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ABSTRACT 
Simultaneous emission of two photons by an H atom in the metastable 2s level is considered as a 

source of a continuum in planetary nebulae. Detailed calculations show that the probability of two-photon 
emission is 8.23 sec-1 and that the intensity of radiation emitted by this process increases markedly with 
increasing frequency. About 32 per cent of electron captures lead directly to the 2s level and then to two- 
photon emission, since collisional de-excitation proves unimportant. Transitions from the 2p to the 2s 
level, induced by collisions with free electrons, convert a part of the remaining La quanta into this con- 
tinuous radiation, conversion occurring after a quantum of La radiation has been scattered about 1010 

times, on the average, in a region of ionized H. A neutral hydrogen region may surround the E ii region. 
In such an H i envelope, about 1013 scatterings are required for conversion, but the density of neutral H 
is so much greater that most conversion by colhsion probably takes place there. The fraction of La so 
converted may vary over a wide range, depending on the physical conditions. 

The theory is used to predict the total emission from an ionized hydrogen gas. The Balmer jump is 
reduced, and the decrement of the continua shortward of the Paschen and Balmer limits is also reduced. 
A bluish continuum is to be expected in the region from X 6000 to X 3646. Our analysis applied to the 
ultraviolet observations now available results in a reduction of electron temperatures by about 25 per 
cent. The available wide-slit observations indicate the possibility that a bluish “visual continuum” may 
exist. 

The continuous spectrum of planetary nebulae in the visual region was first measured 
by Page,1 and has been analyzed more recently by Aller and Minkowski2 and by Page.3 

These observations show that longward of the Balmer continuum there exists continuous 
radiation, with appreciable strength and with a nearly constant intensity per unit wave- 
length interval between X 3600 and X 4800. 

Attempts to explain this continuous spectrum have been, so far, uniformly unsuccess- 
ful. Previous suggestions have been summarized by Greenstein and Page,4 who show 
that emission of radiation in the formation of H~ ions cannot explain the data. The 
present paper investigates a different source of continuous radiation, based on the simul- 
taneous emission of two quanta from a hydrogen atom in the metastable 2s level. An 
appreciable fraction of electrons captured by protons will reach the 2s level on their way 
down to the ground state. In addition, La radiation may be converted into two photons 
of this visual continuum. The absorption of La radiation will excite an H atom to the 2p 
level; and, during the brief interval before the La quantum is re-emitted, a collision with 
a free electron may induce a transition from the 2p to the 2s level. All one-photon transi- 
tions from the 2s down to the Is level are forbidden, and, unless a collision with another 
free electron induces a transition back to the 2p level, the excited electron will jump down 
to the Is level, emitting two photons. Evidently, the sum of the energies of these two 
photons equals the energy of the La photon. 

While the probability that an La photon will be converted into two photons is rela- 
tively small, a single La photon is scattered an enormous number of times before it can 

1 M.N., 96, 604, 1936. *Ap.J., 96, 78, 1942. 
2 Unpublished. AAp.J., 114, 106, 1951. 
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408 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

escape from the planetary nebula. Moreover, the Zanstra process converts most of the 
stellar energy beyond the Lyman limit into La photons. Thus it seems possible that some 
of the energy emitted by the central star in a planetary nebula can be converted into 
continuous radiation by two-photon emission. 

When this work was nearly complete, it was found that this process had already been 
considered by Minkowski and Aller,5 who rejected it because the predicted color distribu- 
tion was too blue, and, more recently, by A. Y. Kipper;6 no details of Kipper’s work are 
apparently available in this country. 

I. PROBABILITY OP TWO-PHOTON EMISSION 

The general theory of two-photon processes has been given by M. Goppert Meyer,7 

and a detailed application of the theory in the case of the 2s—Is transition in H has 
been given by Breit and Teller.8 Since Breit and Teller’s numerical computations were 
approximate and did not consider at all the change of intensity with frequency, more 
detailed computations are required. Let the frequencies of the two photons emitted be 
yvi2 and (1 — y)^, where w is the frequency of an La photon; evidently 

v12 = jcR , (i) 

where c is the velocity of light and R is the Rydberg constant for H. Let A {y)dy be the 
probability that a photon is emitted with a frequency in the range v^dy. From equation 
(6.2) in the paper by Breit and Teller, we have 

4 (y) (y), ») 

where a is the fine-structure constant lire2/he, and 

^is^zs I ^ 
mp mp V 1 -(- 3 M 

m = 2 

I 00 / 
t(y) = ya-3')3|Si?Ä(l 

-¡-3y — 4/m2 4 — 3y — 4/m2 

3 

) (3) 

+ J” Cl8C2sdx (y + 3y + 4x2 4 —3y + 4x2 
)r 

The quantities R^8
P and Cns are radial quantum integrals defined by Breit and Teller. 

