RADIAL VELOCITIES AND SPECTRAL TYPES OF 181 DWARF STARS*

Alfred H. Joy
Mount Wilson Observatory
Received September 19, 1946

Abstract

Spectral types and radial velocities have been determined for 181 dwarf stars having for the most part proper motions greater than 0 ". 35 . The classification follows the Henry Draper system except that 21 subdwarfs have been recognized in types A, F, G, K, and M. Emission lines of H and Ca II (H and K) were observed in 41 stars, and of $C a$ II alone in 24 other stars.

The correlation between spectral type and absolute magnitude determined from trigonometric parallaxes is shown in Figure 1. If the subdwarfs are excluded, the average spread in luminosity is 1.6 mag.

Since the beginning of spectrographic work at the Mount Wilson Observatory, the observation of dwarf stars with large proper motions has been emphasized. A number of observers have taken part, and the results have been published from time to time. Dr. W. S. Adams has been largely responsible for the continued interest in this program.

The present paper gives the results of the observations of spectra of large-proper-motion stars for which one or more plates had been obtained prior to 1940, together with a few other stars of especial interest on account of their low luminosity. Except for five stars with emission lines, the proper motion of every star included is greater than 0.35 . The early spectrograms were obtained by several observers (W. S. Adams, G. Strömberg, R. F. Sanford, R. E. Wilson, and A. H. Joy) and measured, for the most part, by members of the computing staff. The observations and measurements since 1940 have been made largely by the writer.

Most of the spectrograms were obtained with one-prism spectrographs at the 60 - and 100 -inch reflectors. Since 1940 , at the 100 -inch telescope, a two-prism spectrograph with a collimating mirror and a 6 -inch Schmidt camera (dispersion $115 \mathrm{~A} / \mathrm{mm}$) has been used for the fainter stars.

The dispersions usually employed are:

Mag.	A/mm
8.0 or brighter .	
8.0-10.5	75
10.5-14	115

The average probable errors of the radial velocities for these three magnitude groups are $1.1,1.7$, and $2.1 \mathrm{~km} / \mathrm{sec}$, respectively.

The stars observed, with relevant data, are listed in Table 1. For stars not in the Henry Draper Catalogue the apparent visual magnitudes are generally Kuiper's estimates, although for some of the stars other sources have been used. The visual absolute magnitudes (M_{v}) of the seventh column were computed from the trigonometric parallaxes of the next column except that the absolute magnitudes of stars having no trigonometric parallaxes were read from the mean curve of the Russell diagram (Fig. 1) according to the estimated type. The parallaxes of such stars were computed from the apparent and absolute magnitudes and marked "(S)" in the eighth column. The measured radial velocities, corrected for the earth's orbital motion, are in the last column, together with their probable errors.

