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ABSTRACT 

In this paper the integral equation governing the distribution of the true (ü) and the apparent {v sin i) 
rotational velocities of stars is reconsidered, with the object of suggesting the most suitable methods for 
analyzing observed frequency functions affected by a random orientation factor, sin i, in the manner of 
the rotational velocities of stars. First, it is shown that there is a simple relation between the moments 
of the true and the observed frequency functions which enables us to pass from the moments of the one 
to the moments of the other. The mean and the mean square of the true rotational velocities of stars can 
therefore be determined directly from the corresponding means of the observed distribution of v sin i. 
When it is felt that something more should be said about the true distribution of v than its mean and 
mean square, it is suggested that a comparison be made between the observed distribution and those 
derived from certain assumed forms of the true frequency function. Reasons are given for preferring this 
method to an inversion of the integral equation by a numerical procedure. The form 

fix) =-^r{ 

suggested by Elsa van Dien has therefore been considered in some detail, and a one-parameter family 
of frequency functions for x sin i has been derived. 

The methods of analysis suggested in this paper have been applied to a rediscussion of the rotational 
velocities of stars. 

1. Introduction.—A problem of some interest which arises in discussions relating to 
stellar rotation concerns the manner in which allowance must be made for the random 
orientation of the rotational axes of the stars in deriving the true distribution of the ro- 
tational velocities.1 The precise nature of the problem encountered here is the following: 

From a study of the line profiles of a rotating star we may deduce the value of v sin it 

where v denotes the equatorial rotational velocity of the star and i is the inclination of 
its axis of rotation to the line of sight. From the distribution of v sin i determined in this 
fashion for a homogeneous2 group of stars, we wish to infer the true distribution of the 
rotational velocities v. It is apparent that an integral equation must govern the two dis- 
tributions, and the problem is essentially one of solving this integral equation. 

The same integral equation as that which governs the distribution of v and 2; sin f oc- 
curs also in other contexts: for example, in the discussion of the mass function of binary 
stars.3 Again, the integral equation which governs the distribution of star images on a 
photograph of a globular cluster and the true space distribution of the stars in the cluster 
is also the same.4 This paper is therefore devoted to an examination of this integral equa- 
tion and to outlining suitable methods of analysis of observational data affected by 
random orientation in the manner of the rotational velocities of stars. 

1 Cf. 0. Struve, Pop. Astr., 53, 202, 259, 1945; see esp. pp. 213 and 214. 
2 ‘‘Homogeneous’’ in the sense that selection has not operated for certain preferred orientations of 

the axis of rotation. 
3 Cf. G. P. Kuiper, Pub. A.S.P., 47,15, 1935; see esp. pp. 32-36 and Fig. 2 on p. 32. 
4 Cf. S. Chandrasekhar, Principles of Stellar Dynamics (Chicago: University of Chicago Press, 1942), 

p. 233. Eq. (5.814) given on p. 233 becomes identical with the integral eq. (9) derived in § 2 of this 
paper, if eq. (5.814) is expressed in terms of the number of star images 2Trv(x)xdx in a ring between 
x and x A- dx and the number of stars Awr2N{r)dr in the cluster, in a spherical shell between r and r + dr, 
instead of v(x) and N(r). 

142 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
50

A
pJ

. 
. .

Il
l.

 .
14

2C
 

ROTATIONAL VELOCITIES OF STARS 143 

2. The basic integral equation.—The problem which we wish to consider may be for- 
mulated in the following manner: 

A parameter % occurs with a probability distribution governed by a frequency func- 
tion/(rr) (0 ^ < oo ). The quantity 

y = # sin ¿ U) 

is observed where the probability of occurrence of the inclination i between i and i di 
is known to be smi di. It is required to relate the probability distribution of y with that 
of x. 

Let <t>{y) denote the frequency function of y. Then, from the definition of probability, 
it follows that <t>(y)dy is the surface integral oif(x) sin ¿.over the area included between 
the curves 

y = x sin i and y + ¿y = x sin ¿ , (2) 

in the (x, ¿)-plane (see Fig. 1). Thus 

0 (y) dy = a f (x) sin i dxdi 
AS 

O) 

where AN denotes the area shaded in Figure 1. 

Fig. 1.—Illustrating the area in the (x, i) plane over which/(íc) sin i must be integrated to give 
<t>(y)dy. 

