THE SPECTRA OF THE BRIGHT STARS OF TYPES F5-K5

Nancy G. Roman
Yerkes Observatory
Received March 1, 1952

Abstract

Spectral types and luminosity classes have been obtained for 641 stars in the spectral range F5-K5 brighter than 5.50 visual magnitude and north of declination -20°. These types show the well-known absence of subgiants later than K1 and, in addition, show that the stars near zero absolute magnitude become plentiful extremely abruptly between G5 and G8. In the range G0-G5 we have 4 giants; at G8 we have 67 . Color-magnitude diagrams show that this change occurs in a very small range of temperature.

New calibrations of the absolute magnitudes are made for all spectral types and luminosity classes which contain enough stars to yield significant results. For the most part these agree well with older determinations. A surprising result is that the K0 III-K2 III stars are about 0.8 mag. fainter, on the average, than the giants at G8 and in the classes K3-K5. That this is not merely a systematic effect in the classification is shown by the fact that the mean absolute magnitudes for all stars of luminosity classes II-IV show the same phenomenon.

Space velocities corrected for the solar motion have been computed for each star fainter than luminosity class II. In the spectral range G8-K1 it is found that spectroscopic differences exist among stars of the same spectral type and luminosity class. If these stars are separated spectroscopically, it is found that the velocity distributions within the different groups are also different. The two groups which contain 85 per cent of the stars are about equally numerous. They are separated by the fact that the G band and $\lambda 4226$ of CaI are stronger relative to the remainder of the spectrum in one group than they are in the other. The velocity distributions indicate that the group with the stronger G band and $\lambda 4226$ is dynamically related to the group of weak-line stars in the earlier types and that the other group is dynamically related to the strong-line stars. In addition, two other groups exist which are characterized by peculiarities in the cyanogen absorption. One of these has fairly strong cyanogen which is characterized by a peculiar appearance of the region near $\lambda 4150$ and by a strengthening of the absorption in this region compared to that near $\lambda 4120$. Dynamically, these stars cannot be distinguished from the weak-line group. The fourth group is characterized by unusually weak cyanogen absorption. As has been known for some time, these stars are the "high-velocity" stars. Although some members of this group have fairly low velocities and some members of the weak-line group have fairly high ones, the mean velocities of the stars with weak $C N$ is $95 \mathrm{~km} / \mathrm{sec}$, as compared to a mean of $41 \mathrm{~km} / \mathrm{sec}$ for the weak-line group.

I. INTRODUCTION

As part of a program instigated some years ago by Dr. W. W. Morgan, covering all spectral types, spectra have been obtained of all nonvariable stars brighter than visual magnitude 5.50 , north of declination -20°, and with Henry Draper spectral types in the range F0 to Ma. The revised types of 693 of these stars are in the interval F5-K5 inclusive. These spectra form an important collection of data for statistical studies of stars in this spectral range, both alone and combined with the large amount of additional data available for these stars. The majority have measured trigonometric parallaxes, all but a few binaries without orbits have published radial velocities, and all the stars have wellobserved proper motions.

Of the 693 stars, 41 probably have composite spectra either because they are unresolved binaries or because they are visual binaries too close to separate on the slithead of the Yerkes 40 -inch spectrograph. These have been omitted from this discussion. In addition, 11 of the stars do not appear to belong anywhere on the normal Hertz-sprung-Russell diagram. These will be discussed individually in the notes to Table 4. For each of the remaining 641 stars a spectral type, luminosity class, spectroscopic parallax and absolute magnitude, and, except for the supergiants, a space velocity have been determined. In addition, new calibrations have been made of the absolute magnitudes in many parts of the spectral type-luminosity class diagram, and the distributions of the stellar speeds have been discussed.

II. SPECTRAL TYPES

Each of the stars has been classified on the system of the Yerkes spectral atlas, ${ }^{1}$ except that two minor changes in that system have been suggested recently by Dr. Morgan. ${ }^{2}$ The stars of types F5-F8, such as β Del and v Peg, which were previously assigned to luminosity class III, have now been assigned to luminosity class IV, and the former class IV stars, such as a CMi, have been included in class IV-V. The reason for this change is the fact that spectra of the stars of the older class III resemble the stars of class V more closely than those of class Ib. The class III stars of types G2-K1 have been reclassified using new criteria and a system of types for the standard stars which provides a better correlation of spectral type with color. Dr. Morgan prepared a new list of standards for the types G8-K1 about a year and a half ago, basing his classification primarily on the appearance of the G-band region and, to a lesser extent, on the strength of $\lambda 4226$ of Ca r. For reasons mentioned below, the present author has also considered the strength of the hydrogen lines as an indicator of spectral type at G8 and K0 after the luminosity class of the star has been accurately determined. The use of this additional criterion does not change the spectral type assigned to any of the standard stars, nor does it lessen the correlation of spectral type with color.
Figure 1 illustrates the correlation between the Henry Draper and the revised spectral types. On the average, the agreement is good. The most notable features are the concentration of the HD G5 stars at G8 on the present system, the widespread and almost uniform distribution of the HD type K0 stars over the revised range G8-K3, and the sparing use of the types F8 and K2 in the Henry Draper Catalogue. Also, the mean revised type for the stars which were classified K2 in this catalogue is almost as late as K4. As mentioned in the preceding paragraph, the colors confirm the revised type G8 for most of the HD G5 stars. The mean color for the G8 giants is very nearly fourfifths of the way from that of the G0 giant to that of the K0 giants, and a smooth progression in color from class V to class II is preserved for each spectral type on the revised system. The relative scarcity of K 1 stars in the revised types is probably a systematic effect in the present classifications, since the decision to use this type was not made until after the preliminary classifications were finished. However, the accuracy possible in the classification seems to warrant the use of this type.

Figure 2 shows the number of stars in each region of the spectral type-luminosity class array as well as the divisions in luminosity used at each spectral type. Two supergiants have been omitted, HR 8752 at G0 I a and ψ^{1} Aur at K5 I $a b$. The supergiants are distributed uniformly in spectral type, and the low-luminosity stars show their expected behavior. The latter are plentiful at F5 and gradually diminish in number toward later spectral types and, hence, toward lower absolute magnitudes. This behavior is due to the selection effect introduced by the bright limiting apparent magnitude. However, other features of the diagram cannot be explained this easily. The most striking of these is the very sudden onset of giants at G8. Even on the older system the onset was fairly sudden at G5 but the new classifications have sharpened the boundary appreciably. Between G0 and G5 we have 4 stars in luminosity class III (i.e., as we shall see later, with absolute magnitudes near 0.0 mag.), while at G8 we have 67 . The strong concentration of giants persists to later spectral types also, thinning out only gradually by K5. The stars in luminosity classes III-IV, II-III, and even II indicate the existence of the same phenomenon. An equally striking feature is the lack of stars fainter than the class III stars and later than K1. This cannot be due solely to selection effect, since the absolute magnitudes of these stars would be no greater than those of the F dwarfs and certainly not sufficiently lower

[^0]than the absolute magnitudes of the stars of the same luminosity class at G8 to account for their complete disappearance at K2.

III. ABSOLTUTE MAGNITUDES

The existence of good proper motions and trigonometric parallaxes for the stars brighter than 5.5 mag. makes these stars useful for calibrating the luminosity classes in terms of absolute magnitude. For this reason new values of the mean absolute magni-

Fig. 1.-The correlations between the HD spectral type and the types on the system of the Yerkes spectral atlas. The area of each block represents the number of stars at that point on the diagram.
tudes have been determined for those classes which contain a sufficient number of stars brighter than this limit to make the new calibration useful.

For stars with appreciable trigonometric parallaxes, i.e., for stars in luminosity classes with mean absolute magnitudes fainter than -0.5 mag., the mean trigonometric parallax was computed for each group. For each star with more than one determination of its trigonometric parallax, individual values from Allegheny, Cape, Greenwich, McCormick, and Yale Observatories were averaged with equal weight, unless the probable
errors of the individual determinations differed considerably. These values were taken from the back of the General Catalogue of Stellar Parallaxes (Yale, 1935). The resulting value was then reduced to the parallax which the star would have if it had the apparent magnitude 5.00 instead of its actual apparent magnitude. Negative parallaxes were divided by the same factor by which they would have had to be multiplied if they had been positive. These values were then averaged, weighting the value for each star according to the number of independent determinations. Although the parallaxes of most of the stars are too small to be of any use individually, the agreement among the reduced parallaxes is surprisingly good. If anything, the mean errors given in Table 1, which

Fig. 2.-The spectral type-luminosity class array for the bright northern stars. Each circle represents one star. The lines indicate the number of types usually distinguished. Circles centered on a line indicate stars with in-between types.
have been computed on the assumption that one good determination of a trignonometric parallax has a mean error of 0 ". 010 , is overestimated. After this work had been completed, Dr. Strömgren pointed out ${ }^{3}$ that it would be preferable to use the observed parallaxes directly. If an estimate is made of the mean absolute magnitude of a group of stars and is used to compute spectroscopic parallaxes, then a comparison of the mean unreduced trigonometric and the mean spectroscopic parallaxes will indicate the correction which must be applied to the assumed absolute magnitude. For three groups in different parts of the spectral type-luminosity diagram, this method was used. The results agreed with the first results within the mean errors of the determinations.

