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THE HIGHLY COLLAPSED CONFIGURATIONS OF A 

STELLAR MASS. (SECOND PAPER.) 

S. Chandrasekhar, Ph.D. 

I. A study of the equilibrium of degenerate gas spheres has a twofold 
significance in the analysis of stellar structure, namely, in providing an 
approach to a proper theory of white dwarfs, and also, we shall see, in pro- 
viding a certain limiting sequence of configurations to which all stars must 
tend eventually. A beginning in the study of these configurations was 
made by the author in a previous communication,* where for convenience 
the equation of state of degenerate matter was taken to correspond to one 
or other of the two limiting forms p = or p= X^473 according as the 
density was less than or greater than a certain density p where 

p' ={K2¡K1f, 

p' itself being such that both the equations of state yield the same calculated 
value for the pressure. Actually in the analysis a certain small tempera- 
ture gradient was allowed for. Working on the standard model it was 
assumed that the ratio ß of the gas pressure to the total pressure was a 
constant, but by hypothesis (“highly collapsed”) ß was taken to be very 
nearly unity. On these assumptions it followed that stars of mass less 
than a certain specified M3/2 (see I, § 6, page 462) were complete Emden 
polytropes with index tz =3/2, and further that configurations of greater mass 
must be composite, i.e. must have inner regions where degeneracy is pre- 
dominantly relativistic. Lastly, and this was the most important conclusion 
reached, these composite configurations have a natural limit : On the 
standard model a completely relativistically degenerate configuration has 
a mass given by (cf. I, equation (36)) 

-¿(§)3/2(^)i • iß"372 =Msß~^ (say), (i)f 

where d3 is the Emden function with index n=2- These configurations 
have zero radius (cf. the remarks in I following the equations (45), (46), 
page 463)4 

* M.N., 91, 456, 1931 (referred to as I). See also the earlier papers of the 
author in Phil. Mag., II, 592, 1931, and Astrophysical Journal, 64, 92. 

f In I we denoted by Mz what we have now defined as M3ß~s/2. It is convenient 
to separate out the term involving ß from the purely “mass factor.” 

J In I this “singularity” was formally avoided by introducing a state of “maxi- 
mum density” for matter, but now we shall not introduce any such hypothetical 
states, mainly for the reason that it appears from general considerations that when 
the central density is high enough for marked deviations from the known gas laws 
(degenerate or otherwise) to occur the configurations then would have such small 
radii that they would cease to have any practical importance in astrophysics. 
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Dr. S. Chandrasekhar, The Highly 95» 3 208 

Apart from the above results of a general character, the analysis in I did 
not lead to any further quantitative results. To obtain by the methods 
of I anything more exact would have meant very considerable numerical 
work to “fit” an appropriate solution of Emden’s equation with index 

=3/2 (to describe the outer ordinarily degenerate envelope) with an Emden 
function of index 3 (to describe the inner relativistically degenerate core). 
It would be very much more satisfactory to take the exact equation describing 
the degenerate state and treat the whole degenerate parts of a star on the 
same footing instead of as in I, further subdividing it to correspond to one 
or other of the two limiting forms of the equation describing the degenerate 
státe. By a very remarkable coincidence the differential equation (govern- 
ing the structure of a degenerate gas sphere in hydrostatic equilibrium) 
based on the exact equation of state takes an extremely simple form. We 
show, in fact, that the structure of the configuration is governed by a solution 
of the differential equation, 

r¡* d^V dr,) V y0*J 
(2)* 

It is to be noticed that there is only one parameter occurring in the equation, 
and a single system of integrations should suffice to obtain a clear insight 
into these configurations. Equation (2) has a formal similarity with Emden’s 
equation. Indeed, we shall show that under certain circumstances <f> can 
be expressed in terms of the Emden functions with appropriate indices. 
It is the derivation of the above equation that has led to the developments 
summarised in this and the following paper. In this paper we shall establish 
this equation and provide tables of solutions. In the analysis we shall 
omit all references to radiation pressure, i.e. this paper strictly deals with 
configurations having j8 = i. The introduction of radiation in these con- 
figurations involves quite delicate considerations, and all these find a proper 
treatment in the paper following this one. 