Now at a particular i, the height of the strip AN is given by 

dx = 
sm t 

and, since y and dy are assigned, we can rewrite equation (3) in the form 

<í> (y) dy — dy f f (x) di, 
^y=x sin i 

where the integral is now extended along the curve y = x sin L Accordingly, 

Jo Vsin 1/ 

Alternatively, we may also argue as follows: 

(4) 

(5) 

(6) 
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144 S. CHANDRASEKHAR AND G. MÜNCH 

At a particular x the width of the strip AS is 

dy 
di = 

x am 
hence, we may also write 

^(y) dy = dy f f (x) w'y==xsin i 

sm i 
X COS l 

T dx, 

(7) 

(8) 

where the integral is again extended along the curve y = x sin i; using this equation of 
the curve to eliminate i in the integrand of equation (8), we obtain 

/< /(*) 
x (x2 — y2) 1/2 dx. (9) 

This equation relating (¡>(y) a,ndf(x) is implicit in the papers of Struve on stellar rotation; 
and the equation occurs explicitly in Kuiper’s paper to which we have already referred.3 

It is, of course, clear that equations (6) and (9) are entirely equivalent. 
3. The formal solution of the integral equation.—Equation (9) can be reduced to Abel's 

integral equation by the substitutions 

3,2 = and 
1. 

r 

for, with these substitutions, equation (9) becomes 

EU) 

where 

(77) = <f) 
a) 

FU)= 1 and 
2 v? 

/ 
(vi> 

It is well known that the solution of Abel’s equation (11) is given by 

1 d r* $(t?) svîï _ 1 d r_vAv) j 
ir d^f (£ — jj) 1/2 11 ' 

In terms of the original variables the foregoing solution is equivalent to 

nx) = -«x2irx xf 
4> (y) 

y2 (y2 _ £2) 1/2 dy. 

(10) 

(ID 

(12) 

(13) 

(14) 

While equation (14) represents the formal solution of the problem, it is not of much 
practical use, since it requires differentiation and it is known that the differentiation of 
an observed frequency function can lead to results which are misleading unless the ob- 
servations are of high precision. In practice it will therefore be advisable to use, as far 
as possible, only the moments of the observed frequency function, <i>(y), and determine 
one or more parameters (such as the mean and the mean square deviation) of the true 
frequency function,/(x). In any case, the form of the solution (14) emphasizes the fact 
that no artifice can really circumvent the necessity of differentiating the observed fre- 
quency function. Therefore, when the observed distribution is known in the form of a 
histogram (as is often the case) a numerical inversion of the integral equation (9) can 
hardly be expected to give trustworthy results. 

4. The relation between the moments of <^(y) and f{x).—We shall first show that there is 
a simple relation between the moments of 4>{y) and/(#). 
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ROTATIONAL VELOCITIES OF STARS 

Multiplying equation (9) by yn and integrating over the range of y, we have 

fix) S* W CD c 
/ <t> (>0 yndy = / dy yn+1 I dx 

o ‘'O 'v o; (ä;2-y2) va- 

in ver ting the order of the integration on the right-hand side, we obtain 

dx /■* oo /%<x>f1/Y' /%x /Vii 

<f> (y) yndy = - f (x) dy 

Now letting y — tx in. the integral over y, we have 

y 2) 1/2* 

Hence 

JX'OO S' CO /tt+1 
r <t>(y)yndy = Ja f {x) ^ x _____ dt _ 

(f+9- 
;yn = I vV 

In particular, 
(M) 

- 4- 
x = -y; 

3—„ — 16-^ 
X2 = _ ^2. — y. 

OTT 

145 

(15) 

(16) 

(17) 

(18) 

(19) 

It has been pointed out to us by Messrs. A. Brown, Su-Shu Huang, and D. Osterbrock that 
a relation of the form (18) also exists, when the relation (1) is replaced by the more general 
y = oopii)^ where y¡/(j) is aif arbitrary integrable function of i; for, by multiplying the equation 
corresponding to (3) by yn and integrating over the whole phase space we obtain the relation 

(is') — — /~*-/2 
yn = xn / y//71 (i) w (i) di , 

where w(i) is the frequency function of i. 

The mean, the mean square deviation, and the skewness of the true distribution f(x) 
can therefore be derived from the moments of the apparent distribution 0(y) according 
to the following formulae: 

x = -y; (a;-x)2= 1.5y2—y2, 
X X 

and (20) 
7 — 16-, 18—— . 128-3 
{x — x)3 = T-y3 y2 y H ^ y . 