For groups with mean absolute magnitudes brighter than +3.0 the mean parallax was also computed from the proper motions. The observed motion for each star was also reduced to the value it would have if the star were actually of apparent magnitude 5.00. The sky north of declination -20° was divided into nine regions of approximately equal

[^1]TABLE 1
Mean Parallaxes

Spectral Type	Method	Num- ber of Stars	$\bar{\pi}(m=5.00)$		$10+5 \log \bar{\pi}$		Adopted \bar{M}
F5 IV-F8 IV.	$\pi_{t r}$	14	$0^{\prime \prime} .0227 \pm 0.00018 \text { m.e. }$		$+1.8 \pm 0.2$ m.e. $\}$+2.3 .2		+1.9
F5 IV-F8 IV.	μ	19					
F5 IV-V-G2 IV-V	μ	26	. 0357 . 0025		$\begin{array}{ll}+2.8 & .2 \\ +3.0 & .1\end{array}$		$\begin{aligned} & +2.8 \\ & +2.9^{*} \end{aligned}$
F5 IV-V-F6 IV-V.	$\bar{\pi}_{t r}$	15	. 0390	. 0020			
F8 IV-V; G0 IV-G2 IV	$\bar{\pi}_{t r}$	9	. 0421	. 0023	+3.1	. 1	
F5 V.	$\bar{\pi}_{t r}$	13		. 0020	+3.3 . 1		+3.3+3.6
F6 V	$\frac{\bar{\pi}_{t r}}{\bar{\pi}_{t r}}$	15	. 0554.0021		+3.7 . 1		
F8 V.		17	. 0546	. 0016	+3.7	. 1	+3.6 +3.9
G0 V-G2 V.	$\bar{\pi}_{t r}$	19	. 0786	. 0016	+4.5 . 0		+4.4*
G5 II-K5 II.	$\bar{\mu}$	34	. 0032	. 0005	-2.5 . 3		-2.6
G8, K0 II-III	μ	914	$\begin{aligned} & .0069 \\ & .0066 \end{aligned}$	$.0015$	-0.8 . 5		$\begin{aligned} & -0.9^{*} \\ & -0.9^{*} \end{aligned}$
K1 II-III-K5 II-III				$.0018$	-0.8	. 6	
G8 III.	$\underline{\mu}$	65	. 0088	. 0010	-0.2 1.2		0.0
G8 III.	$\stackrel{\nu}{v}_{\bar{\pi}}^{\text {m }}$	65	. 0057	$\begin{aligned} & .003: \\ & .0012 \end{aligned}$	$\left.\begin{array}{rr}-1.1 & . . \\ +0.3 & .2\end{array}\right\}$		
G8 III.		49	. 0114				
K0 III.	$\underline{\mu}$	86	. 0162	. 0014	+1.0		+0.7
K0 III.	$\bar{\pi}_{t r}$	71	. 0136	. 0010	+0.7		
K1 III.	$\stackrel{\mu}{\bar{\pi}}_{\text {tr }}$	3222	$\begin{aligned} & .0148 \\ & .0155 \end{aligned}$	$.0009$	$\left.\begin{array}{ll}+0.9 & 1 \\ +1.0\end{array}\right\}$		+0.8
K1 III.				$.0017$	+1.0	. 2$\}$	
K2 III	μ	61	. 0147	. 0015	+0.8 . 2$\}$		+0.9
K2 III	$\widetilde{\pi}_{t r}$	46	. 0166	. 0012	+1.1	. 25	
K3 III.	$\overline{\bar{\mu}}_{\bar{\mu}}^{\text {er }}$	59	.0114.0106	$\begin{aligned} & .0016 \\ & .0012 \end{aligned}$	+0.3 . 3$\}$		+0.1
K3 III.		42			+0.1	. 2 \}	
K4 III.	$\bar{\pi}_{t r}$	31	.0098.0106	$\begin{aligned} & .0019 \\ & .0015 \end{aligned}$	+0.0 0.4$\}$		-0.1
K4 III.		25			+0.1	. 35	
K5 III	$\bar{\pi}_{t r}$	3126	.0090.0095	$\begin{aligned} & .0007 \\ & .0016 \end{aligned}$	-0.2 . 2 \}		-0.2
K5 III.					-0.1		
G5-K0 III-IV.	$\overline{\bar{\mu}}_{\bar{\pi}_{t r}}$	2219	$\begin{aligned} & .0193 \\ & .0187 \end{aligned}$	$\begin{array}{r} .0029 \\ .0019 \end{array}$	$\left.\begin{array}{ll}+1.4 & .3 \\ +1.4 & .2\end{array}\right\}$		+1.3*
G5-K1 III-IV.							
G5-K0 IV.	$\bar{\pi}_{t r}$	6	. 0526	. 0044	+3.6 . 2		+3.5*
K1 IV.	$\bar{\pi}_{t r}$	3	0.038	0.004	+2.9 0.2		+2.9

* Individual mean absolute magnitudes were adopted as shown below.

F8 IV-V.......... +3.0	G8 II-III. 1.0	K1 III-IV........ +1.3
G0 IV. +2.6	K0 II-III-K2 II-III -0.8	G5 IV ${ }^{\text {a }}$ + 3.2
G2 IV.............. +2.9	K3 II-III-K5 II-III -1.0	G8 IV. +3.5
G0 V............. +4.3	G8 III-IV.............. +1.3	K0 IV. +3.5
G2 V............. +4.6	K0 III-IV............... . +1.4	K1 IV. +2.9

area, and the mean proper motion was determined in each region. These mean motions were then used to compute mean parallaxes according to the formulae given by Smart. ${ }^{4}$ These formulae involve the assumptions that the two-stream picture of stellar motions is valid and that there are an equal number of stars in each stream. In addition, the amount of the solar motion and the stream constants are required for their application. A solar motion of $20 \mathrm{~km} / \mathrm{sec}$ was adopted. ${ }^{5}$ For the stream constants the values found by Smart and Tannahill ${ }^{6}$ in their study of the Cape proper motions were used. These formulae have the advantage that they make use of the total proper motion rather than just one component of this motion. As the observational errors in the proper motions are relatively small, each star was given equal weight in the solution. The mean error of the results is computed from the agreement of the results from individual regions of the sky.

The results of the solutions for the mean parallaxes are given in Table 1. In this table, π denotes parallax; μ, the total proper motion; v, the component of the proper motion parallel to the solar motion; m, the visual apparent magnitude of a star; and M, the visual absolute magnitude of a star. It is evident that where the two methods of determining the mean parallax overlap the agreement between them is good. This table also gives the absolute magnitudes, found by assuming that all stars in each group have the same absolute magnitude, together with the approximate mean error of these values as indicated by the mean errors of the mean parallaxes. To obtain the true mean absolute magnitude, the correction $0.23 \sigma_{M}^{2}$ must be applied where σ_{M} is the standard deviation of the absolute magnitudes of the stars in the group. It was estimated that this correction is about +0.1 mag., except for the dwarfs earlier than G0 for which the correction was ignored. This correction has been included in the adopted visual absolute magnitudes given in the final column of Table 1. A few values in this column, for the F stars and the class II-III stars in the range G8-K5, have been smoothed somewhat.

Figure 3 shows a plot of the adopted visual absolute magnitudes in this region of the H-R diagram. The points connected by dotted lines are from an article by Keenan and Morgan. ${ }^{7}$ The remainder are from the new solutions. Of particular note is the sharp drop in absolute magnitude for the giants between G8 and K0, followed by the equally steep rise between K2 and K3. The results in Table 1 leave little doubt that this behavior is real. In addition, the second method of employing the trigonometric parallaxes mentioned above also supports the sharp drop between G8 and K0. Finally, at G8, an additional solution was made, using the upsilon components of the proper motion. This solution has decidedly less weight than that using the total proper motions, both because of the loss of one component of the motion and because of the varying weights in different parts of the sky and, hence, the low weight in some regions. However, it supports the high luminosity at G8 III. The point at K1 IV is uncertain, but it is definitely above the point for K0 IV.

Table 2 gives the mean absolute magnitude for each spectral type for all luminosity classes except class I and, for stars later than the sun, class V. The stars omitted are too few to have much real influence on the mean, but they lie far enough from the mean to cause spurious fluctuations from one spectral type to the next. Although these mean absolute magnitudes refer only to the stars in this study and may not be valid for other groups of stars, such as those in a particular galactic latitude or with fainter apparent magnitudes, they do illustrate the characteristics of this material. The mean absolute magnitudes for the stars earlier than G5 behave as one would expect. Among the latertype stars the same behavior can be noted as was found in the giants of these classes.

[^2]Hence this behavior is not a product of the classification system. If we omit the dwarfs, the K $0-\mathrm{K} 2$ stars are definitely fainter as a group than are those stars either at G8 or later than K2.
The data shown in Figures 2 and 3 are combined in Figure 4, which illustrates a schematic color-magnitude diagram for the stars included in this study. The mean color for each spectral type and luminosity class was determined from the $B-V$ colors measured by H. L. Johnson. ${ }^{8}$ The area of the color-magnitude diagram was then divided

Fig. 3.-Mean absolute magnitudes for stars in the range F5-K5. Roman numerals indicate the main luminosity classes. The remaining lines are for luminosity classes II-III, III-IV, and IV-V. The dotted lines connect values given by Keenan and Morgan. The remaining points are based on new results.

TABLE 2
Mean Absolute Magnitudes to Limiting Magnitude 5.50 for Mixed Luminosity Classes

Spectral Type	\bar{M}	Spectral Type	\bar{M}
Classes II-V:		Classes II-IV:	
F5	+2.2	G5.	$+0.7$
F6.	+3.0	G8.	+0.1
F8.	+3.5	K0.	+0.6
G0.	+3.2	K1	+0.6
G2	+2.1	K2	+0.5
		K3	-0.3
		K4.	-0.4
		K5	-0.3

${ }^{8} A p . J$. (in press).
into cells, each centered on the mean $B-V$ and mean absolute magnitude, on the HRP system, for the stars in a given cell in the spectral type-luminosity class diagram and with the boundaries approximately midway between adjacent centers. In each of the cells constructed in this way, a circle was drawn for each star found to have the corresponding spectral type and luminosity class. Hence no circle on the diagram represents a particular star, but the result should be similar to that which we would obtain if we knew the color and absolute magnitude for each star individually. However, the width of the giant sequence for the late-type stars is indeterminate. Figure 4, again, shows the same features

Fig. 4.-A schematic color-magnitude diagram for the bright northern stars. Each circle represents one star, but not a particular star.
as Figure 2. Stars with absolute magnitudes greater than +2.0 are entirely absent for colors greater than 1.4 mag., and stars with absolute magnitudes between -1.0 and +1.0 are scarce for colors between 0.45 and 0.82 mag . On this diagram the spectra merely form an intermediate step in obtaining the position of a given star. Hence the sharp onset for the late-type giants is probably real. If it is not real, then the giants are even more crowded at the color 0.85 or 0.86 mag., since the mean color of the stars cannot be changed appreciably.
The general features shown in Figure 4 are not new. In 1913 H. N. Russell made the statement: "It is further noteworthy that all the stars of classes K 5 and M which appear on our diagram are either very bright or very faint. There are none comparable with the