Values of ^(y) have been computed in detail, with R^p taken from the tabulation by 
H. Bethe,9 and Cns from the paper by M. Stobbe;10 since Stobbe’s tables were not suf- 
ficiently complete, new values of these functions were computed from his formulae. The 
resultant values of ^(y) are given in Table 1. Since ^(1 — y) equals ^(y), no values are 
given for y greater than 0.5. The emissivity^V per unit frequency interval is proportional 
to hvA(y), and therefore varies as y\p(y)’, values of the relative emissivities are given in 
the last column. 

The familiar Einstein coefficient ^42s, is for the two-photon transition is given by 

42s, u =2' J0 
A (y) dy = 2n— Jq 'I'(y) dy . (4) 

The factor of | is required, since there are two photons, and each pair is counted twice. 
Numerical integration yields the result 

/'V (y) dy = 3.770 . 
n 

(5) 

5 Informal communication. 
M./.Í/.5.5.R., 27, 321, 1950. 
7 Ann. d. Phys., 9, 273,1931. 

8 Ap. J., 91, 215, 1940. 
9 Handb. d. Phys. (Berlin: J. Springer, 1933), 24-1, 442. 
^ Ann. d. Phys., 7, 661, 1930. 
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PLANETARY NEBULAE 409 

Inserting numerical values into equation (4), we find 

A, , = 8.22 7 sec“1 , (6) 2s, Is 7 

a value close to the upper limit found by Breit and Teller; an increase in a above the 
value used by Breit and Teller is partly responsible for this relatively high value of 
-¿42s, is. 

II. EXCITATION OE 2s LEVEL 

We consider, now, the processes by which an electron can reach the 2s state under 
conditions prevailing in planetary nebulae. The first and simplest process is that in which 
an electron reaches the 2s state by electron capture, either by direct capture in this state 
or by capture in a higher state, with subsequent cascading downward to the 2s state. 

We first compute the probability Xr, n that an electron, on recombination with a 
proton in the level of total quantum number n, passes through the 2s state on its way 
down. Let IVz', n¿ be the number of electrons jumping from the level w'/' to the level nl 
per second per cubic centimeter ; jumps down from and up to the free state will be repre- 

TABLE 1 

Relative Probabilities and Intensities of Two-Photon Emission 

0.00 
.05 
.10 
.15 
.20 

0.25 

MA) 

24,313 
12,157 

8105 
6078 
4862 

Probability 
¡Ky) 

0 
1.725 
2.783 
3.481 
3.961 
4.306 

Emissivity 
yt(y) 

0 
0.0863 
0.2783 
0.5222 
0.7922 
1.077 

0.30. 
.35. 
.40. 
.45. 

0.50. 

MA) 

4052 
3473 
3039 
2702 
2431 

Probability 
tiy) 

4.546 
4.711 
4.824 
4.889 
4.907 

Emissivity 
yt(y) 

1.363 
1.649 
1.929 
2.200 
2.454 

sen ted by T/fni and Tn'i', /, respectively. Let represent the corresponding quan- 
tity in thermodynamic equilibrium with the same density of protons and electrons and at 
a temperature corresponding to the mean kinetic energy of protons and electrons. Evi- 
dently, from the principle of detailed balancing, 

Also, since the electron velocity distribution is Maxwellian, we have 

r* = r X f, nl X f, nl (8) 

We wish to compute the fraction of electrons, captured in the level of total quantum num- 
ber w, which are captured in the level of angular momentum /. From equations (7) and 
(8) we see that this fraction, ynz, is given by 

f, nl 

S r/, nl 

f 

* 
nl, f 

(9) 

To a first approximation the ratio on the right-hand side of equation (9) is given by the 
ratio of gf values. The use of an integrated / value for transitions to the continuum 
neglects the shape of the radiation spectrum and the detailed form of df/dv for continuous 
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410 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

absorption, but should give an adequate first approximation. Equation (9) then becomes 

= gnlfnl, f_ (10) 
Snl 

gnlfnl, 

Evidently in the case w = 2 we have 

2 _ y20 (ID 

For captures of electrons in levels of higher n, we must consider subsequent transitions. 
We may write, in general, 

ZnAnl 

X r, n (12) 

where zni is the fraction of electrons captured in the level n, l which cascade down to the 
level 2,0. For the level n = 3 we have 

r0 for 1=0 

Zzi = \^ for l = 1 (13) 

lo for 1=2. 