3x x x3 

As an example of the application of the foregoing formulae we shall consider the re- 
cent results of A. Slettebak6 on the rotational velocities of the Be stars. From his table 
of a sin ¿ we find that 

z; sin i= 2.73; z;2 sin2 i = 8.242 ; and zj3 sin3 f = 26.3 56 , (21) 

where a unit of velocity of 100 km/sec has been adopted. From equations (20) we now 
deduce that 

v = 3.48 1/2 
(zj — v)21/z =. 0.50 , 

(22) 

and (v — zJ) 3 = - 0.039 . 

The skewness of the true distribution is therefore negligible, and the mean (^350 km/ 
sec) and the root mean square deviation ('—'SO km/sec) of the true distribution of the 

b Ap. 110, 498, 1949; see esp. Table 2 of this paper. 
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146 S. CHANDRASEKHAR AND G. MÜNCH 

rotational velocities of the Be stars are therefore determined with the same precision as 
these quantities are determined for the apparent distribution. 

5. Special forms of f(x).—When the frequency function </>(y) is not too well deter- 
mined by the observations, then the mean and, to a less extent, the mean square are 
probably the only two quantities which can be determined with any degree of trust- 
worthiness. Under these circumstances the formulae of the last section suffice to convert 
the mean and the mean square of observed frequency function into the corresponding 
means of the true frequency function, in which we are interested. However, in some cases 
it may be thought that <t>(y) is well enough determined to say something more about 
f(x) than its mean and mean square. In such cases attempts have been made in the lit- 
erature to invert the integral equation (9) by a numerical procedure. But, as we have al- 
ready indicated, such a procedure can be justified only in cases in which the observed 
frequency function can be differentiated with confidence. In all other cases it is preferable 
to assume a form iorf(x) involving one or more parameters and suggested by the physi- 
cal nature of the quantity under discussion and to determine these parameters consist- 

Fig. 2.—The frequency functions <f>(y) derived from a ô-function centered at Æi = 1 (curve I) and 
a uniform distribution of x in the intervalo ^ x ^ 1 (curve//). The same curves represent the function 

for other values of xi if the abscissae are understood to mean y/xx and the ordinates xi<i>(xi). 

ently with the accuracy of the observational material. This latter procedure has the dis- 
advantage that some form of f(x) has to be assumed. Consequently, it entails a certain 
degree of arbitrariness; but it is inherent in the nature of the problem and cannot be 
avoided whenever the observed frequency function is not of a precision required for an 
unambiguous application of the solution given by equation (14). 

In accordance with the remarks in the preceding paragraph, we shall consider certain 
special forms oîf(x) and derive the corresponding, forms of 

The first form for/(#) that we shall consider is when x takes only one value, say, xi. 
Then 

/ (x) = ô (x — Xi) , (23) 

where d denotes Dirac’s ô-function. From equation (9) it now follows that 

<t>(y; sxi) =a.i(a.^y2)1/2 y<*i ^ 

= 0 y>Xi; 

this distribution has therefore a singularity at x = *1 (see Fig. 2).6 

6 The occurrence of this singularity makes the ííreconstruction,, of an observed <f>(y) by superposing 
a number of distributions 4>{y; 0Xn) in the form 

<t> (.y) =2an<l>(y;SXn) 
a less valid procedure than it would be otherwise. 
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ROTATIONAL VELOCITIES OF STARS 147 

A second form oif(x) which may be considered is the case in which all values of x less 
than a certain x\ occur with equal probability. Then 

f{x)=i 

For this form of/(#), equation (9) leads to 
= 0 

1 y 
<t> (y) = — cos-1 — 

#1 Xi 

= 0 

Xi 

X > Xi 

y^xi 

y > xi 

(25) 

(26) 

The nature of this distribution is also illustrated in Figure 2. 
While cases (23) and (25) are sometimes useful, they do not provide the flexibility in 

the predicted forms of <¡)(y) which we should like to have for comparisons with observed 
frequency functions. A form for/(x) which appears most suitable in the stellar contexts 
is the one suggested by Elsa van Dien,7 namely, 

/ (x) = -^{ e-c*-*,)* + e-c*+*i)’}. (27) 

This form for/(x) provides a family of frequency functions with two parameters. Also, 
for xi = 0,/(x) represents a Gaussian distribution; and for xi large it is again, essential- 
ly, a Gaussian distribution; and between these two limits we have a family of “inter- 
mediate” distributions which are even. 