Sun in brightness." ${ }^{\prime 9}$ In 1922 H. D. Curtis ${ }^{10}$ published an H-R diagram, based on all parallaxes available at the time and on the HD spectral types, which is surprisingly similar to the color-magnitude diagram shown in Figure 4. In the same year Hertzsprung ${ }^{11}$ called attention to the fact that, if the quantity $m+5 \log \mu$, where m is the apparent magnitude and μ is the total proper motion, is plotted against the reciprocal color temperature, then, for stars about 5 mag. brighter than the sun, there is a "marked gap" on the diagram between the red stars and the blue stars. Comparing his diagram with his table of the colors corresponding to each spectral type, we see that the gap is between stars of spectral type A5 and stars slightly later than G2 on the HD system. During the succeeding thirty years the edges of this gap have tended to become less well defined in the literature, and the red edge of the gap has progressed steadily toward the violet, until some modern authors have placed this edge near F5 or even earlier. Further evidence that the giants actually start abruptly near G8 is furnished in Figure 5, which shows two diagrams similar to Figure 4 but derived from independent sets of data. Figure $5 a$ is a plot of the colors measured by Bottlinger ${ }^{12}$ against the absolute magnitudes computed from the trigonometric parallaxes. Figure $5 b$ is a plot of the infrared colors measured by J. S. Hall ${ }^{13}$ against the absolute magnitudes which the stars would have if each had a tangential motion of $20 \mathrm{~km} / \mathrm{sec}$. That is, $P=m_{v}+5$ $\log \mu+1.87$. Both figures contain all the stars plotted in Figure 4 for which the necessary data are available, and the mean colors of G0 V and G8 III stars have been indicated on each. Since these diagrams are very similar to Figure 4, we may conclude that the Hertzsprung gap extends through G5 and has a very sharp boundary at a temperature between that of a G5 giant and a G8 giant.

IV. VELOCITY DISTRIBUTIONS

Nearly two years ago it was shown that among the late F- and early G-type stars two groups of stars could be distinguished in the same spectral type and luminosity class by small spectroscopic differences. ${ }^{14}$ It was also shown that the members of these two groups, which occur in nearly equal numbers among the bright northern stars, have different velocity distributions. The stars in one of these groups have systematically weaker lines than those in the other group, and the two groups have been identified accordingly as the strong-line and the weak-line stars. β Vir is representative of the strongline group, and ι Psc of the weak-line group.

In the course of classifying the remainder of the stars, it was found that spectroscopic differences also exist among stars of the same luminosity class and spectral type in the range G8-K1. Eighty-five per cent of these stars belong to one of two groups. In one of these, both the G band and $C a$ I 4226 are stronger than in stars of the same type in the other group. The two K0 III stars, HR 4126 and 2 Dra, are examples of the members of each group, and the differences between these stars are typical. Relative to the strength of Fe r 4045, $\lambda 4226$ is stronger in the spectrum of 2 Dra than it is in the spectrum of HR 4126. This alone might be explained if 2 Dra were later in type or lower in luminosity. However, the G band is also stronger in 2 Dra, and this would indicate an earlier type; the strength of the cyanogen and the ratio of $\lambda 4077$ to $\lambda 4063$ indicate that 2 Dra cannot be appreciably fainter than HR 4126. Figure 6 illustrates the velocity distributions for the stars in the two groups together with the velocity distributions

[^3]

Fig. 5.-Color-magnitude diagrams for the bright northern stars: a, a plot of the visual absolute magnitudes determined from trigonometric parallaxes and the colors measured by Bottlinger; b, a plot of visual magnitudes determined from hypothetical parallaxes (i.e., the assumption that each star has a tangential velocity of $20 \mathrm{~km} / \mathrm{sec}$) and the colors measured by Hall.
for the strong- and weak-line groups in the earlier types for comparison. (Thirty-seven stars have been added to the diagrams shown in the earlier paper.) Table 3 contains, for each group, the number of stars, the mean velocity, and the standard deviation of the velocities. These show that one group of the late-type stars can be identified dynamically with the strong-line group in the earlier stars and the other with the weak-line group. For this reason, although the names are no longer descriptive, the group of stars resembling HR 4126, which appears similar dynamically to the strong-line stars of earlier type,

Fig. 6.-The frequency distributions of the speeds in the strong- and weak-line groups in the spectral ranges F5-G5 and G8-K1.
has been called the strong-line group and the group of stars resembling 2 Dra has been called the weak-line group.

The remaining 15 per cent of the stars of types G8-K1 appear to belong to neither of these groups spectroscopically but to one of the groups represented by the K0 III stars illustrated in Figure 7. Stars in these groups seem to share the characteristics of the weakline group to the extent that the G band and $\lambda 4226$ tend to be strong compared with the remainder of the spectrum, but, in addition, the $C N$ band is peculiar. In stars like

Fig. 7.-Two K0 III stars with peculiar $C N$. HR 645 belongs to the 4150 group. ϕ^{2} Ori belongs to the group with weak $C N$. Both stars are high-velocity stars, and the two must be fairly similar in temperature and luminosity.

HR 645, not only is the absorption in the region between $\lambda 4145$ and $\lambda 4175$ stronger than in the region between $\lambda 4175$ and $\lambda 4215$, but also the appearance is different. Similar stars have been found on objective-prism plates at the Case Observatory by Dr. Nassau and his associates. They are recognized on low dispersion by the fact that the $\lambda 4150$ region of $C N$ is too strong compared with the region more to the red. Hence they have been called " 4150 stars." In addition, the entire $C N$ band appears too strong for the strength of the hydrogen lines and of $\lambda 4077$. On the other hand, in stars like ϕ^{2} Ori, the

TABLE 3
Characteristics of the Velocity Distributions

Group	Number of Stars	$\begin{gathered} \text { Mean Speed } \\ (\mathrm{Km} / \mathrm{Sec}) \end{gathered}$	Standard Deviation (Km/Sec)
Strong-line Weak-line.	F5-G5 (except G2 and G5 III and IV)		
	70	28.4 ± 1.7	14.5
	61	42.7 ± 2.8	22.2
	G5-K1, II-III to IV		
Strong-line.	91	24.7 ± 1.3	12.6
Weak-line:	113	40.9 ± 2.3	24.1
4150.	25	42.1 ± 8.3	41.6
Weak CN	12	95.6 ± 13.7	47.4

Fig. 8.-The frequency distributions of the speeds of the 4150 stars and of the stars with weak $C N$
$C N$ is too weak for the strength of $\lambda 4077$ and for the luminosities indicated by trigonometric parallaxes.
Table 3 also gives the characteristics of the velocity distributions for these groups of stars, and Figure 8 illustrates these distributions. It is seen that the velocity distribution for the 4150 stars is similar to that for the weak-line stars, although spectroscopically they form a distinct group. The dispersion is higher, but for such a small number of stars this difference may not be significant. On the other hand, the stars with weak $C N$ definitely form a separate group dynamically. The mean velocity is decidedly higher than that for the other groups, and the distribution of the velocities also appears differ-
ent, although it should be remembered that Figure 8 contains very few stars. This is definitely a high-velocity group of stars, and it has been recognized for some time both in globular clusters ${ }^{15}$ and among the high-velocity stars. ${ }^{1}$ More recently, both stars in globular clusters and the high-velocity stars have been recognized as objects belonging to Baade's population II, and the weak $C N$ has been identified as a characteristic of this population. ${ }^{16}$ It should be noted, however, not only that some members of this group have velocities lower than the $63 \mathrm{~km} / \mathrm{sec}$ limit but also that stars in the weak-line and in the 4150 groups have velocities which are above this limit. For example, the velocity of HR 645 is $143 \mathrm{~km} / \mathrm{sec}$.
Spectroscopic differences exist also among stars later than K1. The 4150 stars seem to be fairly numerous at K2, and the stars with weak $C N$ are also certainly present at this type (for example, a Boo).

Several lines of evidence support the above conclusions. The addition of 37 stars to the 98 previously discussed with spectral types in the range F5-G5 has had no appreciable effect on the velocity characteristics of the strong- and weak-line groups. Among the later-type stars, the velocity characteristics of each group show clearly in each spectral type separately. Hence the divisions are almost certainly real. Throughout the region of the $\mathrm{H}-\mathrm{R}$ diagram included in this investigation, the mean reduced trigonometric parallaxes for the strong- and weak-line stars of the same spectroscopic absolute magnitude agree within their mean errors. In addition, in each group, the mean radial velocity agrees with the mean velocity from one component of the tangential motion in both the earlier and later spectral types. Thus the higher mean velocities for some groups cannot result from the use of values of the spectroscopic absolute magnitudes which are too high for these groups. The galactic concentration tells us nothing: all the stars seem to be fairly uniformly distributed in a direction perpendicular to the galactic plane up to the relatively small distances reached in this investigation.

Table 4 lists the stars brighter than 5.50 mag., north of declination -20°, with revised spectral types between F5 and K5, with the exception of variable stars, stars with composite spectra, and stars in three lists which have been published recently. ${ }^{14,17}$ The table includes the name or HR number of each star, its 1900 position, the visual apparent magnitude corrected for the light of the fainter component in close visual double stars and two-line spectroscopic binaries, the spectral type, the spectroscopic parallax and absolute magnitude, the group (strong-line, weak-line, 4150 , or weak $C N$) to which the star belongs, and its space velocity corrected for the usual solar motion of $20 \mathrm{~km} / \mathrm{sec}$ toward $a=18^{\mathrm{h}} 04^{\mathrm{m}}$ and $\delta=+28^{\circ}$. The abbreviations "st-l," "wk-1," and "wk CN" stand for "strong-line," "weak-line," and "weak $C N$," respectively; an " n " at the end of a line indicates a note on that star at the end of the table. The remaining symbols have their usual meanings.

