A SURVEY OF THE SPECTRA AND RADIAL VELOCITIES OF THE LESS REGULAR M-TYPE VARIABLE STARS*

Alfred H. Joy

Abstract

The spectra of 118 variable M-type stars characterized by small and irregular light-changes and by the absence or weakness of emission lines were examined with respect to their spectral classification, spectroscopic absolute magnitude, and radial velocity. Of these stars, 105 were previously unobserved spectroscopically.

Distribution.-The supergiants have a mean galactic latitude of 11°, but the normal giants, like the Me variables, show little galactic concentration.

Spectroscopic absolute magnitude.-The 1935 Mount Wilson curves were used. For the supergiants the absolute magnitudes are scattered from -2.0 to -4.5 ; for the normal giants the mean is -0.9 , which corresponds closely with that of the Me variables.

Spectral type.-The stars are largely concentrated in classes M5 and M6. The supergiants are found in the earlier types from M0 to M5. For a given type the periods are much shorter than in the Me variables.

Radial velocities.-The mean residual velocity of the supergiants is $18.2 \mathrm{~km} / \mathrm{sec}$; of the giants, 26.1 $\mathrm{km} / \mathrm{sec}$. The stars with shorter period show a larger mean velocity and greater scatter.

Displacements of emission lines.-Emission at certain phases is shown by 19 stars. The mean violet displacement of the bright lines is $8.9 \mathrm{~km} / \mathrm{sec}$ with respect to the absorption lines. The relationship between shift and spectral type corresponds closely with that of the Me variables.

Giant M-type stars are particularly subject to fluctuations in light. It has been suspected that practically all red stars vary more or less in total luminosity. ${ }^{1}$ About twothirds of all known intrinsic variable stars have titanium oxide bands in their spectra and show strong hydrogen emission except at minimum light. In their light-changes and general behavior these emission stars resemble Mira and are known as long-period, or Me, variables. Although considerable irregularity is often present in their light-curves, the period is fairly definite. The variation in visual light is several magnitudes, but the velocity-changes are small and have been detected in few stars. The motions and spectroscopic characteristics of the Me variables are well known, largely through the studies of P. W. Merrill.

The remaining variables with M-type spectra showing little or no emission may not form a homogeneous group, but they can be readily separated from the Mira stars, because of their irregular light-curves, smaller magnitude ranges, and the absence of strong emission lines in their spectra. Their periods, in general, are poorly defined, and often no certain regularities in their light-changes can be found. Usually the periods which have been deduced are between 50 and 150 days and in the mean are markedly shorter than those of the Mira stars. For this reason it might be expected that the physical properties of this group would be intermediate between the long-period and the Cepheid classes. The results of this investigation, however, indicate that these less regular stars are closely related to long-period variables in most of their characteristics.

In the region of the sky suitable for observation at Mount Wilson, Schneller's Catalogue and Ephemeris of V ariable Stars for 1939^{2} lists 202 semiregular and irregular M-type variables without bright lines and, in addition, 67 stars, which, on account of small magnitude range or intermediate period ($50-150$ days), might be expected to fall outside the Mira class, even though no spectral classification was available.
*Contributions from the Mount Wilson Observatory, Carnegie Institution of Washington, No. 668.
${ }^{1}$ Joel Stebbins, Pub. A.A.S., 6, 244, 1928.
${ }^{2}$ Kleinere Veröff. Sternwarte Berlin-Babelsberg, No. 20, 1938.

The spectral types and mean radial velocities for 13 of the brightest of these variables have been previously published ${ }^{3}$ and are given in Table 1. In the column headed V^{\prime} is given the radial velocity corrected for a solar motion of $20 \mathrm{~km} / \mathrm{sec}$. No certain changes in spectra during the cycle of light-variation were recorded, and velocity-changes, except for. V UMi, are not much greater than the errors of measurement. Several of the stars will be recognized as supergiants of a much higher order of luminosity than the ordinary giant M or Me stars.

Selection of stars.-This study was begun some ten years ago for the purpose of determining the motions and spectral features of those M-type variables which had not been included in the lists of other observers. The program was limited for the most part

TABLE 1
Published Data for Irregular M-Type Variables

Star	$m v$	Sp.	Meas. V	V^{\prime}	Vel. Range	Observer			
			$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$	$\mathrm{km} / \mathrm{sec}$				
RS Cnc	5.3-6.8	M6	+ 12.8	+ 6.8	6	McLaughlin*			
μ Cep.	4.0-4.8	M2	+ 20.5	+ 34.2	14	Campbell \dagger			
$\boldsymbol{\eta}$ Gem.	3.2-4.2	M3	+ 19.4	+ 6.9	10	Reese \ddagger			
a Her	3.1-3.9	M5	- 32.6	- 13.6	6	Lick§			
g Her.	4.4-5.6	M6	+ 3.3	+ 21.6	5	Lick, § Mt. Wilson\\|			
R Lyr.	4.0-4.5	M5	- 28.3	- 9.3	6	Lick, § Sanford \uparrow			
a Ori.	0.1-1.2	M2	$+21.0$	+ 5.0	4	Lick, \& Cape,** Sanford $\dagger \dagger$			
CI Ori.	4.5-5.5	M0	+ 7.5	-10.0	10	Lick, § Mt. Wilson\\|			
SX Pav.	5.3-6.3	M6	+ 42.9	+ 37.4	8	Lick §			
ρ Per.	3.2-4.1	M4	+ 28.2	+ 24.6	1	Lick§			
TV Psc.	5.1-5.5	M3	+ 5.2	+ 6.6	10	Lick, § Mt. Wilson $\ddagger \ddagger$			
a Sco.	0.9-1.8	M1	- 3.0	+ 6.8	4	Lick, § Cape**			
V UMi.	7.1-8.9	M4	-165	-154	27	Redman, §§ Sanford\|			

[^0]** M.N., 88, 660, 1928
$\dagger \dagger$ Mt. W. Contr., No. 464; Ap. J., 77, 110, 1933.
$\ddagger \ddagger$ Mt. W. Contr., No. 105; Ap. J. J., 42, 175, 1915.
88 M.N., 92, 118, 1931
||||Mt.W. Contr., No. 481; Ap. J., 79, 77, 1934.
to stars north of declination -26° and brighter than twelfth magnitude which could be observed with the one-prism spectrograph of the 60 -inch reflector and was intended to include a variety of nonemission variable stars with intermediate periods or with small light-ranges. Some preference was, perhaps, given to stars with assigned periods and recent discoveries may be somewhat neglected. As far as our present knowledge goes, the list is fairly representative of this class of stars. It contains about half of the known variables of this kind having assigned periods, together with a moderate sampling of the more irregular stars. While the program is in no sense complete, it serves as a preliminary basis for the study of a group of stars about which little precise information has heretofore been available.

Although one of the criteria of selection was the absence of bright lines, no stars being retained which showed emission on all plates, nevertheless, weak or moderately strong

[^1]hydrogen emission lines were found on one or more spectrograms of 19 stars of the list, and emission lines of neutral silicon also appear on a few. In addition, emission was previously detected in 3 of the stars (RS Cnc, AF Cyg, X Her) by D. B. McLaughlin at the University of Michigan and in 11 stars (RV And, RU Aqr, S Crt, AB Cyg, UW Her, ST Peg, RW Psc, Y Ser, V UMa, RY UMa, W Vul) by observers at the Harvard College Observatory. At one time or another, then, 33 of the 118 stars observed have shown bright lines. The presence of emission does not seem to be correlated with other physical characteristics, but it usually occurs near maximum or during increasing light.

I am indebted to my colleagues, Mr. P. W. Merrill, who was kind enough to turn over to me 24 plates of 17 stars which he found to lack the emission characteristics of the Me variables, and Messrs. W. S. Adams, R. F. Sanford, and G. Strömberg, who obtained a number of the plates used in this study.

The observations.-Two or more spectrograms of each star on the program were obtained as opportunity permitted, without much consideration of phase. The dispersion depended on the brightness of the star and the observing conditions at the time. Many lines or blends were identified even with low dispersion, and 15 or 20 were measured on each good plate. Radial velocities were determined with the aid of Merrill's wave lengths. ${ }^{4}$ The results for 105 stars previously unobserved are listed in Table 2. The first column gives the name of the star and its period (in parenthesis), its positional designation according to the Harvard system, and the visual magnitude at maximum and minimum from Harvard publications or from Schneller's Catalogue. The spectral types (fifth column) are based on the strength of the titanium oxide bands. The velocities (sixth column) are determined by measurement of the absorption lines. The dispersions given in the eighth column are approximately: $a=36, b=70$, and $c=120 \mathrm{~A} / \mathrm{mm}$ at $H \gamma$. The weights in the last column are arbitrarily assigned with reference to the dispersion, the number of lines measured, and the quality of the plate.

The elements from which the phases (fourth column) are computed may be found in the notes to the table. Periods have been assigned for 89 stars, and phases are computed for 46, but for most of them the irregularities of the light-changes make the elements quite unreliable. The phases should be used with caution. They are entered in the table to show the distribution of the observations over the cycle of the light-variation. In very few of the stars is it possible to detect any correlation between light- and velocityvariations; but for a proper study of such relationships it is imperative that simultaneous observations of light- and velocity-changes should be carried out. The velocityrange is small; hence it is difficult to separate any variation of velocity during the cycle from errors of observation. Additional evidence of variation can be obtained only at the expense of a many fold increase in the number of observations of each star.