2. The Differential Equation governing the Structure of Degenerate 
Matter in Gravitational Equilibrium.—The pressure-density relation for a 
degenerate gas can be written parametrically as follows :— 

irm^c* 
p =—=—[#(2#2 - 3X#2 +1)1/2 + 3 sinhr1 x\, 

P = 

3Ä3 

^TTmzcz¡jbH 

3A3 

(3) 

where m=mass of the electron, velocity of light, A = Planck’s constant, 
iZ = mass of the proton, = molecular weight. Equation (3) is established 
in Appendix I to this paper, where also f{x) is tabulated. We rewrite 

(3)as 

p=A2f(x); p=Bxs, (4) 

* This equation was given without proof in the author’s preliminary note in the 
Observatory, 57, 373, 1934. 
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A, 
7rmác5 

~w; 
B = 

87rm3csfjiH 

3Ä3 i 

f(x) =x(2x2 - 2)(x2 +1)1/2 + 3 sink-1 xJ 

The equations of equilibrium are, as usual, 

dp _ GM(r) ] 

dr “ 

dM(r) 

dr 

i dir2 dp 

= 477/)r2. 

= — 477 G/). 
From (6) we have 

r2 dr\p dr 

Substitute for p and p from (4). We have 

A2 i dir2 df(x)\ 

Br’d,\x> dr 

From the definition of/(#) in (5) we easily verify that 

df{x) 8#4 dx 

or 

dr (x2 + i)112 dr 

i df{x) 8^ 

xz dr (#2 + i)1/2dr 

Hence (8) can be rewritten as 

i d ( d'Vx2 + i 

Put 

Then 

dx dVx2+i 
= 8- 

dr 

r2 dr T 

ttGB* 

dr 

y% =xi+i. 

zA. 
Xs. 

1 d[ dy 
— r 

r2 dr\ dr 

ttGB2 

zA, 
{y2 -1)3/2. 

209 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Let x take the value xQ at the centre. 
Further, let y0 be the corresponding value of y at the centre. Introduce 

the new variables 77 and cf) defined as follows :— 

r = cnj ; y = 

where 
a = 

zAoV'2 i 

ttG / By0’ 

y0
2=x0

2 + i. 

Our differential equation finally takes the form 

r¡2 drj \ dr/) V y2) 

(H) 

(IS) 

(16) 

By (14) we have to seek a solution of (16) such that cf) takes the value 
unity at the origin. Further, from symmetry the derivative of <j> must 

H 
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vanish at the origin. The boundary is defined at the point where the density 
vanishes, and this by (12) means that if t?! specifies the boundary 

Jo 

3. From our definitions of the various quantities we find that 

P =Po; 
3V 

3/2 

i1?) 

(18) 

where p0=Bx0s=B(y0*-ir* (18') 

specifies the central density. Also we may notice that the scale of length a 
introduced in (15) has in terms of the physical quantities the form 

3Â3 \1/2 

or putting in numerical values 
^Trm/jiHy0 \2cG 

a = 
7-720 x io{ 

= ¿i^o“1 cm. (say). 

(ïÇ) 

(20) 

4. The Potential.—The function <j> itself has a physical meaning. If 
V is the inner gravitational potential, then from general theory we have 

dV idP 

dr p dr' 
From (5) and (10) we see that 

dV 8A2 d<!> 

or integrating 

dr B y*dr' 

8^2 , 
—¿-yo9 + constant. 
B 

(21) 

(22) 

(23) 

If we choose the arbitrary zero of the potential on the boundary of the 
configuration we have by (17) that the “constant” in (23) is (8A2IB). 
Hence finally 

<24) 

5. The Mass Relation.—The mass of the material enclosed up to a 
point rj is clearly 

M{r¡) = 4771 pr2dr = 477a31 prfdv). 
Jo ' Jo 

a?v 3 cni T \3/2 

O02 - i)3/2- 

or using our differential equation (16) 

M(r¡)= -477Po «3Jo3 

(Jo2-!)372 

V d¡ d4 

drj 

CV d 

J0 dr] 
dr}. 

