that these stars should be grouped with HD 26^{23} as marginal members of the $C H$ group of the carbon stars.

[^4]

Fig. 3.-Spectra of three giants (K0-K1) of differing space motions. The two lower spectra represent stars in the high-velocity group.

Among the dwarfs, however, marked strengthening of $C H$ is noted for only four out of the fourteen stars.

It appears that an abnormally strong G band or abnormally weak metallic lines are about equally good spectroscopic indicators of the high-velocity character among late F-type or early G-type stars.
3. Weakening of the CN bands.-On spectrograms with a scale $\approx 100 \mathrm{~A} / \mathrm{mm}$, none of the individual $C N$ bands is resolved; but, since the strong head at 4216 A degrades to the violet, the ratio of intensities of the continuum just to the red and to the violet of $\lambda 4216$ is a fairly good measure of the strength of $C N$ (see Fig. 3). ${ }^{24}$

It is helpful also to use the strength of the $\lambda 4216$ line itself, for the apparent line observed on low-dispersion spectrograms is a blend of the Sr II atomic line at 4215.5 A and the $C N$ head at 4216.0 A . Since the $\lambda 4216$ blend is not used in classifying the highvelocity stars, the difference between its intensity in one of their spectra and in that of a standard star of the same luminosity and spectral type is another measure of abnormality of the $C N$ absorption in the high-velocity star.

These two differential estimates define what can conveniently be termed the "cyanogen discrepancy" of any star. Photometric measurements to set up a scale for expressing the magnitude of this discrepancy are under way, but for the purposes of this paper it is sufficient to use the qualitative estimates given in the notes to Table 2. The peculiarities noted range from slightly greater than normal strength in the two stars, HR 645 and $32 v^{2}$ Cnc, already mentioned, through slightly weak $C N$ (γ Leo A), weak $C N$ (δ Lep), to very weak $C N$ (48 Her and HD 199191; see Fig. 3). Table 4 summarizes the

TABLE 4
Relative Intensity of $C N$ in High-Velocity Stars

$C N$ Intensity	No. of Stars	$C N$ Intensity	No. of Stars
Strong	2	Weak.	13
Normal	15	Very weak	3

estimates for giants in the range G5-K3 ${ }^{+}$and shows that, on the average, there is a deficiency of $C N$ in the high-velocity group. Not included in this tabulation is the peculiar star $35 \nu^{2} \mathrm{Sgr}$, in which the absolute strength of $C N$ is great, but its intensity relative to CH is low.

In this same group of giants the blended line at approximately 4172 A is noted as strengthened relative to near-by metallic lines in twenty-six out of the forty-five stars. This may be partly an absolute effect ${ }^{25}$ and partly a relative enhancement due to the weakening of the partially overlying $C N$ bands. It seems improbable that the latter effect can fully explain the behavior of $\lambda 4172$, for in passing from standard giants to subgiants we find that the reduced $C N$ absorption is accompanied by weakening rather than strengthening of $\lambda 4172$.

From these observations we should expect that the ratio $4172 / 4216$ would be a useful spectroscopic criterion for the recognition of stars of high velocity, and it has proved the most sensitive criterion on the spectrograms used in this investigation. A plot of the

[^5]difference in the visual estimates of the two lines, against space velocity, is shown in Figure 4. The points for velocities below $60 \mathrm{~km} / \mathrm{sec}$ were taken chiefly from standard stars. This selection may contribute to the absence of any ordinates above -2 among the low-velocity group, for the stars chosen as spectroscopic standards tend to be more homogeneous than stars selected at random. Nevertheless, the correlation of the 41724216 intensity difference with velocity appears definite. An intensity difference of -2 is ambiguous, but any star with a difference in the range -1.5 to +1.5 has a high probability of being a physical member of the high-velocity group.

Fig. 4.-Plot of estimated differences in intensity of the lines 4172-4216 against space velocity (km/ sec). Stars in the high-velocity group are shown as open circles.