I am indebted to Dr. W. W. Morgan not only for the use of a large number of plates but also for many helpful discussions and for lists of revised spectral types for the standard stars.

[^4]Spectroscopic Results

Name		8	m	$\begin{gathered} \text { Spoctral } \\ \text { Type } \end{gathered}$	M	Group	\% ${ }^{\text {sp }}$	$\begin{gathered} \text { Speed } \\ (\mathrm{Km} / \mathrm{Sec} \end{gathered}$
33 Psc	$0^{\mathrm{h}} 0^{\mathrm{m}}$ 2	$-6^{\circ} 161$	4.68	KI III	+0.8	4150	0.017	40
6 Cot	06.2	-16 1	5.05	F6 ${ }^{\text {V }}$	+3.6	wk-1	. 051	52
HR 37	07.1	-1830	5.47	15 III	-0.2		. 0073	26
\bigcirc Cet	014.3	- 923	3.75	L2 III	+0.9		. 027	26
13 Cet	030.1	-49	5.75	F8 ${ }^{\text {P }}$	+3.9	wk-1	. 043	32
HR 152	051.3	+4356	5.44	L5 III	-0.2		. 0074	50
ϵ and	033.3	+2846	4.52	G8 III	+0.0	we CN	. 0125	156
8 and	034.0	+30 19	3.49	K3 III*	+0.1		. 021	18
a Cas	034.8	+5559	2.47	S0 II-III	-0.8	st-1	. 022	6
32 and	035.7	+3855	5.42	G8 III	,0.0	st-1	. 0082	22
β cet	038.5	-18 32	2.24	K0 III	+0.7	st-1	. 049	15
ϕ^{\prime} Cet	039.2	-11 9	4.93	KO III	+0.7	st-1	. 014	34
\% and	042.0	+23 43	4.30	K1 II	-2.6		. 0042	
8 Psc	043.5	+72	4.55	K5 III	-0.2		. 011	39
64 Psc	043.7	+1624	5.23	F8 ${ }^{\text {V }}$	+ 3.9	st-1	. 054	19
v^{\prime} Cas	049.1	+5826	4.95	L2 III	+0.9		. 0155	32
ν^{2} Cas	050.7	+58 38	4.83	68 III-IV	+1.5	wk-1	. 020	56
$\phi^{3} \mathrm{Cet}$	051.0	-11 49	5.49	K4 III	-0.1		. 0076	42
η And	051.9	+22 53	4.62	G8 III-IV	+1.3	st-1	. 022	24
HR 285	055.0	+8543	4.52	K2 II-III	-0.8		. 0886	34
Psc	057.8	+ 721	4.45	K0 III.	+0.7	wic-1	. 018	41
$\mu \mathrm{Cas}$	11.6	+5426	5.26	G5 Vp*				
η Cet	13.6	-1043	3.60	K2 III	+0.9		. 029	27
$\chi \mathrm{Psc}$	16.1	+2030	4.89	KO III	+0.7	st-1	. 0145	17
τ Psc	16.2	+29 34	4.70	KO III-IV	+1.4	st-1	. 022	31
ϕ Psc	18.3	+24 3	4.64	K0 III	+0.7	st-1	. 016	12
ξ and	116.5	+450	4.99	Ko III-IV	+1.4	st-1	. 019	17
ψ^{4} Cas	118.9	+6736	4.96	KO III	+0.7	4150	. 014	20
θ Cot	119.0	-842	3.83	K0 III	+0.7	-k-1	. 024	48
46 Cot	120.7	-15 7	5.19	K3 III	+0.1		. 0095	51
49 and	124.1	+4630	5.38	K0 III	+0.7	4150	. 011	17
$\mu \mathrm{Psc}$	124.9	+ 538	5.12	L4 III	-0.1		. 0090	144
$\eta \mathrm{Psc}$	126.1	+1450	3.72	G8 III*	0.0	st-1	. 018	16
X Сав	127.4	+5843	4.83	KO III	+0.7	mk-1	. 0145	30
40 Cas	130.5	+7232	5.50	G8 II-III	-1.0	wk-1	. 060	25
50 Cet	151.1	-15 54	5.48	K2 III	+0.9		. 012	22
51 And	151.9	+48 7	3.77	[3 III*	+0.1		. 019	26
X and	138.4	+4352	5.17	G8 III	0.0	wk-1	. 0092	32
HR 485	135.7	+42 7	5.10	G2 ${ }^{\text {b }}$	+4.6	st-1	. 079	32
$\nu \mathrm{Psc}$	136.2	+ 459	4.68	E3 III	+0.1		. 012	26
107 Psc	137.1	+19 47	5.32	K1 ${ }^{\text {* }}$	+6.2		. 151	46
HR 500	137.7	-412	5.27	K3 II-III	-1.0		. 0056	48
τ Cet	139.4	-16 28	3.65	G8 ${ }^{\text {* }}$	+5.6		. 245	60
- Psc	140.1	+ 839	4.50	KO III	+0.7	st-1	. 017	26
5 Cet	146.5	-10 50	3.92	K2 III	+0.9		. 025	9
a Tri	147.4	+29 6	3.58	F5 IV*	+1.9	wik-1	. 046	24
ξ Psc	148.4	+ 242	4.84	K0 III	+0.7	nk-1	. 015	30
6 Ari	151.9	+1720	5.16	K1 p				
49 cas	156.0	+75 38	5.30	G8 III	0.0	mk-1	. 0086	26
γ and A	157.3	+4151	2.28	K2 III	+0.9		. 053	18
α Ari	21.5	+22 59	2.25	K2 III*	+0.9		. 054	18
60 and	27.0	+4346	5.08	K4 III	-0.1		. 0092	52
HR 645	27.0	+50 36	5.40	KO III	+0.7	4150	. 0115	143
η Ari	27.2	+20 44	5.35	P5 ${ }^{\text {P }}$	+3.3	st-1	. 039	13
ξ^{\prime} cet	27.7	+ 823	4.54	G8 II	-2.5		. 0038	
64 and	217.3	+4933	5.49	G8 III	0.0	st-1	. 0080	16
65 and	218.9	+4950	4.96	K4 III	-0.2		. 010	7
14 Tri	226.0	+ 3542	5.35	K5 III	-0.2		. 0077	48
HR 737	226.3	+150	5.44	K3 III	+0.1		. 0085	17
HR 743	228.5	+7223	5.34	G8 III	0.0	wk-1	. 0085	37

Table 4 (continued)

Name	a	8	III	Spectral Type	M	Group	Tsp	$\begin{gathered} \text { Speed } \\ (\mathrm{Km} / \mathrm{Sec}) \end{gathered}$
ν Cet	$2^{\mathrm{h}_{3}}{ }^{\text {ma }} 6$	+ $5^{\circ} 91$	5.02	G8 III	0.0	st-1	080099	28
ϵ Cet	234.7	-12 18	5.01	F5 IV-V	+2.8	Wk-1	. 936	25
39 Ari	242.0	+2850	4.62	K1 III	+0.8	st-1	. 017	42
17 Per	245.4	+34 39	4.67	K5 III	-0.2		. 0105	19
20 Per	247.4	+57 56	5.32	F4 V	+3.3		. 039	9
η Eri	251.5	- 918	4.05	K1 III-IV	+1.3	wik-1	. 028	44
24 Per	252.9	+34 47	4.97	K2 III	+0.9		. 0155	51
HR 918	258.0	+5619	5.08	KO II-III	-0.8	wk-1	. 0066	83
\boldsymbol{k} Per	32.7	+44 29	4.00	KO III	+0.7	wk-1	. 022	42
ω Per	34.8	+39 14	4.82	K1 III	+0.8	st-1	. 016	24
δ Ari	$3 \quad 5.9$	+19 21	4.53	K2 III	+0.9		. 019	32
94 Cet	37.7	- 134	5.14	F8 V	+3.9	st-1	. 057	8
HR 969	39.1	+50 34	5.29	G5 II	-2.3		. 0030	
HR 991	312.5	+33 51	4.92	K2 II	-2.6		. 0031	
HR 999	314.3	+28 41	4.72	K3 II-III	-1.0		. 0072	15
63 Ari	317.0	+20 23	5.25	K3 III	+0.1		. 0093	32
- Tau	319.4	+ 841	3.80	G8 III*	0.0	st-1	. 017	45
σ Per	323.6	+4739	4.55	K3 III	+0.1		. 013	29
5 Tau	325.4	+1236	4.28	KO II-III	-0.8	st-1.	. 8095	13
36 Per	325.5	+4543	5.35	F4 III*	+0.2		. 0093	63
δ Eri	388.5	-10 6	3.72	KO IV*	+3.5	wik-1	. 091	53
32 Eri A	349.3	- 315	4.95	G8 III	0.0	st-1	. 010	17
HR 1249	357.5	-0 33	5.42	F6 V	+3.6	st-1	. 043	19
57 Tau	358.3	+21 49	4.50	KO III	+0.9	st-1	. 019	13
HR 1257	358.9	$+233$	5.39	F6 IV	+1.9	wk-1	. 020	46
39 Eri	49.5	-10 30	5.13	K3 III	+0.1		. 0098	74
HR 1327	411.3	+64 54	5.40	G5 III	0.0	wk-1	. 0082	35
54 Per	413.9	+3420	5.10	G8 III	0.0	4150	. 0095	41
γ Tau	414.1	+15 23	3.36	KO III*	+0.7	st-1	. 023	30
¢ Tau	414.2	+27 7	5.06	K1 III	+0.8	wk-1	. 014	20
8 Tau	417.2	+1718	3.93	KO III*	+0.7	st-1	. 023	31
HR 1390	419.7	+31 13	5.33	K1 III	+0.8	wik-1	. 012	42
T Tau	421.0	+1429	4.94	G8 III	0.0	st-1	. 010	20
75 Tau	422.7	+168	5.29	K2 III	+0.9		. 013	25
$\boldsymbol{\epsilon}$ Tau	422.8	+1858	3.63	KO III*	+0.7	wk-1	. 026	31
θ^{\prime} Tau	422.9	+15 44	4.04	KO III*	+0.7	st-1	. 022	32
45 Eri	426.8	- 016	4.97	K3 II-III	-1.0		. 0064	6
HR 1452	429.4	-911	5.50	K4 II-III	-1.0		. 0050	116
a Tau	430.2	+1619	1.06	K5 III*	-0.2		. 056	41
3 Can	432.0	+5253	5.31	KO III	-0.7	st-1	. 012	44
53 Eri	433.5	-1430	3.98	K2 III	-0.9		. 024	41
HR 1523	441.6	+81 2	5.32	K3 III	+0.1		. 0090	32
HR 1533	443.2	+3719	5.10	K4 II	-2.6		. 0029	
60 Eri	445.7	-16 23	5.1 .6	KO III	+0.7	wk-1	. 018	34
2 Aur	445.9	+36 32	5.04	K3 III	+0.1		. 010	33
o^{2} Ori	450.7	+13 21	4.28	K2 III	+0.9		. 021	26
104 Tau	51.5	+1831	5.79	G4 V	+4.9	stm1	. 066	36
68 ErL	$5 \quad 3.8$	- 435	5.23	F5 V	$+3.3$	wis-1	. 041	13
HR 1684	56.0	+15 55	5.36	K5 III	-0.2		. 0077	26
HR 1686	56.1	+79 7	5.16	F6 V	+3.6	wic-1.	. 049	36
p Ori	58.8 .1	+ 245	4.64	K3 III	+0.1		. 0125	24
16 Aur	511.6	+3316	4.81	K3 III	+0.1		. 0115	64
109 Tau	513.3	+220	5.14	G8 III	0.0	wk-1	. 0093	27
21 Ori	514.0	+ 230	5.45	F5 II	-2.0		. 0032	
σ Aur	517.9	+ 3718	5.22	K4 III	-0.1		. 0086	30
111 Tau	518.6	+1717	5.14	F8 V	+3.9	st-2	. 057	33
29 Ori	519.1	-754	4.21	G8 III	0.0	wk-1	. 014	58
27 Ori	519.4	- 059	5.15	KO III	+0.7	wk-1	. 013	58
ϕ Aur	521.0	+3424	5.26	K3 p				n