[^0]TABLE 1
Spectroscopic Observations of Dwarf Stars

Star	$a(1900)$	$\delta(1900)$	$m_{\text {v }}$	μ	Spect.	$M_{\text {v }}$	π	Velocity	
								No. of Plates	Km/Sec
ADS 48A	$0^{\text {h }} 00^{\text {m }} 4$	$+45^{\circ} 16^{\prime}$	9.4*	0"86	dK6	9.2	0.090(10)	3	$0 \dagger$
20 C 16.	011.8	+4024	8.7	0.55	dM0	8.3	.083(1)	3	$+13 \pm 2.0$
ADS 246A	012.8	+4328	8.5*	2.89	dM2. 5	10.7	.278(6)	11	$+15 \dagger$
ADS 246B			10.9		sdM4e	13.1		5	$+22 \pm 0.8$
GC 354	012.8	-141	6.6	0.41	dG0	4.7	.042(S)	3	+ 29 ± 0.8
ADS 433A	026.3	+66 41	10.4	1.74	dM2.5	10.4	. 099 (3)	4	$+18 \pm 2.6$
GC 668A	028.8	-35 32	6.6	0.52	dG0	5.0	.049(1)	2	+ 28 ± 0.2
20 C 40.	033.5	+30 4	11.4	1.55	dM3.5 \dagger	11.0	.084(3)	3	+ 10 ± 1.6
GC 873	038.2	+7524	7.4	0.40	dG4	5.4	. 039 (2)	3	- 9 ± 0.3
20 C 60.	045.4	$+5745$	11.5	1.58	dM2	10.4	.060(1)	3	-19 ± 1.1
GC 1058	048.1	-30 54	7.6*	0.63	dK5	7.7	.107(1)	3	- 5 ${ }^{+}$
GC 1186	054.1	+3157	7.0	0.36	dF5	4.7	.035(1)	3	$+22 \pm 0.4$
20 C 66.	055.3	+71 9	9.9	1.78	dM3.5	10.1	.108(4)	3	+ 11 ± 1.4
LPM 63	17.5	-1732	11.6	1.33	dM5e	13.6	.251(S)	3	$+28 \pm 3.6$
GC 1752A	121.7	+44 53	5.0	0.36	F2	1.6	.021(3)	3	+ 12 ± 0.9
GC 2050.	135.7	+42 7	5.1	0.81	dG0	4.9	.091(2)	6	+ 1 ± 0.6
GC 2280	148.0	-2256	9.0	0.86	dM1.5	8.6	.082(2)	3	$+25 \pm 2.6$
20 C 153.	27.3	$+39$	10.3	2.58	dM3	10.1	.088(2)	5	+ 7 ± 1.7
ADS 2081B	237.4	+48 48	10.0	0.35	dM2.5	9.6	.081(5)	4	+ 25 ± 2.5
20 C 187.	246.0	+34 0	9.6	1.37	dM0	8.8	.068(3)	3	-45 ± 0.8
GC 3449	247.7	-1311	6.1	0.42	dK0	6.8	. $137(2)$	3	$+19 \pm 1.7$
20 C 212	$3 \quad 7.6$	+1828	14.4*	1.74	sdM0	13.1	. $054(1)$	3	$-102 \dagger$
GC 3901	38.3	+7155	9.0	0.43	dG5	5.0	. .016(1)	4	+ 9 $\quad 3.1$
20 C 217	319.9	+3745	10.5	1.36	sdK5	8.7	. . 044 (2)	3	-166 ± 1.5
20 C 235	322.3	+373	10.6	1.58	sdK5	8.4	. 036 (2)	5	-174 ± 4.1
ADS 2894A.	352.4	-127	8.6	0.27	dK5	8.6	.101(1)	4	+ 7 ± 1.6
ADS 2894B			11.3*		dM3e	11.3		6	$+15 \dagger$..
20 C 279.	359.7	+3242	9.2	1.08	dK4	6.9	035(2)	3	$+112 \pm 1.8$
20 C 280.	42.2	-216	9.7	0.78	dM0	8.5	057(2)	3	+ 28 ± 2.4
ADS 3093C	410.7	- 748	11.1	4.08	dM4.5e	12.6	203(12)	3	-45 ± 1.7
20 C 303.	4 37:0	+1847	9.8	1.27	dM2.5	9.9	.106(3)	4	$+33 \pm 1.9$
$\mathrm{BD}+52^{\circ} 911$	455.1	+53 3	9.8	1.96	dM0. 5	8.7	.059(1)	2	+ 76 ± 1.2
GC 6144.	456.5	+13 57	8.3	0.41	dG8	6.7	.049(1)	3	-27 ± 1.4
20 C 318.	57.0	+1937	9.2	0.75	dK3	6.9	.035(2)	3	+ 7 ± 1.3
ADS 4099B	523.3	+54 35	9.7	0.41	dK4	6.9	.028(7)	2	+ 27 ± 0.2
CD-29 2277 .	525.0	-29 58	11.5	0.41	sdF6	6.2	.009(S)	5	$+547 \pm 1.6 \dagger$
Ross 42.	526.7	+945	11.8*	0.30	dM4e	11.1	.073(2)	3	+ $17 \dagger$
$\mathrm{BD}+62^{\circ} 780$	536.3	+62 13	9.2	0.82	dK5	7.6	.048(S)	4	-13 ± 2.9
20 C 344.	536.4	+1228	11.7	2.53	sdM4.5	12.7	. 161 (2)	3	$+103 \pm 1.9$
20 C 347.	539.5	+ 913	11.9	0.61	sdF7	6.1	.007(3)	3	-1 ± 5.8
20 C 377	$6 \quad 6.4$	-2150	8.2	0.71	dM2.5	9.4	.172(3)	3	0 ± 1.4
20 C 390.	624.3	-244	11.3	0.97	dM4.5e \dagger	13.3	.253(4)	5	$+24 \pm 2.7$
$\mathrm{BD}+47^{\circ} 1355$.	644.1	+4729	9.2	0.83	dK6	7.9	.055(S)	2	+ 28 ± 1.4
20 C 400.	648.3	+3324	9.9	0.87	dM3. 5	11.0	.162(2)	3	$+41 \pm 2.0$
20 C 402 B	649.5	+40 13	10.7	0.44	dM1.5	8.7	0.041(2)	3	+ 61 ± 1.8