For/(x) given by equation (27) the first three moments are: 

x2= x2 + J , (28) 

and 

where 

x< = —çe-*l (1 -fx2) + (f+^) Xi# (Xi) 

4>(xi) 
V 
- Pe-t'dt 
IT Jq 

(29) 

is the error function. The numerical values of these moments are given in Table 1. The 
corresponding moments of y can be obtained in accordance with equation (19). 

When/(x) has the form (27), the equation for <£(y) becomes 

or, alternatively, 

y g-Cx—Zj)3 _|_ g—(X+ÍC!)2 

<l>(y; *i) xos-y) vs 

00 e~xi cosh 2xxi 
0 

/ % ¿y _1 / £ cos 
(y; *i) - ^ « x'jv x (x2 _ yi) 1/2 dx. 

(30) 

(31) 

In equations (30) and (31) we have emphasized the dependence of 0(y) on xi by in- 
cluding it as an argument. 

It does not seem that the integral defining (j>(y; xi) can be reduced to known functions. 
However, it will appear from the discussion of this integral in §6 that we can get a fairly 
complete picture of <t>{y; xi) by considering its behavior for various ranges of its argu- 
ments. 

^ J.R.A.S. Canada, 42, 249, 1948. 
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148 S. CHANDRASEKHAR AND G. MÜNCH 

6. The behavior of <t>(y; x\) for various ranges of its arguments, (i) The expansion of 
<j>{y; xf) in a power series in x\.—When xi ^ 1, we can obtain a rapidly convergent ex- 
pansion for (ply; xi) by replacing cosh 2xxi in equation (31) by its series and integrating 
term by term; thus, 

2 2 
Xl) 

(2x1) 2n 

Letting 
rn(y) = y f 

J M 

/oo e-x 

oo 0—x2 A»2n—1 

2n\ 

Xi 

'v (x2— y2)1/2 

we can rewrite equation (32) in the form 

(x2 — y2) V2 

dx, 

dx. 

0 (y; ^i) = 
V î 

22n 

n=0 

(32) 

(3?) 

(34) 

TABLE 1 

Constants Relating to the Frequency Function 

/ (#) =-^-[e-(x~xi)2+ e~(x+xi)2] 

X* x/[2(xZ-?)y/2 

0.0. 
o.i. 
0.2. 
0.3. 
0.4. 
0.5. 
0.6. 
0.7. 
0.8. 
0.9. 
1.0. 
1.2. 
1.4. 
1.6. 
1.8. 
2.0. 
2.2. 
2.4. 
2.6. 
2.8. 
3.0. 

0.5642 
0.5698 
0.5866 
0.6142 
0.6521 
0.6996 
0.7559 
0.8201 
0.8912 
0.9682 
1.0502 
1.226 
1.413 
1.606 
1.802 
2.001 
2.200 
2.400 
2.600 
2.800 
3.000 

0.50 
0.51 
0.54 
0.59 
0.66 
0.75 
0.86 
0.99 
1.14 
1.31 
1.50 
1.94 
2.46 
3.06 
3.74 
4.50 
5.34 
6.26 
7.26 
8.34 
9.50 

0.564 
0.581 
0.632 
0.719 
0.842 
1.00 
1.21 
1.46 
1.76 
2.11 
2.52 
3.54 
4.85 
6.45 
8.53 

11.0 
13.9 
17.4 
21.5 
26.2 
31.5 

0.93593 
0.93598 
0.93719 
0.9418 
0.9518 
0.9693 
0.9951 
1.0292 
1.072 
1.122 
1.179 
1.314 
1.466 
1.636 
1.819 
2.009 
2.204 
2.402 
2.601 
2.800 
3.000 

The integrals In(y) (n = 0, 1, . . .) which occur in this expansion can all be expressed 
in terms of known functions in the following manner: 

First, we may note that, with the substitution 

In becomes 
x2 = y2 + ui , 

In — y e~yZ f e~u2 (y2 + u2) n~1du. 
•'o 

Next, we observe that the In’s satisfy the recursion formula, 

In+i = (n - % + y2) In- (n-1) y2In-i (n=l, . .) 