Table 4 (continued)

Name	a	8	m	$\begin{gathered} \text { Spectral } \\ \text { Type } \end{gathered}$	M	Group	$\pi \mathrm{sp}$	$\begin{gathered} \text { Speed } \\ (\mathrm{Km} / \mathrm{Sec}) \end{gathered}$
310 Ori	$5^{\mathrm{h}} 24 .{ }^{\text {m.7 }}$	-10101	4.97	K5 III	-0.2		050092	9
$\phi^{2} 0 \mathrm{Ori}$	531.4	+ 914	4.39	KO III	+0.7	wik Can	. 018	109
51 Ori	537.3	+ 126	5.24	KI III	+0.8	WK-1	. 013	74
T Aur	542.3	+39 9	4.64	G8 III	0.0	wk-1	. 012	31
132 Tau	542.9	+24 32	5.02	G8 III	0.0	4150	. 0099	4
ν Aur	544.6	+39 7	4.18	KO III	+0.7	st-1	. 020	21
X^{\prime} Ori	548.5	+20 16	4.62	GO V	+4.3	st-1	. 086	30
8 Aur	551.5	+5417	3.88	KO III*	+0.7	wk-1	. 023	19
HR 2113	555.1	- 35	4.68	K2 III	+0.9		. 0175	14
37 Cam	61.2	+58 57	5.42	G8 III	0.0	wk-1	. 0082	47
36 Cam	62.8	+6544	5.59	K2 II-III	-0.8		. 0058	9
k Aur	69.0	+29 32	4.45	G8 III	0.0	wk-1	. 013	83
71 Ori	69.0	+19 12	5.18		+3.6,	st-1	. 048	25
γ Mon	610.0	- 615	4.09	K3 III	+0.1		. 016	23
74 Ori	610.8	+12 18	5.11	P5 IV-V	+2.8	wic-1	. 034	41
HR 2260	613.3	-16 47	5.28	K5 III	+0.1		. 0091	29
45 Aur	613.7	+53 30	5.41	F5 III	+0.2	8t-1	. 0091	35
5 Lgn	618.1	+5828	5.43	K4 III	-0.1		. 0077	15
HR 2305	619.5	-11 28	5.59	K3 III	+0.1		. 0088	55
HR 2379	626.7	-12 19	5.33	KJ III	+0.1		. 0090	25
$\psi^{2} \mathrm{Aur}$	632.2	+42 35	5.09	K3 III	+0.1		. 010	15
$\nu^{2} \mathrm{Cua}$	632.3	-19 10	4.14	K1 IV	+2.9	st-1	. 057	20
$\nu^{3} \mathrm{CaNa}$	633.5	-18 9	4.85	K1 III	+0.8	st-1	. 017	22
HR 2450	634.7	-14	4.97	K2 II	-2.6		. 0031	
ψ^{4} Aur	635.8	+44 37	5.17	K5 III	-0.2		. 0084	83
13 Lyn	658.3	+5716	5.47	KO III	+0.7	Wix-1	. 011	20
30 Gem	638.4	+1320	4.65	K1 III	+0.8	st-1	. 017	4
56 Aur	639.5	+43 41	5.34	60 V	+4.3	st-1	.062	43
ψ^{6} Aur	640.0	+4854	5.28	K1 III	+0.8	st-1	. 013	25
17 Mon	641.9	+ 89	5.00	K4 III	-0.1		. 0104	33
18 Mon	642.7	$+231$	4.70	KO III	+0.7	st-1	. 016	9
ψ^{7} Aur	645.7	+4154	5.04	K3 III	+0.1		. 0102	69
HR 2527	645.5	+77 6	4.75	K4 III	-0.1		. 0107	43
θ cma	649.6	-11 55	4.25	K4 III	-0.1		. 0135	90
HR 2649	658.1	+11 6	5.25	KS III	+0.1		. 0092	7
63 Aur	74.8	+ 3929	5.07	K4 II-III	-1.0		. 0061	57
T Gem	74.8	+30 25	4.48	K2 III	+0.9		. 019	14
20 Mon	75.3	-45	5.02	KO III	+0.7	wk-1	. 014	101
18 Lyn	77.2	+59 49	5.33	K2 III	+0.9		. 013	83
65 Aur	715.4	+3657	5.21	KO III	+0.7	wk-1	. 0125	33
66 Aur	717.2	+40 52	5.28	K0 III	+0.7	4150	. 012	18
57 Gem	717.4	+25 15	5.08	G8 III	0.0	wk-1	. 0096	28
6 Gem	719.5	+2800	3.89	KO III	+0.7	wk-1	. 023	19
c CMi	720.2	+ 928	5.07	G8 III	0.0	st-1	. 0097	24
63 Gem	721.8	+21 39	6.01	P5 IV-V	+2.8	st-1	. 023	17
22 Lyn	722.3	+4953	5.36	F6 V	+3.6	st-1	. 944	36
γ cai	722.7	+98	4.60	KS III	+0.1		. 013	41
65 Gean	723.6	+28 7	5.09	K2 III	+0.9		. 015	23
6 Cai	724.2	+12 13	4.85	K2 III	+0.9		. 016	31
HR 2896	728.8	+31 11	5.33	KO III	+0.7	Wk-1	. 0094	28
v Gem	729.8	+27 7	4.22	K5 III	-0.2		. 015	38
25 Mon	732.3	- 353	5.17	F5 III	+0.2	wk-1	. 010	41
HR 2959	735.8	-15 2	5.15	K3 II	-2.6		. 0028	
a Mon	736.5	-919	4.07	KO III	+0.7	wis-1	. 021	11
$\boldsymbol{\sigma}$ Gem	737.1	+29 8	4.26	K1 III	+0.8	st-1	. 020	58
78 Gem	738.0	+26 1	5.40	K5 III	-0.2		. 0075	10
K Gea	738.4	+24 38	3.68	G8 III*	0.0	st-1	. 018	9
β Gem	739.2	+28 16	1.21	KO III*	+0.7	WK-1	. 079	33
81 Gem	740.3	+18 45	5.02	K5 III	-0.2		. 0090	77
6 Pup	745.2	-16 59	5.54	KS III	+0.1		. 0081	76

Table 4 (continued)