Collected data for the irregular M-type variables.-A summary of the astrophysical data now available for 118 irregular M-type variables is in Table 3. This table includes the galactic co-ordinates, the apparent visual magnitude at maximum light, the spectroscopic absolute magnitude, the corresponding photometric parallax, the spectral type, the mean measured and residual radial velocity (corrected for a solar motion of $20 \mathrm{~km} / \mathrm{sec}$ toward the usual apex), and the period of light-variation.

Distribution of stars.-The lack of observations of stars in the southern skies results in an unbalanced distribution, which makes the material unsuitable for many statistical investigations. There is little galactic concentration for the stars observed. The average latitude is 29° for the giants, which is closely the same as that of the Me stars ${ }^{5}$ but widely different from that of the δ Cepheids, ${ }^{6}$ for which the value is 5°. The average latitude of the 13 supergiants, however, is only 11°.

[^2]TABLE 2
Observations of Irregular M-Type Variables

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
$\begin{gathered} \text { RU And (231d) } \\ 013238 \\ 10.0-13.7 \end{gathered}$			days		km/sec		
	C 7216	9183	38	M6		b	0.0
	E 61	9913	75	6 e	- 43	c	0.6
	C 7658	0029*	190	6		c	0.0
	E 250	0248*	178	6 e	- 39	c	0.6
	318	0298*	228	5 e	-45	c	0.6
$\begin{gathered} \text { RV And (229) } \\ 020448 \\ 8.7-11.4 \end{gathered}$					- 42		
	$\gamma 17729$ C 6588	6222 7763		M5	-14 -14	b	1.0 1.0
	$\gamma 20874$	8117		5	- 6	b	1.0
	C 7155	8936		5	- 4	c	0.4
$\begin{aligned} & \text { SS And (160) } \\ & 230752 \\ & 8.9-9.9 \end{aligned}$					-10		
	$\gamma 21248$	8852		M6	- 23	c	0.6
	22204	9562		6	- 32	c	0.4
	C 7541	9854		6	- 15	c	0.6
	r22999	9894		5	- 22	b	1.0
					- 22		
$\begin{gathered} \text { TV And (114) } \\ 225342 \\ 8.8-11.1 \end{gathered}$	C 2387	3652		M5		b	0.0
	7517	9826		5 e	- 47	c	0.6
	r22857	9858		4 e	- 51	b	1.0
$\begin{gathered} \text { TY And (150) } \\ 231040 \\ 8.2-10.0 \end{gathered}$					- 50		
	r20791	7971		M6		b	0.0
	22994	9893		6 e	-8	b	1.0
	23134	9927		5 e	- 3	b	1.0
	23839	0301*		6	- 9	c	0.4
TZ And (280)					- 6		
	$\gamma 12878$	4014		M6		b	0.0
8.5-9.5	22205	9562		5	- 28	c	0.6
	C 7552	9856		6	-33	b	1.0
$\begin{gathered} \text { RU Aqr (69) } \\ 231917 \\ 9.0-10.3 \end{gathered}$					- 31		
	C 2938	4013	31	M6	+22 +32	b	
	5808 $\gamma 23154$	6557 9943	33 53	5	$+\quad 32$ $+\quad 22$	b	1.0 0.6
$\begin{gathered} \text { TW Aqr }(79) \\ 205802 \\ 9.3-10.3 \end{gathered}$					+ 26		
	$\gamma 22776$	9827	63	M5	- 41	c	0.6
	C 7544	9854	11	6	- 34	c	0.6
					- 38		

*The first three figures of the JD number are 243.

ALFRED H. JOY
TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
$\begin{array}{r} \text { BM Aqr }(-) \\ 220116 \\ 9.0-10.2 \end{array}$	$\begin{gathered} \text { C } 6953 \\ \gamma 22777 \\ 22851 \end{gathered}$	$\begin{aligned} & 8409 \\ & 9827 \\ & 9856 \end{aligned}$	days	$\begin{array}{r} \text { M4 } \\ 5 \\ 5 \end{array}$	$\mathrm{km} / \mathrm{sec}$	c	$\begin{aligned} & 0.4 \\ & 0.6 \\ & 0.6 \end{aligned}$
					- 18		
					- 33		
					- 11		
$\begin{gathered} \text { TZ Aql (90) } \\ 202505 \\ 8.5-9.5 \end{gathered}$	$\begin{aligned} & \mathrm{C} 4467 \\ & \gamma 21867 \\ & \mathrm{E} \quad 51 \end{aligned}$	5165 9414 9912		$\begin{array}{r} \text { M6 } \\ 6 \\ \hline \end{array}$	- 21		1.0
					+ 52	b	
					+ 48 $+\quad 50$	c	0.6
						b	1.0
$\begin{gathered} \text { WX Aql (105) } \\ 194303 \\ 8.8-9.9 \end{gathered}$	$\begin{array}{r} \text { C } 7506 \\ 7548 \\ \gamma 22996 \end{array}$	$\begin{aligned} & 9806 \\ & 9855 \\ & 9894 \end{aligned}$	863069	$\begin{array}{r} \text { M6 } \\ 6 \\ 6 \end{array}$	$+50$		0.6
					- 21	c	
					- 29	c	0.6
					- 33	c	0.6
$\begin{gathered} \text { KN Aql (139) } \\ 202501 \\ 7.7-9.2 \end{gathered}$	$\begin{aligned} & \text { C } 7516 \\ & \gamma 22997 \\ & \mathrm{E} \quad 312 \end{aligned}$	$\begin{aligned} & 9825 \\ & 9894 \\ & 0297 * \end{aligned}$	$\begin{array}{r} 58 \\ 127 \\ 113 \end{array}$	$\begin{gathered} \text { M5 } \\ 5 \mathrm{e} \\ 5 \end{gathered}$	- 28		1.0
					-140	b	
					-148		1.0
					-128		0.6
$\begin{gathered} \text { LU Aql (50) } \\ \quad 193415 \\ 9.2-10.3 \end{gathered}$	$\begin{aligned} & \text { C } 7091 \\ & \gamma 21866 \\ & \text { C } 7505 \end{aligned}$	$\begin{aligned} & 8733 \\ & 9414 \\ & 9806 \end{aligned}$		$\begin{array}{r} \mathrm{M} 4 \\ 4 \\ 4 \end{array}$	-140	bcc	0.7
					1 $+\quad 3$		0.2
					+ 6		0.6
$\begin{gathered} \text { NO Aql (66) } \\ 194004 \\ 9.9-11.2 \end{gathered}$	$\begin{array}{r} \gamma 23143 \\ 23155 \\ 23205 \\ \pm \quad 477 \end{array}$	9932 9944 9970 0515*	6273350	$\begin{gathered} \mathrm{M} 3 \\ 4 \\ 4 \mathrm{e} \\ 3 \end{gathered}$	+ 2	c	0.6
					- 96		
					- 91	c	0.6
					-105	c	0.4
					-108	c	0.6
$\begin{aligned} & \text { PX Aql }(-) \\ & 195209 \\ & 9.2-10.7 \end{aligned}$	$\begin{aligned} & \text { C } 6273 \\ & \gamma 22736 \end{aligned}$	$\begin{aligned} & 7267 \\ & 9803 \end{aligned}$		M5	- 99	c	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$
					- 34		
					- 36		
$\begin{gathered} \text { TU Aur (75) } \\ 062845 \\ 7.7-9.1 \end{gathered}$	$\begin{array}{r} \gamma 21674 \\ 22418 \end{array}$	$\begin{aligned} & 9293 \\ & 9647 \end{aligned}$		M5	- 35	b	1.01.0
					+ 12		
					+ 5		
$\begin{gathered} \text { UX Aur (90) } \\ 050849 \\ 8.0-8.8 \end{gathered}$	$\begin{aligned} & \text { C } 4439 \\ & \gamma 21275 \end{aligned}$	$\begin{aligned} & 5159 \\ & 8910 \end{aligned}$		M5	+ 8	b	1.01.0
					+ 34		
					+ 33		
$\begin{gathered} \text { UZ Aur (66) } \\ 050840 \\ 7.7-9.3 \end{gathered}$	$\begin{array}{lr} \mathrm{E} & 56 \\ \mathrm{C} & 7650 \end{array}$	$\begin{aligned} & 9912 \\ & 0002^{*} \end{aligned}$		$\begin{array}{r} \mathrm{M} 4 \\ 4 \end{array}$	+ 34	c	$\begin{aligned} & 0.6 \\ & 1.0 \end{aligned}$
					+ 24		
					+ 21		

