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ON THE CAUSE OF CEPHEID PULSATION 

Sir A. S. Eddington, O.M., F.R.S. 

(Received 1941 April 2) 

I. Introduction.—The most outstanding difficulties in the pulsation theory of Cepheid 
variables are— 

(1) The quarter-period retardation of phase between the flow of heat in the main part 
of the interior and the outflow from the surface. 

(2) The existence of a period-luminosity relation. 
We shall find reason to believe that there is a close connection between (1) and (2), 

and that both depend on— 
(3) The existence of a layer not far below the photosphere where hydrogen is in the 

mid-stage of ionisation, so that it is ionised and de-ionised in the course of the pulsation. 
The critical hydrogen layer is a comparatively new factor in the problem, since it 

could not be deemed important until the high abundance of hydrogen in the stars was 
recognised in 1932. It has been investigated by Unsold and others in connection with 
surface phenomena on the Sun, but I think it has not hitherto been considered in con- 
nection with Cepheid pulsation. To show the general plausibility of connecting it with 
(1) and (2), we remark : 

{a) It is difficult to see any possible form of explanation of the period-luminosity 
relation which does not make it depend on a critical ionisation. A period-luminosity 
relation is effectively a density-mass relation, since the period is sensitive to changes of 
density and the luminosity to changes of mass. It therefore implies that, for any given 
mass, there is only a narrow range of density in which the star is pulsatorily unstable. 
The transience of the instability—the fact that it disappears both at slightly higher and 
slightly lower densities—greatly limits the field in which we can seek for an explanation. 
Presumably we must look for some equally transient modification of the properties of 
stellar material. The only kind of transient modification that is known is the sharp drop 
in the ratio of specific heats F, when the predominant element or elements are at the mid- 
stage of an ionisation. I considered this possibility in an early investigation * ; but, 
following the ideas of the time, I took the predominant element to be a heavy element, 
such as iron, undergoing the L-ionisation. This ionisation occurs in the deep interior, 
and in a giant star depends mainly on the central temperature. The hypothesis that 
pulsatory instability occurs when the heavy elements in the interior are near the middle 
of the L-ionisation therefore required that the Cepheids should all have nearly the same 
central temperature—which is far from true. The substitution of hydrogen as the 
predominant element reopens the discussion, since it shifts attention from the deep 
interior to the layer (3) near the surface, which is now the only region in which there can 
be a serious drop of F. 

{b) The great difficulty of accounting for the phase retardation of roughly a quarter- 
period can only be appreciated by a close study of the equations. In a previous in- 
vestigation f, I divided the star into three regions : A, the interior region with temperature 
above 100,000°, where the adiabatic approximation is nearly perfect; C, the exterior 
region with temperature below 40,000o, with negligible capacity for storing heat; B, the 
intermediate region. There could be no appreciable change of phase in A and C; and 
a detailed study of the differential equation applicable to region B also indicated no 

* Internal Constitution of the Stars, p. 204. f M.N., 87, 539, 1927. 
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change of phase.* One way—apparently the only way—of avoiding this impasse is by 
some means to add heat-storage capacity to region C. Such extra heat-storage is provided 
by the ionisation and de-ionisation of the critical hydrogen layer which lies in region C. 

(¿:) A crucial question is whether the amount of hydrogen in the critical layer is 
sufficient to meet the demands of our theory. It has to store (in the form of ionisation 
energy) the temporary excess of radiant energy accumulating during the quarter-period 
delay in emission. The rough calculations are fairly encouraging, showing that the order 
of magnitude is not far wrong. When greater precision is sought, we encounter the 
difficulty that the critical layer in Cepheids corresponds to temperatures chiefly between 
10,000° and 20,000°. This is a region where our knowledge is especially uncertain; it 
is out of reach of direct observation, and the simplifications adopted at higher tempera- 
tures are inapplicable or dubious ; moreover, it is convectively unstable. The somewhat 
conjectural calculations already existing give too little hydrogen for our purpose. But 
we might argue that the estimate obtained from the Cepheid theory is the better founded, 
and may justifiably be used to extend our knowledge of this difficult region. The need 
for further light on this question has led me to a study of the effects of convection, 
contained in an accompanying paper. 

It is generally agreed that the maintaining energy of the pulsation comes from the 
variation with temperature and density of the rate of liberation of sub-atomic energy. 
Through this variation heat is added to the material when it is at a high temperature and 
subtracted when it is at a low temperature, so that mechanical work is produced as in 
a thermodynamic engine. Pulsation occurs if this maintaining energy exceeds the dis- 
sipation. We have therefore to inquire whether the transient cause of Cepheid pulsation 
is a sudden increase of maintaining energy (per unit amplitude) or a sudden decrease of 
dissipation. All suggested forms of liberation of sub-atomic energy are extremely sensitive 
to temperature; so that if pulsation were associated with a transient peculiarity of the 
maintaining energy it would almost certainly occur at an approximately fixed central 
temperature. For example, an increase of maintaining energy, confined to a narrow 
range of density, would occur if there were an especially temperature-sensitive source of 
sub-atomic energy which came into play when the star had contracted so as to reach an 
appropriate central temperature, further contraction being arrested until this particular 
source was exhausted.f But this would not give the existing sequence of Cepheid 
variables, in which the stars of short period have much higher internal temperatures than 
those of long period. 

