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ABSTRACT 
This paper is devoted principally to a statistical analysis of the speed of fluctuations in the force per 

unit mass, E, acting on a star which is moving with a velocity v with respect to the centroid of the 
near-by stars. The solution to the problem depends on the evaluation of the first and the second mo- 
ments of the rate of change of F for a given value of F. 

The statistical problem has been solved on the assumptions of a uniform Poisson distribution of the 
stars and a spherical distribution of the velocities with respect to the chosen local standard of rest. No 
other restrictions have been introduced; in particular, proper allowance has been made for a distribution 
over the different masses M. 

It is found that 

FF>« = - hGMnB (M) _ 3 , 

where G denotes the constant of gravitation, M the average mass of the stars, n the number of stars per 
unit volume, and B a certain function of \F\/Qh (where Qr is a certain “normal” field strength). It is 
indicated how in consequence of this lack of randomness in the rate of change of F for given F and v a 
star may experience dynamical friction (i.e., a systematic tendency to be decelerated in the direction of 
its motion by an amount proportional to |v|). 

The various second moments of F have also been calculated and lead to an estimate of the mean life 
of the state |E|. 

The closely related problem of the correlations in F acting at two very close points in a system con- 
taining a random distribution of stars is also considered. 

1. Introduction.—In an earlier paper1 we analyzed certain statistical features of the 
fluctuating gravitational force acting at some fixed point in a system containing a ran- 
dom distribution of stars in motion. In this paper we propose to extend this discussion 
to the case of the fluctuations in the force acting on a star which is moving with a definite 
velocity z; in an appropriately chosen local standard of rest. The discussion of this case 
requires an essential generalization of the analysis contained in I, since for our present 

* Some of the results contained in this paper were included in and formed part of an essay written by 
S. Chandrasekhar and entitled “New Methods in Stellar Dynamics,” for which an A. Cressy Morrison 
Prize was awarded by the New York Academy of Sciences. 

1 Ap. /., 95, 489, 1941. This paper will be referred to as I. 

1 
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2 S. CHANDRASEKHAR AND J. VON NEUMANN 

problem what is relevant is the distribution of the velocities of the other stars relative to 
the one under consideration, and we cannot assume that this has a random character,2 

for the distribution of the relative velocities V will show a marked asymmetry in that 
there will be a preponderance of negative velocities. More exactly, if the distribution of 
the velocities relative to the chosen standard of rest is characterized by randomness, then 

V = —v . (1) 

This asymmetry in the distribution of the relative velocities has important physical 
consequences. Thus, as we shall show (§ 11), it is as a direct result of this asymmetry 
that a star experiences dynamical friction, or, expressed differently, it suffers from a 
systematic tendency to be decelerated in the direction of its motion by an amount pro- 
portional to 11; I. 

A second problem we shall consider in this paper concerns the correlation in the forces 
acting at two very close points; this problem is closely related to the one formulated in 
the preceding paragraph. 

2. The general formula for W (E,/).—Consider a star moving with a velocity v., The 
force F acting on the star per unit mass is given by 

(2) 
i \Ti\ 

where Mi denotes the mass of a typical field star and its instantaneous position vector 
relative to the star under consideration. Accordingly, the rate of change of F is given by 

Ti [Ti-Vi] 
)■ 

(3) 

where Vi denotes the velocity of a field star relative to the one under consideration. 
It is clear that the speed of the fluctuations can be specified in terms of the distribu- 

tion function 
W(FJ), (4) 

which gives the simultaneous probability of a given force F acting and an associated 
rate of change of F of amount /. The general expression for this probability can be readily 
written down following Markoff’s method outlined in I, § 2. We have (cf. I, eqs. [18] 
and [19]) 

W 
M CO 00 

(,F,/)=6¿ / / e~i(p‘2?+,r'/M (P’ 
Pi =0 |<r|=0 

where 

A (P, o') = 
limit 

R—ÏCO IttÍ^3 / ff e^'^’^rdrdVdM 0<M<co |r| <-R I V\< 

AicRhi/Z 

(5) 

(6) 

In equations (5) and (6) P and o* are two auxiliary vectors, n denotes the average num- 
ber of stars per unit volume, 

and 

3 
r[r-V}\ 

In6 / 

rdVdM = T (V; M) dVdM 

(7) 

(8) 
2 We use the word “random” in the sense defined in S. Chandrasekhar, Principles of Stellar Dynamics, 

p. 8, University of Chicago Press, 1942. 
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gives the probability that a star with a relative velocity in the range ( F, V -\- dV) and 
with a mass between M and M + dM will be found. It should be further noted that in 
writing down equations (5) and (6) we have supposed that the fluctuations in the stellar 
distribution which occur are subject only to the restriction of a constant average density. 

Since 
3 

47TÆ3 iff 0<m<oo |r|<ß I V\<<n 
TdrdVdM = 1, (9) 

we can re-write equation (6) as 

A (p, <0 = 
limit 

R—>00 47t£3 Iff 0<M<oo ¡r|<Ä |7|<<» 

x í 1 - eW-ï+W} TdrdVdM 

47rÄ3n/3 ^ (10) 

We replace formula (10) by 

A (P, o’) = 
limit 

>00 

_CO +00 +00 

1 - 4^« f f / Í1 ~ 6i(p-<l>+<r-',,)i TdrdVdM 0 —<x> —oo 

47TÄ 3n/3 

(ID 

The integral which occurs in the foregoing equation is conditionally convergent. It 
+00 

should be noted that (among others) the integral / .... dr is a triple integral, since 
J —00 

r is a vector. The origin of the expression should make it plausible that one must 
integrate over the two polar angles #'and co of r first and over |r| last. (Indeed, 
/+00 pco pit /»Z7T 

. ... dr or, rather, / / /....|r|2sin âdœdâd | r | originates from the 
■00 ^0 ^0 

y« n R pit /'2ir 
. ... dr or, rather, / / /....|r|2sin iïdudûd\r\, of equation (10) with 
Ir| <ä */o Jo 

i?—>oo.) A justification of this plausible procedure will be given elsewhere, by means 
of complex integration. This point is of importance, because an improper order of 
integrations may lead to incorrect results. 

Now equation (11) can also be written as 

this 

A (p, o') = e~nC^^ (12) 

where 
,oo +00 +oo 

C(V,(T)=f f ^{1 - e¿(P-<f+<r«|/) drdVdM. 
0 —oo —oo 

(13) 

In the foregoing expression for C(p, o’) we shall introduce <|> as the variable of integration 
instead of r. Since <1> and r have the same polar co-ordinates and since | $ | and | r | de- 
termine each other, our earlier remarks concerning the r-integration apply equally to the 
(^-integration. We have (cf. I, eqs. [22]-[24]) 

dr = — J (Gif )3/21 <|> I -9/2d<t> . (14) 
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4 S. CHANDRASEKHAR AND J. VON NEUMANN 

We can re-write equation (13) as 

00 
1 — e } I <j> I -9/2^ 

In equation*(15) o'.*)/ will have to be expressed in terms of cj). Thus, 

o-.i|/= (GM) ~1/2 { 14> 13/2 (c-F) -3 |<t>|-1/2(<().R) (<t>.o-) } . 

If we now put 

<r = (GM ) , 

<r • xj/ can be expressed more conveniently as 

cr• i|/ = I<(> 13/2 (o’!-7) — 3 I <j> I “1/2 (<()-T) (<|>-o'1) . 