Transitions down to the ground level (n = 1) are neglected, since any photons emitted 
in this way will be immediately reabsorbed. For higher levels, more complicated results 
are obtained. The relative probabilities of two competing downward transitions may be 
determined directly from the transition probabilities given by Bethe.9 For /z = 4, for 
example, we have 

I'd.42 for 1=0 

10.74 for 1=1 
Zu = < (14) 

* ' 0.26 for 1=2 

,0.00 for l 

If we now substitute these results for zni in equation (12) and use in equation (10) the 
value of fn it f given by Bethe, we find 

r0.3 8 for n = 2 

X =Jo.45 for n = 3 r, n » 
l0.38 for w = 4 . 

(15) 

For greater values of n, the value-of Xr, n decreases gradually. However, the number 
of electron captures on the nth. level varies as l/nz for binding energies less than the 
kinetic energy of the free electron. In planetary nebulae, where the electron temperature 
corresponds to a mean kinetic energy of about 1 volt, captures on levels about n = 5 
may therefore be neglected. The fraction of electrons captured which reach the 2s state 
should be somewhere between 0.30 and 0.35; we shall assume a mean value of 0.32. 
Collisional de-excitation may be taken into account in the manner discussed below, with 
the result that, if T is 10,000°, Xr, the weighted mean of Xr, n, becomes 

0.32 

1 + 8.2X lO"6^ 
(16) 
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PLANETARY NEBULAE 411 

A second mechanism for reaching the 2s state is radiative excitation of the 2p state, 
followed by a collision with a free electron, inducing a transition to the 2s state. The low 
probability for this collisional process is offset by the very high number of times that a 
quantum of La radiation will be absorbed and re-emitted before it leaves the nebula. 
On the assumption that all excitation is by radiative absorption of La quanta, we now 
wish to compute the ratio between two-quantum jumps from 2s to Is and one-quantum 
jumps from 2p to Is. This ratio, which we denote by f, gives the probability that a quan- 
tum of La radiation will be converted into two photons when it is absorbed by an H atom. 

This ratio clearly depends on the probability of collisionally induced transitions, which 
has been considered in detail by Breit and Teller.8 Their computations may readily be 
modified to include the Lamb shift11 of the 2s level relative to the 2pi/2 level; this shift has 
only a small effect, since the energy of the transition is in any case very small compared to 
the energy of the incident electron.12 

With obvious modifications, the equations S' and S" by Breit and Teller may be com- 
bined to yield for the transition probability C2S, 2P 

C 
6ná 

2s, 2p T vm2 In 
m 

jE2s 

2 In 
m v¿ 

!/2 *3/2 !■ 
(17) 

where ne is the electron density per cubic centimeter; m is the electron mass; and v is the 
velocity of the free electron in centimeters per second. In wave numbers, 

|E2s—E2Pl/2| = 0.035 cm-1, (18) 

|£2S-£2p3/2| = 0.365 cm-1 . U9) 

Substituting numerical values and replacing 1/fl by the harmonic mean at temperature 
T, we have 

C2S, 2p = 6.21 X 10-* ^ ln (5.7D [l sec-1. (20) 

The second term in brackets on the right-hand side of this equation is small compared to 
unity and will be neglected here. Collisional transitions induced by collisions with neutral 
H atoms may be neglected if uh does not exceed 103?ze; the cross-section for such encoun- 
ters will be several orders of magnitude less than the 10“12 cm2 predicted for electron 
collisions. 

The relative populations of the 2s and 2p levels are readily computed from the condi- 
tion that statistical equilibrium exists, i.e., that the number of electrons jumping out of 
each level equals the number jumping in. We neglect stimulated two-quantum emis- 
sions. The quantity f equals the ratio of populations in the -2s and 2p levels, multiplied 
by the ratio ^42s, is/^p, is- After some analysis we obtain 

_ g2sC28> 2P 1  (21) 

^2p^-2p, is 1 + C2s, 2p/ ^2s, Is 

The ratio g2s/g2P is and, if we insert numerical values from equation (20), taking the 
value of A 2s, is from equation (6), we have 

3.3 1 X 10~13we In 5. 7r 
r T^+T.S X 10~5ne In 5.7r* 

11 Phys. Rev., 72, 241, 1947. 
12 This situation is in marked contrast to that prevailing in a constant electrical field, where the Lamb 

shift decreases the radiative transition probability from 2s to Is by a factor of about 1000, according to 
G. Luders, Zs.f. Naturforsch., Sa, 608, 1950. 
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412 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

When T is 10,000° K, a standard value for most planetary nebulae, equation (22) yields 

v 3.62 XIO“14^ 
f = — (23) 
* 1 + 8.2X10-%/ 

For values of ne between 103 and 104 per cubic centimeter—typical values for most 
planetarios—f is about 10-10. Of about 1010 La quanta absorbed by an H atom, one will 
give rise to a two-quantum jump. If a region of neutral H surrounds the planetary, ne in 
such a region will be less by a factor of 103, and f will equal about 10-13. 