We conclude therefore that Cepheid pulsation is associated with a transient decrease of 
dissipation. 

There is therefore a suggested triple connection between (1) the sharp decrease of 
dissipation which permits pulsation, (2) the low value of V in the critical hydrogen layer, 
and (3) the quarter-period retardation of phase. In §§ 2-4 two links of this connection' 
are tightened by obtaining an expression for the dissipation which shows explicitly that 
it depends on the phase-retardation and on the value of F in the outer layers. This part 
of the investigation is believed to be rigorous. The third link—the dependence of the 
phase-retardation on the value of F in the critical layer—does not admit of precise 
treatment, and is studied in § 5 in an over-simplified model. 

In earlier investigations it was expected that the 90° phase-retardation would be 
revealed as a general property of the solution of the equations of oscillation. No such 

* There exist solutions of the differential equation for region A which give change of phase 
(discussed by M. Schwarzschild) ; but the difficulty is that they require boundary conditions which 
give a larger change of phase in region B, and this in turn requires a still larger change of phase 
in region C incompatible with its low capacity for heat storage. (See also § 10.) 

f It seems rather likely that such sources exist; but they explain the concentration of the 
Cepheids near particular points on the period-luminosity curve—not the curve itself (Gamow, 
Birth and Death of the Sun, p. 150). 
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property was found; and the present theory takes a different form. If a star is set in 
oscillation by a disturbance, the phase-retardation may be anything from o° to 1800, or 
more, according to the extent of the region in which the value of F is depressed. But 
there is an optimum extension of the region, with a corresponding phase-retardation, 
which makes the dissipation a minimum; and when, in the course of evolution of a star, 
the region reaches this extension, the disturbance, instead of decaying, swells into Cepheid 
pulsation. Thus the retardation in Cepheids is dependent on the condition for minimum 
dissipation. It is not likely to be exactly 90o (the mean observational value is about 70o) ; 
and it may depend to some extent on the period. 

In the main the case for the present theory is that; we seem able to eliminate all 
alternatives. There are, however, two results which give it positive support. In § 6 we 
find that, if the criterion for pulsatory instability is concerned with the state of ionisation 
of the outer layers, a very general application of the principle of homology yields a fairly 
correct period-luminosity relation. In § 9 we find that the theory gives an upper limit 
of about om-8 (bolometric) to the magnitude range, which is in satisfactory agreement 
with observation. 

2. Calculation of the Dissipation.—Let F be the outward flow of radiation per second 
across a sphere of radius £, and let m be the mass inside the sphere. The gain of heat 
in an element at £ due to the transfer of radiation is -dF/dm per gm. per sec. To this 
must be added the heat e supplied by liberation of sub-atomic energy. The gain of heat 
per gm. per sec. is accordingly 

dQ_ dF 

dt € dm 
(2.1) 

We fix attention on a gram of matter moving with the pulsation, so that m remains 
constant. We write 

£ = £o(i+li), T=T0(i+T1), F^F^i+F,), e = eo(i+ei), 

etc., where . are the equilibrium values. Since eQ = dFQ¡dm, (2.1) becomes 

dQ_ 

dt 6061 dm 
(2.2) 

If a steady pulsation is maintained, the energy in the element is the same at the 
beginning and end of a cycle. Hence, during a complete cycle, the work done on the 
element by surrounding pressures is 

w= - f -Rft. 
Jodt (2.31) 

The entropy of the element is also the same after a complete cycle ; hence by the second 
law of thermodynamics 

f i ¿0 
Oi0f~dtdU (.2-32) 

Since i/T= i/T0(i + ï'j) = i¡T(> - TJTq to the first order in the amplitude, (2.32) gives 

Tjcdt~ T, 
dt Lfr« 

r.Jo ’<* 
dt 

correct to the second order in the amplitudes. Hence by (2.31) 

W = -j Ti 
dQ 

dt 
dt (2.33) 

correct to the second order. 
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The advantage of using (2.33) rather than (2.31) is that in order to obtain W (which 
is a second order quantity) we need only calculate dQ/dt to the first order, whereas (2.31) 
requires a long investigation of the second order terms in dQjdt* 

The quantities Tx, Fly ei) etc., contain time factors cos (wZ + a) with various phases a. 
We shall denote by {X)Y the component of a periodic quantity X in the phase of the 
periodic quantity Y, and by (X)iY the component in the phase 90o greater. With this 
notation the time-factors are dropped, so that 7^, etc., are the semi-amplitudes. 
Then (2.33) gives for the average rate of doing work on a gram of matter 

dW^_iT/dQ\ 

dt 2 1\ dt )T 

-lTi\ €o€i- 
diFpF,) 

dm 
(2.4) 

The two terms on the right represent respectively the maintaining energy (with reversed 
sign) and the dissipation. Hence for the whole star the maintaining energy E and the 
dissipation D are (per second) 