Returning to equation (15), we write it in the form 

00 +oo 
C(p, a) = 1G3/2y JdMdVrM^ f { 

oo +oo 
C (p, <0 = §G3/2/ f dMdVrM^D (P, o-) ; 

0 —oo 

where 

/•+CD 

D (p, <T) = / { 1 - e i(P-<t>+<r-'l') J I <{, I -9/2d^ 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

An alternative form for D(p, cr) is 

.+œ + 00 ^+oo 
D(P, o’) = J*(1 — ^-p-<l>) |<()|-9/2¿<t)+y ^P-4>(1 - ei<r-+) \<k\-^d<k. (21) 

— oo —oo 

The first of the two integrals which occur in the foregoing equation is equivalent to 
one we have already evaluated in I (eqs. [55]-[58]). We thus have 

r+co 

2>(P, O') = ^(2^) 3721 p|3/2+ J - e^) |<|> |-9/2¿<|>. (22) 

Equations (5), (12), (18), (19), and (22) formally solve the problem of the determina- 
tion of W(Fyf). However, an explicit evaluation of W(F,f) would require a complete 
knowledge of the function ^4(p> o’). But if we are interested only in the moments of / 
for a given F, we need only the behavior of ^4 (p, o’) for lo*! —» 0 or, according to equa- 
tions (12) and (19), in the behavior of D(p, o') for |o'|—> 0. We can therefore expand 

(23) 

which occurs under the integral sign in equation (22) in a power series in o\ Retaining 
only the first two terms in this expansion, we obtain 

D (p> O’) ==18^(27r)3/2|p|3/2_jDi(p, O') +Z>2(P, cr) +0(|o'|3) , (24) 

where 
+ °0 

Di(p, v) = if (o-*»)/) I «t* I , (25) 
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and 

1 r+œ 

D2(p, <0 =-J eiP'Q* (o’• \J/)2 J<(> ] . (26) 

3. The évaluation of Di(p> o’).—Substituting for cr-x)/ from equation (18) in equation 
(25), we have 

•+0° ^ ($-V) (^.o-O rr ( VY*K / ^Y*ui7 ) , , , 
Di(p, (T) (ovF) -3 — [|<f>|-3¿<|>. (27) 

To evaluate this integral we shall first choose a Cartesian system of co-ordinates with 
the z-axis in the direction of p. Let the vectors <7i and V in this system of co-ordinates be 

Further, let 
0-1= Ui, s2, i3); V= (Vu F2, F3). 

1<j> = (h mJ n) = (sin û cos co, sin û sin co, cos û) 

be a unit vector in the direction of <(>. Equation (27) now becomes 

00 X OTT 

(P> <r) = ij J J d\§\ dûdœ | <t> | _1 sin 
^ ‘"o 'o 

X [ ( 3,7,+ s2V2+ szVs) — 3 (Psi Fi+ w2 i2 F2+ rc2 53 F3+ Im [s.V^ s, F2 

+ mn[ 53F2 + s2F3] + wZ[ ^iF3 + 53Fi]) ] 

The integral over co is readfiy performed, and we obtain 

.CO +1 

(28) 

(29) 

(30) 

D1(p, o’) = 2mf fe^^^lssVz-iis^i+s.V,) ] 

+ [|(íiF1+í2F2)-3Í3F3]/
2} I <t> I14>|, J 

o —1 (31) 

where we have written t = cos û. Without altering its value we can clearly replace t by 
— ¿ in the foregoing expression. But this replacement changes 

eilpll«l>h into ¿-¿IpMYU (32) 

under the integral sign; taking the arithmetic mean of the two resulting integrands, we 
obtain 

00 1 

ZMP, o’) =4«/ f'cos ( I p I |«t>|í) {tí3F3-é(51F1+í2F2) ] 
0 0 

+ [f (SiFi+ s2F2) — 3SsF3]/
2} |<t>|-W|<l>|) J 

or, writing x = | P | | <|) |, we have 

(33) 

oo 1 

Di (P> <r) = 4«f f cos (xt) { [ s3F3 — I (siFj+ s2F2) ] 
0^0 

+ [1(^iF1+^2F2)-3í3F3]/
2}^-Wx . J 

(34) 

Both the x- and the /-integrations can now be carried out. According to the remarks 
made after equations (11) and (13), we must carry out the integration over t first and x 
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6 S. CHANDRASEKHAR AND J. VON NEUMANN 

later. (We may note here that actually the reverse order of carrying out the integration 
over x first and t later leads to the value 0; this paradoxical result is, of course, caused by 
the conditional convergence of the multiple integral.) The /-integration gives (cf. I, 
eqs. [137]) 

CO 

£>i(P, “O =4«/] — 

+ (f [ -yiFi+ J2F2] — 3 S3F3) —[sin * — a; cos *])| 
dx 
x (35) 

/d x ' 
(x2 sin x—3 sin x+3x.cos x) — . 

x4 ; 

Now 

00 dx 
/( x2 sin x — 3 sin x + 3 x cos x ) —r 

* 

= —4 f (x2 sin x — 3 sin x-1-3x cos x)-4-4-44 3 JQ dx \x3/ 

If*. . .dx 
= — / ( x cos x — sm x ) -^r 3 x2 

1 fa±(^ç\d I 
3 J0 dx\ x ) 3 ’ 

Hence, combining equations (35) and (36), we have 

Di (P> o') = —%7ri ( Fi+ S2V2 2 S3 V3), 

dx 

> (36) 

(37) 

where, it will be recalled, Si, S2, S3 and Vh V2) V3 are the components of 0^ and F in a 
system of co-ordinates in which the 2-axis is in the direction of p. If o' = (01, <72, as) in 
the same system, then, according to equation (17), we can re-write equation (37) as 

£i(p, o-) =-f7T¿(GAO-1/2((7lF1+(72F2-2(73F3). (38) 

4. The evaluation ö/D2(P> o').—According to equations (18) and (26), 

ZMP.o-) =jfeip-*[ (o'l-F) -3(4^) (4.0-O ]2|<t>|-3/2á<l>, (39) 
^ —00 

where, as in equation (29), 1$ is a unit vector in the direction of <j>. Using polar co- 
ordinates, we can express Á(p, o') as 

1 r00 r+1 r27r 

D2 (P> cr) = w / / /^lpll<í>lí[ (^i-F) -3(4^) (4.0-0 ]2 

-1 

X I <|> I ^dœdtd I <)> I , ^ 

or, introducing a new variable 2, defined as 

2= IpI I4>l, 

(40) 

(41) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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we have 

.00 „+1 „27r 
Ö2(P» °')=||p|-3/2// /ei2i[ (^1-^)-3(4-7) (l.o-o-!) ]22i/2àwif^z. (42) 

0—1 0 

After performing the integration over co, we obtain 

,oo „+1 
D2 (P, a) = TI p I-3/2^/e-' [ (o-i-7) -3(4-7) (4-0-!) ]2 z^dtdz , (43) 

0 —1 

where we have used the bar over [((L • V) — 3(l<j> • F)(l<|> • ^i)]2 to indicate that the aver- 
aging over co has been carried out. 

In order now to evaluate the integral in equation (43) we first note that, since 

[cti«F— 3(l<f>« FXlijï'CL)]2 is an even function in t (cf. eqs. [47] and [49] below), 
A(P>o') has the alternative form 

00 -)-1 
£>2(p, 0-) = Tripler feos (s/) [(Ti-F-3(4-7) ]2 z^dtdz . (44) 

> o -i 

The integration over z and t are now best performed by regarding them as complex 
variables and integrating along appropriately chosen contours. Thus, writing equation 
(44) as 

¿>2(P, o-) = xipi-3/2^/■ zi/2¿2¿í (45) 

-1 *'o 

and choosing for z and l paths of integrations as in the appendix to our first paper, we 
obtain 

ACP.o-) = — tiT (f ) |p|-3/2gte-W4/ [(ovF) -3(4-7) ( 4'°’1) 12 

—1 
x r*'Ht. 