TABLE 1-Continued

Star	$a(1900)$	$\delta(1900)$	m_{v}	μ	Spect.	M_{v}	π	Velocity	
								No. of Plates	Km/Sec
Ross 986	7h 3 m 3	$+38^{\circ} 43^{\prime}$	12.4*	1"12	dM5e \dagger	13.3	0 " $151(1)$	5	+ $52 \dagger$
$\mathrm{BD}+5^{\circ} 1668$.	722.0	+ 535	10.0	3.75	dM4	12.1	. 264 (3)	3	+ 28 ± 2.3
20 C 426	725.4	+3626	11.2*	0.44	dM3.5e	10.9	.087(2)	9	$+1 \dagger$
Ross $989 \dagger$	725.4	+3627	12.2	0.41	dM4.5e	11.9	. $087(2)$	4	- 2 ± 4.6
Ross 882	739.4	+ 348	$11.6 \dagger$	0.64	dM4.5e	12.4	.147(1)	5	$+18 \pm 0.9$
20 C 462 .	86.5	+99	12.5	5.40	dM5	13.4	.153(2)	2	-35 ± 0.1
20 C 475.	827.3	+6738	9.2	1.09	dM1	8.8	.089(3)	5	+ 18 ± 2.1
20 C 489.	843.1	+ 651	10.3	0.55	dM0	7.4	.026(3)	3	-23 ± 0.6
GC 12307	849.4	- 54	6.0	0.43	dG3	5.0	.063(S)	4	$+30 \pm 1.9$
20 C 498.	850.0	$+157$	9.9	1.09	dM1	9.0	.066(1)	6	+ 3 ± 2.6
20 C 500	852.8	+2056	8.9	0.68	dK5	7.1	.045(2)	3	-46 ± 1.0
20 C 501	854.1	- 337	9.5	0.73	sdF3	6.7	.028(1)	5	+ 20 ± 2.5
20 C 510	9 1.9	+5112	8.1	0.43	dG6	5.6	.032(S)	3	+ 22 ± 1.0
$\mathrm{BD}+1^{\circ} 2341$	935.6	+ 128	11.0*	0.54	F0	2.7	.002(S)	4	$-65 \dagger$
20 C 540...	935.8	+13 40	10.6	0.77	dM2.5	9.7	.066(2)	3	$+20 \pm 2.4$
$\mathrm{BD}+75^{\circ} 403$	$\begin{array}{ll}10 & 1.7\end{array}$	+75 37	9.3	0.39	dK6	8.0	.055(1)	5	-47 ± 2.7
20 C 580.	1023.8	+122	9.6	0.96	dM2.5	10.1	.128(2)	3	+ 18 ± 2.1
L 1113-55	1030.9	+ 538	12.2	0.68	dM4e	11.4	.069(S)	3	+ 21 ± 0.8
20 C 589.	1041.9	+28 57	10.3	0.83	sdF5	6.3	.016(1)	4	+ 77 ± 1.7
20 C 591	1045.7	+ 721	11.9*	1.23	dM5	12.6	.139(2)	3	$+4 \dagger$
GC 14964	1046.8	+7636	9.4	0.48	dK6	7.7	.045(1)	5	-22 ± 2.8
20 C 598.	1051.0	+70 8	10.2	0.64	dM0. 5	8.4	. 045 (2)	4	$+7 \pm 2.2$
20 C 600.	1051.6	+ 736	13.5	4.67	dM6et \dagger	16.5	.406(1)	4	+ 13 ± 2.9
20 C 606 B	$11 \quad 0.5$	+44 2	$14.8 \dagger$	4.54	dM5.5e	16.0	176(2)	$2 \dagger$	
GC 15365.	$11 \quad 5.2$	+66 34	9.0	0.36	dG5	6.3	.029(1)	3	+ 27 ± 3.2
BD-17 ${ }^{\circ} 3336$.	1110.3	-1735	10.0	0.76	dM1	9.8	.056(3)	4	+ 5 ± 2.4
BD-17 ${ }^{\circ} 3337$.	1110.3	-1735	10.4*	0.76	dM1	9.5	. 065 (3)	5	+ $18 \dagger$
20 C 632	1118.6	+96	11.0	1.16	dM1	7.4	.019(1)	4	+ 58 ± 1.0
20 C $641 \dagger$	1123.3	+86	9.7	1.21	dM0	8.0	. 045 (2)	3	+ 37 ± 2.1
20 C 655	1134.7	+6752	12.3	3.20	sdM0.5	10.4	.042(2)	3	-118 ± 1.7
GC 16044.	1136.2	-28 39	6.9*	0.38	dG0	3.9	.025(1)	4	- $20 \dagger$
AC+79 3888	1141.3	+79 14	11.0	0.87	sdM4	12.5	.198(2)	3	-115 ± 3.1
20 C 662.	1142.6	+123	11.0	1.40	dM5	13.3	.292(1)	2	- 10 ± 1.0
GC 16248.	1147.2	+1030	7.8	0.36	dK1	6.5	.054(1)	3	$+11 \pm 1.1$
20 C 684.	123.3	+04	10.8	0.96	dM1	9.8	.063(2)	2	+ 31 ± 1.9
20 C 703	1219.6	-1738	11.7	2.49	dM4	11.8	. 103(1)	4	+ 58 ± 1.7
BD-6 ${ }^{\circ} 3580$.	1223.7	-657	9.6	0.45	dK5	7.6	.040(S)	3	+ 27 ± 1.7
20 C 716 AB	1228.4	+ 934	12.7	1.81	dM5.5e	14.5	. 230 (3)	6	-5 ± 3.0
20 C 717.	1228.8	-14 5	9.6	0.48	dK4	7.1	.032(2)	3	+ 7 ± 1.0
20 C 726.	1234.0	+12 14	11.3	1.16	dM4	10.4	.065(1)	3	+ 8 ± 0.2
GC 17308.	1238.4	-37 9	7.5	0.71	dG5	5.8	.038(2)	4	-30 ± 2.7
20 C 737.	1243.0	+1018	11.1	1.09	dM4	11.3	. $108(1)$	3	+ 5 ± 0.7
GC 17447	1246.2	-1256	8.1	0.41	dG2	5.3	.027(1)	5	+ 25 ± 1.5
GC 17629	1255.2	+69 19	8.6*	0.40	dG6	6.3	.034(1)	6	+ $7 \dagger \ldots$
20 C 754.	1255.6	+613	13.6*	1.01	dM5e	13.6	0.100(S)	3	- $40 \dagger \ldots$