E = (2-51) 

(2.52) 

Another form of (2.52) is useful, 
pressure be given by 

Let the adiabatic variation of temperature with 

Taz Pe (2.6) 

so that in adiabatic conditions Tx = dP^ In general conditions, we separate into two 
parts, namely Tf = dP1 resulting directly from the change of pressure, and T1/ = T1- 
resulting from the accession of heat Q. Since T/' has the same phase as Qy it differs 
90o in phase from dQjdt, and therefore contributes nothing to (2.33). We may therefore 
replace by Tf or 6P1 in the subsequent steps, and (2.52) then becomes 

(2.7) 

3. Approximation in the Non-adiabatic Region.—Throughout 'most of the interior 
the adiabatic approximation is nearly perfect, and we may take ^ of the star’s radius as 
a generous estimate of the thickness of the region in which it is inadequate. In parts of 
this region Tly Fly p1 may be altogether different from the adiabatically computed values; 
but we shall show that the deviations of ^ly P± are on a much smaller scale.f 

Let Ap1 be the deviation of p1 from the adiabatically computed value. If Ap1 were 
constant throughout the non-adiabatic region, its volume would be changed in the ratio 
(1 - Ap^j) and its thickness in nearly the same ratio. This would give a modification 
A£i of ^ ranging from o at the inner boundary of the non-adiabatic region to -^pi 
at the surface. Allowing for the actual variation of Ap1 in the region, the maximum value 
of A^ is not greater than of the mean value oí A p^, and a homogeneous comparison 
of mean with mean, or maximum with maximum, would give a ratio considerably less 
than 2V 

* The short method was used in the author’s investigations (M.N., 79, 177, 1919; 
§ 134). Later writers seem to have overlooked this simplification, and have unnecessarily made 
the direct calculation of the second order terms in dQjdt. 

f The approximation which consists in neglecting A^ly AP1 in comparison with Aply ATly AF1 
was first used in treating the outer layers of a Cepheid in M.N., 87, 542, 1927. 
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By the rigorous formula (I.C.S., equation (131.1)) 

dp^ = - (4 + n2£olgo)£i (3 • 1) 

we have 

■Pi = - B" Í (4 + n2£o!go)ÇidPo- (3-2) 

The factor (4 + w2^/^) is about 5-5. It is nearly the same in all Cepheids, and changes 
very little in the non-adiabatic region. Thus P-l is approximately -5*5^1, where is 
the mean value (averaged for equal steps of P0) outside the point considered ; and for the 
deviation AP1 from the adiabatic value P± 

(3.3) 

The proportionate deviation of P± will therefore not exceed that of ^ and (owing to the 
averaging) it will generally be considerably less. 

It is therefore a consistent approximation in the non-adiabatic region to neglect AP1 

and A^ whilst retaining Aply A ^ and AF^ The order of magnitude of A and Ap1 is 
the same; in fact, AP-l being negligible, the perfect-gas law gives AT1= -Ap^ 

We may therefore accept the values of ¿q and P1 given by the usual equations of 
adiabatic pulsation as approximately valid up to the surface, the deviation in the non- 
adiabatic region being confined to density, temperature, flux of heat, and quantities 
derived from them. The error of Px can scarcely exceed 2 or 3 per cent. Since the 
adiabatic solution gives a constant phase for P1 and - ^ in all parts of the star, we shall 
distinguish this constant phase by the suffix c. The dissipation formula (2.7) accordingly 
becomes 

D-ih(iW)0
j'" ö-t) 

= ->\^§rF¿F^dm+tiepiF°(F^ - (3-5) 

by integration by parts. Note that the integration by parts is only possible with a phase- 
suffix c which represents constant phase; for example, it cannot be applied to (2.52). 

4. The Retardation of Phase.—Consider a pulsating star in which— 
(<2) The index 6 is constant throughout. 
(b) Maximum radiation occurs a quarter period after minimum radius. 

We shall show that D is negative. 
Condition (ô) asserts that at the surface F1 differs 90o in phase from -à, so that 

(^i)c = o. Hence the second term in (3.5) vanishes, and 

(4.1) 

The solutions of the equation of adiabatic pulsation show that P± increases con- 
tinually from the centre outwards. According to our approximation (§3) this continues 
to apply in the non-adiabatic region. Hence, 8 being constant, d(8P1)ldm is positive 
throughout. 

It is also found that (-FJo is positive in the adiabatic region; that is to say, the flow 
of heat is greatest at the time of greatest contraction.f Although this result is not estab- 

* In the critical hydrogen layer the relation ZlT,
1= -Ap-j^ is inaccurate since the change of 

molecular weight through ionisation is appreciable. 
t See, for example, the table in p. 197; the quantity tabulated as F1 is -(F^c. The 

table on p. 202 illustrates a reversal of sign if there is a deviation from the usual law of opacity; 
but the value y'= 1-355 is now known to be much too small, and the region where the sign is 
reversed could not be so extensive as in the table. 
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lished with entire generality, being to some extent dependent on the adopted stellar 
model and the approximate law of opacity, the possible loopholes are, I think, not such 
as we should be likely to accept. In any case the region where (ir1)0 might in certain 
circumstances have reversed sign is limited to the central part of the star, and the negative 
values are outweighed in the integral in (4.1) by large positive values farther out. We 
shall therefore disregard this contingency. In the non-adiabatic region (JF1)C falls from 
its positive value at the junction to its surface value zero. 