(46) 

In equation (46) the integration over t has to be carried out along a. curve from —1 to 
+ 1 in the complex /-plane, which lies entirely in the domain át Jï 0 and |/| ^ 1. In 
order to carry out this integration we must first expand [(oi-7) — 3(l<t,-7)(!<(,• Ci)]2 

and average over co. We find that 

(ovF) -3(4-7) (4-04) 

= 1 (ÍX7Í+Í2 72+ Sí V3) — 3p2í1 Fx-f- m2 S2V2 + n2 s3 Vs + lm( Jx 7S 

+ í2 7i) + w«(s273+ í872) + w/(í37i + íi73) J]2 

= (íi7i+ î272+ s3 73)
2 — 6 («! Fi-)- S2 72+ s373) (Ps1V1+^s2V2 

+ ñ? s3 73) 

+ 9(Js\v\ + ^slv\ + '^sl V¡) + 9/W (s¡Vl+ slvl +4 Sl s2 V172) 

+ 9Â2(^73+î3
2722+4î2î3F2 73)+9^2]2(^7?+ íx73 + 4 JsiiFäFi), J 

(47) 
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where 

Since 

S. CHANDRASEKHAR AND J. VON NEUMANN 

l — sin $ cos co w = sin $ sin co ; n = cos ê(=t). 

¿2 = W2 = 1 ( ! _ ¿2) . n2 = t2 , 

= n2m2 — ^t2 { \ — t2) ; 

/4 = ^=|(1_^)2 . 
(1 -/2) 

(48) 

(49) 

the integral we have to evaluate is 

,+i 
/=/{ (5iF1+i2F2+ssF3)2r3/2-6(5aF1+52F2+53F3) 

X[[|(5iF1+s2F2) (l-í
2)r3/2+í3F3íF2]]+-VM^F?+^F^ 

X (l-í2)2r3/2 + 9í3F3Í6/2 + |(52F?+52
1F2 + 4í2j1F1F2) ^ (5°) 

X (1 -F)2i-s/2+f (4Fs+ s¡Vl+ s¡Vl+ s?F3+45253F2F3 

+ 4S3Í1F3F!) 

We readily verify that the various complex integrals which occur in the foregoing ex- 
pression have the following values : 

fr^2dt=-2(l+i) ; 
-i 

/Î/2^ = +f (1+i) ; 
-i 

r+1 

j^dt = +ni+i) ; 

f (i-¿2)r3/2¿/ = -f(i+¿), 
-i 

r+1 

/ (i-t2)2t-v2dt=-n(i+i), 
-i 

r+1 

j (i-nti/2dt = +^d+i). 

^ (51) 

Substituting these values in equation (50) and after some minor rearranging of the 
terms, we obtain 

7 = -f(l+¿) f Si(5Fi + 4F2 — 2F3) +s2(5F2 + 4Fi — 2F3) 

+ ^(4F3
2-2F?-2Fl) -8í2J3F2F3-853íiF3Fi+2s152F1F2] . 

Finally, combining equations (46) and (52) and remembering that 

SRe-^U+t) = V2 

(52) 

(53) 

and returning to our original variable <r = (crj, <t2, as) according to equation (17), we 
find that 

D2(P, o’) =A(27r)3/2(G10 -3/2 <ri(5Fi+4F| —2Fs) + <r2 ( 5 F : 

+ 4Fl - 2 F3
2) + <r3

2 (4F2 - 2F? - 2 F2) - 8<r2<r3F2F3 - 8a3a1ViV1 

+ 2a1a2V1V2]. 

(54) 
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5. The expression for A(P, <r) for lo"! —» 0.—Combining equations (24), (38), and (54), 
we have 

£> (p, 0-) = (27r)3/21 p 13/2 +|7ri {GM) -1/2(a1V1+a2V2 - 2azVz) 

( 2ir)3/2 (GM)_11 PI-3/2 [ (5c\ + 4ct-2al) V{+ (4^+5<r2
2 - 2^) Vl 

+ (4<rl- 2<t\- 2al) V¡ -8^<t3V2V3 - 8<r3<71F3Fi+ 2<r1<r2F1F2] 
(55) 

+ 0( |cr|3). J 

Substituting this expression for Z)(p, <r) in equation (19), we obtain 

C(p, <r) = (27r) 3/2G3«lf3/2 |p|3/2 + f«G((71AfFi + (r2MF2- 2<73lf F3) ^ 

+ ^ ( 2 x) I p I -3/2 [ ( 5 «r? + 4 <7^ - 2 <r^) /If V2 F^ + ( 4 «r2! + 5 <rl - 2 <7^) 

X + ( 4 <7^ - 2 <7? - 2 cr^) WW\ - 8 (72 <73FfF2 Fa - 8 (73 dWWWi 
(56) 

+ 2<71<72lfF2F1F2] +0(|<r|2) J 

where we have used bars to indicate that the corresponding quantities have been aver- 
aged with the weight function r( V; M). 

In all the foregoing equations V = (Fi, V2, F3) represents, of course, the velocity of 
a typical field star relative to the one under consideration. If, now, u and v denote, 
respectively, the velocities of the field star and the star under consideration in the chosen 
standard of rest, theii 

V = u — v . (57) 

We shall now introduce The assumption that the distribution of the velocities u among 
the stars is spherical,3 i.e., the distribution function ^(u) has the form 

V(u) |u|2], (58) 

where ^ is an arbitrary function of the argument specified and the parameter j (of the 
dimensions oL [velocity]-1) is allowed to be a function of the mass of the star. This as- 
sumption concerning the distribution of the “peculiar” velocities u implies that our 
probability function r(F; M) must be expressible as 

r (F; M) | F+v |2] x (M), (59) 

where governs the distribution over the different masses. For a function r of this 
form we clearly have 

ÍTF¡ = -M v» ; M^Vl = Pf1/21 u |2 d-il/W , (^=1,2,3) | 
 -    11 y (60) 
Tf1/2F/*Vv = If1/2zvvv (m,^= 1, 2, 3, fx^v). J 

Substituting these values in equation (56) and after some minor reductions, we find that 

C(P, *) ( 27t) 3/2G3/2M3/2 I P I 3/2 — I 7TÍGM ( (7i Z)i + cr2 ^2 “ 2 (73 ^s) 1 

+ i ( 2 TT) 3/2G1/2Tf 1/2 I U I 2 |P|_3/2(ö-21+0-2) +A(27t) I p I -3/2 

X [ oí (5 zq + 4 z>2— 2 £3) + 0-2 (4 zq+ 5 z>2 ~ 2 ^3) + (73 (4 ^3 — 2 — 2 ^2) 

— &a2(rzv2vz — 8<tz<71v3Vi+ +0( [o'!3), , 
3 It would be entirely feasible at this stage of our work to introduce a more general distribution of the 

velocities (e.g., an ellipsoidal distribution); but we shall not consider these refinements in this paper. 
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10 S. CHANDRASEKHAR AND J. VON NEUMANN 

where we may recall that (01, 0-2, 03) and (fli, ^3) are the components of <r and z; in a 
system of co-ordinates in which the s-axis is in the direction of p. We shall now specialize 
the co-ordinate system still further by arranging that the vector v lies in the xz-plane 
(see Fig. 1). With this choice of the co-ordinate system 

where 
Ai = I v I sin y ; ^2=0; ^3 = | v | cos 7 , 

y = ^(P>v). 