TABLE 1-Continued

Star	$a(1900)$	$\delta(1900)$	m_{v}	μ	Spect.	$M_{\text {v }}$	π	Velocity	
								No. of Plates	Km/Sec
20 C 755	$12^{\text {h }} 55^{\text {m }}$. 8	$+12^{\circ} 53^{\prime}$	9.9	0 0.70	dM2e \dagger	9.6	0"087(S)	5	-13 ± 2.4
GC 17819	134.3	-21 39	7.3	0.40	dG7	6.7	.077(1)	4	- 6 ± 1.7
GC 17966	1311.6	+2816	8.4	0.39	dG8	6.1	.035(S)	3	$+16 \pm 0.8$
ADS 8841B	1311.9	+1733	10.2	0.67	dM2	9.5	.072(2)	4	$+10 \pm 2.0$
20 C 770.	1313.9	- 233	9.8	0.71	dK5	8.1	.046(2)	3	$+123 \pm 1.5$
GC 18040	1315.6	+38 41	8.3*	0.40	dG6	5.3	.025(1)	3	$+1 \dagger$
20 C 780 A	1323.2	-150	11.4	0.50	dM4	11.4	.098(2)	3	-26 ± 1.4
20 C 782 .	1324.9	+10 55	9.2	1.49	dM1	9.7	.124(1)	7	$+19 \pm 1.4$
$\begin{gathered} \mathrm{AC}+18^{\circ} 1204 \\ 96 \mathrm{~A} . . . \end{gathered}$	1328.1	+1716	11.0	0.38	dM4e	11.5	.126(S)	4	0 ± 2.4
$\begin{gathered} \mathrm{AC}+18^{\circ} 1204- \\ 96 \mathrm{~B} \ldots . . \end{gathered}$			11.5		dM4.5e	12.4	.151(S)	3	+ 8 ± 2.3
20 C 793	1333.2	+75 1	9.8	0.43	dK6	8.0	.043(1)	3	-1 ± 1.2
GC 18520	1337.2	+ 854	6.1	0.39	F4	3.9	.037(1)	5	-11 ± 1.1
20 C 806.	1342.2	- 538	9.6	0.67	dK4	7.0	.030(1)	3	-46 ± 0.5
ADS 9090A.	1358.5	+46 49	9.9	0.55	dM3	9.5	.085(8)	4	-31 ± 2.1
ADS 9090B			9.9		dM3	9.5		4	- 28 ± 2.4
20 C 835	$14 \quad 5.1$	-13 27	9.7	0.42	sdF7	6.1	.019(S)	4	$+126 \pm 2.8$
20 C 837	$14 \quad 7.8$	-1133	13.5	0.79	dM5.5e	14.7	.174(S)	$1 \dagger$	
$\mathrm{BD}+21^{\circ} 2649$.	1420.9	+21 3	8.0	0.64	F8	4.4	.019(S)	3	-54 ± 0.4
20 C 863.	1424.8	+15 57	10.5	1.74	dM3	9.9	.077(3)	3	$+20 \pm 1.7$
GC 19693	1431.7	- 351	7.8	0.35	dG3	4.3	.020(2)	3	-44 ± 1.3
20 C 901.	1453.6	+3145	11.1	1.50	dM1.5	9.2	.042(S)	3	$+24 \pm 2.0$
20 C 904.	1457.4	+4549	9.0	0.43	dM0	8.3	. $071(1)$	3	-14 ± 1.4
CPD-21*5912	157.4	-2136	10.5	0.70	dK5	8.0	.032(1)	3	-72 ± 2.1
L 1130-30A.	161.6	+838	12.0*	0.48	dM3e	10.4	.048(S)	5	- $48 \dagger$
L 1130-91.	$16 \quad 7.3$	+ 546	12.1	0.69	dK4	7.0	. 010(S)	4	- 15 ± 3.0
ADS 9970AB	$16 \quad 9.4$	+39 36	8.7*	0.37	dG4	3.9	.011(1)	4	-53 ± 1.5
ADS 9982A.	1611.1	+ 735	9.4*	0.50	dK6	6.9	.032(1)	8	+ 7 ± 2.1
$\mathrm{BD}+55^{\circ} 1823$	1614.9	+5532	10.1		dM1.5e \dagger	9.2	.066(S)	3	- 28 ± 0.6
20 C 986	1621.1	+4835	10.3	1.23	dM3	10.9	.132(2)	3	-29 ± 0.7
20 C 995	1624.7	-1225	10.2*	1.24	dM4.5	12.5	.288(4)	3	$-18 \dagger$
GC 22255	1627.9	+ 328	9.5*	0.40	dK0	7.6	.043(2)	5	$-58 \dagger$
GC 22445	1635.9	- 239	7.1	0.44	dG2	5.7	.051(3)	3	- 43 ± 0.9
GC 22636.	1645.1	+3712	8.2	0.38	dK0	7.1	059(2)	4	+ 4 ± 0.6
GC 22805AB	1650.1	-89	9.9	1.22	dM3e	11.0	167(7)	26	$+19 \dagger$
GC 22805C.	1650.1	-88	11.9*	1.22	sdM4	13.0	.162(4)	5	+ $25 \dagger$.
Ross 867.	1716.1	+26 36	13.4	0.47	dM5e	13.6	.110(S)	$2 \dagger$	
Ross 868.	1716.1	+26 36	11.2	0.47	dM4e	11.4	.110(S)	4	- 28 ± 1.9
ADS 10585AB	1725.5	+29 29	9.9*	0.39	dM0	8.6	. 055 (3)	4	- 7 ± 1.9
ADS 10786B.	1742.5	+2747	10.4	0.82	dM4	10.6	.111(2)	4	-13 ± 1.9
LPM 661.	1750.3	-16 23	11.0	0.60	sdF8 \dagger	6.2	.011(S)	3	-216 ± 2.2
20 C 1069	1752.9	+ 425	9.7	10.25	sdM4. $5 \dagger$	13.4	.542(7)	12	$-103 \pm 1.7 \dagger$
BD-304233	1759.8	-32	9.2	0.53	dM2	9.9	.139(3)	3	+ 34 ± 0.5
20 C 1091.	1827.9	-1142	8.8	0.41	dM0	7.5	. 054 (3)	3	-83 ± 0.3
GC 25317	1828.6	+44 57	8.1	0.36	F8	4.8	.022(1)	3	- 4 ± 1.6
20 C 1095	1832.4	+45 39	9.8	0.56	dM2	9.4	0.082(2)	3	-23 ± 2.9