Thus the elements of the integral in (4.1) are positive, and D is then negative. 
The negative D means that pulsation will occur spontaneously even if no maintaining 

energy is provided by sub-atomic sources. If the conditions {a) and (Z>) hold in actual 
Cepheids, it follows that these stars maintain their pulsation by negative dissipation and 
not by sub-atomic stimulation—contrary to the general belief. Conversely, if negative 
dissipation is inadmissible, it follows that the conditions {a) and (b) are incompatible; 
in other words, the observed phase retardation is only possible because d is not constant 
throughout the star. 

The hypothesis of negative dissipation is not likely to be advocated except as a last 
resource. It is not necessarily contrary to thermodynamic principles; because the 
steady supply of energy e0 at high temperature in the interior could be converted into 
mechanical energy of pulsation if the constitution of the star provided a suitable “valve 
mechanism.” * But, unless the conditions are widely different from what we suppose, 
there appears to be no mechanism which would regulate the flow of heat in the way 
required. Our result gives no new support to the hypothesis; it only shows that, in 
arbitrarily prescribing conditions (a) and (b), we have implicitly introduced it. 

We shall assume that the hypothesis of negative dissipation can be ruled out. Our 
theorem then becomes a proof, by reductio ad absurdum^ that the conditions (a) and (b) 
are incompatible. By (2.6), 0 is connected with the adiabatic constant F. (If radiation 
pressure and variation of molecular weight are neglected, 0 = (F-i)/r.) Our con- 
clusion is therefore that the quarter-period retardation of phase is impossible without a 
change of F in some part of the star. As explained in § 1, the great abundance of hydrogen 
makes the critical hydrogen layer the only region in which F can deviate seriously from 
its normal value f. 

Arguing directly from (2.6), a low value of 9 means that an adiabatic compression 
produces a relatively small increase of temperature; and therefore a given increase of 
temperature requires more than the normal amount of energy. In Cepheid conditions 
the only employment for the extra energy is in producing ionisation. The amount 
that can be so employed is small compared with the heat energy except in a region where 
the hydrogen is being ionised. 

The present conclusion that phase-retardation cannot occur unless there is a region 
in which 9 is abnormally small agrees with the investigation referred to in § 1 (b). The 
differential equations were solved for the case in which 9 is constant (or a slowly varying 
parameter), and the phase-retardation was found to be insignificant. This negative 
result is now seen to be due to the fact that the condition essential for phase-retardation 
was left out, namely an abnormal drop of 0, or equivalently a region with abnormal 
capacity for storing heat. The study of the differential equation brings out the further 
point that, in order to be effective, the drop of 0 must occur in the non-adiabatic region. 
It is therefore due to an ionisation which takes place at a temperature below 100,000°. 
This is a further proof, if any were needed, that the ionisation to be considered is that of 
hydrogen. 

To show how negative dissipation can be avoided by admitting a low value of 0 in 
the non-adiabatic region, we return to (3.4) and calculate separately the dissipations 
Z)a, Dn in the adiabatic and non-adiabatic regions. Values at the junction of the two 

* The “maintaining energy” of the pulsation, which depends on the temperature-sensitiveness 
of e, must not be confused with the energy which maintains the star’s heat, i.e. e itself. 
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regions will be indicated by an accent, and surface values by an asterisk. We consider 
a star with quarter-period phase-retardation (so that (iri#)o==0)> and with different 
constant values 6a, 6n of d in the two regions. 

In the adiabatic region Pi < P/, and d^EoF^/dm is positive. Hence by (3.4) 

o<Da<%6aP1'F0'(F1')c. (4.2) 

It is easily seen that Da is substantially less than the upper limit given. 
Since there is little change of Px in the shallow non-adiabatic layer, we have 

approximately 
Dn = W)o - (i'i')o} (4-3) 

= (4.4) 

since (P1*)c = o. By (4.2) and (4.4), Da + Dn will be negative unless 6n is substantially 
less than 0a. 

This concludes the first stage of our investigation. It seems an almost inescapable 
conclusion that the critical hydrogen layer is the key factor on which the phase-retarda- 
tion, the pulsatory instability and the period-luminosity relation depend. I therefore 
approach the remaining problems with a rather strong conviction that no other solution 
is possible, and that there must be a way out of the various difficulties which may appear 
when the details of the solution are considered. 