(62) 

(63) 

The expression for C(p, <r) now simplifies to 

C (p> <0 = (2tt) 3/2£3/2jJ^-3/2 | p | 3/2 _ | | ( (Tx sin 7 ~ 2 (73 cos y) ^ 

+ i ( 27r) 3/2G1/2MV2|U|2 I p I -3/2 (al+4) +-^(2t) V2G1/2MV2 | y | 2 | p | -3/2 

X [(tÎ(5 sin2 y — 2 cos2 y) + 0-2 (4sin2y — 2 cos2y) + 0-3 (4 cos2 y — 2 sin 2y) 

— 8 O-10-3 sin y cos y] +0 ( ¡ cr |3). y 

^ (64) 

Substituting this expression for C(P,<r)in equation (12), which defines ^4 (p, o’), we obtain 

A (P, O’) = alpl 3//2+iff-P(<r)—&lPl_3/2[ Q(o')+ÆJî(<r)] + o(Io”|3) (65) 

where we have written 

a = TV ( 2 tt) ^G^2M^2n ; 6 = J( 2 tt) ^m1/2 \u\2n, 

g = %TrGM\v\n; 
Ml/2 v (66) 

M1/2|l^|2, 

and 

p (O’) = 0-1 sin y — 2 0-3 cos 7 ; Q (v) = <ri+ <rl, 

R(<r) = o-? (5 sin2 y — 2 cos2 y) + 0-2 (4 sin2 y — 2 cos2 y) 

+ 0-3 (4 cos2 y — 2 sin2 y) — 8 o^i sin y cos y . 

An alternative form for ^4(p, o’), which we shall find useful, may be noted here: 

A(p, o-) =e-“lPlí/2[l+¿gP(«7) -!g2[LP(o-)II2 

-HP|_8/2[Ie(o-) + kR (a) I +0 ( I a 13) ] 

(67) 

(68) 

Now, according to equation (5), yl(p, o’) is the six-dimensional Fourier transform of 
the distribution function PF(F, /). Consequently, for the purposes of this equation the 
vectors p and o' should be referred to a fixed system of co-ordinates. But the expressions 
for P(cr), Ç(o’), and R((r) (eq. [67]) involve the components of a referred to a variable 

[28])^ k6 no^e<^ our Presen^ definitions of a and b agree with those of our earlier paper (I, eq. 
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STATISTICS OF GRAVITATIONAL FIELD 11 

system of co-ordinates, depending on the direction of p. We shall now give the linear 
transformation required to pass from this variable ryz-system to a fixed -system (see. 
Fig. 1). This fixed ^f-system is so chosen that the f-axis is in the direction of F and 

l F 

the -plane contains the vector v. The accompanying table gives the direction cosines of 
the axes belonging to one system with respect to the axes belonging to the other. 

Ox 

Oy 

Oz. 

on 

sin a — / cos 7 
sin 7 

m cos a 

Xi = 

X2 = sm 7 
X3 = sin û cos 03 = l 

Or, 

m cos 7 
sin 7 

w sin a — / cos a 
sin7 

/¿3 = sin $ sin co = w 

Mi = 

M2 

or 

vi 
cos a — n cos 7 

sin 7 
m sin a 

= :  sin 7 
vz = cos û — n 

(69) 

Here a is the angle between F and v: 

a = £ CP» , (70) 
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and 

S. CHANDRASEKHAR AND J. VON NEUMANN 

cos 7 = cos (p, v) = w cos a + / sin a . (71) 

Thus the required linear transformation is 

<Ji= \i(n + lliVrt+ViGi; , (f = 1, 2, 3) (72) 

where cr$, and erf are the components of o' referred to the fixed system of co-ordinates. 
6. The evaluation of the first moment of f.—To determine the average value of / (for a 

given F) in any specified direction, it would clearly be sufficient to evaluate the first 
moments of the components of / (namely, /$, fVy and /$• ) along the three principal direc- 
tions of the £77f-system defined in § 5. We shall consider first the moment of/^. 

According to equation (5), 

-t-oo . -foo +00 +00 
/tF(í’,/)/íá/=^//fe-WF+r-fiAify^fsdpdadf. (73) 

00 — 00 — 00 

But 

J-3 f+e-<'r-ffsdf=iÔ'(lTt) ô(<rv) , (74) 

where the 5’s denote Dirac’s ô-functions and 5' the first derivative of the ô-function. 
Remembering that 

f+f(x) 5r(x)dx = -f'(0) , (75) 

we can reduce equation (73) to 

fw(FJ) fid f = [fi*-* U- A (P, <r) 1 dp. 
-00 ^ -co Ldaz -* |<r| =o 

But, according to equation (68), 

dP (o’) 
If-A (P, o’) 1 =ige a 

L3o-f J1<r|=0 

-alp|VJ 

d <rj ’ 

(76) 

(77) 

since P is linear in <r. Thus, 

,+ co 

fiif- /C-H.1V-.P-F (|^) 1, , (78) 

or, choosing polar co-ordinates (see Fig. 1), 

,+ oo co _7r 
ÍW{F,f) f(df=-^ íf /'e-<1lPi3/2-iIP|lí,|co8í/'^.y p|2sin,,d|p|àî,àa,_ 

+o 8,r ^ “0 \0<7{/ 
(79) 

Performing the integration over co, we obtain 

,-f00 g j* vfi 

4^2 fw (F,f) /£^/ = ¿ f /e-IPl3/2-dPl If U (^ |p|2d|p|^, (80) 
0 -1 
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STATISTICS OF GRAVITATIONAL FIELD 13 

where we have used a bar over dP/dc^ to denote that the averaging over o> has been 
carried out; further, in equation (80) we have changed from the variable # to ¿ = cos 
Putting (cf. I, eq. [134]) 

I P I |F I = x ) IF I = a2/3/3 (81) 

in equation (80) and remembering that dP/da^ is even in t (cf. eq. [87] below), we obtain 

+ CX> OO 1 . _ 
fw(F,f) fidf= 2Ja,ißzJJ^ (|^) cos xtdxdt. (82) 

The first moment ofis now obtained by dividing the foregoing equation by W(F) 
(I, eq. [117]). We thus have 

xtdxdt. (83) 

We have similar expressions for/,, and/f. 

We shall now evaluate dP/daz, etc., According to equation (67), 

. P = (7i sin 7 — 2(73 cos 7 , (84) 

or, transforming to the ^f-system according to equation (72), we have 

P— (Xiö'£ +Mi^ + ^sOsin 7 — 2 (X3(7£ +/430’7,+*'3 0'r) cos 7 . (85) 

Using the table of direction cosines (69) and after some rearranging of the terms, we 
obtain 

(86) 

(87) 

P = (T£ ( 1 — 3/2) sin a + (7f ( 1 — 3^2) cos a — 3ln (vz cos a + (7¿- sin a) 

— 3 o'rj'ffi (/ sin a-\-n cos a) . 

From this equation we readily find that 

= ~ sin a cos a = ~ 2 ( 1 — 3Í2) sin a , 

= — 3 (mZ sin a + mn cos a) = 0 , 

— ( 1 — 3w2) cos a — 3ln sin a = + ( 1 — 3t2) cos a . 