TABLE 2-Continued

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
$\begin{gathered} \text { RS Cnc (239) } \\ 090431 \\ 5.3-6.8 \end{gathered}$	$\begin{array}{r} \gamma 19524 \\ 21858 \\ \mathrm{C} 7326 \\ \gamma 22419 \end{array}$	$\begin{aligned} & 7137 \\ & 9413 \\ & 9440 \\ & 9647 \end{aligned}$	days	M6	$\mathrm{km} / \mathrm{sec}$ $+13$	a	1.5
			113				
			0	6	+ 15	a	1.5
			26	5	+ 2	b	1.0
			233	6	+ 12	a	1.5
$\begin{aligned} & \text { RT Cnc } \\ & 085211 \\ & 7.3-8.6 \end{aligned}$			89	M5	$+11$	b	1.0
	C 7293	$\begin{aligned} & 9393 \\ & 9414 \end{aligned}$			+ 13		
	r21863		15	5	+ 38	b	1.0
	C 7662	0029*	64	6	+ 27	b	1.0
	E 86	0090*	31	6	+ 43	b	1.0
	104	0119*	60	6	+ 44	b	1.0
	147	0148*	89	5	+ 51	b	1.0
$\begin{gathered} \text { RV CMa (-) } \\ 065614 \\ 8.9-9.7 \end{gathered}$	$\begin{array}{r} \gamma 19456 \\ \mathrm{C} 7666 \end{array}$	$\begin{aligned} & 7105 \\ & 0030^{*} \end{aligned}$		$\begin{array}{r} \text { M6 } \\ \hline \end{array}$	$+36$		$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$
					+ 29	c	
					+ 26		
$\begin{gathered} \text { VY CMa (一) } \\ 071825 \\ 7.8-9.8 \end{gathered}$		$\begin{aligned} & 9670 \\ & 0030^{*} \\ & 0070^{*} \\ & 0443^{*} \end{aligned}$		M4	$+27$		
						b	0.0
				4 e		b	0.7
				3 e	+ 42	c	0.6
				4 e	+67	c	0.4
$\begin{gathered} \text { UX CMi (151) } \\ 074005 \\ 8.5-9.5 \end{gathered}$	$\begin{array}{r} \gamma 22555 \\ 23313 \end{array}$	$\begin{aligned} & 9736 \\ & 0034^{*} \end{aligned}$	$\begin{aligned} & 138 \\ & 134 \end{aligned}$	M55	+ 49	c	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$
					+ 25		
					+ 25		
$\begin{gathered} \text { UY Cas (102) } \\ 225757 \\ 9.6-11.5 \end{gathered}$	$\gamma 19261$22106$\mathrm{E} \quad 347$	$\begin{aligned} & 7021 \\ & 9505 \\ & 0326^{*} \end{aligned}$	63031	$\begin{array}{r} \mathrm{M} 4 \\ 3 \mathrm{e} \\ 4 \mathrm{e} \end{array}$	$+25$	bbc	0.7
					- 10		
					- 1		1.0
					- 1		0.6
$\begin{gathered} \text { VY Cas (100) } \\ 004562 \\ 9.0-10.2 \end{gathered}$	$\begin{array}{r} \gamma 21249 \\ 23001 \end{array}$	$\begin{aligned} & 8852 \\ & 9894 \end{aligned}$		M66	- 4	c	0.61.0
					- 92		
					- 92		
$\begin{gathered} \text { SS Cep (98) } \\ 033380 \\ 6.7-7.8 \end{gathered}$	$\begin{array}{r} \gamma 17937 \\ 22416 \end{array}$	$\begin{aligned} & 6314 \\ & 9647 \end{aligned}$	4866	M6	-92	b b	1.01.0
					- 36		
					-46		
$\begin{gathered} \mathrm{T} \operatorname{Cet}(160) \\ 001620 \\ 5.2-6.0 \end{gathered}$	$\gamma 12874$	4012		M5	- 41	a	
						0.5
	12924	$\begin{aligned} & 4012 \\ & 4037 \\ & 4073 \end{aligned}$		5 e5 e	+ 29 +28	a	1.0
	13017				+ 17	a	1.5
	13500	$\begin{aligned} & 4073 \\ & 4333 \end{aligned}$		5 e 5	+ 37	a	
	13594	4365		555	$\begin{aligned} & +26 \\ & +\quad 26 \\ & +\quad 28 \end{aligned}$	a	0.5 0.5
	13680					a	1.5
	13727	4404				a	1.5

TABLE 2-Continued

TABLE 2-Continued

TABLE 2-Continued

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
$\begin{gathered} \text { ST Her (167) } \\ 154748 \\ 6.8-8.5 \end{gathered}$	$\begin{aligned} & \text { C } 297 \\ & \gamma 21859 \end{aligned}$	2387 9413	days	M7 7	$\begin{gathered} \mathrm{km} / \mathrm{sec} \\ -33 \\ -\quad 23 \end{gathered}$	a	1.5 1.0
UW $\operatorname{Her}(229)$ 171036 $7.5-8.5$	$\begin{array}{r} \text { C } 5189 \\ 5490 \\ \gamma 17635 \end{array}$	$\begin{aligned} & 5754 \\ & 6165 \\ & 6198 \end{aligned}$	102 55 88	$\begin{array}{r} \text { M5 } \\ 5 \\ 5 \end{array}$	-29 -13 -15 -24	b b b	1.0 1.0 1.0
$\begin{gathered} \text { CX Her (90) } \\ 170627 \\ 7.8-8.8 \end{gathered}$	$\begin{array}{r} \mathrm{C} 6223 \\ 7278 \\ \gamma 21864 \\ \mathrm{C} \quad 7349 \end{array}$	$\begin{aligned} & 7135 \\ & 9379 \\ & 9414 \\ & 9471 \end{aligned}$		$\begin{array}{r} \text { M6 } \\ 7 \\ 7 \\ 7 \end{array}$	-17 -24 -42 -48 -46	b b b b	0.3 1.0 0.3 1.0
$\begin{gathered} \text { Z Leo (57) } \\ 094627 \\ 8.6-10.0 \end{gathered}$		3423 5364 6044 6111 6313 6339 6401 6459	23 34 33 43 17 44 50 51	M 4 3 3 2 3 3 3 3	-42 -22 -24 -6 $-\quad 22$ -16 $-\quad 25$	b b b b b b b b	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.0 \\ & 0.3 \\ & 1.0 \\ & 1.0 \\ & 0.7 \\ & 1.0 \end{aligned}$
$\begin{aligned} & \text { RY Leo (155) } \\ & 095814 \\ & 9.1-10.0 \end{aligned}$	$\begin{array}{r} \gamma 19427 \\ 21276 \\ \mathrm{C} 5157 \end{array}$	$\begin{aligned} & 7080 \\ & 8910 \\ & 8936 \end{aligned}$		$\begin{gathered} \text { M3e } \\ 2 \mathrm{e} \\ 3 \end{gathered}$	-17 +37 +16 +11	c c c	0.4 0.6 0.2
$\begin{gathered} \text { S Lep (96) } \\ 060124 \\ 6.0-8.0 \end{gathered}$	$\begin{aligned} & \text { C } 7254 \\ & \gamma 23326 \end{aligned}$	$\begin{aligned} & 9292 \\ & 0069^{*} \end{aligned}$		$\begin{array}{r} \text { M5 } \\ 5 \end{array}$	+22 +16 $+\quad 8$	b	
$\begin{gathered} \text { V Lyn (87) } \\ 062061 \\ 8.6-9.8 \end{gathered}$	$\begin{array}{r} \text { C } 2048 \\ 5406 \\ 5908 \end{array}$	$\begin{aligned} & 3423 \\ & 6046 \\ & 6649 \end{aligned}$		$\begin{array}{r} \text { M6 } \\ 6 \\ 6 \end{array}$	$\begin{aligned} & +12 \\ & -43 \\ & -28 \\ & -\quad 25 \end{aligned}$	b b b	0.3 0.3 1.0
$\begin{gathered} \text { SZ Lyr (133) } \\ 183146 \\ 10.5-12.5 \end{gathered}$	$\begin{array}{r} \mathrm{C} 7090 \\ 7295 \\ 7308 \\ \gamma 23330 \\ \mathrm{E} \quad 89 \\ 305 \end{array}$	$\begin{aligned} & 8733 \\ & 9393 \\ & 9411 \\ & 0070^{*} \\ & 0090^{*} \\ & 0296^{*} \end{aligned}$	$\begin{aligned} & 55 \\ & 48 \\ & 66 \\ & 57 \\ & 78 \\ & 17 \end{aligned}$	$\begin{array}{r} \text { M6 } \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \end{array}$	-29 $\ldots \ldots$ -33 -35 -49 -85 -49	c c c c c c	0.0 0.2 0.4 0.4 0.6 0.2
					-54		