(35) 

(36) 

(37) 
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ROTATIONAL VELOCITIES OF STARS 149 

This formula can be derived by writing In in the form 

In=y f™ e-x'Xïn-î_!L(x2_y^ l/2dx 
'S y d OC 

and integrating by parts; thus 

In = 2y f e~x2x2n~z (x2— n-\-\) (x2— y2) l¿2dx 
Jy 

= 2y f , 2'1/2 x*’1-* [x4— x2(w — 1 +3'2) + (« — 1) y2] dx 
J y V y ) 

(38) 

(39) 

= 2[/n+1- {n-\+y2)In+ 0—1) y2In-i\ ; 

and this is equivalent to formula (37). 
Using the recursion formula (37), we can reduce the evaluation of In to h and /o; and 

both these can be reduced to known functions. Thus (cf. eq. [36]) 

On the other hand, 

e^du = § vV e y2y . 

h (y) = y 
oo e-u* 

y2 + u2 du ; 

(40) 

(41) 

and we recognize /o as a standard integral which occurs in the theory of the line-absorp- 
tion coefficient in stellar atmospheres;8 and using known results we have 

/o (y) = Itt [1 -4> (y) ] , . (42) 

where 4>(y) denotes the error function (cf. eq. 29]). 
All the integrals In can therefore be evaluated successively in terms of /c and h. 
For purposes of practical calculation it is convenient to rewrite the expansion (34) 

in the form 

where 

*i) = e^^Fniy) xT, 
71=0 

Fn (y) = 
2 2ti + 1 

2nl \/t 
ln(y) • 

(43) 

(44) 

The functions Fn(y) for w = 0, . . . , 6, are tabulated (see Table 2). Using this table, we 
can evaluate <j>(y; xi) for all Æi ^ 1 with entirely sufficient accuracy. 

ii) The expansion of </>(y; Xi) in a power series in y.—A.n expansion of ^ y 
analogous to the one in xi found in the preceding subsection can be obtained in the fol- 
lowing manner: 

First, using the relation 
2 fœ 

e~p2 = —7— / e~“2cos 2pudu, (45) 
V 7T^0 

8 Cf. D. L. Karris, Ap. J., 108, 112, 1948. In Harris’ notation 

h (y) =è7r^2iy(y, 0); 
and, according to equation (2) of his paper, 

H(y,0) T e-^dt- 
V TT J y 

the result (42) quoted in the text follows from this. 
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4 

V 7T 
[ e-(x+: 

=-/ 
cos 2xiu cos 2xudu. (46) 

Then, inserting this expression in equation (30) and inverting the order of the integra- 
tions, we obtain 

<¡) (y; Xi) = — f du cos 2 XxU f dx -y 
TT^o Jy % {%2 — 

or, letting x = yt in the integral over x, we have 

4 z’00 

y cos 2 jew 
^2) 1/2 

N 4 /""j 2 o /'0O7, cos2uyt 
<t> (y; = -yo e- cos 2dt ¿a2_1)l/¿• 

(47) 

(48) 

TABLE 2 

The Functions FnG) for «=0,1,..., 6 

Eo Fi E2 f4 Fs F« 

0.0. 
0.2. 
0.4. 
0.6. 
0.8. 
1.0. 
1.2. 
1.4. 
1.6. 
1.8. 
2.0. 
2.2. 
2.4. 
2.6. 

1.7725 
1.3777 
1.0131 
0.7021 
0.4571 
0.2788 
0.1590 
0.08457 
0.04192 
0.01933 
0.00829 
0.00330 
0.00122 
0.000418 

0 
0.3843 

.6817 

.8372 

.8437 

.7358 

.5686 

.39440 

.24738 

.14099 

.07326 

.03479 

.01513 
0.006028 

0 
0.0692 

.1500 

.2400 

.3206 

.3679 

.3677 

.32341 

.25232 

.17577 

.10989 

.06193 

.03156 
0.014588 

0 
0.0135 

.0283 

.0461 

.0675 

.0899 

.1078 

.11484 

.10844 

.09078 

.06756 

.04487 

.02668 
0.014255 

0 
0.0024 

.0049 

.0078 

.0112 

.0155 

.0202 

.02451 

.02689 

.02637 

.02300 

.01781 

.01228 
0.007550 

0 
0.0004 

.0008 

.0012 

.0017 

.0022 

.0030 

.00380 

.00460 

.00510 

.00509 

.00453 

.00359 
0.002525 

0 
0.000005 

.000010 

.000016 

.000022 

.000029 

.000037 

.000048 

.000061 

.000073 

.000081 

.000081 

.000073 
0.000058 

Now from the identitv 
2 rœ sm zt , 

/o(Z) TrJi a2-l)V2*’ 

where J^{z) denotes the Bessel function of order zero, it follows that 

2 r00 cos zt rz Z T" 
/ J,{z) dz=l~- 
0 7T~'i 

dt. 