5. Phase-Retardation in the Critical Layer.—If F1 travels through the non-adiabatic 
region without loss of amplitude, we have 

{F*)0=F¿ cosfr 

where t is the phase-retardation. Hence by (4.3) 

-Dn = ^F^en{i-coS<j>). (5.1) 

Thus the condition for minimum dissipation is 

dn(i - cos <j>) is a maximum, (5.2) 

and according to the foregoing theory pulsation will occur only in the neighbourhood of 
this maximum. We could therefore determine the phase-retardation </> in Cepheids from 
(5.2) if we knew the law of dependence of (j> on dn. This dependence is the third leg of 
our three-cornered relation. We can scarcely hope to obtain a definite formula, but we 
shall discuss the main features of the problem in a simplified model. 

We suppose the star in adiabatic pulsation to be surrounded by a non-adiabatic 
ublanket” in which 0 is very small. By § 3, in the blanket is not abnormal, and 
therefore the temperature oscillation OP^ produced directly by the expansion and 
contraction, is very small. The main temperature oscillation in the blanket is produced 
by the difference between the influx FqF^ and efflux of radiation. Let s be the 
specific heat, and set 

*= -SsT0dm. (5.31) 
Then in the blanket 

- 4^1) = sdm . jt(T0Ti)> 

so that, if Tj varies as eint, 
dFx i dT, in 

~dz^¥0~dt^¥^1‘ (5-32) 

Since F depends on the gradient of T, we might as a rough approximation set 
proportional to dTJdz. This would give an equation of the form d2T1/dz2 = iaT1, 
familiar in the theory of conduction of heat—as, for example, in the propagation down- 
wards into the Earth of the annual temperature variation at the Earth’s surface. The 
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solution gives a temperature wave propagated with change of phase but with a very rapid 
decay of amplitude, the decrement being = 1/4-8) for a phase-retardation of 90o. It 
is therefore important— 

(1) To show definitely, by comparison of theory and observation, that there is no 
great difference of amplitude of Ff and Ff*. 

(2) To show that there is a material difference between the “radiative blanket” and 
the “conductive blanket”, which makes change of phase without decay of amplitude 
possible in the former. 

The value of Ff, obtained by inserting the close approximation T1¡9a = P1 = - (4 + o-)^ 
in the rigorous formula for the adiabatic region*, is 

(s-f) 

where cr = «2£0/£0, and has nearly the same value 1-5 in all Cepheids on account of the 

approximate constancy of IIA/p; A is the index in the opacity law k oc P¡TK, and may be 
taken to be 4-5. Setting 9a = 0-4, corresponding to Ta = f, (5.41) gives 

*7=4.1871'=-9.2^. (5.42) 

For we may substitute the observed surface value ; this has a fairly constant mean 
value 0-055 independent of the period. Then F/= 0-506, corresponding to a range of 
about im-i bolometric. The mean observed range is about om-8. Thus the loss of 
amplitude between Ff and Fj*, though appreciable, is not very large. 

We next examine the equations in the non-adiabatic layer to see why the loss of 
amplitude is so small. From the equation of radiative equilibrium 

_ZacdT^_ ac? dT* 
H 3kP dè 3kPo£o2 

we obtain by logarithmic differentiation 

+ (5.51) 

= 2£i-(Pi-4--5ti)+4-ti +dT1/d (log T0). 

Then, using P1= -(4+ <7)^= -5-5^, 

F1=H1 + z^1=g-5^1 + 8-¡T1+dT1ld(log T0). (S-52) 

This value is to be inserted in (5.32). Although the ^ term in (5.52) is large, it is not 
difficult to show that its gradient is small, and it contributes little to dFJdz. The 
important feature is the large term 8-5 which has no counterpart in the conduction 
problem, where F depends on the gradient of T and not at all on T itself. This is the 
material difference referred to in (2). If we assume that this term provides the main 
part of dFJdZy (5.32) gives 

dTi in 

~fc=8^FQ
Tl' 

so that 
Ti oc einzl8-6F0 

and the phase of but not the amplitude, changes with z. The omitted term 
dTJd (log T0) will occasion some change of amplitude, but it is not likely to be large. 

There is no definite limit to the amount of phase-retardation given by (5.32) and 
(5.52), and <f) may even exceed 360o if the region of low 9 is sufficiently extensive. The 

* M.N.y 87, 543, equation (5.25). 
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fact that the observed values of (f> are near 90o depends on a quite different consideration, 
namely the condition for minimum dissipation (5.2). In (5.2) dn has been assumed 
uniform over the whole non-adiabatic region. It must therefore be regarded as a 
compromise quantity depending on the extent as well as the actual d of the critical layer. 
After <f> reaches 1800 both factors of 0n(i-cos</>) diminish; the maximum therefore 
occurs between <f> = o° and <£ = 1800. In a general way we should expect the maximum 
to be fairly near = 90o ; but it would require a much more elaborate investigation to 
establish this definitely. 

For our numerical calculations we shall take the amplitudes of and equal and 

0 = 9Oo. Then the semi-amplitude of -F-^* is and the difference between 

maximum and minimum heat-content of the blanket is where II is the 
period. The corresponding quantity per sq. cm. of surface is 

—iwn. (5.6) 
7T 

The blanket has to store this as ionisation energy, its heat capacity being otherwise small. 
It must therefore contain the right amount of hydrogen per sq. cm. of surface to take up 
the energy (5.6). In § 7 we shall examine whether this condition can be fulfilled. 