Thus, according to equations (83) and (87), we have 

f*=~^ßihß)^^sina; ^=0; Ii=^ßH{ß)&{-ß)co*a'(88) 

where we have written 
OO 1 

(ß) = Jf e-^y/2xm-3n cos xtdxdt. (89) 
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14 S. CHANDRASEKHAR AND J. VON NEUMANN 

We shall now evaluate fi(ß). Performing the integration over t, we obtain 

oo , _ 

^ (ß) = J e-(:r//|0)3/2£2 j51 ¿ ^ cos ^ sin ^ — 2 sin x) \>dx (90) 

or, after some rearranging of the terms, 

00 j 00 

fy(ß) =6 J£~(x/0)3/2 (sin x — x cos x) — —2 Je~^x^z^x sin xdx . (91) 

The second of the two integrals which occur in equation (91) is seen to be related very 
simply to the Holtsmark function defined in I, equation (116). Further, denoting 
by K{ß) the integral 

x 

we have 

Now 

K (ß) = — f e~(xW3/2 (sin x — x cos x) —— , 
W0 

$(ß) =3wK(ß) -TrßH(ß). 

dK 3 r ) 
= - ■ / e-(Viö)3/2 (sin x — x cos x) xl/2dx 

dß 7rß5/2 */0 

2 d 
—   / — ( ß-C^/i8)8/2) (sin x — x cos x) dx , 

Trp dx 

or, after integrating by parts, we have 

. 4^* — e~^')Z/Cix sin xdx = E (ß) . 
dß TTD 

(92) 

(93) 

(94) 

Hence 

r 
K(ß) = J H(ß)dß. 

Now, combining equations (88), (93), and (96), we have 

f(= — gB(ß) sin a ; /, = 0 ; ft = 2 gB {ß) cos a 

•ß 
where 

B{ß) =3 
f Hiß)dß Jc\ 

1 . 

(95) 

(96) 

(97) 

(98) 
ßH (ß) 

The asymptotic properties of Biß) are easily derived from those of Hiß) (I, eqs. [118] 
and [119]). We find that 

£(¿3) = jVPCV-^ + Ofd4), iß^O) (99) 

and 

Biß) 
5^2 
8 03/2. (d^œ) (100) 
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Consider now an arbitrary direction (7, my n). Then 

f h mm M fç , 
or, according to equation (97), 

fit mm — —^irGMnB (ß) I y I (/ sin a — cos a), 

15 

(101) 

(102) 

where we have substituted for g from equation (66). Remembering that the direction 
cosines of v are (sin a, 0, cos a), we have 

y I (/ sin a — 2n cos a) = | y | (/ sin a + w cos a) — 3n\u\ cos a 

_ i ? r , V * *• It m tn à Ie’Io * * *■ 11 m tn i 
(103) 

where lz,m,n stands for a unit vector in the direction (¿, m, n). Hence we can re-write 
equation (102) as 

f- lltmtn = — f wGM nB (ß) [^y — 

or, more simply, as 

{v-F) 
F • 1 Z» m >n (104) 

(105) 

We shall return to this equation in § 11. 
7. The evaluation of the second moment off.—There are in general six independent mo- 

ments of the second order that we have to consider, namely, 

n, fv, and 4/ £ • (106) 

In terms of these six moments, the second moment of the resolved component of / along 
any arbitrary direction can be specified. For, if/z,m,n denotes the component of/in the 
direction (l, m, n), then 

= + vff\ + + ImnJJç + . 
I (107) 

In our particular problem we should expect on symmetry grounds (and this is verified to 

to be the case) that two of the six moments (eq. [106]), namely,/^ and/^/f, vanish 

identically (cf. eq. [97], according to which= 0). Accordingly, equation (107) reduces 
in our case to 

+ (107)' 

We shall first consider the moments f\,f% and /£. We have (cf. I, eq. [123]) 

/^+00 i /.+ 00 r r)2 i 
it, (108) 

— OO —00 T I <T I =u 
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16 S. CHANDRASEKHAR AND J. VON NEUMANN 

where we have used r to denote either £, -q, or f. Now, according to equation (68), 

T l<rl~°' T ) (109) 

T T 

Hence, 

,+ co 
fw(F,f) frdf=~ 

xj!^ + „Pl-[!S+^](dp 
(110) 

or, choosing polar co-ordinates in the (£, 77, f)-system, 

,+ œ ^ J30 +1 Oír -j ^ -ri z« 
fw(FJ) frdf=-^ f f 

(HD 

Performing the integration over the azimuthal angle w and introducing the variable 

*= iPl \F F I = o2/3j8 , (112) 

equation (111) becomes 

fw(F,ß fin - ff 

+ 

e-(x/a)V2 

(113) 

x s/2tx2 cos xtdtdx 

where the bars over d2P2/d(r2Ti etc., indicate that the averaging over co has been carried 

out. We shall presently show that d2P2/d<4, etc., have the forms 

(U) = 9o.T+92.r/2 + 94,r/4, 

(f|) = â0'T+â2’T*2’ > (t = %, q, Ç) 

T rt2 +9I4, 5 7 

(114) 

where ‘po, r, , 914, r are constants with respect to the variables of integration in equa- 

tion (113). Substituting these equivalents for d2P2/do-2T, etc., in equation (113) and di- 
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STATISTICS OF GRAVITATIONAL FIELD 17 

viding throughout by W(F) according to I, equation (117), we obtain for the moment of 
fr the expression 

.“„i 

(115) 

f= 2ty2 f fe-WW* (go, T +£2, T¿2 cos (xi)dxdi 
TTtL (fJ ) 

2 00 1 
+ w4-n^ Í f^~(x/ßW2(Ci)0-r+%,rti+%,rti) X* COS (xt) dxdt , 

TTpIJ. \p) ' 

where, for the sake of brevity, we have written 

£¿0. T = âo , r + & 9lo , r ; ^£2 . T = ^2 , r + ^ 9^2 . r Î t = k £R.4 ,r (r=^,77,f).(ll6) 

In equation (115) the integration over t can now be effected. Using the elementary 
formulae 

/■ cos xtdt 
sin x 

x 

Jt2 cos xtdt = X — (sin x — x cos x) , 

/■ t* cos xtdt 

X Xo 

sin x 4 
X X5 ( —x3 cos x + 6x cos x + 3x2 sin x — 6 sin x) , 

(117) 

we readily obtain from equation (115) 
ßl/2 

f'=abW(ß)\ ^0,r+£2,r+^, r)G(ß) -2^, TI(ß) - Í&, rJ (ß) f 

(%, r+^2, r + %, r) ßH (ß) ~ 2%, rK (ß) -4%, TL (ß) | , 

(118) 

2ßH{ß) 

where G, H, /, /, K, and L are functions of ß defined by 

2 

7T 

co 
G (ß) —— f e~^ßS)Z^x~1/2 sin xdx , 

7T »/. 

y ( 119)5 

2 ^ 
H (ß) = — / e MPy/'x sin xdx , 

^ßJo 

2 r° 
I (ß) = — / e-(z/0)72a;-5/2 (sin x -- x cos x) dx , 

^7) 

2 r° _ 
J (ß) =— / 6-(x/^3/2X_9/2 ( —#3C0S £ (5XC0S £ 3£2sin x _ (5 sinx) ^ 

2 r00 

(jS) = — / e_(x/^3/2x_1 (sin x — x cos x) dx , 

2 r00 

L (/3) = — / e-(x/ftz/2x~* ( — x3 cos x + 6x cos x + 3x2 sin x — 6 sin x) dx . 
ttjq ) 

5 We may draw attention to the fact that we have not changed here our definition of B{ß) \ it repre- 
sents the Holtsmark function as hitherto; similarly, our present definitions of G(ß) and K{ß) agree with 
those we have given earlier (I, eq. [159] and eq. [92] of this paper). However, the functions I(ß), Jiß), 
and L{ß) are introduced here for the first time. 
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18 S. CHANDRASEKHAR AND J. VON NEUMANN 

It remains to obtain the expressions for <£o, r, , (r = 77, f). The calcula- 
tions are straightforward but somewhat tedious. But we shall illustrate the method by 
outlining the derivation of 9^2, and £R.4,U 

According to equation (67) 

d2R_ d2 rT2r, 0 o 1,2 
dal dal 

(<ri [5 sin2 7—2 cos2 7] + a2 [4 sin2 y — 2 cos2 7] 

+ erg [4 cos2 7—2 sin2 7] — 8 a3ai sin 7 cos 7). 