(25) 

(26) 

(27) 
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Remembering that p0 is given by (18) we have explicitly 

2ÆA3/2i M 

211 

<28> 

The mass of the whole configuration is therefore 

(29) 

We notice that in (28) and (29) y0 does not explicitly occur. It is of course 
implicitly present inasmuch as in the differential equation defining <£, y0 

occurs. 
6. The Relation between the Mean and the Central Density.—Let p{r¡) 

be the mean density of the material inside rj. Then 

M(rj) =Í7Tasr)*p(7)). (30) 

Comparing (28) and (30), we have 

V /4> 
--V*-■)•»’'V 

or 

Po 

y<>‘ i d</) 

(yo2-*)3'2 v dri 

(31) 

(32) 

From (32) we deduce that the relation between the mean and the central 
density of the whole configuration is 

P0=-P^--2 

1 \3/2 

{<f>' denoting the derivative)—a relation analogous to the corresponding 
relation in the theory of polytropes. 

7. An Approximation for Configurations with Small Central Densities.— 
When the central density is small we should have the law p = i^573 holding 
approximately, and the corresponding configurations must have structures 
which can approximately be represented by an Emden polytrope with 
index 72=3/2. We establish this on our differential equation in the follow- 
ing way :— 

Now by definition y o2 =#0
2+1, and we need a first-order approximation 

when #0
2 is small. We shall neglect all quantities of order xf or higher. Then 

Put 
y0 = i+lx0

2. 

yo2 

In our approximation we have 

(f> = i- !(V - 9). 

At the origin (f> takes the value unity. Hence 

9(o)=x0
2. 

(34) 

(35) 

(36) 

(37) 
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212 Dr. S. Chandrasekhar, The Highly 95) 3 

From (i6) we derive the following differential equation for 0 :— 

Put 

Then 

1 d26 i dd 

2 drj2 7] drj 

|=21/277. 

? dé' dt' 

(38) 

(39) 

(40) 

which is Emden’s equation with index w =3/2, but the solution we need is not 
the Emden function in the usual normalisation * with 6 = 1 at ^ =0. By (37) 
our 9 takes the value x0

2 at the origin. Denote by dz/2 the Emden function. 
Now it is a property of the differential equation (40) that if 6 is any solution 
then C40(C£) is also a solution where C is any arbitrary constant. Hence 
if we put 

c=v/2> (41) 

and take for 6, 6z/2, we would obtain the solution we need. Hence 

0 =xo
203/2(V

/2f) =*o*0a/2(V^). (42) 
By (37)then   

<¡> = 1- |x0
2{i - 03/2( V2X077)} + O(x0

4), (43) 

which relates <j> with dz¡2. From (43) we see that for these configurations 
the boundary 77 x must be such that 

(03/2^2X077!) =0. (44) 

Let £1(03/2) be the boundary of the Emden function. 
deduce that 

_ £1(03/2) 

Then from (44) we 

(45) 

From (45) we see that as y0 -> 1, ^ o, r]1 -> 00. 
to infinity with the same singularity. 

Again from (43) we have 

^-?X0 V2X0 ^ . 