III. MEAN TREE PATH OE La QUANTUM 

We have seen that some 30-35 per cent of the electrons captured by a proton produce 
two-quantum emission. The others each produce, among other things, a quantum of La 
radiation; and, if the nebula is sufficiently thick optically, these quanta will also be con- 
verted into the visual two-photon continuum. Here we consider the mean free path of an 
La quantum, on the average, before it is converted into two quanta by this process. 

The situation is idealized by the assumption that, at some distance from the central 
star, the density of neutral H is constant in space. With this assumption, the necessity 
for solving the diffusion equation is eliminated; and the simplified analysis of Brownian 
motion may be applied. Let sv be the mean free path of a photon before absorption and 
let the absorption coefficient of neutral H for this photon be av. If nH is the density of 
neutral H, then we have 

1 
Sv = . (24) 

nHav 

If the probability of conversion into two-quantum radiation is f per absorption, then 
the photon will travel 1/f mean free paths, on the average, before it is so converted. The 
directions of successive paths will be uncorrelated, and the mean square distance ll will 
increase proportionally to the number of paths traveled ; hence ¡I will equal si multiplied 
by i/f- 

To obtain a realistic picture, we must take into account the Doppler change of v in 
successive paths, depending on the thermal motion of the absorbing atom and on the 
angles between the absorbed and emitted photon. This type of noncoherent scattering 
has been considered by Henyey13 and applied to planetary nebulae by Zanstra.14 The 
detailed correlation of frequencies between the absorbed and subsequently re-emitted 
photon will be ignored in this first approximation, and only the statistical distribution of 
frequencies will be considered ; this distribution may be assumed to follow the Maxwellian 
distributions of fi’-atom velocities. The mean square distance traveled must be averaged 
over this distribution of frequencies, and we have the basic equation 

1 rœ <f) (v) dv 
(25) 

where (¡)(v)dp is the fraction of atoms emitting quanta in the frequency range dv. From 
the usual Doppler formula and the Maxwellian velocity distribution we have 

(26) 

where Av is the difference in frequency from the undisplaced frequency and 

ft? _ 2&?V2 

mHc2 

13 Proc. Nat. Acad. Sei., 26, 50, 1940. 
Vol. 11, No. 401, 1949. 

(27) 
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PLANETARY NEBULAE 413 

If a Doppler profile of the line-absorption coefficient were'assumed and therefore 
varied as <j>(v) for all Av, the integral in equation (25) would diverge; physically the La 
radiation would leak out of the nebula in the far wings of the profile. Actually, only the 
center of the line profile is given by the usual Doppler formula, and for large Av the 
resonance wings dominate. To an adequate approximation we may write 

((j) (p) (Av ^ b) (28a) 

a„ = A£!/x 
mc [0 (v) + (Av > ^ > (28b) 

where e and m are the electronic charge and mass and y is the damping constant, numeri- 
cally equal to 1s/47T. 

If equation (28) is substituted in equation (25), we find that the integral comes mostly 
from values of the integrand for which the Doppler wings and the resonance wings are 
about equal. If we let w be the value of (Av/b)2 at which these two contributions to av are 
equal, then from equations (26) and (28) we see that w satisfies the equation 

we w 7 
Tr1/2^ 

(29) 

In the present instance y is several orders of magnitude less than and w is moderately 
large. If we define a new variable, w, by the relation 

u = (30) 

then the integral in equation (25) becomes 

rœ (¡) (v) dv 

Jo a2 

m2c2b2ew rœ eu(\Jru/w)z/2du 
71-3/2 e4pwl/2 J w ¿u _|_ U/w) 2 

(31) 

In deriving equation (31) we have used equation (28Z>) for all values of Aï>; this diminishes 
somewhat the value of the integral for small Av, but this region of Av contributes a 
negligible amount to the integrand in any case. When w is infinitely great, the integral 
in equation (31) equals unity. For w = 10, the integral differs from unity by about 10 
per cent, a difference which we shall neglect. We have, combining equations (24) and 
(31), 

l2 m2 c2 b2 ew 

ttz/2 e*J2n2
Hw

l/2Ç * 
(32) 

For La radiation,/is 0.416, and y is 4.97 X 107 sec-1. If we set T equal to 10,000° K, 
b is 1.06 X 1011. The corresponding value of w found from equation (29) is 10.60. Sub- 
stituting numerical values in equation (32) and making use of equation (23) for f, we 
obtain 