(49) 

(50) 
t ^2-1)1/2 

Using this result in equation (48), we obtain (cf. eq. [45]) 

2uy 
e^\J 0 * 

We can now obtain an expansion of 4>{y; Xy) as a power series in ^ by expanding the in- 
tegral over the Bessel function in equation (51) as a power series in 2uy. Thus, from the 
known series for Jq(z) it follows that 

(y; #i) = "n/tt e~xi — ^ f ß_t<2 j y* Jo(z) dz I cos 2 Xiudu. (51) 

/2U70(Z)¿z=2¿ (-1)» 
0 n=0 

(uy) 2n+l 

(2n-\- 1) (n\)2* 

Therefore, defining 
2 s rœ 

Dn(x-¿) = —r exi f ¿““V^cos 2xiudu . 
U\ Jq 

(52) 

(53) 
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we can rewrite equation (51) in the form 

<t> (y; %i) 
2 

\/ T «=n 

Dn(Xl) 
(2w +1) n\ 

, 2n+lJ (54) 

The integrals Dn{x^) (w = 0, 1, . . .) which occur in this expansion can be reduced to the 
evaluation of Do by the use of the following recursion formulae, which are readily estab- 
lished by successive integration by parts: 

(rc + 1) .Dn+i(tfi) = (2w + |- *2) Dnixx) - {n + D Z^n-l(^l) 

and 

i>„<*,) . (l - i (»,) (» - 1, 2, . . .). »S, 

By transformations similar to those used in the reduction of the integral which occurs in 
the theory of the line-absorption coefficient which combines Doppler effect and damping, 
we find that 

Do(#i) = ex\^ \ — 2xie~x\ J 1 e^dt^. (56) 

The expression on the right-hand side is simply related to a quantity which has been 
tabulated by Harris;8 thus, in Harris’ notation, 

D0 (#i) = — è Vn exiHi (#i) . (57) 

Thus the functions Dn can all be evaluated. However, the series (54) does not extend the 
range of the expansion (43) by a large amount for #i > 1. Thus, for = 1.5, it is found 
that seven terms in the series (54) are required to evaluate </> at y = 1.3 ; for larger values 
of Xi the range of y in which the series can be profitably used becomes less. Nevertheless, 
the series (54) does enable us to bridge the gap between the series (43) good for xi ^ 1 
(and all y) and the asymptotic expansions found below for xi > 2. 

m) An asymptotic expansion for <t>(y; xf) for xi large and y < xi.—When xi > 2, we can 
neglect the term in ¿-(s+si)2 in equation (30) ; the maximum error introduced by this is less 
than 2 per cent for xi = 2; and for larger values of xi the error introduced by this sim- 
plification decreases very rapidly—in fact, like e~xll Foi xi > 2, we may therefore write 

y rœ e~(x~x02 

(j) (yy Xl) = -7- / —r~^ IT-^: dx 
V '7T*'!/ 

With the substitution 
y x(x2—y2)1/2 

x — Xi = t , 

(x1 > 2). (58) 

(59) 

e~lidt 
equation (58) becomes 

y rœ 

$ (3b l) 1/2 1/2 

Now let y = aXi (a<l).(6i) 

Then 
/ \ y 1 

^(:y; Xl) = vV 

X 
S' œ 

J — ( 1 — 
e~t3dt 

(62) 

Now, if 

il_a)xi(l+t/x1)[l+t/x1(l+a)V/2[l+t/x1(l-a)V/2‘ 

(1 - a) Xi> 2 , (63) 
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we may expand the denominator in formula (62) in a power series ml/xi and also extend 
the range of integration over t from + oo to — œ. In this manner we shall obtain an 
asymptotic expansion valid for x\(\ — a) —>oo. By the procedure indicated we find: 

0 (y; *i) Xi (x* — y2) V2 -y/7T /' 
,-i2 t 2-a2 

Æi 1 — a2 

t2 6- 5a2+2a4 

x¡ 2(1-a2)2 

(64) 

or 

<t> (y; ^i) y U \ 6y4~ 5y2xl+2x4
1 

Xi (x* — y2)1/2/1 dx^-y2)2 
(65) 

It will be noticed that the dominant term in the asymptotic expansion (65) is the con- 
tour for a 5-function in x centered at Xi; this is, of course, what we should have expected. 