The radius tends 

(46) 

Combining (45) and (46) we have a relation we shall need later : 

\3/2/ dO, 

Further, 
dr])1 \ 2 / 

=(-°) 
3/2 

« 

’j 1 0 \£ ^ /1' 

(47) 

(48) 

We shall find the above expressions useful when we come to discuss 44 highly ” 

* In the sequel by “Emden function” we shall always mean the one which takes the 
value unity at the origin. We shall denote the Emden function with index n by Qn. 
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1935 Jan- Collapsed Configurations of a Stellar Mass 213 

collapsed configurations ((i-ß) finite but small), but now we verify that 
the scheme is consistent. From (48) and (33) we have 

è 
Po= -P\z^— - (49) 

3/2/1 

which is precisely the formula for an Emden polytrope with index n=2l2- 
Again from (29) and (47) 

fzAM* i [x0y'zfd93/2 

Ai ™ - ua 

di 
(So) 

To compare the above with the formula derived on the law p=K1p
5/s we 

note that the degenerate constant Kly given by 

Ki=^h\m h* 
20\7T/ M(fJLH)5/^ 

is related to our and B by the relation 

8 A2 
K, 

5 B*1*' 

(51) 

(52) 

Combining (50) and (52) and setting A2 to denote the central density ( =Bxf5) 
we find that 

M = — 477 5^1 
SttG 

3/2 
A2

1/2 p 
de 3/2 

dè 
(53) 

which is the usual formula since on the law p —Kp1+n the polytropic rela- 
tion is 

M = — 477 (53') 

8. The Limiting Mass.—From our differential equation (16) we see that 

03 as 3/0 °0- (S4) 

But from (20) we see that at the same time the radius tends to zero. From 
(28)then 

3/2 
Lité6? 
b\Ç d£J1 

(55) 

To see that we have now simply recovered our earlier result in I (equation (36)) 
we have only to notice that the relativistic degenerate constant K2, defined by 

/3\1/3 he 
2 = W 8(/xfi)4/3’ 

is related to our and B by the relation 

2<A2 

(56) 

K* £4/3- 

9. As mentioned in § 1, we shall denote by M3 the mass 

__ (zAA*12! 
M3=47T(^g) ’ 

(57) 

(58) 
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where following Milne we have introduced the quantity a>z
Q defined by 

If we define correspondingly that 

^(6o> 

for our function <^, then the mass relation can be written as 

M{yn)œ3°=M^l{y0). (61) 

As the mass of the configuration increases monotonically with increasing j0, 
we have the useful inequality 

Cl(y0) > a>3° (y0 finite). (62) 

Finally we may note that the insertion of numerical values in our formula 
for Ms yields 

M3 = 5-728/x-2 x o, (63) 

where O represents the mass of the Sun. 
10. The General Results.—In the previous sections, §§ 7, 8, 9, we have 

merely related our present treatment with the results obtained in I on the 
basis of the polytropic theory. Those results appear as simple limiting 
cases. However, the exact treatment on the basis of our differential equation 

rj2 drj\ 7 dr¡] (64) 

at the same time provides much more quantitative information. The 
boundary conditions 

<¿ = 1, — =0 at ri =0, 
nr) 

(60 

combined with a particular value for y0, would determine </> completely, and 
therefore the mass of the configuration as well. The equation (64) does not 
admit of a “homology constant/’ and hence each mass has a density dis- 
tribution characteristic of itself which cannot be inferred from the density 
distribution in a configuration of a different mass. This difference between 
our configurations governed by (64) and polytropes has, as we shall see, an 
important bearing in the theory of general stellar models considered in the 
following paper. 

Each specified value for j>0 determines uniquely the mass M, the radius 
R1 and the ratio of the mean to the central density. We have (collecting 
together our earlier results) : 

MIMZ = £ï(y0)lœs°, (66) 

Rilh=vilyo’ (67) 

Po/B=(yo2-i)3'2, (68) 
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pip» = - 
3/d(f> 

I - 
I \3/2 rii dri/1 

y»‘ 

In (67) we have introduced a new unit of length == ay0), 

k 
 3^3 y. = 7-720¡JL-1 x io° cm., 

215 

(69) 

(67') 

and which therefore does not involve factors in y0. Further, the physical 
variables determining the structure of the configuration are : 