/= 2.4X 103 (1 + 8.2X 10-6?Q V2 

nTnH 
parsecs. (33) 

If l found from equation (33) is small compared to the radius R of the planetary nebula, 
then all the La radiation will be converted into two-photon emission. If, on the other 
hand, l much exceeds R, the previous analysis is not strictly applicable. In this case the 
quanta will escape from the nebula after they have traveled a distance i?, on the average, 
from the point of origin. Since the number of scatterings required to travel a distance R 
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414 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

varies as R2, the number of scatterings experienced by a photon before escape will be less 
than the number 1/f required for conversion into two-photon radiation by the fraction 
(R/l)2, where l is the mean free path computed from equation (33) on the assumption 
that R is effectively infinite. If we denote by Xc the fraction of La radiation so converted 
by collisions, we have, approximately, 

MtJ- 

It should be noted that, if the E atoms are distributed in a filamentary system, with 
regions of high density embedded in regions of lower density, the mean value of X/nn 
will be increased, and l will exceed the value given in equation (33). 

The fraction Xc of La radiation converted into two-photon emission by collisions can 
be evaluated from a comparison between the size of the planetary and the free path, /, 
given by equation (33). Observations give only the average ne in the main body of the 
nebula ; nH is variable, amounting to about \Qrzne in the main body and increasing at the 
outer boundary as ne decreases. The estimate of the mean value of nl^nn must be based 
on a definite model for the nebula. Page and Greenstein16 identify the visible portion of 
the nebula with the ionized hydrogen region (Strömgren sphere) surrounding the central 
star. They find that the observed radii R of planetary nebulae agree with those predicted 
on the basis of Strömgren’s theory,16 using the observed ney Tej and the T8, R8 of the 
exciting star. We adopt the model used by Strömgren, that of a homogeneous sphere of 
pure hydrogen of density n, surrounding a star which radiates as a black body. 

First, we consider the fraction of La radiation converted within the H n region; we 
denote this fraction by Xca . Equation (33) is valid only if ne and ns are constant. How- 
ever, for approximate results we may use this equation for actual nebulae, introducing 
the following mean value of nl^nn: 

nl/2nH = ( \ — x) dr , (35) e JX J Q 

where x, the fraction of E ionized, is given by the Strômgrén theory.16 We will assume 
that R equals So] since ne is less than 105, we will drop the correction term in the numera- 
tor of equation (33). Since R is much smaller than l, we have, from equation (34), 

X 
1/2 _R 
cu -y 

nz/2 

274 X 103 (36) 

The integrand is known as a function of r from Strömgren’s differential equation (12) for 
1 — x less than 1 and from his approximation formula (17) for the region r about equal 
to so. A scale parameter, a, exists which measures both the thickness of the layer in which 
hydrogen becomes neutral and the fraction of hydrogen neutral near the star. The com- 
bination aso is independent of the properties of the star: 

as0 = aR = -r^z—. (37) 
6.3n 

The unit of length 
cubic centimeter, 
given by 

is 1 parsec for R; n is the total number of hydrogen atoms and ions per 
The fraction of neutral hydrogen in the inner part of the sphere is 

1- (r/ÆpG) ’ 
(1 — x) <1 . (38) 

Thus riH depends mainly on a. The mean (1 — x)x1/2 has been obtained by numerical 
15 Ap. /., 114,98, 1951. 16 Ap. /., 89,526, 1939. 
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PLANETARY NEBULAE 415 

integration; it is 2.7a for a = 10~2 and 3.8 for a = 10~3. At r/R ~ 0.7 the value of 
(1 — x)xl/2 from equation (38) is 0.75a. The mean ionization determined by integration 
is seriously influenced by the large value of 1 — ^ in the rim of the ionized region but 
is not changed in order of magnitude. The maximum value of (1 — x)xl¡2 is 0.38, but 
this value is encountered in a shell only 0.007jR thick. The order of magnitude of the 
mean free path should be correct, in spite of the large variation oil — x. 

Combining equations (36) and (37) and the results of the integrations, we obtain 

XCII = 3.2 X 10_8w , for a = 10~2 , (39a) 

XCII= 6.4X 10-%, for a = 10~3 . (39b) 

The value of a can be computed from observational data. For a low-temperature and 
density (ne — 750) nebula, NGC 40, the compilation by Page and Greenstein results in 
a = 1.5 X 10-3; for NGC 7009, ne = 6800 and a = 0.7 X 10~3. Thus expression (396) 
is sufficiently good; XC11 is 4.1 X 10-5 for NGC 40 and 5.0 X 10-4 for NGC 7009. 
Certain nebulae with apparently large ne, such as NGC 6790 and IC 4997, would have 
Xcn equal to 1.5 X 10-3 and 4.6 X 10~3, respectively. Thus the known planetaries con- 
vert an insignificant fraction of La radiation into two-photon emission by means of colli- 
sions within the H n region. 