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
$\begin{array}{r} X Y \operatorname{Lyr}(-) \\ 183439 \\ 5.8-6.8 \end{array}$	$\gamma 22558$ 22591	$\begin{aligned} & 9736 \\ & 9764 \end{aligned}$	days	$\begin{array}{r} \mathrm{M} 4 \\ 4 \end{array}$	$\begin{gathered} \mathrm{km} / \mathrm{sec} \\ -25 \\ -12 \end{gathered}$	a	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$
$\begin{gathered} \text { RT Mon (115) } \\ 080310 \\ 8.5-9.3 \end{gathered}$	$\begin{array}{r} \text { C } 5947 \\ 7275 \\ \gamma 22391 \\ \text { C } 7451 \end{array}$	6726 9379 9644 9670	33 34 69 95	M5 5 4 3	$\begin{aligned} & -20 \\ & \ldots \\ & \ldots \\ & +45 \\ & +42 \end{aligned}$	b c b b	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 1.0 \\ & 1.0 \end{aligned}$
$\begin{gathered} \text { SW Mon (110) } \\ 062105 \\ 9.1-10.6 \end{gathered}$	$\gamma 19272$ 23311	$\begin{aligned} & 7023 \\ & 0032 * \end{aligned}$		M5	+44 +42 +34	b	0.7 0.4
$\begin{gathered} \text { BQ Ori (129) } \\ 055122 \\ 7.4-8.9 \end{gathered}$	$\begin{aligned} & \text { C } 7253 \\ & \gamma 23244 \end{aligned}$	$\begin{aligned} & 9292 \\ & 9974 \end{aligned}$		$\underset{5 \mathrm{e}}{\mathrm{M}}$	+39 +22 +37	b	0.7 1.0
$\begin{aligned} & \text { DP Ori }(-) \\ & 055610 \\ & 8.6-11.2 \end{aligned}$	$\gamma 23138$ C 7651	$\begin{aligned} & 9928 \\ & 0002 * \end{aligned}$		$\begin{array}{r} \text { M7 } \\ \hline \end{array}$	+31 -11 $-\quad 8$	c	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$
$\begin{gathered} \text { ST Peg (136) } \\ 224426 \\ 8.3-9.4 \end{gathered}$	¢18903 C 7551	$\begin{aligned} & 6879 \\ & 9855 \end{aligned}$	105 13	M6 6	-10 $+\quad 4$ $-\quad 2$	b	1.0 1.0
$\begin{gathered} \text { TT Peg (158) } \\ 000126 \\ 9.0-10.3 \end{gathered}$	$\begin{array}{lr}\text { C } 7154 \\ \mathrm{E} & 42\end{array}$	8850 9896	19 114	M6e 6	$+\quad 1$ $-\quad 29$ $-\quad 34$	b	0.3 0.6
$\begin{gathered} \text { TW Peg (90) } \\ 215927 \\ 6.5-9.2 \end{gathered}$	$\begin{array}{r} \gamma 11283 \\ 11313 \\ 11994 \end{array}$	$\begin{aligned} & 3298 \\ & 3325 \\ & 3634 \end{aligned}$		$\begin{array}{r} \text { M7 } \\ 6 \\ 6 \end{array}$	-32 -33 -23 -12	a	1.5 0.5 0.5
$\begin{gathered} \text { TX Peg (132) } \\ 221313 \\ 8.5-9.2 \end{gathered}$	$\begin{array}{r} \text { C } 7065 \\ -\quad 7134 \\ -7135 \end{array}$	$\begin{aligned} & 8702 \\ & 8831 \\ & 8831 \end{aligned}$	11 8 8	$\begin{gathered} \text { M6e } \\ 6 \\ 6 \end{gathered}$	-27 +12 +13 +10	b b b	1.0 1.0 1.0
$\begin{gathered} \text { UW Peg (106) } \\ 221302 \\ 8.7-9.7 \end{gathered}$	r21161 C 7331	$\begin{aligned} & 8734 \\ & 9440 \end{aligned}$		$\begin{array}{r} \text { M5 } \\ 5 \end{array}$	$\begin{aligned} & +12 \\ & +28 \\ & +21 \end{aligned}$	$\stackrel{\text { c }}{\text { b }}$	0.6 1.0
					+ 23		

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
			days		km/sec		
AF ${ }_{224617}^{\mathrm{Peg}}$	C 4963	5492	24	M6	- 44	b	1.0
8.9-9.9	5259	5817	34	6	- 40	b	1.0
	5512	6199	50	6	- 40	b	0.3
$\begin{gathered} \text { BC Peg (100) } \\ 223620 \end{gathered}$					- 42		
	$\gamma 19770$	7287	37	M6	-12 -10	c	0.6
7.8-8.5	21206	8765	15	6	- 20	c	0.4
		9824	74	6	- 10	c	0.6
$\begin{array}{r} \text { BD } \underset{223827}{\operatorname{Peg}(-)} \\ 6.8-7.8 \end{array}$					- 13		
	C 7089	8732		M6	- 9	b	1.0
	$\gamma 21264$	8881		6	- 21	b	1.0
	21375	9147		6	+ 10	b	0.7
	23818	0280*		6	- 25	c	0.6
$\text { BI Peg } \underset{225217}{(120)}$					-12		
	$\gamma 19771$	7287	3	M6	- 19		06
8.0-8.8	21374	9147	63	6e	- 20	b	1.0
					- 20		
$\begin{gathered} \text { RS Per }(-) \\ 021556 \\ 8.0-9.4 \end{gathered}$	C 2536	3742		M4	- 36	b	1.0
	C 2633	3803		4	- 39	b	0.3
	2672	3829		4	- 41	b	0.3
					- 38		
RU Per (181)032339$\mathbf{9 . 5 - 1 0 . 5}$	E 46	9897	12	M7			
	- 62	9913	28	${ }_{6}$	- 43	c	0.6
$\begin{gathered} \text { SU Per (116) } \\ 021556 \\ 7.4-8.4 \end{gathered}$					- 39		
	C 2535	3742		M4	- 39	b	1.0
	C 2632	3803		- 4	- 39	b	1.0
	2671	3829		3	- 44	b	0.7
	r17724	6221		3	- 36	b	1.0
	18050	6373		4	-43	b	1.0
	C 5899	6646		4	- 34	b	1.0
					- 39		
$\begin{gathered} \text { SW Per (83) } \\ 040441 \\ 8.2-9.8 \end{gathered}$							
	C 7641	9971	68	- 5	+52 +57	b	1.0
TT Per (91)014453$8.0-9.2$					+ 54		
	C 7099	8763	9	M6		c	0.6
	r23310	0032*	89	6	- 5	c	0.6
					- 4		

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
			days		km/sec		
UZ Per (90)	$\gamma 22472$	9678		M5		c	0.6
7.8-9.0	C 7660	0029*		5	+ 10	c	0.6
					+ 1		
AA Per (130)	C 6963	8422	11	M6	21		06
9.2-10.3	C 7659	0029*	50	- 6	+ 14 +14	c	0.4
					+ 18		
021356	C 1974	3358		M2	- 34	a	1.0
7.7-8.4	2124	3475		3	-45	a	1.0
	5689	6373		2	- 51	b	0.7
					- 43		
$\begin{gathered} \text { RW Psc (100) } \\ 011821 \end{gathered}$	E 45	9897		M3	+ 6	c	0.6
9.1-10.3		9913		3	- 6	c	0.6
					0		
$\begin{aligned} & \text { T Sge (157) } \\ & 191717 \end{aligned}$	$\gamma 22561$	9738		M4		b	1.0
8.3-9.5	C 7487	9765		3	+ 2	b	1.0
SU Sgr (88)					+ 4		
185722	$\gamma 18367$	6553	77	M6	+ 41	b	1.0
8.3-8.5	21861	9413	33	6	+ 44	b	1.0
					+ 42		
AX $\operatorname{Sco}(-)$	C 7463	9705		M6		b	0.0
7.1-8.1	7486	9765		6	- 50	b	0.3
	7504	9806		6	- 40	c	0.6
					- 45		
$\begin{aligned} & \text { Y Ser (385) } \\ & 150801 \end{aligned}$	C 5192	5755	65	M5	- 67	b	1.0
8.0-9.1	7320	9439	284	5	- 51	b	1.0
					- 59		
Z Ser (88)	$\gamma 17425$	6104	10	M5	- 26	b	0.3
9.4-10.4	18806	6814	20	5	- 32	b	0.3
	C 6047	6880	86	5	- 16	b	0.3
					- 25		
$\begin{gathered} \text { TV Tau (120) } \\ 040226 \end{gathered}$	r21439	9176	66	M6	+ 82	c	
10.9-11.7	23162	9945	115	6	+ 62	c	0.6
	E 315	0297*	107	6	+ 68	c	0.4
					+ 67		

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
			days		km/sec		
$\begin{gathered} \text { TX Tau (84) } \\ 040226 \end{gathered}$	C 5591	6281	17	M5	- 13		0.4
10.6-12.3	C 7445	9669	45	5	- 20	b	0.7
					-17		
W Tri (148)							
$\begin{aligned} & 023534 \\ & 8.2-9.0 \end{aligned}$	22099 23145	9505		M5	+ 12 $+\quad 2$	c	0.6 10
	23195	9957		5	$+\quad 2$ $+\quad 6$	b	1.0
					+ 6		
090151	$\gamma 22556$	9736	206	M5	- 13	c	0.2
9.6-11.2	22587	9764	27	5	- 34	c	0.6
	C 7645	9972	27	6	- 42	c	0.6
	7652	0003*	58	5	- 33	c	0.6
	r23328	0069*	124	5	- 43	c	0.4
					- 35		
$\begin{gathered} \text { RY } \underset{121561}{\mathrm{UMa}(41)} \end{gathered}$	C 5176	5729	18	M3	- 9	a	1.5
7.2-8.3	$\gamma 21965$	9450	12	2	- 13	b	1.0
	22475	9678	33	3	- 11	b	1.0
					-11		
RZ UMa (136)							
$8.8-10.2$	$\underset{21277}{ }$	8911		- 6	- 36	c	0.6
					- 34		
ST UMa (81)	C 7251	9290		M5	- 10		1.5
6.5-7.3	r21790	9381		5	- 24	a	1.5
	C 7297	9409		5	- 15	a	1.5
	7302	9410		5	- 16	b	1.0
					-16		
$\begin{aligned} & \mathrm{R} \mathrm{UMi} \\ & 163172 \end{aligned}$	$\gamma 12875$	4014	208	M7		b	0.0
8.6-10.5	14175	4631	173	7	- 22	b	1.0
	21966	9450	102	7 e	- 22	b	1.0
					- 22		
125705	C 296	2387		M8	+ 21	a	1.0
8.0-9.0	$\gamma 9051$	2391		8		a	0.0
	C 9298	5757		8	+ 6	b	1.0
	-22476	9679		8	+ 11	b	1.0
	$\begin{array}{lr} \text { C } & 302 \\ \gamma & 7299 \end{array}$	$\begin{aligned} & 2388 \\ & 9409 \end{aligned}$			$+13$		1.01.0
$\begin{gathered} \text { SW Vir }(-) \\ 130802 \\ 6.8-8.1 \end{gathered}$				$\begin{array}{r} \mathrm{M} 7 \\ 7 \end{array}$	- 11	a	
					- 19		
					-15		