P=Po 
I \3/2 

Jo 2 / 

P= ~Po 

Jo‘ 

_Zdfi 
3/2 r] di) 

M(v)oc-v^. 
dr] 

(70) 

(71) 

(72) 

ii. In § 10 we have reduced the problem of the structure of degenerate 
gas spheres to a study of our functions </> for different initially prescribed 
values for the parameter y0. The integration has been numerically effected 
for the following ten different values of the parameter :— 

i/yo2=o-8, 0-6, o*5, 0-4, 0*3, 0*2, o-i, 0-05, 0-02, o-oi. (73) 

The following expansion for <£ near the origin may be noted here for 
further reference :— 

j + , g6(339g2 + 28o) 
6& 40^ 7 ! 3x 9 ! 

g7(I425g4+ II430g2 +4256)^in | _ ^ 

where 

(75)* 
yo 

The important quantities of interest are the boundary quantities occurring 
in equations (66), (67), (69). These are tabulated in Table I for the different 
values of y0. 

12. From the figures of Table I it is easy to calculate the mass in units 
of M3, the radius in units of lx and the central density ( =#o3) m units of B 

* When y0 
00 ) (2 -*> i and the series (74) goes over into the expansion for 

Emden 03 near the origin (cf. British Association Tables, 2, Introduction, equation 
on top of page v). 
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( =9*8848 x 106 fi grams cm.“3). These express the chief physical charac- 
teristics of these configurations in the “natural system” of units occurring 
in the theory of these configurations. In Table III they are converted into 
the more conventional system of units expressing the radius and the density 
in C.G.S. units and the mass in units of the Sun. The actual figures 
tabulated are for ju, = i. The figures for other values of p can be obtained 
by multiplying M by /¿“2, ^ by ju,-1 and p by pu. To see the order of magni- 
tudes involved here it is of interest to point out that the mass 4*8520/x“2 has 
a radius only slightly over the radius of the Earth (radius of the Earth 6 x io8 

cm. compared to 7*7 x io8 cm. for the radius of 4*8520). The mass 
o*957M3 has a radius considerably less than the radius of the Earth. 

Table I 

i 

3V 

o 
•01 
•02 
•05 
•I 
•2 
*3 
•4 
•5 
•6 
•8 

Vi 

6-8968 
5-3571 
4-9857 
4-4601 
4-0690 
3-7271 
3-5803 
3-5245 
3-5330 
3- 6038 
4- 0446 

00 

-ViViVi) 

2-0182 
1*9321 
1-8652 
1-7096 
1-5186 
1-2430 
1-0337 
0-8598 
0-7070 
0-5679 
0-3091 
o 

Pol? 

54-182 
26-203 
21-486 
16-018 
12-626 
9.9348 
8-6673 
7-8886 
7-3505 
6-9504 
6-3814 
5-9907 

Table II 

The Physical Characteristics of Degenerate Spheres in the Natural” Units 

i 

y* 

01 
02 
05 
1 
2 
3 
4 
5 
6 
8 
o 

M/M3 

0*95733 
0*92419 
0-84709 
0*75243 
0-61589 
0-51218 
0-42600 
0*35033 
0-28137 
0-15316 
o 

R1H1 

0*53571 
0- 70508 
0.99732 
1- 28674 
1-66682 
1- 96102 
2- 22908 
2- 49818 
2*79148 
3- 61760 

00 

Po/P 

00 
985-038 
343 

82-8191 
27 

8 
3-56423 
1-83711 
i 
0*54433 
0*125 
o 
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Table III 