Page and Greenstein15 pointed out that, if a planetary nebula has been expanding for a 
sufficiently long period, the visible disk or shell will be only the ionized core of the gas. 
The apparent boundary of the H emission is then the edge of the Strömgren sphere, and 
the neutral gas may extend far beyond. Without necessarily adopting the hypothesis of 
continuous ejection of matter from the star, we may still assume that the gas is expanding 
radially outward to large distances from the visible boundary at a uniform velocity. 
Then the density n(r) varies as 1 /r2, and the total number of atoms per square centimeter 
outside the visible boundary is Rn(R). Thus in approximate results we can replace this 
H i region by a uniform layer of thickness R. In such a region the free electrons come 
primarily from C and Mg, which will be largely ionized. The electron density ne may be 
set equal to nu/2000, and we have 

7p/% = 2.2 X 10-%3/2. (40) 6 ja 

We let Xd be the fraction of La radiation converted into two-photon emission in the 
H i shell outside the planetary. Then, by use of equations (33) and (34), we have 

x1^2 = j = 0.9 X 10~sn3/2R. (41) 

The density of a typical planetary may be taken as w = 5000 and = 0.1 parsecs; 
then Xc i = 0.10, i.e., about one-tenth of La is converted into two-photon emission. This 
is much larger than the YCII, which would be near 0.001, for these standard conditions. 
We can expect Xc i to vary from zero to about J, depending on physical conditions in this 
outer envelope. If we take into account the probable fall of temperature in H i regions 
and the consequent increase of f and decrease of 6, the value of Xc i is somewhat in- 
creased. If we let X/(1 — X) be the ratio of the energy of two-photon radiation to La 
radiation, evidently X may vary from about 0.32 to nearly 1 in planetaries of differing 
density. A more refined theory of radiative transfer, taking into account the large spatial 
variations of nH through the nebula, both in ¿7 i and H u regions, would be required for a 
more accurate and detailed calculation of Xc. 

IV. RELATIVE INTENSITY OE TWO-PHOTON EMISSION 

The previous sections give information on the fraction of electron captures that pro- 
duce two-photon emission, and they also yield information on the distribution of this 
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416 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

emission with wave length. It remains to compare the intensity of this continuous radia- 
tion with other features of the hydrogen emission spectrum. We shall here make compari- 
son with the Balmer and Paschen emission continua. 

Let72g be the emissivity per gram in the two-quantum continuum per unit frequency 
from the planetary nebula, and let^p andjp be the corresponding quantities for the 
Paschen and Balmer continua. The variation of jtq with frequency is given by 

J2q M = n2qC2qyi (y), (42) 

where 4/(y) is defined above, is the total number of quanta emitted in two-photon 
transitions per gram per second, and C2g is a constant to be determined. Similarly, for 
jp and jb we have 

jp(v) =npCpe~hv^kT (y >vp), (43) 

Íb(v) =nBCBe hv/kT {v >vB), (44) 

where vP and vB are the frequencies of the Paschen and Balmer limits, respectively. The 
functional form of equations (43) and (44) is evident from Kirchhoff’s law, since the 
absorption coefficient for photoionization varies approximately as (1 — e~hv^kT)/vz

) 

when stimulated emission is taken into account. 
The constant C2g may be determined from the condition that 

dv 
hv 

. rœ . dv 
4xpl J'«Yv = n<¿ Q ? (45) 

with similar equations for/p andjp; in this way we obtain 

h h 
C 2q CO 

4xpyo \f/ (y) dy 
47rp X 3.770 ’ 

C 

C 

h 
AirpEi (hvp/ kT) ’ 

h 
4irpEi (hvB/ kT) ’ 

(46) 

(47) 

(48) 

where Ei(x) is the familiar exponential integral. 
Lastly, we must determine the ratio of w2g, the number of electrons jumping from 2s 

to Is, to nP, the number of electrons captured on the level n = 3. Let nc be the total 
number of electrons captured on all levels, excluding the lowest. Then, evidently, 

W2, 
n, 

a _ 2X . (49) 

The number of electrons captured on the level of total quantum number m may be writ- 
ten, approximately,17 

Bß2 

n eß/^Ei 
m 2 ’ 

where ß is a constant for all m, and 

B 2Afiine 

\3zTrm5/ (irL) V2 

17 L. Spitzer, Jr., Ap. J., 107, 6, eq. (14), 1948. 

1/2 he2rU2 — Tl/2nifie, 
c 

(SO) 