The low value of 9 makes the critical layer convectively unstable, and it may be 
suggested that the convection currents provide an alternative mode of energy storage, 
their speed increasing and decreasing in the course of the pulsation. But since the 
convective instability is a result of the ionisation, it is scarcely likely that the secondary 
energy changes of the currents can be as great as the primary energy changes of the 
ionisation. In any case upper limits to the possible speed of the convection currents can 
be found, which make it clear that their energy storage is unimportant. 

6. The Period-Luminosity Relation.—We shall try to determine the form of the period- 
luminosity relation by the principle of homology; that is to say, we assume that the 
Cepheids form a series of stars whose outer layers are homologous with respect to those 
characteristics on which (according to the foregoing theory) pulsatory instability depends. 
We employ as variates the (steady) radiation flux H and surface-gravity^; a relation 
between these is equivalent to a mass-density relation, and hence to a period-luminosity 
relation. 

By (5.6) the quantity of hydrogen needed in the critical layer is proportional to HU, 
and its weight to HUg. We have therefore to secure that in different Cepheids the 
pressure Px at points with the same degree of hydrogen ionisation x is proportional to 
Hlig. In pulsation the equilibrium value x will be replaced by an oscillation between 
limits xx and x2. We are assuming that these limits depend only on the amplitude Fx or 

of the pulsation, and not on the temperature and pressure at the level # which will 
be different in different stars; it is found that this assumption is approximately true. 

Taking the approximate mass-luminosity law L oc^M3, and the theoretical period- 
density law II ocp-*, we easily find that HUg oc fflg^ so that the homology condition is 

Px oc WgK (6.1) 

Assuming radiative equilibrium with k varying as p/T1^ we have (at not too small optical 
depth) P oc H-^g^T^'25, so that 

PxccH-^Tx^\ (6.2) 

By the ionisation formula Px varies very rapidly with Tx, e.g. as the 15th power at 12,000o, 
and as the 10th power at 20,000°. We are concerned with temperatures between these 
limits (§ 7), and may conveniently adopt 

P* * TX^K (6.3) 
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Eliminating Px and Tx between the relations (6.1), (6.2) and (6.3), we obtain 

H*gi. (6.4) 

For comparison we give the corresponding result when k is simply a constant, as 
when the absorption is due entirely to free electron scattering. Then (6.2) is replaced by 

Px X (6.2a) 

Combined with (6.1) and (6.3), this gives 

H oc £°-52. (6.4a) 

From calculations made in an earlier paper * for different points on the observed 
period-luminosity and period-spectrum curves, the empirical relation between H and g 
can be obtained. For the range of period from 1-4 to 39 days, I find H oc £0’45, which 
may be considered to be in reasonably good agreement with either (6.4) or (6.40). 

7. Energy Storage in the Critical Layer.—The ionisation energy of a hydrogen atom 
is equal to the mean translatory energy of a particle at 105,000o. In typical conditions 
two-thirds of the ionisation occurs in a temperature range of 20 per cent., say from 
10,000o to 12,000o. Thus the specific heat of hydrogen at the critical stage of ionisation 
may well be 30 or 40 times its ordinary value. 

The ionisation formula for hydrogen, with numerical values inserted, is conveniently 
written 

P 68000 5 68000 i-x 
logY+f= 11 ‘6o2 —T~~2 °g~^T~ + °g^7*^ 

where / is the proportion of ions (of all elements) to electrons, so that P/(i +/) is the 
electron pressure Pe. The logarithms are to the base 10. 

We define (conventionally) the inner and outer boundaries of the critical layer to be 
the depths at which x = ^, in the undisturbed star, and denote the corresponding 
pressures and temperatures by Piy P0, T0. The mass of material per sq. cm. in the 
critical layer is then {Pi-Pf)¡g. . On any reasonable estimate of the law of connection 
of P and T in this part of the star, is several times greater than P0 ; and the mass may 
with sufficient approximation be taken to be P¿/£. If X is the abundance of hydrogen, 
the mass of hydrogen is XPJg. 

We consider an oscillation of amplitude = o-1, so that F1 = H1 = 0*4. f The 20 per 
cent, range of temperature ionises and de-ionises f of the hydrogen at the middle of the 
critical layer. We therefore equate the ionisation energy of %XPJg grams of hydrogen 
to the energy storage given by (5.6). 

Table I 

Mass 
Period 
Mean Eff. Temp. 

g 
HoH, 
Energy stored 
Mass of hydrogen 
Weight of hydrogen 

Pi 
T, 
k 

5 
1-42 
6500 
1280 

4-05. io1' 
2-23. io1J 

257 
3'3°- ioi 

6-6.105 

17,700 
0-142 

B 
18 x O 

38-8 days 
4030° 

18-6 cm. sec.-2 

6-04.109 erg cm.-2 sec.-1 

9-13.1015 erg cm.-2 

1050 gm. cm.-2 

1*95 . io4 dyne cm.-2 

3-9. io4 dyne cm.-2 

14,050° 
0-093 

* M.N., 92, 480, Table III (1932). 
f The approximation F1=H1=4T1 is rough, but is adequate for our purpose. We can 

justify F1=4T1 at the inner boundary of the layer by (5.42). Strictly F1=H1 +2%^ but, since 
Hi and ^ differ 90o in phase, the amplitudes of F1 and ^ are not much different. 