TABLE 2-Continued

Star, Period, Designation, Magnitude	Plate	JD 242	Phase	Spectrum	Vel.	Disp.	Wt.
$\begin{gathered} \mathrm{W} \text { Vul (239) } \\ 200525 \\ 8.8-10.2 \end{gathered}$	$\begin{array}{r} \gamma 20789 \\ 23133 \end{array}$	$\begin{aligned} & 7971 \\ & 9927 \end{aligned}$	days	$\begin{array}{r} \text { M5 } \end{array}$	$\mathrm{km} / \mathrm{sec}$	bb	
			113		$+51$		1.0
			21		+ 48		1.0
					$+50$		

NOTES TO TABLE 2

Bright lines are mentioned in order of their intensity on the spectrograms.
RU And. Max. = JD $2429377+231 \mathrm{~d} 2 \mathrm{E}$, Schneller, Catalogue, 1939. $H \delta$ and $H \gamma$ are fairly strong bright lines on plate E318. E61 and E250 show very faint emission lines. C7216 and C7658 are weak and do not definitely prove the absence of emission. This star has a large magnitude range but considerable irregularity in period and light-variation.

RV And. A single Harvard observation, M3e, Harvard Ann., 79, 196, 1928.
TV And. $H \delta, H \gamma, H \zeta$, and $H \eta$ are fairly strong bright lines on plate $\gamma 22857$. C7517 shows very faint bright $H \delta$ and $H \gamma$.

TY And. $H \delta, H \gamma, H \zeta, H \beta, H \eta$, and $\lambda 3905 \mathrm{Si}$ a are fairly strong bright lines on plate $\gamma 23134$. $\gamma 22994$ shows faint bright $H \delta, H \zeta$, and $\lambda 3905 \mathrm{Si}_{\mathrm{I}}$. Two of four Harvard plates have hydrogen emission, Harvard Ann., 79, 204, 1928.

RU Aqr. Max. $=$ JD $2415601+68 \mathrm{~d} 7 \mathrm{E}$, Ryves, M.N., 92, 132, 1932. One of two Harvard plates has hydrogen emission, Harvard Ann., 79, 204, 1928.

TW Aqr. Max. = JD $2425103+79^{d}$ E, Schneller, Catalogue, 1939.
WX Aql. Max. $=$ JD $2423210+105^{\text {d }}$ E, Leiner, A.N. Beob.-Zirk., 4, 51 (No. 29), 1922.
KN Aql. Max. $=$ JD $2426153+139^{\text {d }}$ E, Schneller, Catalogue, 1939. Very faint bright H δ shows on the second plate, which was taken shortly before predicted maximum.

NO Aql. Max. $=$ JD $2428419.2+63^{\text {d }}$ E, Schneller, Catalogue, 1939. Very faint bright $H \delta$ shows on plate $\gamma 23205$. This star resembles the RV Tauri stars in some respects.

RV Boo. Very faint bright $H \delta$ shows on three plates. One of five Harvard exposures has bright hydrogen, Harvard Ann., 79, 200, 1928. $\lambda 4226$ Ca I is strong on the first two and the last plates.

RX Boo. Faint hydrogen lines, together with fairly strong $\lambda 3905$ and $\lambda 4102 \mathrm{Si}$ I, show in emission on the second plate. $\lambda 4102$ is stronger than $H \delta$.

RS Cnc. McLaughlin reports that bright lines appear during increasing light and weaken before maximum. Emission was found to be strongest in cycles when the light-variation was greatest. The lightelements Min. $=$ JD $2425351+239^{\mathrm{d}} \mathrm{E}$ were determined. The maximum velocity of recession occurred one-fourth period after light-minimum. A mean velocity of $+12.8 \mathrm{~km} / \mathrm{sec}$ with a range of 6 $\mathrm{km} / \mathrm{sec}$ was found. Pub. Univ. of Michigan, 8, 118, 1941.

RT Cnc. Max. $=$ JD $2426756+94 d 4$ E, Schneller, Catalogue, 1939. The variation in type and velocity are apparently real.

VY CMa. This star, HD 58061 = ADS 6033 A, is imbedded in bright nebulosity, which possibly is responsible for the emission lines of hydrogen. It is described by Perrine, Pub. A.S.P., 35, 233, 1923. Several near-by companions or nuclei are recognized by double-star observers. M-type stars are not usually connected with nebulosity. The variation in light may well be of a nature very different from the other stars in this list. The emission lines are on the red edge of moderately strong absorption lines of hydrogen, which are displaced an angstrom or more toward the violet. The aluminum band head near $H \beta$ is unusually strong.

UX CMi. Max. $=$ JD $2425370+151^{\text {d }}$ E, Schneller, Catalogue, 1939.
UY Cas. Max. $=$ JD $2419328+102 \mathrm{~d} 5 \mathrm{E}$, Schneller, Catalogue, 1939. Fairly strong bright $H \beta, H \gamma$, $H \delta$, and $H \zeta$ show on the second and third plates.

SS Cep. Max. $=2425779.5+97.5$ E, Schneller, Catalogue, 1939.
T Cet. Boss 60 . Bright $H \beta, H \gamma$, and $H \delta$ show on the second and third plates. $H \beta$ is remarkably strong for a type so late, and the decrement is steep. The variation in velocity is probably real.

RR CrB. Max. $=$ JD $2426148+56.8$ E, Schneller, Catalogue, 1939.
S Crt. Two Harvard observations of type are M7e and M6e, Harvard Ann., 79, 199, 1928.
RZ Cyg. Max. $=2429516+546^{\mathrm{d}}$ E, Schneller, Catalogue, 1939. In this peculiar star high and low maxima alternate. The light-curve resembles that of R Cen. The magnitude range is large for variables without bright lines.

AB Cyg. Observed maximum on JD 2426310 and JD 2427711, Loreta, A.N., 261, 263, 1936. Of three Harvard exposures, one shows bright lines, M4e, Harvard Ann., 79, 204, 1928.

AF Cyg. The light-curve is sometimes of the RV Tau type. McLaughlin reports bright lines, Pub. A.A.S., 8, 15, 1933. The phases are taken from O'Connell's observed maxima, Harvard Bull., No. 888, 1933. There is some correlation of velocity with phase.

AI Cyg. Max. $=$ JD $2420080+140^{\mathrm{d}}$ E, Schneller, Catalogue, 1939.
BC Cyg. R. F. Sanford found that this red star is M-type and not N as suggested in Schneller's Catalogue. The star is located in an obscured region, and the spectra are markedly weak in the violet. The nature of its variation is not known.

CH Cyg. Boss 4966. Max. $=2422991+100^{\text {d }} 6$ E, Schneller, Catalogue, 1939.
TT Dra. Max. $=2424727+107$ d E E, Schneller, Catalogue, 1939.
TX Dra. Max. $=2425267+134^{\text {d }}$ E, Harvard Ann., 79, 175, 1928. Very faint bright $H \delta$ and $H \gamma$ show on the last plate.

UU Dra. \quad Max. $=$ JD $2418745+234$ d 4 E, Harvard Ann., 79, 190, 1928.
UV Dra. Max. = JD $2424436.4+77$ d 4 E, Schneller, Catalogue, 1939.
RW Eri. Max. $=$ JD $2416780+91$ d E, Schneller, Catalogue, 1939.
Y Gem. Strong bright $H \beta$ and weak $H \gamma$ show on the second plate. The decrement is steep, and $H \delta$ is not seen. One of three Harvard exposures has bright lines, M6e, Harvard Ann., 79, 198, 1928.

X Her. McLaughlin reports bright hydrogen lines at or just betore maximum, Pub. A.A.S., 7, 94, 1932.

UW Her. Max. $=$ JD $2419011+229^{\mathrm{d}} \mathrm{E}$, Harvard Ann., 79, 176, 1928. One of two Harvard exposures has bright hydrogen lines, M4e, Harvard Ann., 79, 201, 1928.

Z Leo. Max. $=$ JD $2424592.2+56$ d 77 E, Schneller, Catalogue, 1939.
RY Leo. Fairly strong bright $H \beta, H \gamma$, and $H \delta$ show on the first and second plates. The decrement toward the violet is gradual.

S Lep. Type Me, Gaposchkin and Gaposchkin, Variable Stars, 1938.
SZ Lyr. Max. = JD $2424410+133$ d 4 E, Schneller, Catalogue, 1939.
RT Mon. Max. = JD $2424618+115 \mathrm{~d} 3$ E, Schneller, Catalogue, 1939.
BQ Ori. Fairly strong bright $H \beta, H \gamma, H \delta$, and $H \zeta$, together with $\lambda 3905 \mathrm{Si}$, show on the second plate.

ST Peg. Max. = JD $2424562+115$ d3 E, Schneller, Catalogue, 1939. One of two Harvard plates shows bright lines, M6e, Harvard Ann., 79, 204, 1928.

TT Peg. Max. = JD $2419321+15845$ E, Harvard Ann., 79, 163, 1928. Faint bright $H \delta$ and $H \gamma$ show on the first plate.

TX Peg. Max. $=$ JD $2423804+132$ d. E, Schneller, Catalogue, 1939. Faint bright $H \delta$ and $H \gamma$ show on the first plate.