TABLE 1-Continued

Star	$\alpha(1900)$	$\delta(1900)$	$m_{\text {v }}$	${ }^{\mu}$	Spect.	M_{v}	π	Velocity	
								No. of Plates	Km/Sec
20 C 1108	$18^{\text {b }} 43 \mathrm{~m} .6$	$-23^{\circ} 57$	10.5	0.74	dM4.5e	13.3	0"355(3)	4	-4 ± 0.9
20 C 1129	192.8	+2044	10.7	0.57	sdM2	11.1	.122(4)	3	$+34 \pm 2.2$
Ross 731.	192.9	+2043	10.7	0.57	sdM2	11.1	. $122(4)$	3	+ 35 ± 2.2
ADS 12061CD	193.7	+3221	11.8	1.66	dM4	12.3	. 127 (4)	3	-31 ± 2.0
20 C 1136.	197.1	$+244$	11.3	1.88	dM4	11.4	.106(2)	3	-40 ± 0.7
20 C 1143.	1912.0	+51	9.2	1.44	dM3	10.4	.171(4)	3	+ 33 ± 1.1
ADS 12882A.	1941.0	+ 40	7.0	$0.1 \dagger$	dG0	4.7	.035(S)	4	-8 ± 1.4
ADS 12882B.			11.4		dM2e \dagger	9.6	.044(S)	5	+ 5 ± 2.8
20 C 1191	$20 \quad 2.7$	+5410	12.2*	1.62	dM3e	11.2	.063(3)	7	$0 \dagger$
$\begin{aligned} & \mathrm{CD} \\ & -32^{\circ} 16135 \mathrm{~A} \end{aligned}$	2035.6	-32 47	10.9	0.45	$\mathrm{dM} 4.5 \mathrm{e} \dagger$	11.1	.109(2)	5	-4 ± 2.4
CD									
-32 ${ }^{\circ} 16135 \mathrm{~B}$	2035.6	-32 47	11.1	0.45	dM4.5e	11.3	.109(2)	5	-3 ± 2.8
20 C 1223.	2037.2	-19 16	10.3	1.15	dM2	9.4	.067(1)	3	+ 6 ± 1.8
20 C 1225	2039.0	-3142	8.7	0.45	dM2e	8.9	.111(1)	5	+ $5 \pm 3.0 \dagger$
20 C 1227.	2040.5	+5457	15.3	1.87	dM5e	14.6	.072(1)	1	$-23 \dagger$
20 C 1228.	2041.4	+448	10.6	0.50	dM3	10.6	.102(1)	3	-15 ± 1.8
20 C 1242	2051.4	-10 49	11.5	1.14	dM3.5	10.2	.056(3)	3	$+51 \pm 3.0$
20 C 1253.	2058.7	- 632	10.3	0.46	dK5	7.2	. 024 (2)	2	-37 ± 0.9
20 C 1263	215.6	+5921	13.4*	2.14	sdM1	11.5	.042(1)	5	$-260 \dagger$
20 C 1285	2124.8	+1712	10.4	1.07	dM4	11.3	.150(1)	3	-2 ± 1.6
20 C 1288	2125.8	-10 14	11.5	1.19	dM4.5e	12.3	.147(2)	$1 \dagger$	
GC 30918	$22 \quad 1.4$	+ 122	7.5	0.37	F8	4.7	.028(2)	3	-43 ± 0.8
Ross 271	226.6	+1755	10.4	0.51	dM2	9.4	. $062(1)$	3	-41 ± 2.3
20 C 1348	229.1	- 913	11.5	0.68	dK4	7.3	.014(1)	4	-18 ± 4.1
GC 31109	229.2	-1618	6.6	0.36	dG8	4.3	.035(2)	3	$+12 \pm 1.2$
Wolf 1561A	2212.1	- 918	13.5	. 0.55	dM4.5e	13.5	.101(2)	3	+ 54 ± 2.1
Wolf 1561B	2212.1	- 918	14.5	0.55	dM5e	14.5	.101(2)	$1{ }^{\dagger} \dagger$	
20 C 1363.	2223.7	+ 519	14.4*	1.57	sdK6	9.8	.012(S)	2	$-157 \dagger$
ADS 15972B	2224.4	+5712	11.3	0.86	dM4.5e	13.4	.258(7)	4	- 28 ± 0.9
20 C 1368.	2227.6	+49 11	9.3	0.41	dG8	6.1	.023(S)	3	+ 28 ± 0.4
LPM 837.	2233.0	-15 53	12.3	3.27	dM5.5e	14.6	. 286 (2)	4	-60 ± 0.8
$\mathrm{BD}+9^{\circ} 5076$	2233.6	+10 2	11.1*	0.57	dK0	6.8	.014(S)	3	- $70 \dagger$
GC 31669	2237.5	+65 59	7.5	0.44	dG3	4.9	.030(1)	3	-46 ± 1.5
20 C 1382 .	2242.6	+43 49	10.2	0.84	dM4.5e	11.8	. 205(4)	4	-1 ± 2.0
AC $+311^{\circ} 70565 \dagger$	2247.2	+31 13	11.2	0.49	dM3.5e	9.6	.047(1)	4	0 ± 2.0
$20 \mathrm{C} 1385 \ldots$	2247.3	+31 12	9.4	0.50	dK5	7.4	. 040 (2)	7	+ 3 ± 1.5
20 C 1387	2247.9	-14 47	10.3	1.12	dM4. 5	11.9	.212(4)	3	$+13 \pm 1.3$
GC $31978 \dagger$	2250.8	-326	6.5	0.36	dK5	7.0	. 128 (2)	5	+ 12 ± 1.6
20 C 1392.	2251.7	+16 2	9.0*	1.09	dM2.5	10.1	.166(2)	6	$-19 \dagger$
20 C 1404	$\begin{array}{ll}23 & 4.5\end{array}$	+ 012	10.2	1.29	sdG2	6.5	.018(S)	3	-112 ± 0.7
GC 32541.	2317.8	-1119	8.0	0.50	dK2	6.9	.059(3)		$+36 \pm 1.6$
$\begin{aligned} & \mathrm{BD} \\ & +19^{\circ} 5116 \mathrm{~A} \\ & \mathrm{BD} \end{aligned}$	2326.7	+19 23	10.3	0.53	dM4e \dagger	11.1	.146(1)	5	$-\quad 1 \pm 0.9$
, +19 ${ }^{\circ} 5116 \mathrm{~B}$			12.8		dM5.5e	13.6		6	- -4 ± 2.9
20 C 1445.	2337.0	+43 39	12.2	1.82	dM5.5e \dagger	14.7	. 321 (2)	3	-81 ± 2.5
GC 32998.	2341.2	-427	7.5	0.88	sdA2S \dagger	4.7	. $027(2)$	3	-24 ± 1.2
GC 33222 .	2352.4	-10 12	7.8	0.45	dG2	4.3	.020(2)		-32 ± 0.7
ADS 48F.	2359.9	+4514	9.9	0.87	dM2	9.7	0.089(5)	4	$+3 \pm 2.3$