The Physical Characteristics of Degenerate Spheres in the Usual Units 

(Calculations are for = For other values M should be multiplied by 
^-2, JRx by /J“1, pc by fï) 

y<>‘ 

o 
•01 
•02 
•05 
•I 
•2 
*3 
•4 
•5 
•6 
•8 

i-o 

M/O 

5-728 
5*484 
5*294 
4-852 
4-3IO 
3*528 
2-934 
2-440 
2-007 
I-ÓI2 
0-877 
O 

Po in grm./cm.-* 

00 
9*737 x 108 

3-391 x 108 

8- 187 xio7 

2- 669 x 107 

7-908 x 106 

3- 523 X 106 

i-8i6 x 106 

9- 885 x 105 

5-381 X IO6 

1-236 x 105 

o 

in grm./cm.“3 

00 
4- 716 x 107 

1- 578 X 107 

5- in x 106 

2- 114 x 106 

7-960 x 106 

4-065 x 106 

2-302 x 105 

1*345 x 106 

7-741 x 104 

1-936 x 104 

o 

Radius in cm. 

4- 136 x 108 

5- 443 x 108 

7-699 X 108 

9-936 x 108 

1-287 X 109 

1-514 x 109 

1-721 x 109 

1- 929 x 109 

2- 155 x 109 

2-793 x 109 

00 

Now if we define that matter is “relativistically degenerate” for densities 
greater than p'(=(K2IK1)

s), then we can from our results easily find the 
masses which are characterised by central regions of “relativistic degeneracy.” 
The value of x corresponding to p' is readily seen to be 1*25. Hence 

<7<¡) 

From fig. i we now see that for M < there are no regions which 
are “relativistically degenerate” on this convention. For M > o^Mg 
there are regions in which x > a;,( = i-25), the fraction of the whole 
radius inside which x > xr rapidly increases to unity. In the mass-radius 
curve we can therefore draw circles about each point with radii proportional 
to the actual radii of the corresponding configurations, and draw inside each 
a concentric circle to represent the “relativistic” region. This has been 
done in fig. 2 at a few points. We see that even for M = 0-75^3 there is 
barely a “fringe” of ordinarily degenerate regions. This diagram clearly 
illustrates a general principle that degeneracy never usually sets in with- 
out being relativistic. 

13. Comparison with the Results on Emden Polytrope n =3/2.—It is of 
interest to see in how far the results of the above exact treatment differ from 
what one would obtain on the law=i£1p

5/3. We have already shown in 
§ 7 that one gets these Emden configurations as limiting cases for zero 
density and therefore for small masses (expressed in units of M3). Our 
comparison here therefore amounts to a comparison of the results based on 
an exact treatment of the equation (64) with the limiting form for yQ-+ 1 
extrapolated for all masses. For this purpose it is convenient to rewrite 
the formulae for the case of the polytrope n =3/2 in the following way. 
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From (45) and (50) we have now 

P ^1(^3/2) 
1_ Æo ’ 

(77) 

From (77) and (77') we have on eliminating xQ 

2R'-{ co3m) -ll’ 
(78) 

where following Milne we have introduced the uinvariant” cd3/2° defined by 

"3/2° = - U* 
.dds/z 

W h 
= 132-3843. (79) 
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1935 Jan- Collapsed Configurations of a Stellar Mass 219 

It is of interest to notice that the two invariants co3
0 and cog/g0 of the Emden 

equation with the indices a =3 and 3/2 occur in (78) in a <£symmetrical 
way.” Numerically (78) is found to be 

i?! = 2-Ol647^—j .lv (80) 

Fig. 2.—The full line curve represents the exact {mass-radius)-relation for the 
highly collapsed configurations. This curve tends asymptotically to the curve 

as M o. 

(80) expresses the mass-radius relation for the polytropic limit, the radius 
and the mass expressed in the same units as the quantities in Table II. 
Similarly the mass-central density relation now reads 

#0
3 =4-4238i(M/M3)

2. (81) 
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The results calculated on the basis of (80) and (81) for the same masses as 
in Table II are summarised in Table IV. The corresponding curves are 
shown dotted in figs. 2 and 3. 