AF Peg. Max. $=$ JD $2423006+52 \mathrm{~d} 4$ E, Schneller, Catalogue, 1939.
BC Peg. Max. $=$ JD $2426650+100^{\text {d E E }}$, Schneller, Catalogue, 1939.
BI Peg. Max. $=$ JD $2426565+120^{\mathrm{d}}$ E, Schneller, Catalogue, 1939. Faint bright $H \delta$ shows on the second plate.

RS Per, SU Per, and AD Per. Members of the double cluster (h and χ Per). The mean parallax of the cluster determined from the spectroscopic absolute magnitudes of the three stars, neglecting absorption in space, is 0.00073 .

RU Per. Max. = JD $2416814+180 \mathrm{~d} 7 \mathrm{E}$, Schneller, Catalogue, 1939. Fairly strong bright $H \delta, H_{\gamma}$, $H \zeta$, and $\lambda 3905 \mathrm{Si}_{\mathrm{I}}$ show on the second plate.

SW Per. Max. $=$ JD $2419362+83^{\mathrm{d}}$ E, Harvard Ann., 79, 165, 1928.
TT Per. Max. = JD 2423721.5 + 91 d. 5 E, Schneller, Catalogue, 1939.
AA Per. Max. $=$ JD $2424890+130$ d 4 E, Schneller, Catalogue, 1939.
SU Sgr. Max. $=$ JD $2416620+88^{\text {d }}$ E, Schneller, Catalogue, 1939.
Y Ser. Max. $=\mathrm{JD} 2419145+385^{\text {d }}$ E, Harvard Ann., 79, 174, 1928. Two of six Harvard plates show $H \gamma$ and $H \delta$ faintly bright, Harvard Ann., 79, 200, 1928.

Z Ser. Max. $=$ JD $2423204.3+87.57$ E, Schneller, Catalogue, 1939.
TV Tau. Max. = JD $2425870+120^{\mathrm{d}}$ E, Schneller, Catalogue, 1939.
TX Tau. Max. = JD $2419384+80^{\text {d }}$ E, Harvard Ann., 79, 165, 1928.
V UMa. Min. = JD $2429530+207$ d 5 E, Schneller, Catalogue, 1939. Faint bright lines are suspected on Harvard plates, Harvard Ann., 79, 198, 1928.

RY UMa. Min. = JD $2429894+41$ d 42 E, Schneller, Catalogue, 1940. One of six Harvard plates shows bright hydrogen lines, M4e, Harvard Ann., 79, 199, 1928.

R UMi. Min. $=$ JD $2429348+326^{d}$ E, Nielsen, A.N., 270, 42, 1940. Faint bright $H \delta$ and $H \gamma$ show on the third plate.

W Vul. Max. $=$ JD $2417017+238$ d E, Harvard Ann., 79, 189, 1928. One Harvard exposure shows bright lines, M4e. Harvard Bull., 79, 203, 1928.

TABLE 3
Absolute Magnitudes and Velocities of Irregular M-Type Variables

Star	l	b	$m_{v} \mathrm{AT}$Max.	Spec. $M v$	$\begin{gathered} \pi_{\mathrm{sD}} \\ \mathrm{UNIT}_{=}=0: 001 \end{gathered}$	Spec.	Velocity		Peri- od
							Meas.	Residual	
							km/sec	$\mathrm{km} / \mathrm{sec}$	days
RU And.	101°	-23°	10.0	-0.6	0.8	M5e-6e	- 42	- 41	231
RV And.	104	-11	8.7	-0.3	1.6	5	- 10	- 9	229
SS And.	76	-7	8.9	-1.3	0.9	5-6	- 22	- 12	160
TV And.	70	-16	8.8	-0.5	1.4	$4 \mathrm{e}-5 \mathrm{e}$	- 50	- 40	114
TY And.	72	-19	8.2	-0.9	1.5	$5 \mathrm{e}-6 \mathrm{e}$	- 6	+ 3	150
TZ And.	81	-14	8.5	-0.7	1.4	5-6	- 31	- 23	280
RU Aqr.	24	-69	9.0	-1.0	1.0	5-6	+ 26	+ 27	69
TW Aqr.	16	-31	9.3	-0.9	0.9	5-6	- 38	- 26	79
BM Aqr.	10	-51	9.0	-1.0	1.0	4-5	- 21	- 15	
TZ Aql.	8	-25	8.5	-0.6	1.5	6	+ 50	+ 63	90
WX Aql.	10	-12	8.8	-0.8	0.5	6	- 28	- 12	105
KN Aql.	14	-22	7.7	-1.0	1.8	5 e	-140	-125	139
LU Aql.	20	-4	9.2	-0.9	1.0	4	+ 2	+ 20	50
NO Aql.	11	-11	9.9	-1.6	0.5	$3-4 e$	- 99	- 82	66
PX Aql.	0	-20	9.2	-0.6	1.1	5	- 35	- 21	
TU Aur.	138	+18	7.7	-0.9	1.9	5	+ 8	+ 3	75
UX Aur.	128	+ 7	8.0	-1.3	1.4	5	+ 34	+ 30	90
UZ Aur.	135	+ 2	7.7	-1.0	1.8	4	+ 21	+ 24	66
RV Boo.	18	+65	7.6	-0.9	2.1	$5-6 \mathrm{e}$	- 3	+ 11	138
RW Boo.	16	+65	7.3	-0.7	2.5	5	- 11	+ 3	373
RX Boo.	1	+68	7.0	-0.6	3.0	$7-8 \mathrm{e}$	- 10	+ 3	78
RR Cam.	108	+21	9.2	-0.5	1.1	6	- 61	- 56	123
RS Cam.	101	+33	8.1	-0.4	2.0	5-6	- 41	- 34	89
RV Cam.	117	+ 7	7.9	-1.0	1.7	5-6	- 21	- 21	103
RY Cam.	112	+12	8.0	-0.7	1.8	3-4	- 23	- 21	135
Z Cnc.	177	+28	8.5	-0.5	1.6	$6-7$	+ 4		80
RS Cnc.	163	+43	5.3	-1.5	4.4	5-6	+ 11	+ 5	239
RT Cnc.	186	+34	7.3	-1.3	1.9	$5-6$	+ 36	+ 25	94
RV CMa.	194	-3	8.9	-0.9	1.1		+ 27	+ 8	
VY CMa.	206	-4	7.8	-2.9	0.7	$3 \mathrm{e}-4 \mathrm{e}$	+ 49	+ 30	
UX CMi.	183	+16	8.5	-1.2	1.1	5	+ 25	+ 10	151
UY Cas.	77	-2	9.6	-1.1	0.7	$3 \mathrm{e}-4 \mathrm{e}$	- 4	$+\quad 7$	102
VY Cas.	90	0	9.0	-0.6	1.2	6	- 92	-85	100
SS Cep.	97	+21	6.7	-1.1	2.7	6	- 41	- 34	98
μ Сep.	68	+ 4	4.0	-4.5	2.0	2	+ 20	+ 34	
T Cet.	54	-80	5.2	-1.8	4.0	5 e	+ 29	+ 27	160
Y CrB	27	+51	9.8	-0.4	0.9	8	- 20	- 3	300
RR CrB.	27	+52	7.2	-0.5	2.9	5	- 50	- 33	57
RU CrB	7	+52	8.8	-0.9	1.1	5	- 27	- 10	436
X Crv.	271	+44.	7.8	-1.2	1.6	6	+ 1	+ 1	127
S Crt.	248	+53	8.4	-1.1	1.3	6	+ 32	+ 30	152
RZ Cyg.	54	+1	9.6	-1.4	0.6	7	- 47	- 31	546
AB Cyg.	49	-16	7.7	-0.7	2.1	4-5	- 7	$\begin{array}{r} \\ +\quad 7 \\ \hline\end{array}$	482
AF Cyg.	45	+12	6.4	-0.8	3.6	6	- 15	+ 3	94
AI Cyg.	41	- 5	8.4	-0.8	1.4	6	- 58	- 41	140