(120) 

To carry out the differentiation we must first apply to (<ri, 02, 0-3) the linear transforma- 
tion (72). It is, however, not necessary to carry out this transformation explicitly. For, 
since clearly 

2X¡ (¿-1,2,3); 
a2 o-? 
da2 da2 = 2X1X3 , 

we have 

d2R _2 

da2 2 [Xi (5 sin2 7—2 cos2 7) + X2 (4 sin2 7—2 cos? 7) 

(121) 

(122) 

+ X3 (4 cos2 7—2 sin2 7) — 8X1X3 sin 7 cos 7] J 

or, after some minor reductions, 

d2R 
da2 2 [ — 2 + 6X3 cos2 7+ (7X? + 6X2) sin2 7 — 8X1X3 sin 7 cos 7] . (123) 

Substituting for Xi, X2, and X3 from the table of direction cosines (69) and using for cos 7 
its equivalent (71), we obtain, after some rearranging of the terms, 

2 [ — 2 + 21Z4 sin2 a + 21 l2n2 cos2 a + 42/% sin a cos a + 7 sin2 a 
d<j\ (124) 

+ 6w2 cos2 a — 2212 sin2 a — 22ln sin a cos a] , 

where it will be recalled that a is the angle between F and v. Averaging the quantity on 
the right-hand side of equation (142), we finally obtain 

(d2R 
( 2 + -J sin2 a) + (15 — ^ sin2 a) t2 + (-21+^sin2 a)*4, (125) 

oai/ 

from which the values of £R.o, i, ££2, $, and 91a, £ can at once be read. The evaluation of 
the other quantities proceeds similarly. Collecting all the results, we obtain the following 
table of values: 

%, ¿ = -V" sin2 a ; £ = +9 — sin2 a ; ^4, i = ~9 + sin2 a , 

<p0, >2= sin2 a ; ^ >7 = +9-\7-sin2 a; %jn= “9+ sin2 a , 

<Po,r= 2 cos2 a ; <p2, r = “ 12 + 21 sin2 a ; %^ = +lS- 27sin2a; 

(126) 

So, £ = 1 

So, 7? = 1 

S0, r = 2 

S2, £ = +1 

S2,77 = +1 

S2,f= -2 

; S4, £ = 0 

; S4, r, = 0 

; S4?r = Q 

(127) 
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and 

£Ro) ¿ = 2 + J sin2 a ; 

£Ro> 17 = 2 — J sin2 a ; 

9i0, f = 10 — 8 sin2 a ; 

9?,2, £ = +15—^- sin2 a ; ÍR4, £ — —21 + —Í1 sin2 a , 

77 = +15 — sin2 a ; 3U, 77 = — 21 + sin2 a , 

ÉR2, r = —44 + 59 sin2 a ; ÍR4, ¿- = +42— 63 sin2 a . 

(128) 

We have still to evaluate the cross-moments/£j+and/¿-/¿. As we have already 

stated, the first two vanish identically, and we have only to consider /f. Analogous to 
equation (110) we now have 

-f-co . +00 
fw (F,f) fifçdf= /e-IP -a|p| V2->p..F 

v L £2 i j i p i -3/2 ri £ d2-R 1 / ^ 
d(T(d(T( Ldcredcre dtredarl) ’ 

(129) 

dcrçdcrç daçdaç. 

or, changing to polar co-ordinates and integrating over o>, we find (cf. eq. [113]) 

00 

ß~3Ü ( 2 \dcrtdatj 

t(ïlfe)+4 (s^;)] ^’'’i *,CM 

^ (130) 

xtdtdx , 

where we have made a further change of variables according to equation (112). In 
equation (130) the bars are again to be understood as indicating that the corresponding 
quantities have been averaged over a>. An elementary, but somewhat lengthy, calcula- 
tion yields 

Further, 

(— 1 + 15/2 — 18¿4) sin a cos a , 

( —3 + 37/2 — 42^) sin a cos a . 

(131) 

(132) 

Substituting these formulae in equations (130) and dividing throughout by W(F) ac- 
cording to I, equation (117), we obtain 

/f/i-= 12++2 f7~e-(l'/|8,ä/2 ( —3 + 37/2 — 4224) x1/2 cos xtdtd ( TH(ß) J0J0 

X 

g' 
*ßH{ß) 

00 1 
f f e-^/5)3/2 (— 1 + 15/2 — 18/4) x2 cos xtdtdx \ sin a cos a , 

‘'o 0 ^ 

^ (133) 
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20 S. CHANDRASEKHAR AND J. VON NEUMANN 

or, integrating over t and introducing the auxiliary functions G, . . . . , L, according to 
equation (119), we have 

/i/f= ]abk 
01/2 

H(ß) 

S' 

{ — 8G(ß) — 74/ (/3) + 168/ (ß) ] 

2ßH(ß) 

Equations (118) and (134), together with 

[-Aß H(ß) — 30K iß) +7 2/ iß) ] I sin a cos a. 

(134) 

fifi = 0 i fr,ft = 0 , (135) 

represent, then, our expressions for the six independent second-order moments. 

8. The moment |/|2 and its average |/|2. The mean life of the state F.—In § 7 we evalu- 
ated all the independent second-order moments that exist and, as we have already 
stated, the second moment of the resolved component of / along any direction can be 
specified in terms of them. However, the most important quantity is the average value 
of I/I2. This is clearly given by 

T7P= S (136> 
T = £, Vi f 

or, according to equation (118), by 

ii',‘ !( £ s a,,)gw-2( s 
\=0, 2, 4 r=£, v> f 7 t,, f 7 

\f\* = ab 
Hiß) 

-4( 2 £<,r)jiß)\ Xr=í, Vt £ 7 ’ 
K 2 S ft.')'äH 

N»=0, 2, 4 r=¿, 77, f X 

(/3) 

(/3) (137) 
2ßHiß) 

-2Í ^ y^r^Kiß) - if ^ %,r)Liß)\. 
t;, f ^ t,, f 7 5 ^ 

On the other hand, from equations (126)-(128) we find that 

^ t = 5 sin2 a + 2 cos2 a ; ^ ^>2, r = 6 — 9 sin2 a ; ^ ^)4j r = 0 , 
r r r 

^âo, r=4 ; r=0 ; ^â4,r = 0, y (138) 

r r r 

"V! ÊR.0, r = 14 — 7 sin2 a ; ^ Sla, r=—14 + 21 sin2 a ; . ^ Slé, r = 0 . 
T T T 

Again, according to equations (138), 

^ ^9»-, T = 8 — 6 sin2 a ; ^]^&i,r = 4; ^ V'+Rj, T= 14 sin2 a . (139) 
4 r 

We thus have 

f|2f, „=2a£-^^ j2G(0) +7Hsin2aG(i3)-(3sin2 a-2)/(/3)] f 

j (4-3 sin2 a)ßHiß) + 3 i3 sin2 a - 2) K iß) } . 