H 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
41

M
N

R
A

S.
10

1.
.1

82
E 

192 Sir A. S. Eddington, Vol. 101 

The above results (Table I) are found for a short-period and long-period Cepheid for 
which the principal data were computed in an earlier paper.* 

In the following explanation the numbers refer to star A. The energy stored, 
2-23 . io15 ergs per sq. cm. of surface, is calculated by (5.6). This is equal to f of the 
ionisation energy of 257 gm. of hydrogen. Assuming a hydrogen abundance of 50 per 
cent., the corresponding mass of material is 514 gm., and the pressure Pi is taken to be 
the weight of this (P0 being relatively small). The electron pressure has been taken to 
be \Piy corresponding to one ion per electron, since of the hydrogen is ionised at the 
level i. Then Ti is determined from (7.1) with x = %. The meaning of will be 
explained in § 8. 

If the existing equilibrium theory of the outer layers were adequate to determine 
the pressure-temperature relation at this depth in the star, we should know indepen- 
dently the pressure at the depth corresponding to the temperature 17,700o, and could test 
whether the above calculated value 6*6 . io5 agreed. In particular, if the equilibrium 
theory showed conclusively that the pressure at that temperature was substantially less 
than 6*6 . io5, it would mean that there is not enough hydrogen at a critical stage of 
ionisation to perform the task allotted to it in our theory. 

The most suitable material for comparison is Unsold’s computation for a model 
atmosphere on the Sun.f This gives a pressure 5*io3 in the Sun’s photosphere; for the 
star A it would be rather less. To agree with our result P must vary as T6, or thereabouts, 
between the photosphere and the level i. At first sight this variation does not seem 
extravagant ; for example, in the standard model of the deep interior P oc T4. But there 
are circumstances which make the radiative gradient ¿/(log P)/d(log T) abnormally low 
in the region below the photosphere; and, in fact, Unsöld’s table gives P = 4*io4 at our 
temperature Since the result for star A would be lower, this is a wide discrepancy. 

The assumption of adiabatic equilibrium would be more favourable, since it gives a 
steeper ascent of P. It appears that between 7800o and 14,000o the adiabatic gradient 
¿/(log P)/¿/(log T) is greater than 5 and has a maximum of nearly 10. J This would suit 
very well our values of Pi and 7\. But adiabatic equilibrium implies that most of the 
outflowing heat is transported across the critical layer by convection, and involves 
velocities of the currents which are quite out of the question. 

The large discrepancy has led me to re-examine the conditions in a convective layer. 
The results of the discussion are given in an accompanying paper, and will be applied 
in the next section to the problem here raised. 

8. Convection in the Critical Layer.—The difficulty encountered in § 7 can be put most 
forcibly in the following way. Assuming radiative equilibrium, the optical depth of 
the level i is given by 

27 = 177(1+1^). 

With P¿ = 17,700o, Te = 6500o, we obtain t 1 = 72-7. Since the mass of material to this 
depth is 514 gm. cm.-2, the mean opacity ki is 72*7/514 = 0-142. For the star B we find 
similarly ki = 0*093. 

These values of ki are scarcely more than would result from free-electron scattering 
alone. The scattering coefficient for material containing one free electron for every two 
units of atomic weight is 0*2; so that o*i would correspond to a column which is half 
hydrogen on the average half ionised. To obtain our value of Pi it would be necessary 
to assume the absence of all other contributions to the opacity. 

In the accompanying paper § I have found that the convection leads to a complete 
break-down of ionisation equilibrium, and have traced some of the consequences of this. 

* M.N., 92, 480, 1932. These are not actual stars, but mean objects which precisely obey 
Shapley’s period-luminosity and period-spectrum curves. 

f Physik der Sternatmosphären, p. 144, Table XXXVI. 
j Ibid., p. 382, fig. 125. § Quoted as “I”, M.N., 101, 177, 1941. 
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One result is a substantial reduction of opacity in the convective region (I, § 4). The 
reduction is insufficient; but it helps to close the gap between the Cepheid calculation 
and Unsold’s calculation of There remains a somewhat reduced discrepancy which, 
I think, is accounted for as follows:— 

In Table I we found the value of corresponding to by the equilibrium ionisation 
formula (7.1). The result of convection is that this formula no longer applies. The 
neutral hydrogen convected by the downward current reaches the level 17,700o too 
quickly to be ionised—the proportion ionised being perhaps no more than (I, § 4). 
The limit =|- is therefore depressed to a much higher temperature level. There seems 
to be no great difficulty in supposing it to fall near 30,000°. 

I think therefore that, partly by the reduced opacity and partly by the deeper extension 
of the critical layer, an adequate amount of hydrogen is obtained. At any rate the close 
consideration of the effects of convection reveals such considerable modifications that 
we need not condemn the present theory of the cause of Cepheid pulsation on account 
of disagreement with the crude equilibrium calculations. 