TABLE 3-Continued

Star	l	b	$\begin{aligned} & \text { mvat } \\ & \text { MAX. } \end{aligned}$	Spec. $M v$	$\stackrel{\pi_{\mathrm{BD}}}{\mathrm{UNIT}^{=}=0!001}$	Spec.	Velocity		$\begin{gathered} \text { Peri- } \\ \text { OD } \end{gathered}$
							Meas.	Residual	
	43°						km/sec	$\mathrm{km} / \mathrm{sec}$ +15	days
$\stackrel{\mathrm{BC}}{\mathrm{BC}} \mathrm{Cyg}$	43	0 +15	9.8	-1.8	0.5	M3 -4		+ 15	
U Del.	49 30	+15 -17	6.4 5.6	-1.4 -2.0	2.7 3.0	5	-53 -21	- 35	101
S Dra	50	+40	7.5	-1.0	2.0	6	$+\quad 6$	+ 23	
SS Dra.	93	+49	8.6	-1.1	1.1	5	+ 33	+ 43	48
SZ Dra	63	$+22$	8.0	-1.2	1.4	5	- 42	- 26	120
TT Dra	52	+35	8.5	-0.9	1.3	6	- 23	- 6	107
TX Dra.	56	+40	6.8	-1.9	1.8	$4 \mathrm{e}-5$	+ 52	+ 68	134
UU Dra.	75	+20	8.7	-0.2	1.7	8	- 37	- $2 \times$.	+234
UV Dra.	61	\cdots	8.8	-1.1	1.0	5	- 35	$-2{ }^{\text {²}}$	77
Z Eri.	157	-57	6.4	-0.9	3.5	5	- 14	- 27	
RW Eri.	166	-34	8.6	-1.0	1.2	6	+107	+ 90	91
Y Gem.	168	+21	8.5	-0.7	1.4	6 e	+ 18	+ 6	
TV Gem.	157	+ 3	7.0	-3.1	1.0	2	+ 17	+ 4	
η Gem.	157	+ 4	3.3	-0.9	14.5	3	+ 19	+ 7	
X Her.	40	+47	5.8	-1.1	4.2	6	- 91	- 74	100
ST Her.	42	+49	6.8	-0.7	3.2	7	- 29	- 12	167
UW Her.	27	+34	7.5	-1.3	1.7	5	- 17	+ 2	229
CX Her.	16	+32	7.8	-0.5	2.2	7	- 42	- 22	90.
a Her.	3	+26	3.1	-2.2	8.7	5	- 33	- 14	
g Her.	33	+43	4.4	-1.0	8.3	6	+ 3	+ 22	
Z Leo.	174	+52	8.6	-0.6	1.4	$2-4$	-17	- 22	57
R Y Leo.	192	+50	9.1	-0.9	1.0	$2 \mathrm{e}-3 \mathrm{e}$	+ 22	+ 15	155
S Lep.	198	-19	6.0	-1.3	3.5	5	+ 12	- 8	96
V Lyn.	121	+22	8.6	+0.1	2.0	6	- 29	- 29	87
R Lyr.	41	+17	4.0	-1.1	9.6	5	- 28	- 9	
, SZ Lyr.	42	+21	10.5	-0.8	0.5	6	- 54	- 35	133
XY Lyr.	35	+18	5.8	-2.6	2.1	4	- 20	- 1	
RT Mon.	199	+13	8.5	-0.9	1.3	3-4	+ 44	+ 27	115
SW Mon.	173	- 2	9.1	-0.5	1.2	5	+ 39	+ 22	110
BQ Ori.	155	0	7.4	-0.4	2.7	$5 \mathrm{e}-6$	+ 31	+ 18	129
CI Ori.	172	-17	4.7	+0.1	12.0	0	+ 8	- 10	
DP Ori.	166	- 5	8.6	-0.4	1.6	7	- 10	- 26	
a Ori.	167	-7	0.1	-4.1	14.5	2	+ 21	+ 5	
SX Pav.	290	-39	5.3			6	+ 43	+ 37	
ST Peg.	60	-29	8.3	-1.4	1.1	6	+ 1	+ 9	136
TT Peg.	79	-35	9.0	-1.5	0.8	6 e	- 32	- 28	158
TW Peg.	51	-23	6.5	-0.9	3.3	6-7	- 27	- 15	90
TX Peg.	44	-36	8.5	-0.4	1.7	6 e	+ 12	+ 22	132
UW Peg.	34	-44	8.7	-1.4	1.0	5	+ 23	+ 31	106
AF Peg.	55	-37	8.9	-1.3	0.9	6	- 42	- 34	52
BC Peg.	55	-33	7.8	-1.1	1.7	6	- 13	- 3	100
BD Peg.	59	-28	6.8	-0.8	3.0	6	- 9	+ 1	
BI Peg.	57	-38	8.0	-1.0	1.6	6 e	- 20	- 12	120
RS Per.	103	-4	8.0	-2.6	0.8	4	- 38	- 35	

TABLE 3-Continued

Star	l	b	$\begin{aligned} & \text { mvat } \\ & \text { MAX. } \end{aligned}$	Spec. $M v$	$\stackrel{\pi_{\mathrm{sp}}}{\mathrm{UNTT}=0!001}$	Spec.	Velocity		$\begin{gathered} \text { PERI- } \\ \text { OD } \end{gathered}$
							Meas.	Residual	
							km/sec	$\mathrm{km} / \mathrm{sec}$	days
RU Per	121°	-13°	9.5	-1.3	0.7	M6e-7	- 39	- 43	181
SU Per	103	-4	7.4	-3.5	0.7	3-4	- 39	- 36	116
SW Per.	126	- 7	8.2	-1.0	1.4	5-6	+ 54	+ 49	83
TT Per.	100	-8	8.0	-0.9	1.7	6	- 4	- 1	91
UZ Per.	125	-21	7.8	-1.5	1.4	5	+ 1	- 5	90
AA Per.	115	-9	9.2	-1.8	0.6	6	+ 18	+16	130
AD Per.	103	-3	7.7	-3.1	0.7	$2-3$	- 43	- 40	
ρ Per.	117	-16	3.2	-0.9	15.1	4	+ 28	+ 25	
RW Psc.	102	-40	9.1	-2.0	0.6	3	0	- 2	100
TV Psc.	84	-44	5.2	-1.4	4.8	3	+ 5	+ 7	
T Sge.	19	0	8.3	-2.3	0.8	3-4	+ 4	+ 23	157
SU Sgr.	342	-14	8.3	-0.8	1.5	6	+ 42	+ 54	88
AX Sco.	322	+12	7.1	-0.8	2.6	6	-45	- 35	
a Sco.	320	+14	0.9	-3.7	12.0	1	- 3	+ 7	
Y Ser.	327	+44.	8.0	0.0	2.5	5	- 59	- 47	385
Z Ser.	331	+46	9.4	-1.1	0.8	5	- 25	- 12	88
TV Tau.	137	-18	10.9	-0.7	0.5	6	+ 67	+ 58	120
TX Tau.	137	-18	10.6	-0.8	0.5	5	- 17	- 26	84
W Tri.	116	-22	8.2	-0.7	1.7	5	+ 6	+ 2	148
V UMa	135	+43	9.6	-0.4	1.0	5-6	- 35	- 36	207
RY UMa	96	+57	7.2	-0.5	2.9	$2-3$	- 11	- 2	41
RZ UMa	118	+34	8.8	-1.2	1.0	5-6	- 34	- 32	136
ST UMa	127	+67	6.5	-1.3	2.7	5	- 16	- 12	81
R UMi.	71	+36	8.6	-0.3	1.7	7 e	- 22	- 8	326
V UMi.	85	+43	7.5	-0.5	2.5	4	-165	-154	70
RT Vir.	281	$+67$	8.0	0.0	2.5	8	+ 13	+ 18	
SW Vir.	284	+59	6.8	-1.0	2.7	7	- 15	-11	
W Vul.	32	-5	8.8	-0.8	1.2	5-6	+ 50	+ 68	239

Figure 1 shows the galactic distribution of the stars of Table 3. The center of the figure represents longitude 90° and latitude 0°. The scarcity of stars in the general direction of the center of the galaxy at longitude 325° is probably without significance. This region may have been somewhat neglected on account of its southern declination. In longitude the greatest density is in the region between 40° and 120°, but this concentration may be the result of selection.

Apparent magnitude.-In order to be comparable with the general practice for Me stars, the maximum apparent brightness has been used. Photographic magnitudes have been reduced to visual by the appropriate correction for color index, 1.7 mag . The average magnitude range is 1.3 mag., which is much smaller than that of the Mira variables.

Spectroscopic absolute magnitudes.-For the determination of absolute magnitude by the Mount Wilson spectroscopic method the reduction tables used in 1935^{7} were employed without change. The zero point for the normal giants is fairly well determined, but for the supergiants the calibration is less certain on account of the lack of suitable standards. Distinct supergiant characteristics are shown by 13 stars (μ Cep, a Ori, a Sco SU Per, TV Gem, AD Her, VY CMa, XY Lyr, RS Per, T Sge, a Her, RW Psc, U Del),

[^3]
whose absolute magnitudes range from -4.5 to -2.0 . The remainder of the variables are normal giants with a dispersion of about 1 mag. from the mean absolute magnitude of -0.9 . This mean corresponds closely with -1.0 found by Wilson and Merrill ${ }^{8}$ for the Me variables. Figure 2 shows the distribution of absolute magnitudes. The stars are mainly concentrated in the giant group, and the scattered supergiants are compara-

Fig. 2.-Distribution of absolute magnitudes of irregular M-type variables

Fig. 3.-Distribution of spectral type among the irregular M-type variables. Merrill's estimates of the Mira stars are included for comparison.
tively few. Numerical values of the relative percentage in each group cannot be given until the effect of selection is known, but it seems clear that about nine-tenths of the irregular M -variables belong to the normal giant group and that their luminosities are much the same as those of the Mira variables.

Spectral type.-As shown in Figure 3, the irregular variables are predominantly of spectral types M5 and M6. Two-thirds of the observed stars fall in these two classes. As compared with the long-period variables, ${ }^{9}$ the maximum frequency is at about the
${ }^{8}$ Mt. W. Contr., No. 658; Ap. J., 95, 255, 1942.
${ }^{9}$ Merrill, Mt. W. Contr., No. 649; Ap. J., 94, 208, 1941.
same spectral type, but the irregular stars have a much greater concentration. Of the 13 supergiant irregular variables, 11 are M4 or earlier. The stars having emission lines show no preference for any particular type.

Although the full range in type during a cycle may not always be covered by the scattered observations, it is evident that the change is small. For 82 stars the estimates indicate no change in type; for 35, the variation, including the error of estimation, is only one subdivision of type; and for one star only, Z Leo, the difference in type amounts to as much as two subdivisions.