This question may be raised: Does the diagram represent two slightly overlapping groups of stars which are homogeneous in the physical property measured by this line difference, or does it evidence a considerable range of values of a variable? The fact that the dispersion in the values of 4172-4216 is real, at least among the high-velocity stars, shows that the second alternative is true. The line difference clearly changes sign between such stars as γ Leo A and 48 Her (see Fig. 3), and it is unlikely that the points in the diagram are uncertain by more than half a step. For the three stars in the reproduction the values of the difference are: $\chi \mathrm{UMa},-2.5 ; \gamma$ Leo $\mathrm{A},-1.5$; and 48 Her, +1.5 . These three stars are all bright giants, though 48 Her is probably somewhat more luminous than the other two and would, therefore, be expected to have stronger $C N$ bands if the peculiarity were not present.

The general conclusions from the spectroscopic evidence are:

1. The spectra of the high-velocity giants and subgiants (G6-K4) show a cyanogen deficiency which can be measured either by the break in the continuum at $\lambda 4216$, or by the difference between the estimates of intensity of the lines 4172 and 4216.
2. For stars in the range F5-G5, the corresponding characteristics are the general weakening of atomic lines (as discussed by N. G. Roman) and the strengthening of the G band of CH .
3. In stars of the same type and luminosity, a considerable range in the cyanogen discrepancy is observed. This quantity appears to represent another dimension in spectral classification, in addition to temperature and luminosity. Schwarzschild, Spitzer, and Wildt ${ }^{26}$ have suggested that chemical composition is the variable involved.

It is a pleasure to thank Mrs. Mary Fenwick for her help in the computations and the preparation of the drawings.
${ }^{26}$ Ap. J., 114, 398, 1951.

[^0]: * Contributions of the Perkins Observatory, No. 34.
 ${ }^{1}$ N. G. Roman, Ap. J., 112, 554, 1950.

[^1]: ${ }^{2}$ Morgan, Keenan, and Kellman, An Atlas of Stellar Spectra (Chicago: University of Chicago Press, 1943), Pl. 45.

[^2]: ${ }^{3}$ A.N., 270, 249, 1940.
 ${ }^{4}$ Pub. Lick Obs., Vol. 18, 1932.
 ${ }^{5}$ Pub. Dom. Ap. Obs. Victoria, 6, 27, 1931.
 ${ }^{6}$ M.N., 92, 771, 1932.
 ${ }^{7}$ Ap. J., 111, 221, 1950.
 ${ }^{8}$ Ap. J., 112, 48, 1950.
 ${ }^{9}$ Astrophysics: A Topical Symposium (New York: McGraw-Hill Book Co., 1950), chap. ii.
 ${ }^{10}$ Ap. J., 100, 137, 1944; Mt. W. Contr., No. 696.
 ${ }^{11}$ Ap. J., 105, 204, 1947.

[^3]: ${ }^{17}$ J. H. Oort, Groningen Pub., No. 40, 1926; Miczaika, op. cit.

[^4]: ${ }^{20}$ J. H. Oort, B.A.N., 4, 273, 1928.
 ${ }^{21}$ W. S. Adams et al., Ap. J., 81, 187, 1935; Mt. W. Contr., No. 511.
 ${ }^{22}$ Young and Harper, Pub. Dom. Ap. Obs. Victoria, Vol. 3, No. 1, 1924.
 ${ }^{23}$ Keenan and Keller, Ap. J., 113, 700, 1951.

[^5]: ${ }^{24}$ The relative intensities in the continuum on either side of $\lambda 4216$ were first used as a measure of $C N$ strength by B. Lindblad, Ap. J., 55, 85, 1922.
 ${ }^{25}$ M. Schwarzschild and B. Schwarzschild have kindly informed us that their examination of $\lambda 4172$ on Mount Wilson coudé spectrograms permitted the identification of a number of metallic contributors, including several lines of iron, but that no one component was definitely enhanced in the high-velocity stars. Tracings of Perkins spectrograms of various dispersions indicate that in these stars the blending on the red side of the line causes an apparent widening which makes the line appear stronger on smallscale plates.