Name	a	8	a	Spectral Type	M	Group	$\pi \mathrm{sp}$	$\begin{gathered} \text { Speed } \\ (\mathrm{K} \mathrm{~m} / \mathrm{Sec}) \end{gathered}$
HR 3075		$+74^{\circ} 11$	5.56	K3 III	+0.1		0:0081	41
14 cmi	753.2	+ 229	5.40	KO III	+0.7	wk-1	. 0115	83
27 Mon	754.7	- 324	5.06	K2 III	+0.9		. 015	47
28 Mon	756.1	- 17	4.38	K4 III	-0.1		. 0103	46
HR 3145	757.1	+ 237	4.52	K2 III	+0.3		. 019	58
X Gem	757.4	+28 4	5.04	K2 III	+0.9		. 015	20
55 Cam	82.9	+68 46	5.48	G8 II	-2.5		. 0024	
19 Pup	86.6	-12 38	4.68	Ko III	+0.7	wk-1	. 016	21
HR 3212	6.7	-728	5.36	G8 III	0.0	st-1	. 0084	30
20 Pup	88.7	-15 29	5.05	G5 II	-2.3		. 0034	
β Cnc	811.1	+930	3.76	K4 III	-0.1		. 017	10
31 Lyn	818.0	+43 51	4.43	K5 III	-0.2		. 012	30
HR 3306	820.6	+ 753	5.25	G8 II	-2.8		. 0027	
η Cnc	826.9	+2047	5.52	K3 III	+0.1		. 0082	24
$\pi^{2} \mathrm{Ma}$	831.5	+6441	4.76	K2 III	+0.9		. 017	30
σ Hya	833.5	+ 542	4.54	K2 III	+0.9		. 019	14
6 Hya	835.3	-12 7	5.15	K4 III	-0.1		. 0089	41
9 нуa	837.1	-15 35	4.98	Kl III	+0.8	st-1	. 0145	34
8 cac	839.0	+1831	4.17	KO III	+0.7	wk-1	. 020	42
\bigcirc Cnc	840.7	+29 8	4.20	G8 II	-2.6		. 0044	
12 Hya	841.7	-13 11	4.44	G8 III	0.0	wk-1	. 013	31
35 Lyn	845.3	+44 6	5.24	KO III	+0.7	wk-1	. 012	37
$\rho^{2} \mathrm{Cnc}$	849.7	+2819	5.25	G8 II-III	-1.0	st-1	. 0056	17
ζ Hya	850.1	+ 620	3.30	KO III	+0.7	4150	. 030	17
	859.6	+67 17	5.33	K5 III	-0.2		. 0079	20
HR 3612	0.2	+38 51	4.71	G8 Ib-II	-5.6		. 0022	
ω Hya	90.7	+ 530	5.41	K2 II-III	-0.3		. 0058	16
τ cac	92.0	+30 ${ }^{3}$	5.38	G8 III	0.0	wk-1	. 0083	24
${ }_{\text {c }}$ OMa	92.7	+63 55	4.74	A7 m				n
ε cac	93.5	+22 27	5.22	KO III	+0.7	st-1	. 0125	27
17 UMa	98.4	+57 10	5.48	K5 III	-0.2		. 0073	29
23 нya	911.7	- 556	5.40	K2 III	+0.9		. 0125	32
26 нуa	915.0	-11 33	4.94	G8 III	0.0	st-1	. 010	18
27 Hya	915.6	-98	4.97	G8 III-IV	+1.3	st-1	. 018	16
κ Leo	918.8	+26 37	4.51	K2 III	+0.9		. 018	23
a Hya	922.7	-814	2.16	K3 III	+0.1		. 039	24
HR 3751	922.9	+81 46	4.58	K3 III	+0.1		. 013	9
24 UTa	925.6	+70 16	4.57	G5 IV	+3.2	st-1	. 053	31
λ Leo	926.0	+23 25	4.48	K5 III	-0.2		. 0115	21
6 Leo	926.6	+10 9	5.28	Kร III	+0.1		. 0092	17
$\boldsymbol{\xi}$ Leo	926.6	+11 45	5.12	ko III	+0.7	nk-1	. 013	34
10 Lui	928.1	+3651	4.52	G8 III	0.0	st-1	. 012	24
HR 3809	928.8	+40 4	4.99	Ko III	+0.7	wk-1	. 014	25
11 LMi	929.7	+3618	5.48	G8 IV-V	+4.5		. 067	37
10 Leo	931.9	+ 717	5.14	KI III	+0.8	wk-1	. 014	17
HR 3834	933.3	+ 56	4.78	K3 III	+0.1		. 012	60
27 UMa	935.8	+72 42	5.39	KO III	+0.7	st-1	. 012	12
6 时a	934.8	-0 41	4.10	K3 III	+0.1		. 016	33
43 Ly	935.8	+40 13	5.50	G8 III	+0.0	wk-1	. 0079	34
v^{\prime} Hya	946.7	-14 23	4.29	G8 III	0.0	st-1	. 014	36
$\mu \mathrm{Leo}$	947.1	+26 29	4.10	K2 III	+0.9		. 025	31
31 Leo	102.6	+10 29	4.58	K4 III	-0.1		. 0115	40
HR 3991	105.2	-12 19	5.42	F5 V	+3.3	st-1	. 058	14
λ нya	105.7	-11 52	3.83	K0 III	+0.7	4150	. 024	27
γ Leo	1014.5	+20 21	2.61	KO III	+0.7	wis Cas	. 042	65
	1021.3	-1620	4.06	K4 III	-0.1		. 015	42
β Lui	1022.1	+37 13	4.51	G8 III-IV	+1.3	st-1	. 025	14
HR 4126	1026.6	+7614	5.04	K0 III	+0.7	st-1	. 014	26
48 Leo	1029.6	+ 728	5.17	G8 II-III	-1.0	wk-1	.0059	87
37 LMi	1035.1	+32 30	4.77	G2 II	-2.0		.0044	

Table 4 (continued)

Name	a	8	m	$\begin{gathered} \text { Spectral } \\ \text { Type } \end{gathered}$	M	Group	T sp	$\begin{gathered} \text { Speed } \\ (\mathrm{Km} / \mathrm{Sec}) \end{gathered}$
ϕ Hуa	$10^{\mathrm{h}} 33.7$	$-16^{\circ} 21^{\prime}$	5.11	K0 III	+0.7	st-1	08013	25
38 UMa	1035.1	+6614	5.17	K2 III	+0.9		. 014	42
HR 4181	1035.9	+69 36	5.23	K3 III	+0.1		. 0094	16
ν Hya	1044.7	-15 40	3.32	K2 III	+0.9		. 033	49
44 0Ma	1047.5	+557	5.36	K3 III	+0.1		. 0089	20
46 LMi	1047.7	+ 3445	3.92	K1 III	+0.8	wk-1	. 024	59
46 UMa	1050.2	+34 2	5.23	K1 III	+0.8	wk-1	. 024	30
a Crt	1054.9	-1746	4.20	KO III	+0.7	4150	. 020	105
58 Leo	1055.1	+ 49	5.05	K1 III	+0.8	wk-1	. 014	25
61 Leo	1056.7	- 157	4.97	K5 III	-0.2		. 0092	34
a oma	1057.6	+6217	1.95	KO III*	+0.8	st-1	. 055	8
$\boldsymbol{\psi}$ UMa	114.0	+45 2	3.15	K1 III	+0.8	wik-1	. 054	11
HR 4365	1110.6	+13 51	5.48	K3 III	+0.1		. 0084	21
$\nu \mathrm{UMa}$	1113.1	+53 38	3.71	K3 III	+0.1		. 019	22
8 Crt	1114.3	-14 14	3.82	G8 III-IV	+1.3	wk-1	. 051	41
λ Crt	1118.4	-18 14	5.15	F5 IV	+1.9	st-1	. 022	48
$\boldsymbol{\epsilon C r t}$	1119.6	-10 19	5.07	K5 III	-0.2		. 0088	22
τ Leo	1122.8	+ 324	5.18	G8 II-III	-1.0	st-1	. 0058	40
87 Leo	1125.2	-227	5.07	K4 III	-0.1		. 0092	34
2 Dra	1130.2	+6953	5.36	KO III	+0.7	wk-1	. 012	75
v Leo	1131.8	- 016	4.47	G9 III	+0.3	wik-1	. 015	31
92 Leo	1135.5	+2154	5.43	KO III	+0.7	wk-1	. 012	13
3 Dra	1156.9	+6718	5.48	K3 III	+0.1		. 0084	31
ζ Crt	1139.7	-17 48	4.90	G8 III	0.0	st-1	. 0105	39
χ UMa	1140.8	+4820	3.85	KO III*	+0.7	wk-1	. 024	17
HR 4521	1141.6	+56 11	5.41	K3 III	+0.1		. 0087	28
- Vir	120.1	+ 917	4.24	G8 III*	0.0	wk-1	. 014	67
7 Com	1211.3	+2430	5.08	K0 III	+0.7	wk-1	. 013	26
HR 4668	1211.5	+33 37	5.08	K1 III	+0.8	st-1	. 014	47
16 Vir	1215.3	+ 352	5.10	KO III	+0.7	wis CN	. 013	96
11 Com	1215.7	+1821	4.91	G8 III	0.0	wk-1	. 0105	73
HR 4699	1215.8	-13 1	5.36	K1 III	+0.3	st-1	. 012	30
5 CVn	1219.2	+527	4.97	G7 III	0.0	st-1	. 010	28
6 CVn	1220.9	+39 34	5.22	G8 III-IV	+1.3	wk-1	. 017	5
15 Com	1222.0	+2849	4.58	K1 III-IV	+1.3	4150	. 022	14
HR 4783	1228.7	+33 48	5.43	KO III	+0.7	wk-I	. 0115	31
X Vir	1234.1	- 727	4.78	K2 III	+0.9		. 017	19
27 Com	1241.7	+17 7	5.33	K3 III	+0.1		. 0089	63
35 Com	1248.4	+2147	5.10	G8 III	0.0	st-1	. 0095	6
37 Com	1255.5	+ 3120	5.08	K1 p				n
9 Dra.	1256.1	+67 8	5.50	G8 III	0.0	wic CN	. 0079	69
ϵ Vir	1257.2	+1130	2.95	G9 III	$+0.3$	st-1	. 030	29
41 Com	$13 \quad 2.4$	+2810	4.30	K5 III	-0.2		. 0094	46
49 Vir	$13 \quad 2.7$	-10 12	5.28	K1 III	+0.8	st-1	. 013	27
HR 4997	139.2	+40 41	5.05	Ko III	+0.7	st-1	. 0135	14
57 Vir	1310.6	-19 25	5.32	K1 IV	+2.9	4150	. 033	72
HR 5013	1312.3	+1412	5.45	K3 III	+0.2		. 0085	43
63 Vir	1317.7	-1713	5.45	Ko III	+0.7	wix-1	. 011	24
69 Vir	1322.1	-15 27	4.39	K1 III	+0.8	4150	. 015	29
76 Vir	1327.7	-939	5.43	KO III	+0.7	wk-1	. 011	8
89 Vir	1344.4	-17 38	5.11	K1 III	+0.8	st-1	. 014	40
v Boo	1344.7	+1618	4.28	K5 III	-0.2		. 0126	29
6 Boo	1345.0	+2146	5.06	K4 III	-0.2		. 0093	32
90 Vir	1349.6	-1 1	5.30	K2 III	+0.9		. 013	12
9 Boo	1352.0	+2759	5.18	K3 III	+0.1		. 0096	45
k Vir	147.6	-948	4.31	K3 III	+0.1		. 014	61
4 OMi	14 9.2	+78 1	5.00	K3 III	+0.1		. 0104	23
15 Boo	1410.0	+1034	5.36	K0 III	+0.7	wh-1	. 012	59
a Boo	1411.1	+19 42	0.24	K2 III	+0.9		. 135	69
HR 5361	1413.3	+3558	4.83	K1 III	+0.3	st-1	. 016	21