The expansion (65) is satisractory for determining <¿/y; xi) for xi large and y < Xi; 
thus for Xi = 10 it gives sufficient accuracy for y < 8. 

iv) An asymptotic expansion for <t>{xi; xi) for xi large.—The expansion found in the 
preceding section ceases to be valid when y —> xi. However, for y = we can find a sat- 
isfactory expansion in the following manner: 

For y = Æi equation (58) is 

</> (*i; *i) _ Xl rœ e-<x-xJ2 

W/c, X (x2 — X2f)1/2 X ' 
(66) 

Now let (x — oq)2 = ¿ . (67) 

Equation (66) becomes 

4> (^i; ^i) = 
1 rœ e-tdt  

(StxA'/Jo /3/4(l+ Vt/x^dA- Vt/2xi) 1/2' 
(68) 

We can now obtain an asymptotic expansion for the integral on the right-hand side by 
expanding the denominator in a power series in l/x\ and integrating term by term ; thus 

</> (*i; *i) 
1 

(Stt^i) V2 [r (0.25) 
5 

4xi 
r (0.75) 

32x¡ 
(1.25) 

177 
128x3 

r (1.75) 
2867 

2048xJ 
r (2.25) 

]• 

(69) 

or, inserting the values of the F-functions, we find 

, , 0.72320 ( . 0.42249 , 0.33594 0.35053 , 0.43747 

This series can be trusted to give the value of ^i) with sufficient accuracy for 
Xi > 2. 

The values of <¡>{xi', xi) for xi < 2, determined in accordance with equation (70), are 
listed in Table 3. 

v) An asymptotic formula for 4>{y; #i) for x\ large and y > X\.—When X\ is large and 
y > xi, we write 

y = ßxi (ß)£>l) an'4 t — x — v (7i) 
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in equation (58). We then find 

x 1 C” exp { — [¿2+ 2 (/3 — 1) x^ + x2! (/3 — 1)2] j 
0(:V’ ^ (27T’y) VzA (l+i/Ôa:1)(l+//2âx1)V2ii/2 

When ß )£> 1, the main contribution to the integral on the right-hand side comes from the 
neighborhood of / = 0. Accordingly, we may write 

(j) (y; x{) ^ 
£-*,03-1)2 oo 

(2Try) 

TABLE 3 

xi) 

/'CO rff 
/ £-203-1)*,* 
n / Vt (73) 

( Xi large and /3 5i> 1 ). 

*1 

2.0. 
2.5. 
3.0. 

*l) 

0.4379 
.3995 

0.3712 

XI 

3.5 
4.0 
4.5 

<f>(xi] X\) 

0.3485 
.3296 

0.3136 

<j>(xi; *i) 

0.299,8 
.2768 

0.2585 

8. 
9 

10 

<f>(xi; xi) 

0.2434 
. 23C6 

0.2197 

Fig. 3.—The frequency functions <t>(y; #1) {full-line curves) derived from assumed distributions of x 
of the form given by equation (27) {dashed curves) for values of x\ ^ 1.5. For xi = 0,f{x) is Gaussien, 
and (f>{y) is explicitly known; for #1 = 1.0, 0(y) was derived from the expansion (43); for xi = 1.5 the 
the expansion (54) was used for y ^ 1.3; and, as the asymptotic form for large y (eq. [74]) is a Iso known, 
the curve for y > 1.3 can be drawn without much ambiguity, since the area under the curve should be 
unity. 

*(y; *!) "4 Vy (/-*0 (74) 

7. The one-parameter family of frequency functions 0(y; xi).—Using the various ex- 
pansions for <t>(y; #1) obtained in §6, we can readily sketch the form of the frequency 
functions for various values of #i. This is done in Figures 3 and 4. 
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8. The true distribution of the rotational velocities of stars of different spectral types.—We 
have already explained why, when we wish to say something more about the distribu- 
tion of the rotational velocities of stars than its mean and mean square, it is preferable 
to compare the observed distribution of sin ¿ with that predicted on some assumed form 
of/(fl), instead of inverting the integral equation (9) by a numerical procedure. We shall 
now show that the particular form of/(#) examined in the preceding sections allows us to 
represent the known observations on the rotational velocities of stars very satisfac- 
torily. 