(140) 

ßHiß) 
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The foregoing expression gives the mean square value of the rate of change, /, to be 
expected in the intensity of the force, F, acting on a star when it is further known that 
the direction of F makes an angle a with the direction of motion. But the possible direc- 
tions of F y for a given direction of motion, are distributed uniformly over the unit sphere. 
Hence, the mean square value of / for a given value of F and for all relative orientations 
of the two vectors F and v is obtained by simply averaging equation (140) over a. We 
thus obtain 

i/i IFI. lui = 4a& 
Sß^Giß) 

' H(ß) 
( 1 + 'S' k) (141) 

or, substituting for k and g2/2ab from equation (66), we find that 

5 
I/I 

2 
IF Ivl = 4a6 

\ßl/2G{ß) ( M1/21 H 2\ 
l H(ß) \ ^M^\u\y 

M \ v 
12xif3/2¿fl/2|W|2 [. (142) 

If 11;| —> 0, we recover the formula of our earlier paper (cf. I, eq. [158]). 
The formula (142) has an immediate application.for estimating the mean life of the 

state of fluctuation in which a force F per unit mass acts on a star moving with a speed 
\u\. For, arguing as in I, § 9, we may define the mean life by the equation 

F 
IF, \v\ 

i/i Fl. lui 

(143) 

According to equations (112) and (142), we therefore have 

^ ral/3j83/2F(j8)-|l/2 [- 
im. luí |_4¿ G(ß) J L 1 + 

M1/2 

M1'* I u 
+ 

M¿\v 

gw r1/2 
(144) 

X 

From this equation we derive the relation 

4 
T = T 1 IF, \v\ 1 IF 

M¿\v 

ß^G(ß)l 

H(ß) I'1/2 

' 12ttM3/2M1/2\u\2 ß^Giß) J 
.(145) 

9. The auxiliary functions G, H, I, J, K, ató L.—In §§ 6, 7, and 8 we have seen that 
our expressions for the various moments involve some or all of the functions G(/3), H(ß), 
I(ß), /(ß), K(ß), and L(ß). These functions are all defined by certain definite integrals 
(eq. [119]), the integrands of which contain ß as a parameter. We shall now show how 
the functions G(ß), /(ß), /(ß), K(ß), and L(ß) can all be expressed in terms of the 
Holtsmark function, H(ß). We shall also establish certain relations which exist among 
them. 

We have already seen that the functions G(ß) and K(ß) are related to H(ß), according 
to the formulae (eq. [96] and I, eq. [162]), 

3 rß 

G(ß) =^J^ß-^2H(ß)dß 

and 

rß 

K(ß) = j H(ß)dß. 

It remains to establish similar relations for /, /, and L. 

(146) 

(147) 
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22 S. CHANDRASEKHAR AND J. VON NEUMANN 

Consider, first, 1(0). Writing the integral, defining it in the form 
- œ , 
4 j' . d 

0 

and integrating by parts, we find 

. o° , 
I (ß) =f e~(x/6')3/2 (sin x — x cos x)— (x~s/2) dx , (148) 

O7T ^ ax 

.CD r. CO 
I (ß) f e-(x/ß)*/*x-l/2 s[n x¿x j e-{x/ß)*/* (sjn X — X COS x) 

3tt Jq Trßz/2J
0 

or, remembering our definition of G(ß) (eq. [119]), we have 

2 f* 
I (ß) = %G (ß) (sin ^ — x cos x) x~1dx . 

Trßd/Z ^ 

But 

^ = -^5/2 e~(x/ß)3/2 (sin x — x cos x) x~ldx . 

dl 

dx 
x 

Hence, 

I(ß) =lG(ß) -Iß 
dß' 

in other words, I(ß) satisfies the differential equation 

ßit+tI-G(ß). 

The solution of equation (153) appropriate for us is 

1(0) =ß-W fß^G(0)dß. 

(149) 

USO) 

(151) 

(152) 

(153) 

(154) 

This formula is useful for the purposes of numerically evaluating the function /(/3). 
We shall now establish for J(ß) a relation similar to equation (154). We have 

4 00 

J (ß) = ——— / £-(æ/ô)72 ( — xz cos x-{-6x cos x + 3x2 sin # — 6 sin x) 
7 IT 

4 00 

(x/ß)*/*x 1/ZsiiLxdx 

X^—(# 7/2) dx 
ax 

> (155) 

— —A77Ö (e (x/j8)3/2 ( —x3 cos a; + 6a: cos ^ + 3^2 sin rr — 6 sin x) — 
7irßz/y x% 

-iGW-Wg. 

Hence J(ß) satisfies the differential equation' 

0^+lJ = C(0). (156) 
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Consequently, 

J(ß) fßß^G(ß)dß . (15 7) 

This is the required formula. 
By following a procedure exactly similar to that adopted for treating I{ß) and J(ß) 

we can show that L(ß) satisfies the differential equation 

and that therefore 

ß^ + 2L = ßH(ß) 

L(ß) =ß-* fßß*H (ß)dß. 

Further, according to equations (150) and (155), we have the relations 

I(ß) =%G(ß) -ß-^K(ß) 

J{ß) =%G(ß) -$ß-s/*L(ß). 
and 

(158) 

(159) 

(160) 

(161) 

Finally, we may note the following asymptotic forms for the various functions: 

G(/3)-> A03/2 
OTT 

H{ß)^~ß^ 
0 7T 

7 (d) A ßt/2 
y 7T 

/ (d) ^ A- ß3/2 

1 5 7T 

K(ß)^±ß’ 

ÍOTT 

B(ß)-*^r rn ß* 

ß—>oo 

K(ß)^l 

G(/3)^^V-r3/2 

4 TT 

B(ß)-*~yl~ß^ 

(162) 

10. The correlations in F acting at two very close points.—The formal theory developed 
in the preceding sections has direct applications to a different problem, namely, that of 
the correlations in the force acting at two very close points, for the difference between 
the values of F acting at two points distant br from each other is given by 

3 
- bYi) ) 

(163)6 

where we have assumed that one of the points is at the origin of our system of co- 
ordinates. Comparing equations (3) and (163), we see that formally the problems of 
specifying the distributions W(F,f) and W(Fy AF) differ only to the extent that, while 
in the first case we have to allow for a distribution over the relative velocities F, in our 
present problem br is a fixed constant vector. 

6 We discuss later in this section the validity of this formula. 
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Thus, expressing W(Fy AF) in the form 

.poo 4-00 

W(F,AF) =-r-J a)dpd<r, 
— oo —oo 

we have (cf. eq. [12]) 

A (P, O’) = e-n^P.cr) 

(164) 

(165) 

where (cf. eq. [15]) 
oo , 

C (p, <r) = iß3/2fdMx /{I - } | <t> | -Wd$. 
,+ oo 

In equation (166) ^ now stands for (cf. eq. [16]) 

(GM) ~1/2 { 5r)<|>} . 

(166) 

(167) 

From this point on, the analysis proceds exactly as in §§ 3, 4, and 5. It is thus seen that 
equation (64) is now replaced by (cf. eq. [56]) 

C(p, o') =T%(27r)3/2G3/2Af3/2|p|3/2 + f7r¿GMl ôr| (o-i sin 7 ~ 2(73 cos 7) 

+ A- (27r) 3/2£i/2ifV2 j ôr 121 p I ~3/2 [ cri (5 sin2 7-2 cos2 7) + ^ (4 sin2 7 

— 2 cos2 7) +0-3(4 cos2 7—2 sin2 7) — 80-10-3 sin 7 cos 7] +0 ( | o' |3) ? 