Radial velocities.-The velocities of Table 3 are the weighted means of the observed values for each star. The variation with phase is small compared with the errors of observation and may be neglected. In order to free the velocities from the effect of the

Fig. 4.-Residual radial velocity and spectral type for the irregular M-type variables
sun's motion relative to the near-by stars they have been corrected for a solar motion of $20 \mathrm{~km} / \mathrm{sec}$ toward the usual apex, and the residual values are in the next to the last column. The direction and relative values of the residual velocities are displayed in Figure 1.

The average residual velocity for 118 irregular stars is $25.3 \mathrm{~km} / \mathrm{sec}$, which is definitely smaller than the value $36.1 \mathrm{~km} / \mathrm{sec}$ found by Merrill ${ }^{10}$ for the long-period variables. The average velocity for the 13 irregular supergiants is $18.2 \mathrm{~km} / \mathrm{sec}$ and for 105 giants, $26.1 \mathrm{~km} / \mathrm{sec}$. The distribution of residual velocities with respect to spectral type is shown in Figure 4. The wide scatter of velocities in the earlier spectral types from M0 to M4, which was found for the long-period variables, is not present among the irregular stars, probably for the reason that there are few normal giants of early spectral types.
${ }^{10}$ Mt. W. Contr., No. 649; Ap. J., 94, 209, 1941.

The mean residual velocities for the various spectral types appear in Table 4, where the number of stars in each group is in parenthesis.

The relationship between radial velocity and period is shown in the second half of the table, the individual values being plotted in Figure 5. The scatter in the residual

TABLE 4

Residúal Radial Velocity and Displacement of Emission Lines for Different Spectral Types and Periods

Spectrum	$\begin{gathered} \text { Mean } \\ \text { Residual Vel. } \end{gathered}$	Displacement Abs.-Em.	Period	$\begin{gathered} \text { Mean } \\ \text { Residual Vel. } \end{gathered}$	Displacement Abs.-Em.
	km/sec	km/sec	days	$\mathrm{km} / \mathrm{sec}$	km/sec
M0-2.	15(9)	+ 6.0(1)	41-74.	44(10)	+16 (1)
M3	23(11)	+8.0(2)	75-99	25(33)	+8 (1)
M4.	39(10)	+8.6(4)	100-124.	31(18)	$+7.5(2)$
M5.	23(43)	+ $5.8(5)$	125-149	31(13)	+6.8(5)
M6.	28(35)	+10.0(7)	150-199	20(10)	+ 8.8(5)
M7.	17(7)	+12.0(1)	200-249	21(15)	+10.1(2)
M8.	15(3)	+ 9.0(1)	>250		+12 (1)
Mean.	25.3(118)	$+8.9(21)$	Mean.	27.7(89)	+ 8.9(17)

Fig. 5.-Residual radial velocity and period
velocities is greater among the stars having shorter periods. A similar correlation was obtained by Merrill from the Mira stars, although the periods involved are very different.

Displacements of emission lines.-Emission lines of hydrogen were measured in 17 stars. Their displacements, which are toward the violet with reference to the absorption lines, are listed in Table 5. The means for various spectral types and periods are given in Table 4, where the number of stars used in the mean is given in parenthesis. In Figures

TABLE 5
Displacement of Emission Lines

Star	Spec.	Period	No. Lines	Abs.-Em.	Star	Spec.	Period	No. Lines	Abs.-Em.
		days		km/sec			days		$\mathrm{km} / \mathrm{sec}$
RU And	\{M6e\}	231	$\{3$	+15\}	T Cet.	M5e	160	2	+8
RU And	(M5e)	231	$\{2$	+ 85	TX Dra.	M4e	134	2	+13
TV And.	M4e	114	2	+ 5	Y Gem.	M6e		2	+15
TY And.	M5e	150	4	+ 6	RY Leo.	\{M3e\}	155	52	0
KN Aql.	M5e	139	1	+ 3	R Y Leo.	(M2e)	155	2	+ 65
NO Aql.	M4e	66	1	+16	BQ Ori.	M5e	129	4	+ 4
RV Boo	M6e	138	1	+8	TT Peg.	M6e	158	2	+21
RX Boo.	M8e	78	3	+8	TX Peg.	M6e	132	2	+6
RS Cnc.	M6e	239	21	+ 8.7*	RU Per.	M6e	181		+ 6
UY Cas.	$\left\{\begin{array}{l}\text { M3e } \\ \text { M4e }\end{array}\right\}$	102	$\left\{\begin{array}{l}2 \\ 2\end{array}\right.$	+161 +45	R UMi.	M7e	326	2	+12

*McLaughlin, Pub. Obs. Univ. of Michigan, 8, 120, 1941.

Fig. 6.-Spectral type and relative displacement $(A-E)$ of emission in M-type variables. The number of stars in each normal point is indicated.

Fig. 7.-Period and relative displacement $(A-E)$ of emission in M-type variables. The number of stars in each normal point is indicated for the irregular variables. Merrill's curve for the Mira stars is shown.

6 and 7 these values are plotted, together with the comparable mean displacements determined by Merrill ${ }^{11}$ for the long-period variables. Although the material is rather limited, there is a striking similarity in the two groups, especially in the correlation between displacement of the bright lines and spectral type. The displacement seems to be more intimately related to spectral type or temperature than to other parameters, such as period, range, and regularity of light-changes.

Correlations with period.-For variable stars in general the period of variation is a definite and fundamental parameter to which other characteristics may be referred, but

TABLE 6
Distribution of Periods of 89 ObSERVEd Stars

Period	No.	Period	No.
days		days	
40-59.	6	160-179.	3
60-79.	8	180-199.	1
80-99.	19	200-219.	1
100-119.	14	220-239.	6
120-139.	15	240-299.	1
140-159.	8	>300	7

Fig. 8.-Spectral type and period of M-type variables observed at Mount Wilson. The normal points for Merrill's Mira stars, grouped according to type, are plotted.
for causes at present not fully understood periodicities in the less regular variables are followed in a loose and uncertain fashion. In some stars there may be a multiplicity of cycles which overlap one another and thus conceal the underlying periodicities. The period which has been assigned to the irregular M-type stars by the variable-star observers is usually a mean of the intervals between maxima or minima which may differ greatly in magnitude. The ingenuity of the observers in deducing periods from the observations is most commendable, but it should be kept in mind that the periods determined for stars considered in this paper have quite a different significance from the periods of the Mira stars or the Cepheids.

The periods for 89 of the stars observed are distributed as shown in Table 6. The greatest frequency lies between 80 and 140 days, with a mean at 108 days.
${ }^{11}$ Mt. W. Contr., No. 644; Ap. J., 93, 383, 1941.

There are also 15 stars with periods between 200 and 546 days, with a secondary frequency maximum at 233 days. Few supergiants are included because their lightchanges are too irregular to justify the assignment of periods. Of the giants, the stars with periods between 40 and 200 days have slightly fainter absolute magnitudes, somewhat earlier spectral types, and residual radial velocities which are $8 \mathrm{~km} / \mathrm{sec}$ greater in the mean than those of the stars with longer periods. It is probable that the variables with periods shorter than 200 days are considerably different in nature from those with longer periods.

In Figure 8, spectral type is plotted against period for the irregular stars, and the corresponding mean values for the Mira variables ${ }^{12}$ are included for comparison. The lack of agreement between the two groups is very striking. Later spectral type goes with longer period in both groups, but in the irregular variables the periods are of an entirely different order from those of the Mira stars. In the irregular stars the higher harmonics of the cycle appear to be enhanced, but in the Mira stars the fundamental period with its greater regularity prevails and induces a greater range in luminosity and temperature.

Carnegie Institution of Washington

Mount Wilson Observatory
June 1942

[^4]
[^0]: * Pub. Univ. of Michigan, 8, 118, 1941.
 \dagger Lick Obs. Bull., 7, 102, 1912.
 \dagger Lick Obs. Bull., 7, 102, 1912.
 \ddagger Lick Obs. Bull., 1, 158, 1902.
 \ddagger Lick Obs. Bull., 1, 158, 19
 § Lic Obs. Pub., 16, 1928.
 ||Mt. W. Contr., No. 387; Ap. J., 70, 2071929.
 TM Mi. W. Contr., No. 394; Ap. J., 71, 209, 1930.

[^1]: ${ }^{3}$ Since this paper was written, P. C. Keenan has published (Ap.J., 95, 461, 1942) the spectral types and luminosity classes of 67 semiregular or irregular variables of types K and M observed in November and December, 1941, with the McDonald reflector. Thirty-seven of his stars are common to this Mount Wilson list. His spectral types are about 0.4 of a subdivision earlier than those given here, and his absolute magnitudes of supergiants, based largely on standards taken from the Perseus double cluster, are more than a magnitude brighter than those determined from the Mount Wilson curves. In general, the results of the two papers are in satisfactory agreement.

[^2]: ${ }^{4}$ Mt. W. Contr., Nos. 265 and 644; Ap. J., 58, 195, 1923; 93, 381, 1941.
 ${ }^{5}$ P. W. Merrill, Mt. W. Contr., No. 649; Ap. J., 94, 208, 1941.
 ${ }^{6}$ A. H. Joy, Mt. W. Contr., No. 607; Ap. J., 89, 361, 1939.

[^3]: ${ }^{7}$ Mt. W. Contr., No. 511; Ap. J., 81, 187, 1935.

[^4]: ${ }^{12}$ Merrill, Mt. W. Contr., No. 649; Ap. J., 94, 199, 1941.