Now, in order to make a comparison between an observed distribution of a sin i and 
the one-parameter family of frequency functions <¡)(y; xi) derived in §§6 and 7, it is nec- 
essary that we determine two quantities from the observations, namely, (1) the unit in 

Fig. 4.—The frequency functions <f>(y; Æi) {heavy full-line curves) derived from assumed distributions 
of x of the form given by equation (27) for xi ^ 1.5. In sketching the curves, use was made of the asymp- 
totic expansion for y < x\ (the curves marked Ô), the expansion for y ^ x\ (the curves marked a), and 
the value of 4>{y; xi) at y = £i given by¡ equation (70) {dashed curve) \ these expansions, together with 
the condition that the area under the curve in each case should be unity, leave little ambiguity for 
drawing in the complete curves. For #i ^ 2 the frequency function f{x) from which <¡>{y) is derived is, 
for all practical purposes, a Gaussian distribution centered &tx = xi (the curve for xi = 10 is illustrated). 

which x measures the velocity and (2) the parameter x\ in the frequency function (30) : 
for our assumption concerning/(tj) is, strictly, 

f {v) e-J2^-^)2-|- e~:i^v+v0z] (75) 
V 7T 

where 1/j is of the dimensions of a velocity. However, with the substitutions 

j v = x and j fli = Xi , (76) 

the frequency function governing x reduces tof(x) as we have defined it in equation (30). 
Since the mean and (to a less extent) the niean square are probably the only two quan- 

tities which are determined with any precision, it appears that, in making comparisons 
between the observed distributions of z; sin ¿ and those derived from the function (75), 
we determine the parameters7 and Vi of the distribution in the following manner: 

From the observed values of the mean and the mean square of a sin ¿ we first deter- 
mine the values of v and w according to the moment relations of §4 (eqs. [19] and [20]). 
From these mean values we next evaluate the quantity 

v  —= =  (77) 
[2 (v*— v2) ] V2- 
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Fig. 5.—The comparison of the observed distributions of the rotational velocities of stars of different 
spectral types with those derived on the assumption of a true distribution of velocities of the form 
given by equation (75) and for values of the parameters listed in Table 4. In each case the observed 
distribution of v sin i is represented by the histogram, while the full-line curve represents the predicted 
distribution of v sin i for a true distribution of v given by the dashed curve. 

TABLE 4 

Reduction of Data on Rotational Velocities 
of Stars of Different Spectral Types 

v sin i (km/sec). . 
f sin2 i (km/sec)2. 
^(km/sec)  
^2 (km/sec)2  
î>/(2[ï^—z?])1/2. . . 

/computed. . . . 
l\adopted  

/-1 (km/sec)  

Be 

273 
82,420 

348 
123,600 

4.90 
4.9 
5.0 

70 

Spectral Type 

O-B 

74 
7238 

94 
10,860 

1.47 
1.41 
1.5 

63 

88 
11,254 

112 
16,880 

1.20 
1.03 
1.0 

107 

F0-F2 

40 
2978 

51 
4470 
0.82 

0.0 
90 
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156 S. CHANDRASEKHAR AND G. MÜNCH 

This quantity is clearly independent of the unit in which the velocity is measured ; ac- 
cordingly, for the distribution (75), it depends only on Xi and assumes the values listed 
in the last column of Table 1 for the various values of xi. Interpolating in this column of 
Table 1, we can therefore determine xi when the value of the quantity (77) has been de- 
duced from observations. Once x\ has been determined, the unit, 1/j, in which x measures 
the velocity, follows from the relation 

X = jv , (78) 

since x as a function of Xi is known (eq. [28] and Table 1). With 1/j and xi determined in 
this fashion, the comparison between the observed distribution of v sin i and the member 
of the family <t>‘y; xi) belonging to the derived value of xi is a straightforward matter. 

The known data on the rotational velocities of the stars9 have been analyzed in the 
manner described in the preceding paragraphs. The results are summarized in Table 4 
and Figure 5. It is seen that the observations are represented entirely satisfactorily by 
the assumption (75) regarding the distribution of the rotational velocities and with the 
parameters listed in Table 4. 

9 For the Be stars we have used the results of Slettebak (op. cit.), while for the stars of the other spec- 
tral types we have used the data compiled by Struve (op. cit., p. 259) and C. Westgate (Ap. 77, 141, 
1933; 78, 46, 1933; 79, 357, 1934). Dr. Struve has pointed out to us that for the Oand the B stars Miss 
Westgate’s values for the rotational velocities may be too low; however, he believes that the relative 
distribution may be reliable. That Miss Westgate’s rotational velocities for the 0 and the B stars are 
systematically too low would seem to be confirmed by Slettebak’s work. 
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