In § 5 we assumed 6 to be very small in the blanketing layer; if it is not small the 
efficiency of the blanket is much reduced. But we have now introduced a flattening of 
the ionisation gradient by convection, which would increase d perhaps to the value J, 
corresponding to F = f. It may be objected that we cannot have it both ways. But, as 
a matter of fact, we can have it both ways. F, being a function of the speed of change, 
is not the same constant in the two investigations ; and 9 may well be J for the purpose 
of convection and for the purpose of pulsation. The pulsation is a relatively 
slow variation which allows time for the ionisation to adjust itself to the altered 
temperature and pressure. The combination of convection with pulsation is a 
somewhat complicated problem; but in principle each stage of the pulsation can be 
treated as quasi-static, the speed and extent of the convection currents and the 
consequent distribution of pressure, temperature and non-equilibrium ionisation being 
calculated for successive stages independently. 

9. Limit to the Amplitude,—The amplitude T'1 = o-i was chosen in § 7 because a 
temperature range of 20 per cent, covers most of the hydrogen ionisation; for example, 
two-thirds of the ionisation occurs between 10,900° and 13,400° at pressure 104, and 
between 12,600° and 15,900° at pressure 105. If we take a smaller amplitude, the 
required mass of hydrogen is not much altered ; there is less radiation to be stored, and 
the range of x is smaller in much the same proportion. But if we take a larger amplitude, 
there is more radiation to be stored, and the range of x which is already near its limit is 
not proportionately increased. Thus a layer, which is just thick enough to blanket 
oscillations of any amplitude up to J,

1 = o-i, is not thick enough to blanket stronger 
oscillations; and beyond T^o-i the dissipation increases rapidly. Accordingly the 
pulsation, due to the exceptionally low dissipation in a star which has reached the Cepheid 
stage, will not increase much beyond this limit. 

There is thus a natural limit to the pulsation at about T^o-i, or ^ = 0-4. This 
gives a range of om-8 bolometric. 

It has been pointed out that another natural limit is imposed by the condition that the 
pressure must not become negative in the course of the pulsation (I.C.S., § 131); but 
the actual pulsations fall short of this limit. It is forestalled by the new limit, which 
agrees reasonably well with observation. 

10. Comparison with other Investigations.—The retardation of phase has recently 
been treated by M. Schwarzschild.* I think his work is not in conflict with the present 
conclusions. He shows that the change of phase cannot occur without a modification of 
hitherto accepted boundary conditions, but does not suggest any particular cause for the 
modification. Our investigation indicates the low value of 6 in the critical layer as the 
cause. To make a nearer comparison we must distinguish between (a) the change of 

* Zeits.f. Astrophysik, 15, 14, 1938. 
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phase which occurs in the modified region, and {b) the change of phase imposed on the 
interior solution by the modification of its boundary conditions. Schwarzschild gives 
a specimen solution which takes it for granted that {b) is the main change. I think the 
dissipation formula (4.3) is decisive against this; unless a considerable part of the change 
of phase is actually within the region where d is small, we obtain negative dissipation for 
the whole star. Doubtless the critical layer disturbs the conditions for a short distance 
interior to it; but mathematical analysis indicates that such a disturbance dies out 
rapidly as we go inwards, and it could scarcely reach the adiabatic region. I conclude 
that the effect {b) is negligible compared with {a). 

All former calculations of the dissipation have been restricted to Da, and it might 
seem that these require revision in view of the present results relating to Dn. But the 
purpose of the calculations has usually been to examine the stability of ordinary stars 
rather than the instability of Cepheids. The large negative Z)n is a transient condition, 
of which the phase-retardation is a symptom; as soon as we get away from the Cepheids, 
- Dn is small. Thus the former calculations are valid for the purpose for which they are 

intended. In regard to the calculations of Z)a, I agree with Cowling * that my own 
and other early calculations underestimated the dissipation, owing to the integrations 
being carried not far enough towards the outside of the star, where most of the dissipation 
(positive and negative) occurs. 

Summary 

A study of the dissipation of the energy of pulsation leads to the conclusion that the 
quarter-period retardation of the outflow of heat is necessarily associated with an 
abnormally low adiabatic constant in the non-adiabatic part of the star. This points 
unmistakably to the critical layer, where hydrogen is in the mid-stage of ionisation, as 
responsible for the phase-retardation. It is verified that phase change can occur in this 
region without the rapid decay of amplitude which might have been expected from 
analogy with conduction problems. For stars in general no fixed amount of phase change 
is indicated; but in Cepheids it will correspond to an optimum extension of the critical 
layer which makes the dissipation a minimum, the sharply reduced dissipation being the 
cause of the pulsatory instability. A certain amount of confirmatory evidence is found. 
The theory requires an amount of hydrogen in the critical layer which at first sight seems 
impossibly large ; but it is believed that the discrepancy is removed by the study of the 
effects of convection contained in an accompanying paper. 

* M.N.y 94, 768, 1934. 
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