NOTES FOR TABLE 1

The magnitudes of all stars distinguished by an asterisk $\left({ }^{*}\right)$ in the fourth column have been corrected for a companion star. The correction for spectroscopic binaries is 0.4 mag.

The notes for stars marked with a dagger (\dagger) follow:

ADS 48A	$0^{\text {b }} 0^{\text {m }} 4$	Spectroscopic binary, range -16 to $+11 \mathrm{~km} / \mathrm{sec}$; the distant companion F and both stars of the close pair show strong emission H and K lines.
ADS 246A	012.8	This value of the radial velocity based on additional plates should replace values previously published; a range of from +2 to $+28 \mathrm{~km} / \mathrm{sec}$ indicates
20 C 40	033.5	that the star is a spectroscopic binary; H and K appear in emission. Luyten's estimates of early spectral type (Pub. A.S.P., 34, 132 and 356, 1922; Lick Obs. Bull., 11, 128, 1923) are obviously the result of misidentification.
GC 1058	048.1	Spectroscopic binary, range -20 to $+14 \mathrm{~km} / \mathrm{sec}$.
20 C 212	37.6	Spectroscopic binary, range -140 to $-76 \mathrm{~km} / \mathrm{sec}$; the spectral lines are greatly weakened.
ADS 2894B	352.4	Spectroscopic binary, range -1 to $+34 \mathrm{~km} / \mathrm{sec}$; the emission lines were found by F. C. Leonard (Pub. A.S.P., 56, 38, 1944); the bright star has
		H and K in emission.
CD-29 2277	525.0	The high velocity found by D. M. Popper (Ap. J., 98, 210, 1943) is confirmed; the motion in the line of sight is by far the greatest yet found; the spectrum is characteristic of F-type subdwarfs.
Ross 42	526.7	Spectroscopic binary, range +5 to $+48 \mathrm{~km} / \mathrm{sec}$.
20 C 390	624.3	Unseen companion reported by D. Reuyl (A.J., 45, 133, 1936); bright H lines were found by A. Vyssotsky (Harvard Ann. Card, No. 550, 1940).
Ross 986	73.3	Spectroscopic binary, range +27 to $+85 \mathrm{~km} / \mathrm{sec}$; the emission lines were mentioned in a letter from W. J. Luyten, dated June 21, 1945.
20 C 426	725.4	Spectroscopic binary, range -26 to $+25 \mathrm{~km} / \mathrm{sec}$.
Ross 989	725.4	$39^{\prime \prime}$ north of 20 C 426, which has nearly the same motion.
Ross 882	739.4	A. van Maanen reported 1.4 mag. increase in brightness on March 11, 1943 (Pub. A.S.P., 57, 216, 1945).
$\mathrm{BD}+1^{\circ} 2341$	935.6	Spectroscopic binary, range -98 to $-15 \mathrm{~km} / \mathrm{sec}$; the proper-motion star is the preceding of two stars in the field; the lines are poor and on one plate are suspected of being double.
20 C 591	1045.7	Spectroscopic binary, range -18 to $+16 \mathrm{~km} / \mathrm{sec}$.
20 C 600	1051.6	The spectrum shows the strongest titanium oxide bands yet observed among dwarf stars.
20 C 606B	110.5	A. van Maanen reported 1.5 mag. increase in brightness on May 11, 1939 (Mt.W.Contr., No. 630; Ap. J., 91, 503, 1940); two spectrograms with dispersion $440 \mathrm{~A} / \mathrm{mm}$ were obtained by M. L. Humason.
BD-17 ${ }^{\circ} 3337$	1110.3	Spectroscopic binary, range +3 to $+43 \mathrm{~km} / \mathrm{sec}$.
20 C 641	1123.3	South following of two stars; this identification is by A. N. Vyssotsky; the results given in Mt. W. Contr., No. 387; Ap.J., 70, 219, 1929; and Mt. W. Contr., No. 511; Ap.J., 81, 240, 1935, apply to the north preceding star.
GC 16044	1136.2	Spectroscopic binary, range -32 to $-10 \mathrm{~km} / \mathrm{sec}$.
GC 17629	1255.2	Spectroscopic binary, range -12 to $+21 \mathrm{~km} / \mathrm{sec}$.
20 C 754	1255.6	Spectroscopic binary, range -76 to $-22 \mathrm{~km} / \mathrm{sec}$.