(168) 

where 
7 = 3 (P, ¿r) (169) 

and the co-ordinate system has been so chosen that the z-axis is in the direction of p and 
8r lies in the ^z-plane (see Fig. 1). Hence, 

A (P, o') = e-a\p\3/2-ig' P(<r)-b'\p\-3/2R(<r)+ 0(\<r\3) ? (170) 

where a, P(o-), and R(cr) have the same meanings as in equations (66) and (67), while bf 

and gf now stand for 

b' = JE(2T)*/2G1l2Mïiï\ôr\2n; g'= %tGM \ Ôr\n . (171) 

The evaluation of the first and the second moments of AF proceeds as in §§ 6, 7, and 8. 
Thus, analogous to equation (105), we now have 

AFf, sr = îirGMnB (-^-) (ôr - 3 i?) . 

Similarly the moment of | AF|2 is given by (cf. eq. [140]) 

]ÂFpf> 6r= 14aZ>'-^y[sin2 aG(/3)-(3 sin2 a - 2) 7 (0) ] 

+ jHlß) [ (4 “ 3 Sin2 a) ßH (|3) + 3 (3 Sin2 a - 2) ^ Í 

(172) 

(173) 

7 
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or, substituting for a, b', and g' from equations (66) and (171), we have 

WPf ar = ^I7w21 ôr 12 [sin2 aG(ß) 

- (3 sin2a — 2)7 (/3) ] +~ GWV [ or |2[(4-3 sin2 a) | (174) 

XßH(ß) +3(3 sin2 a-2) £(0) ]. , 

Averaging the foregoing expression over all a, we find 

WT^I, |ar| ~ ~y~G2^71 ^ 12 GWV I ¿r 12. (175) 

Now, according to equation (172) for a fixed | ôr|, AF tends to infinity as 1^1 co. 

This is contrary to what we should expect on physical grounds, namely, that A F should 
tend to zero as | -F | —> , for, since the highest fields are approximately produced by the 
nearest neighbor,7 it follows that, as (T] ^ o°, the particular star which effectively 
produces the field must be so close to one of the two points considered that no correla- 

tions in the directions of F acting at the two points can be expected. In other words, AF 
should tend to vanish as | F11 —> oo. But this same argument shows why our present 
theory of spatial correlations fails as 1^1 —> oo ? for, given a 15r |, however small, we can 
always choose a |F| so large that on the first-neighbor approximation, the ^nearest 
neighbor^ will be closer to one of the points than \dr\. Under these circumstances the 
contribution to A F arising from this nearest neighbor will no longer be represented to any 
degree of accuracy by a term of the series (163)— the Taylor expansion of r/|r|3 on 
which this series is based will cease to be valid for at least that particular term cor- 
responding to the nearest neighbor producing a | F | —> °° . We therefore conclude that 
our present method gives only the asymptotic behavior of the true spatial correlations 
in the sense that, given a | F1!, however large, we can choose a | ôr| sufficiently small for 
our formulae to be valid for | F| less than the specified limit. 

11. Dynamical friction.—We shall now return to equation (105) for a discussion of 
its implications for general dynamical theory. According to this equation, 

<176) 

where B{ß) is defined in equation (98). We shall first derive certain formal consequences 
of this equation. 

Multiplying equation (176) scalarly with F, we obtain 

But 

F-f—^ = I f I (^-1^1^) 
\dt/F,V V dt /FyV 

Hence 

7 S. Chandrasekhar, Ap. 94, 511, 1941 (§§ 3 and 4). 

(177) 

(178) 

(179) 
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On the other hand, if Fj denotes the component of E in an arbitrary direction at right 
angles to the direction of v, then, according to equation (176), 

= 2 tGM nB 
V 

(180) 

Combining equations (179) and (180), we have 

JL (Wi\ = ^ JL (d 1 F\ \ 
Fj V dt )f, v 2 |E| \ dt )F, v 

(181) 

Equation (181) is clearly equivalent to 

(182) 

In other words, we have proved that 

(183) 

We shall now examine the physical consequences of equation (176) more closely. In 
words, the meaning of this equation is that the component of 

-fTGMW5(-^-)(!;-3-|^pF) (184) 

along any particular direction gives the average value of the rate of change of the force 
per unit mass acting on a star that is to be expected in the specified direction when the 
star is moving with a velocity i; in an appropriately chosen local standard of rest. Stated 
in this manner, the essential difference is at once seen in the stochastic variations of F 

with time in the two cases 11;| = 0 and 11;| ^ 0. In the former case É = 0; but this is 
not generally true when 11; | ^ 0. Or, expressed somewhat differently, when | v | = 0 
the changes in F occur with equal probability in all directions, while this is not the case 
when 11;[ ^ 0. The exact nature of this difference is brought out quite clearly when we 
consider 

(185) 

according to equation (179). Remembering that B(ß) ^0 for ß ^ 0, we conclude from 
equation (179) that 

/djF[\ >0 ¡f ^>0 (186) 

\ dt / F, v 

and 

<0 if < 0. (187) 
V dt / F, v 

In other words, if F has a positive component in the direction of v, | E | increases on the 
average; while, if F has a negative component in the direction of i;, | E| decreases on the 
average. We shall now show that it is this essential asymmetry introduced by the direc- 
tion of v that gives rise to the phenomenon of dynamical friction. 
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The characteristic aspects of the situation governed by equation (179) are best under- 

stood when we contrast it with the case F = 0. Under these circumstances we can 
visualize the motion of the representative point in the velocity space somewhat as fol- 
lows:8 The representative point suffers small random displacements in a manner that 
can be adequately described by the theory of random flights.9 More specifically, the star 
may be assumed to suffer a large number of discrete increases in velocity of amounts 
FT(F), where T is the “mean life” of the state F; these increases are further assumed to 
take place in random directions. On these assumptions it readily follows that the mean 
square increase in the velocity, which we may expect the star to suffer in time t, is given 
by 

JÁ^ = JF\¿Tt. (188) 

An alternative way of describing the same situation is to assert that the function P( v, t; 
Vo), which gives the probability that the star has a velocity v at time /, given that v —■ Vo 
at ¿ = 0, satisfies the diffusion equation 

aP /d2P , d2P . d2P 

dt \dz>2 dfl2 d 

with the “coefficient of diffusion,” D} having the value 

lP\ 

vl)' 

D = i\F\2T. 

The solution of equation (189) appropriate for our purposes is 

1 
P(v,t; Vo) 

(4xDi)3/2 
ly-yj 2/4r>i 

(189) 

(190) 

(191) 

The formula (188) is seen to follow immediately from the foregoing solution. 
Returning to the discussion of the case governed by equations (176) and (179), we 

see at once that the idealization of the motion of the representative point in the velocity 
space as a true problem in random flights can no longer be valid. Moreover, according 
to equations (183), (186), and (187), during a given state of fluctuation the star is likely to 
suffer a greater amount of acceleration in the direction of — v when ( v • F) is negative than 
in the direction of +v when (v* F) is positive. But the a priori probabilities for (v* F) 
to be positive or negative are equal. Hence, when integrated over a large number of fluc- 
tuations, the star must suffer cumulatively a larger absolute amount of acceleration in 
the direction opposite to its direction of motion than in the direction of motion. In 
other words, there is a tendency for the star to be relatively decelerated in the direc- 
tion of its motion ; further, this tendency is proportional to | v |. But these are exactly 
what are implied by the existence of dynamical friction.10 

Yerkes Observatory 
Williams Bay, Wisconsin 

and 
Institute for Advanced Study 

Princeton, New Jersey 

8 Cf. ibid., §§ 2 and 7. 9 See, e.g., Lord Rayleigh, Phil. Mag., 6th ser., 37, 321, 1919. 
10 See two forthcoming papers by one of us (S.C.) on ^Dynamical friction’, in an early issue of the 

Ap. J. 
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