(51) 
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PLANETARY NEBULAE 

^ = 158,000° 
^ kT T 

and is the frequency at the Lyman limit. For nc we have 

nc =Bß<t>2 (ß), 

where faiß), tabulated by Spitzer,17 is 

ß ß 
^{ß) =^—3e^Ei-^2. 

mL 
m =2 

417 

(52) 

(53) 

(54) 

The emissivity per gram per unit frequency range in the two-quantum continuum is, 
if we combine equations (42), (46), (49), and (53), 

Bhß* 2X<t>2 (ß) 
Jiq — y'P {y) ■ 4t p 3.77 ß 

The recombination emission from captures on level m has emissivity 

Bhß2 1 
J m 

where 
4t p m 
  ^ Q—10.160(y—4/3m2) 

3 (y>3^)’ 

A 1.216 X 10~5 

X = cm. 

(55) 

(56) 

(57) 

The quantity 6 is the usual reciprocal temperature, 5040o/T. The raüoj^q/js, measuring 
the relative importance of two-quantum and Paschen emission, is not far from unity at 
X 4800 for X = 0.32 and 6 = j^q/jz is about 0.03 at the Balmer limit. We define 
jh as the total intensity of the recombination emission continua up to w = 4 (eq. [56]). 
Values ofy¿ are given in Table 2; series with m > 4 and free-free emission are neglected. 
The/2g tabulated are obtained for the typical value X — 0.32 and can be scaled propor- 
tionately. The temperature dependence of the emission is small in units of Bhß2/4Tp. 
(The unit is proportional to pT~zl2, mass-emission coefficient, and would be proportional 
to p2T~zf2 per unit volume.) Figure 1 and Table 2 show logioj, the sum of the two sources 
of emission. Note how the Balmer discontinuity is reduced and how the apparent color 
temperature varies with frequency. The recombination emission declines quite steeply 
shortward of each series limit, but the decline is smoothed out by the relatively blue 
two-quantum continuum. If the electron temperature is derived from the slope just 
below a series limit, by the use of equations (43) and (44), the resultant value would be 
higher than the true temperature. Thus, when 0 = 0.7, its apparent value from the slope 
is 0.52 in the range XX 3646-3040 and 0.36 in the range XX 8200-4861; when 6 = 0.35 
the apparent values are 0.25 and 0.14, respectively. Since the usual determinations of the 
electron temperature give 6 apparently near 0.5, the case of 0 = 1.00 is particularly im- 
portant. Between X 8200 and X 6080 the slope corresponds to 0 = 0.72; between X 6080 
and X 4861 the slope corresponds to 0 = 0.33, and in the photographic region XX 4861- 
4050 it corresponds to 0 = 0.0; for XX 3646-3040, the usual limit of ultraviolet spectro- 
photometry, 0 = 0.74. 

The observational material now available for study is mainly confined to the Balmer 
emission continuum. T. L. Page3’18 finds that the slope of the observed emission for 
X < 3646 corresponds to 7000° < Te < 10,000°, in general, with only moderate devia- 
tions from the older theoretical prediction that 7^ varies as exp( — hv/kT). This is quite 
consistent with the results in our Table 2, which show that the two-quantum emission 

18 M.N., 96, 604, 1936. 
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418 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

hardly affects the Bahner emission for X > 3300. On the basis of the slight decrease in 
slope that our results predict, we might suggest that the conventionally deduced electron 
temperatures are somewhat too high and should be reduced by about 25 per cent. One 
prediction based on the present analysis is that the electron temperatures deduced from 
spectrophotometry in the region XX 6080-4050 should be very much higher than those 
deduced from either the infrared (Paschen) or ultraviolet (Balmer) emission just short- 
ward of a series limit. 

The two-quantum emission reduces the discontinuity at the Balmer limit. Erom Table 
2 we can obtain the predicted ratio of the surface brightness j at X 4050 to that at X 3646. 
This ratio proves rather insensitive to temperature and is equal to 0.23 and 0.09 for 6 = 
0.35 and 6 — 1.0, respectively. Without the two-quantum emission, the ratio would be 
0.10-0.01. 

It is tempting to interpret the so-called Vc observed by Page3 hi the region XX 4800- 

TABLE 2 

The Intensity* of the Recombination Emission (J¿), the 
Two-Quantum Emission for X = 0.32), and 

the Total Emission (j) 

x 
(A) 

0 = 0.35 

lOglOjH logioiiç logioi 

0 = 0.50 

logioi^ logiojiq logioj 

0=0.70 

logioii? logiojiq logioj 

0=1.00 

logioj, logiojîç logioj 

8202.. 
6080.. 
4861.. 
4050.. 
3646.. 
3470.. 
3040.. 
2700.. 
2430.. 
2210.. 
2020.. 