20 C 755	1255.8	Emission lines found by D. M. Popper (Ap.J., 98, 210, 1943).
GC 18040	1315.6	Spectroscopic binary, range -19 to $+19 \mathrm{~km} / \mathrm{sec}$.
20 C 837	147.8	One low-dispersion ($220 \mathrm{~A} / \mathrm{mm}$) plate only.
L 1130-30A	161.6	Spectrographic binary, range -69 to $-33 \mathrm{~km} / \mathrm{sec}$; the spectrum of the fourteenth-magnitude companion, distant $2^{\prime \prime}$, has not been observed.
$\mathrm{BD}+55^{\circ} 1823$	1614.9	The emission lines were found by G. Münch (A p. J., 99, 222, 1944).
20 C 995	1624.7	Spectroscopic binary, range -26 to $-7 \mathrm{~km} / \mathrm{sec}$.
GC 22255	1627.9	Spectroscopic binary, range -76 to $-39 \mathrm{~km} / \mathrm{sec}$.
GC 22805 AB	1650.1	Spectroscopic binary, range +4 to $+30 \mathrm{~km} / \mathrm{sec}$.
GC 22805 C	1650.1	Spectroscopic binary, range +13 to $+46 \mathrm{~km} / \mathrm{sec}$.
Ross 867	1716.1	Two low-dispersion ($220 \mathrm{~A} / \mathrm{mm}$) plates only.
LPM 661	1750.3	Lines very weak.
20 C 1069	1752.9	Barnard's star; the weakness of the metallic lines indicates that this wellknown star should be classed as a subdwarf; there is some evidence of a small variation in radial velocity.
ADS 12882A	1941.0	The proper motion is estimated from the A.G. catalogue.
ADS 12882B	1941.0	The emission lines were found by F. C. Leonard (Pub. A.S.P., 56, 202, 1944).
20 C 1191	$20 \quad 2.7$	Spectroscopic binary, range -97 to $+71 \mathrm{~km} / \mathrm{sec}$.
CD-32 ${ }^{\circ} 16135 \mathrm{~A}$	2035.6	Variable intensity of the bright lines was suspected by W. J. Luyten (Harvard Bull., No. 835, 1926).

(Notes for Table 1 continued on following page)

NOTES FOR TABLE 1-Continued

20 C 1225	$20^{\text {h }} 39.0$
20 C 1227	2040.5
20 C 1263	215.6
20 C 1288	2125.8
Wolf 1561B	2212.1
20 C 1363	2223.7
$\mathrm{BD}+9^{\circ} 5076$	2233.6
AC+31 ${ }^{\circ} 70565$	2247.2

GC $31978 \quad 2250.8$

20 C 1392
BD $+19^{\circ} 5116 \mathrm{~A}$
20 C 1445
2251.7
2326.7
2337.0

GC 32998 . 2341.2
The large range in the measures indicates that the star may be a spectroscopic binary.
One low-dispersion ($220 \mathrm{~A} / \mathrm{mm}$) plate only.
Spectroscopic binary, range -292 to $-242 \mathrm{~km} / \mathrm{sec}$.
One low-dispersion ($220 \mathrm{~A} / \mathrm{mm}$) plate only.
One low-dispersion ($220 \mathrm{~A} / \mathrm{mm}$) plate only.
Spectroscopic binary, range -176 to $-139 \mathrm{~km} / \mathrm{sec}$. Spectroscopic binary, range -93 to $-49 \mathrm{~km} / \mathrm{sec}$.
This star was found by accident near 20 C 1385 (Pub. A.S.P., 55, 242, 1943); according to McCormick observers, the two stars have about the same parallax and total proper motion, but direction of the cross-motion is quite different.
The motion is nearly the same as that of Fomalhaut.
Spectroscopic binary, range -36 to $-3 \mathrm{~km} / \mathrm{sec}$.
The emission lines were found by Wirtanen (Pub. A.S.P., 53, 340, 1941). The absorption lines are poor and the bright B lines weak; probably a subdwarf.
In this subdwarf of early type the H absorption lines have deep cores and noticeable wings; $\lambda 4481 \mathrm{Mg}$ I is present but somewhat weakened.

THE RADIÁL VELOCITIES

The radial velocities of 20 faint stars from Table 1 have been measured at the McDonald Observatory by D. M. Popper ${ }^{1}$ and G. Münch. ${ }^{2}$ A comparison of these velocities with the Mount Wilson values shows an average difference of $8.4 \mathrm{~km} / \mathrm{sec}$ and a systematic difference (Mt. W. -McD .) of $+3.3 \mathrm{~km} / \mathrm{sec}$.