Table 4 (continued)

Table 4 (continued)

Name	a	8	m	Spectral Type	¢	Group	T sp	$\begin{gathered} \text { Speed } \\ (\mathrm{Km} / \mathrm{Sec}) \end{gathered}$
54 Her	$16^{\text {h }} 51{ }^{\text {m }} 0$	$+18^{\circ} 36{ }^{\prime}$	5.56	K4 III	-0.1		010074	72
κ Oph	1652.9	+ 932	3.42	K2 III*	+0.9		. 031	63
30 Oph	1655.3	-4 4	5.00	K4 III	-0.1		. 0096	34
$\boldsymbol{\epsilon}$ UMi	1656.2	+8212	4.40	G5 III	+0.0	st-1	. 013	18
HR 6388	17 6.3	+ 4054	5.12	K3 III	+0.1		. 0099	41
41 Oph	1711.5	- 020	4.82	K2 III	+0.9		. 016	18
HR 6433	1713.9	+1058	5.28	K4 II-III	-1.0		. 0053	94
$\sigma \mathrm{Oph}$	1721.6	+ 414	4.44	K3 II	-2.6		. 0039	
HR 6516	1725.3	- 053	5.34	G8 IV-V	+4.6		. 071	60
λ Her	1726.7	+2611	4.48	K4 III	-0.1		. 012	15
27 Dra	1732.4	+6812	5.21	Kо III	+0.7	wk-1	. 0125	72
β Oph	1738.5	+ 437	2.94	K2 III*	+0.9		. 039	28
$\mu \mathrm{Her}$	1742.6	+2747	3.48	G5 IV	+3.2	Wk-1	. 088	43
87 Her	1744.8	+2539	5.34	K2 III	+0.9		. 013	13
90 Her	1750.1	+40 1	5.12	K3 III	+0.1		. 0099	28
ξ Dra	1751.8	+5653	3.90	K2 III*	+0.9		. 025	23
$\boldsymbol{\nu}$ Oph	1753.5	-946	3.50	KO III	$+0.7$	st-1	. 028	29
\% Her	1753.9	+ 2916	3.82	KO III	+0.7	st-1	. 024	26
γ Dra	1754.3	+5130	2.42	K5 III*	-0.2		. 030	14
93 Her	1755.6	+1646	4.71	KO II-III	-0.8	4150	. 0090	5
70 Oph	$18 \quad 0.4$	$+231$	4.28	KO ${ }^{*}$	+6.0		. 220	24
71 Oph	182.5	+ 843	4.73	G8 III-IV	+1.3	st-1	. 021	21
HR 6791	184.5	+4327	5.11	KO p				
36 Dra	1813.3	+64 22	5.03	F5 V	$+3.3$	wk-I	. 045	41
105 Her	1815.1	+2424	5.49	K4 II	-2.6		. 0024	
74 Oph	1815.9	+ 320	4.92	G8 III	0.0	st-1	. 010	27
η Ser	1816.1	-255	3.42	G8 IV	+ 3.5	Wk-1	. 105	42
k Lyr	1816.4	+36 1	4.34	K2 III	$+0.9$. 020	8
5 Sct	1818.2	-859	4.83	KO III	$+0.7$	wik-1	. 015	29
HR 6885	1818.4	+1746	5.48	K3 III	+0.1		. 0083	44
109 Her	1813.4	+2143	3.92	K2 III	$+0.9$. 025	67
X Dra	1822.9	+7241	3.69	F6 **	+3.6	st-1	. 096	62
60 Ser	1824.5	-2 3	5.44	KO III	$+0.7$	4150	. 011	45
42 Dra	1825.7	+6530	4.99	K2 III	+0.9		. 015	62
HR 6970	1829.5	-11 3	5.25	G8 III	0.0	st-1	. 0088	34
a sct	1829.8	-819	4.06	K3 III	+0.1		. 016	96
HR 6983	1831.7	+5216	5.42	K0 III	$+0.7$	st-1	. 0115	7
$\boldsymbol{\epsilon}$ Sct	1838.0	-822	5.03	G8 II	-2.6		. 0329	
HR 7064	1842.1	+26 33	4.92	K3 III	+0.1		. 011	13
HR 7117	1848.3	+7358	5.33	KO II-III	-0.8	wk-1	. 0076	57
- Dra	1849.7	+5916	4.78	KO II-III	-0.8	wx-Cid	. 0076	53
HR 7137	1850.8	+50 35	4.97	G8 III	0.0	st-1	. 010	32
$\boldsymbol{\eta}$ Sct	1851.7	-5 58	5.04	K2 III	$+0.9$. 015	81
HR 7162	1853.3	+3246	5.21	GO V	+4.3	wk-1	. 056	34
$\epsilon \mathrm{Aql}$	1855.1	+1456	4.22	K2 III	+0.3		. 022	54
ν Dra	1855.6	+7110	4.91	KO III	$+0.7$	Wk-1	. 014	15
HR 7181	1855.7	+26 5	5.23	K2 III	+0.9		. 013	28
λ Lyr	1856.2	+320	5.112	K3 II	-2.6		.0029	
12 Aql	1856.3	-5 53	4.15	Kl III	+0.8	*k-1	. 021	30
53 Dra	199.8	+5641	5.24	G8 III	0.0	4150	. 0089	25
43 Sgr	1911.8	-19 8	5.03	G8 II	-2.6		. 0030	
54 Dra	1912.1	+5732	5.28	K2 III	+0.9		. 013	35
8 Dra	1912.5	+67 29	3.24	G9 III	$+0.3$	wk-1	. 026	17
23 Aql	1913.5	+ 054	5.32	K2 II-III	-0.8		. 0060	
K Cyg	1914.8	+53 11	3.98	KO III*	+0.7	st-1	. 022	28
26 AqI	1915.2	-536	5.10	G8 III-IV	$+1.3$	wk-1	. 017	35
5 Dra	1917.5	+7310	4.63	K3 III	+0.2		. 0125	66
31 Aql	1920.2	+1144	5.23	G8 IV	$+3.5$	4150	. 045	130
4 Vul	1921.1	+1936	5.31	KO III	$+0.7$	wic-1	. 012	43
$\mu \mathrm{Aql}$	1929.2	+ 710	4.65	K3 III	+0.1		. 012	95

Table 4 (continued)

	Same	\boldsymbol{a}	8	m	Spectral Type	M	Group	\% sp	$\begin{gathered} \text { Speed } \\ (\mathrm{Km} / \mathrm{Sec}) \end{gathered}$
37		$19^{\mathrm{h}} 29^{\text {m. }} 6$	$-10^{\circ} 471$	5.24	G8 III	0.0	4150	080089	20
σ	Dra	1932.6	+69 29	4.73	KO V^{*}	+6.0		. 175	74
		1932.3	+1614	5.67	G8 III	0.0	8t-1	. 0074	22
HR	7468	1933.5	+4428	5.15	Ko III	+0.7	wix-1	. 013	60
		1935.0	-16 31	5.45	K2 III	+0.9		. 012	50
	Cyg	1935.4	+2955	4.79	G8 III-IV	$+1.3$	st-1	. 020	27
	Sge	1936.6	+1715	4.45	G8 II	-2.5		. 0039	
		1939.6	+2532	5.45	G8 III	0.0	wk-1	. 0080	17
	Sgr	1940.5	-20 0	5.05	KI III	+0.8	- k -1	. 014	62
		1940.7	+37 7	5.02	G9 III	0.0	st-1	. 0099	33
		1946.2	+10 10	5.22	F8 V	+3.9	st-1	. 054	22
20		1943.1	+5244	5.17	K3 III	+0.1		. 0096	39
ϵ	Dra	1948.5	+70 1	3.99	G8 III*	0.0	wk-1	. 016	43
	Aql	1949.4	+ 812	4.86	KO III	+0.7	wk-1	. 015	38
		1950.4	+ 69	3.90	G8 ID*	+3.5	wk-1	. 083	31
$\boldsymbol{\eta}$	Cyg	1952.6	+34 49	4.03	KO III	+0.7	wk-1	. 021	18
	7633	1954.0	+58 35	5.13	K5 II-III	-1.0		. 0060	32
	Sge	1954.3	+19 13	3.71	K5 III	-0.2		. 017	22
26	Cyg	1958.5	+4950	5.28	KI II-III	-0.8	4150	. 0061	21
$\boldsymbol{\eta}$	Sge	200.7	+19 42	5.28	K2 III	+0.9		. 013	41
\boldsymbol{p}	Dra	$20 \quad 2.4$	+6735	4.68	K3 III	+0.1		. 012	11
66	Dra	204.0	+6142	5.57	K3 III	+0.1		. 0081	79
23	Vul	2011.6	+2730	4.73	K3 III	+0.1		. 012	30
		2012.5	+2422	5.45	G8 III	0.0	wk-I	. 0080	34
	Cap	2012.5	-12 51	3.77	G9 III	+0.3	Wk-1	. 021	18
HR	7759	2013.4	+40 3	5.50	K4 II	-2.6		. 0024	
σ		2013.5	-1926	5.46	K3 II	-2.6		. 0024	
HR	7794	2018.2	$+51$	5.41	G8 III-IV	+1.3	wis-1	. 015	18
39	Cyg	2019.9	+ 3152	4.60	K3 III	+0.1		. 0125	8
69	AqI	2024.4	- 313	5.11	K2 III	+0.9		. 014	18
70		2031.5	-254	5.22	K5 II	-2.6		. 0027	
71	Aql	2033.2	- 127	4.51	G8 III	0.0	st-1	. 0125	8
K	Del	2034.3	+ 944	5.23	G5 IV	+3.2		. 039	48
1	Aqr	2034.3	+ 08	5.39	KI III	+0.3	wk-1	. 012	42
30	Vul	2040.6	+2455	5.13	K2 III	+0.9		. 014	76
52	Cyg	2041.5	+3021	4.34	KO III	+0.7	wix-1	. 019	22
ϵ	Cyg	2042.0	+33 36	2.64	KO III*	+0.7	st-1	. 041	49
HR	7956	2043.2	+34 0	5.20	K3 III	+0.1		. 0095	13
η	Cep	2043.3	+6127	3.59	KO III-IV	+1.4	Wk CN	. 056	124
31	Vul	2047.9	+2643	4.76	G8 III	0.0	st-1	. 011	47
32	Vul	2050.3	+27 41	5.24	K4 III	-0.1		. 0085	26
17	Del	2050.9	+1320	5.39	KO III	+0.7	wk-1	. 0115	7
63	Cyg	21 3.?	+4715	4.88	K4 II	-2.6		. 0032	
ν	Aqr	21 4.2	-1147	4.52	G8 III	0.0	st-1	. 0125	25
\bullet	Cap	2116.7	-17 16	4.30	G8 III	0.0	8t-1	. 014	25
				4.24		$+0.8$	wic-1	. 021	66
71	Cyg	2125.3	+46 6	5.34	KO III	+0.7	wk-1	. 012	41
P	Cyg	2130.2	+45 9	4.22	G8 III	0.0	wk Cas	. 014	41
72	Cyg	2130.7	+ 385	4.98	K1 III	+0.3	4150	. 015	67
25	Aqr	2154.5	+ 148	5.33	KO III	+0.7	Wc-1	. 012	40
42	Cap	2136.1	-14 30	5.23	G2 IV	+2.9	st-1	. 033	46
K	Cap	2137.1	-19 19	4.32	G8 III	0.0	wk-1	. 011	51
46	Cap	2139.7	-932	5.29	G8 II-III	-1.0	4150	. 0055	7
	Cep	2140.5	+70 51	4.35	KO III	+0.7	wik-1	. 015	44
	Peg	2141.5	+22 29	5.45	KO Ib	-4.5			
	8324	2141.9	+7152	5.40	K1 III	+0.8	4150	. 012	43
	Cep	2157.8	+7242	5.15	F5 V	$+3.3$	st-1	. 043	33
	Peg	220.6	+ 434	4.90	K4 III	-0.1		. 010	70
HR	8424	22.0	+4432	5.32	K5 III	-0.2		. 0078	17
20	Cep	22.0	+62 18	5.39	K4 III	-0.1		. 0080	33