0.148 
.20 
.25 
.30 
.333 
.35 
.40 
.45 
.50 
.55 

0.60 

1.34 
1.52 
1.70 
1.88 
0.88 
0.94 
1.11 
1.31 

•1.47 
1.65 
1.85 

2.04 
•1.85 
1.72 
1.62 
1.56 

■1.53 
1.47 
1.41 
1.36 

•1.31 
1.29 

1.26 
1.35 
1.41 

■1.43 
0.79 

■0.84 
0.95 
1.05 
1.11 
1.15 
1.18 

1.35 
1.61 
1.87 
2.12 
0.88 
0.97 
•1.22 
■1.48 
1.75 
2.00 
2.26 

2.15 
1.96 
1.82 
1.72 
1.66 
1.64 
1.57 
1.51 
1.47 
1.43 
1.39 

1.29 
1.45 
1.55 
1.58 
0.82 
0.89 
1.06 
1.19 

•1.28 
1.32 
1.34 

1.37 
1.74 
2.10 
2.37 
0.90 
1.02 

•1.38 
1.73 
2.09 

■2.44 
2.80 

2.25 
2.06 
1.92 
1.82 
1.76 
1.74 
1.67 
1.61 
1.57 
1.53 
1.49 

1.32 
1.57 
1.70 
1.71 
0.84 
0.94 
1.20 
1.37 
1.45 
1.47 
1.47 

1.39 
1.92 

■2.43 
2.94 
0.90 
1.07 

■1.58 
2.09 
2.59 

•3.11 
3.61 

2.36 
2.17 

■2.04 
1.94 

■1.88 
•1.85 
■1.79 
1.73 

■1.68 
1.64 
1.61 

1.35 
1.73 
1.89 
1.89 
0.86 
1.00 
1.37 
1.57 
1.63 
1.63 
1.61 

* Emissivities are given in units of Bhß2/4irp. 

3900 as the two-quantum emission essentially unaffected by the ordinary Paschen con- 
tinuum. Unfortunately, his observations were made with a very wide slit and were uncor- 
rected for unresolved weak emission lines. They give a Vc from one-half to one-quarter 
the Balmer emission. This ratio is very high compared to that predicted for ordinary 
recombination emission but is consistent with the present theory iî X = 1. His observa- 
tions indicate, however, that the Vc is approximately constant per wave-length interval, 
i.e., slightly decreasing shortward, per dv, while the Paschen continuum decreases rapidly 
and the two-quantum emission increases slowly shortward. 

P. Swings and O. Struve19 reproduce spectra showing a strong continuous spectrum in 
the Orion nebula and in 1C 418. The great strength found for the continuum in IC 418, 
XX 4900-3700, is quite remarkable. One peculiarity of 1C 418 is the relatively low tem- 
perature and high corresponding photographic brightness of the central star. The Balmer 
discontinuity is very small. The Balmer discontinuity is also quite small in the Orion 
nebula, possibly because of the starlight scattered by interstellar dust grains.20 The Crab 
nebula has a strong continuous spectrum, certainly unaffected by scattered starlight. 

19 4^./., 96, 310, 1942. 
20 J. L. Greenstein, Ap. J., 104, 414, 1946. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
5l

A
pJ

. 
. .

11
4 

. .
40

7S
 

Fig. 1.—a, Upper section. Plotted are: the straight lines (dots and dashes), representing the hydrogen 
recombination emission, j'H; dashed-line curves for the two-quantum emission, jtq when X = 0.32 and 
1.00; solid-line curves, showing their sum, j> the total hydrogen emission. All are given for electron 
temperature 10,000°, 0 — 0.5. h, Lower section. The total emission, j, including two-quantum radiation 
for X = 0.32 at various electron temperatures. 
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420 LYMAN SPITZER, JR., AND JESSE L. GREENSTEIN 

R. Minkowski21 finds that in the Crab nebula the Balmer jump is very small, perhaps 
only 15 per cent, and the electron temperature deduced from the energy distribution in 
the visual region is about Te = 36,000°. The apparent high Te reminds one of the results 
predicted for 725 in our Figure 1. But at Te = 36,000° the Balmer jump is still quite ap- 
preciable. Thus Minkowski’s hypothesis of free-free emission in the Crab nebula seems 
preferable. It is apparent that further accurate spectrophotometry of continua in plane- 
tary nebula is greatly to be desired. 

We are grateful to Drs. O. C. Wilson and R. Minkowski for a number of illuminating 
discussions on this problem. 

21 Mt. W. Contr., No. 666; Ap. 96, 199, 1942. 
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