For 7 bright stars of the list whose velocities were determined at the Lick Observatory, the systematic difference (Mt. W. - L.) is $-0.2 \mathrm{~km} / \mathrm{sec}$. A comparison of Mount Wilson plates taken with different cameras and different slit-widths shows only insignificant mean differences.

Large velocities of over $75 \mathrm{~km} / \mathrm{sec}$ were found for 19 stars of Table 1. As previously determined, the subdwarfs show the highest radial velocities. The average velocity for 21 subdwarfs of the list is $121 \mathrm{~km} / \mathrm{sec}$.

THE SPECTRA

The stars are classified according to the Henry Draper system. The types of the M dwarfs are based strictly upon the strength of the titanium oxide bands in the blue region of the spectrum. When obtained by this method, the types are comparable with those of the giants, supergiants, and M-type variables. The more detailed classification permitted by additional decimal half-subdivisions (M0.5, M1.5, etc.) seems justified.

Subdwarfs, formerly called "intermediate white dwarfs," have been recognized in late, as well as in early, types when the criteria are clearly marked. The spectroscopic features ${ }^{3}$ which distinguish subdwarfs from ordinary dwarfs are: for types A-M, a general weakening of the absorption spectrum; A-G, a marked weakening and narrowing of hydrogen lines and of $\lambda 4481 \mathrm{Mg} \operatorname{II} ; \mathrm{F}-\mathrm{G}$, a weakening of the G band; $\mathrm{K}-\mathrm{M}$, a strengthening of the Lindblad absorption band in the neighborhood of $\lambda 4226$ and a weakening of emission lines. According to Kuiper, the continuum at the head of the Balmer series is weakened in subdwarfs of early types, but this region of the spectrum has not been observed on our plates.

[^1]Emission lines of $C a$ II and H were observed in 41 stars of the list whose spectral types are M1.5 or later. Low luminosity and low temperature favor the production of emission lines in stars at the lower end of the main sequence, but emission lines are weak or absent in subdwarfs. The emergence of bright lines is rather definitely fixed at M4.5. Of the 32 stars with spectral type M4.5 or later, only 7 fail to show emission, and 3 of these are probably subdwarfs. Of 78 M -type stars with spectra earlier than M4.5, only 16 show emission H lines. Twenty-five additional stars (1 G0, 1 K0, $3 \mathrm{~K} 5,2 \mathrm{~K} 6$, and 18 M0-4), however, show bright H and K , but no blue or violet H lines in emission. The observations of H and K are not complete because many of the spectrograms are too weak in the violet region.

Fig. 1.-Russell diagram for late-type dwarfs with trigonometric parallaxes

Although 29 of the 66 stars showing emission are members of close pairs, the evidence seems to indicate that the bright lines result from low temperature or low luminosity rather than from duplicity.

ABSOLUTE MAGNITUDES

The absolute magnitudes determined from apparent magnitudes and trigonometric parallaxes are plotted against spectral type in Figure 1, and the mean values are given in Table 2.

TABLE 2
Absolute Magnitudes of Faint Dwarf Stars

Spectral Type	$M_{\text {v }}$	Spectral Type	$M_{\text {v }}$	Spectral Type	M_{v}
K4.	7.0	M1. 0	9.0	M3. 5	10.8
K5.	7.6	M1. 5.	9.2	M4. 0	11.5
K6.	8.0	M2. 0	9.6	M4. 5.	12.4
M0.	8.2	M2. 5.	10.0	M5. 0	13.6
M0. 5.	8.5	M3. 0	10.4	M5.5.	14.7

Because most of the stars were observed with low dispersion, no attempt was made to determine the spectroscopic absolute magnitude from the line intensities. If the stars recognized as subdwarfs are excluded, the average spread in luminosity is 1.6 mag . Since this value includes errors in apparent magnitude and trigonometric parallax, as well as errors in estimating spectral type, the results seem to indicate little dispersion in luminosity from the mean of the main sequence. The possibility of variations in apparent magnitude and type and the probability that some subdwarfs have been retained by mistake may account for some of the spread.

Kuiper's ${ }^{4}$ success in classifying faint M-type spectra on panchromatic film suggests that the red region may offer possibilities of higher accuracy in estimating spectral types than the usual blue region. If the types could be estimated by employing criteria more sensitive than the blue $T i$ bands, it would be worth while to use decimals smaller than half-subdivisions in the classification, for, in the late spectral types, a difference of one subdivision in type corresponds to a difference of more than 2 mag. in the absolute magnitude.

[^2]
[^0]: *,Contributions from the Mount Wilson Observatory, Carnegie Institution of Washington, No. 726.

[^1]: ${ }^{1}$ Ap. J., 95, 308, 1942; 98, 210, 1943:
 ${ }^{2}$ Ap. J., 99, 272, 1944.
 ${ }^{3}$ W. S. Adams, Mt. W. Contr., No. 105; Ap. J., 42, 187, 1915. Adams, Joy, Humason, and Brayton, Mt. W. Contr., No. 511; Ap. J., 81, 191, 1935. G. P. Kuiper, Ap. J., 89, 551, 1939; Colloque internat. d'ap, III; White Dwarfs (Paris, 1941).

[^2]: ${ }^{4}$ Ap. J., 95, 207, 1942.