Table 4 (continued)

Name		a	8	m	Spectral Type	M	Group	T sp	Speed $(\mathrm{Km} / \mathrm{Sec})$
24 Cep	$22^{\text {h }}$	$7{ }^{(19} 9$	$+71^{\circ} 511$	4.99	G8 III	0.0	st-1	01010	5
HR 8472	22	8.2	+5621	5.42	F8 V	+ 3.9	st-1	. 050	14
HR 8475	22	8.4	+34 7	5.42	K2 III	+0.9		. 0125	16
HR 8485	22	9.5	+ 5913	4.64	K3 III	+0.1		. 012	7
1 Lac		11.6	+3715	4.22	K3 II-III	-0.3		. 0090	6
$\theta \mathrm{Aqr}$		11.6	-817	4.32	G8 III-IV	+1.3	st-I	. 025	12
β Lac	22	19.5	+51 44	4.58	G9 III	+0.3	wk-1	. 014	67
35 Peg	22	22.8	+ 412	4.93	KO III	+0.7	wk-1	. 015	110
$\kappa \mathrm{Aqr}$	22	32.5	-445	5.33	K2 III	+0.9		. 013	53
11 Lac	22	36.1	+43 45	4.64	K3 III	+0.1		. 0125	23
66 Aqr	22	38.2	-19 21	4.38	K4 III	-0.1		. 010	38
13 Lac	22	39.5	+4118	5.24	KO III	+0.7	wic-1	. 012	50
$\lambda \mathrm{Peg}$	22	41.7	+23 22	4.14	68 II-III	-1.0	st-1	. 0093	16
$\mu \mathrm{Peg}$	22	45.2	+24 4	3.67	KO III	+0.7	st-1	. 326	26
${ }_{6} \mathrm{Cep}$	22	46.1	+6540	3.68	K1 III	+0.8	st-1	. 027	35
HR 8702	22	47.9	+82 37	4.97	K3 III	+0.1		. 0105	29
HR 8748	22	55.2	+83 49	4.96	K4 III	-0.1		. 0097	37
HR 8779	22	59.7	+6640	5.50	K3 III	+0.2		.0082	8
3 and	22	59.7	+4930	4.91	KO III	$+0.7$	wik-1	. 014	76
56 Peg	23	2.2	+2456	4.98	KO IIp*				n
ψ^{\prime} Aqr		10.7	- 938	4.48	KO III	+0.7	wik-1	. 018	86
γ Psc	23	12.0	$+244$	3.85	68 III*	0.0	wk CN	. 017	197
94 Aqr	23	13.9	-14 0	5.27	G5 IV	+3.2		. 038	24
- Cep	23	14.5	+ 8734	4.90	K0 III	+0.7	wk-1	. 0145	11
11 And	23	14.8	+48 5	5.42	KO III	+0.7	wk-1	. 011	35
7 Psc		15.3	$+450$	5.18	K2 III	+0.9		. 014	46
66 Peg	23	18.0	+1146	5.28	K3 III	+0.1		. 0091	2
θ Psc	23	22.9	+ 550	4.45	K1 III	$+0.3$	4150	. 019	48
70 Peg	23	24.1	+1213	4.67	G8 III	0.0	wk-1	. 012	25
14 And	23	26.4	+38 41	5.34	KO III	$+0.7$	Wk CA	. 012	114
72 Peg	23	29.0	+ 3046	5.21	K4 III	-0. 1		. 0087	23
λ and	23	32.7	+ 4555	4.00	G8 III-IV	+1.3	Wk CNT	. 029	80
$\gamma \mathrm{Cep}$	23	35.2	+77 4	3.42	K1 IV*	+2.9	4150	. 105	39
HR 8987	23	37.3	-16 0	5.44	K4 III	-0.1		. 0078	8
78 Peg	23	39.0	+2848	4.98	KO III	+0.7	wk-1	. 014	10
ψ and		41.1	+45 52	5.09	G5 Ib --	-4.5			
t Cas	23	42.2	+58 6	5.09	K1 III	+0.8	wk-1	. 014	26
27 Psc	23	53.5	-47	5.07	G9 III	$+0.3$	st-1	. 0115	40
3 Cet	23	59.4	-114	5.16	K 3 Ib	-4.5			

* $\boldsymbol{\mu}$

6 Ari
ϕ Aur
τ 37 C

16 Ser HF 6136

HR 6152
18 Dra
$18 \mathrm{Dra} \quad \mathrm{CN}$ and CH are weak. Otherwise, the star appears to be a normal giant.
HR $6791 \quad \mathrm{CN}$ and Sr II are weak. The hydrogen lines are strong enough to indicat
56 Peg
These stars have been classified by Dr. W. W. Morgan und have been used as standards in this study.
This star shows spectroscopic evidence of being fainter than other G5 V stars, such as K Cet. The large trigonometric parallax supports this conclusion.
The hydrogen lines and $\lambda 4290$ are strong enough to indicate a class II star, but the CN is berely strong enough for class III, and the Sr II line is not auch stronger than tiis mould require. CN is very strong, but Sr II is only slightly stronger than in class III stars, and the hydrogen lines are quite weak.
A metallic-line star. See Koman, Morgan, and Eggen, Ap. J., 107, 107, 1948.
The hydrogen lines are strong, but the strontium line indicates that the star is no brighter than class II, and the CN indicates an even lower luminosity. $C H$ is very weak. The remainder of the spectrum shows no evidence that it is composite.
Sr II is very strong, but CN is only moderate in intensity, and the hydrogen lines are weak.
CN is too strong for a star later than K 2 or K 3 , but the Ca I line, $\lambda 4226$, is as strong as it is at K5 III.
The hydrogen lines and Sr II indicate that this is a class II star, but CN is very weak or absent. CH is probably too strong for class II.

The hydrogen lines are too weak for the strength of Sr II and CN .

[^0]: ${ }^{1}$ Morgan, Keenan, and Kellman, An Atlas of Stellar Spectra (Chicago: University of Chicago Press, 1943).
 ${ }^{2}$ Private communication.

[^1]: ${ }^{3}$ Private conversation.

[^2]: ${ }^{4}$ Stellar Dynamics (Cambridge: At the University Press, 1938).
 ${ }^{5}$ Based on the results of Nordström, Lund Medd., Ser. II, No. 79, 1936.
 ${ }^{6}$ M.N., 100, 30, 1939.
 ${ }^{7}$ Astrophysics, ed. J. A. Hynek (New York: McGraw-Hill Book Co., 1951).

[^3]: ${ }^{9}$ Pop. Astr., 22, 275, 1914. The giant and dwarf sequences had been recognized by Hertzsprung nine years earlier, but Russell seems to have been the first to emphasize that there were no stars of intermediate absolute magnitude among the late K- and M-type stars, although such stars existed in earlier types.
 $\begin{array}{ll}{ }^{10} \text { Pub. A.S.P., 34, 33, } 1922 . & { }^{11} \text { Leiden Ann., 14, Pt. 1, } 1922 . \\ { }^{12} \text { Veröff. u. Sternw Berlin-Babelsberg, Vol. 3, No. 4, } 1923 . \\ { }^{13} \text { Ap.J. 79, 145, } 1934 . & { }^{14} \text { N. G. Roman, Ap.J., 112, 554, } 1950 .\end{array}$

[^4]: ${ }^{15}$ B. Lindblad, $A p . J ., 55,85,1922$, and D. M. Popper, Ap. J., 105, 204, 1947.
 ${ }^{16}$ W. Baade, Ap. J., 100, 137, 1944, and Keenan, Morgan, and Münch, A.J., 53, 194, 1948.
 ${ }^{17}$ Morgan and Roman, Ap. J., 112, 362, 1950, and W. P. Bidelman, Ap. J., 113, 304, 1951.