Table IV 

m/m. RJli *0 

i 
0-9573 
0-9242 
0-8471 
0-7524 
0-6159 
0-5122 
0-4260 
0-3503 
0-2814 
0-1532 

2-0165 
2-0459 
2-0700 
2-1311 
2-2174 
2-3701 
2-5203 
2-6801 
2- 8606 
3.0772 
3- 7691 

4-4238 
4-0538 
3-7780 
3-1739 
2-5042 
I-6778 
I-l603 
0-8027 
0-5429 
0-3502 
0-1038 

One notices clearly from these two curves how marked the deviations from 
the limiting curves become even for quite small masses. Thus for 
M = o-i$M3 the central density predicted by our exact treatment is about 
25 per cent, greater and the radius about 5 per cent, smaller. The relativistic 
effects are therefore quite significant even for small masses. They certainly 
cannot be ignored for masses greater than o-zMz. Of course the extra- 
polation of the n=2l2 configurations for masses (in units of Mz) approach- 
ing unity is quite misleading. These completely collapsed configurations 
have a natural limit, and our exact treatment now shows how this limit 
is reached. 

It is of interest to compare the full-line curve in fig. 2 representing our 
exact (mass-radius) curve with what one would obtain by the methods of 
I, where the degenerate spheres of mass greater than a certain limit M2/2 
were considered as “composite configurations.,, The mass Mz/2 was 
defined as one in which the Emden polytrope with would have a 
central density p( =(K2/K1)

3). In our present notation we have by (81) 

= J • m3=0.66446M3. (82) 4-42381 

This particular point is marked as B in fig. 2 on the curve. A 
treatment of the composite configurations by the methods of I would have 
led to some kind of curve like the dotted one in fig. 2 conjecturally drawn. 
But fortunately it is now not necessary to go into the very elaborate numerical 
work that would have been involved to fix the part BA by the methods of 
I. By a single system of integrations we have now fixed the exact nature of 
the (mass-radius) curve for these completely collapsed configurations. 

* The equation of state being £ =2£ip5/8. 
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14. The Relative Density Distributions in the Different Configurations.— 
Our main diagram (fig. 4) now illustrates the relative density distributions 
in the configurations studied. Here we have plotted (p/p0) against (^/^i) for 
the different masses for which we have numerical results. The two limiting 
density distributions specified by Emden, 03 and Ö3/2, are also shown (dotted) 
in the same figure. Fig. 4, which is the principal outcome of our studies, 
presents a set of ten out of a continuous family of density distributions 

Fig. 3.—The full line curve represents the exact {mass, log p¿)-relation for the 
highly collapsed configurations. This curve tends asymptotically to the dotted curve 

as M o. 

covering the range specified by the polytropic distributions of indices 
3/2 and 3. 

15. Concluding Remarks.—In this paper we have strictly confined our- 
selves to the case “ß = i.” But in stellar problem the radiation pressure 
(even if small) necessarily plays a deciding rôle, and the question as to in what 
sense we have to understand the completely degenerate spheres studied 
here as representing “the limiting sequence of configurations to which all 
stars must tend eventually ^ can be answered only by introducing radia- 
tion in these configurations. To do this properly we have first to develop 
adequate methods to treat composite configurations consisting of degenerate 
cores (of the structures studied here) surrounded by gaseous envelopes. 
These and related problems are studied in the following paper (p. 226). 

16. Manuscript Copy of Tables.—The functions f and their derivatives 
</>' (to six and five significant figures respectively) have been computed by 
the author for the values of i/y0

2 specified in (73). In addition to <f> and 
the auxiliary functions p/p0, p0/p, - and two other functions U and V 
(defined in equation (91) of the following paper) have also been tabulated. 
The auxiliary functions were calculated correct to five significant figures. All 
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the functions were tabulated for steps of o-1 for the argument rj. A manuscript 
copy of these tables has been deposited in the Library of the Society.* 

Fig. 4.—The relative density distributions in the highly collapsed configurations. 
The upper dotted curve corresponds to the poly tropic distribution n=2>l2 and the lower 
dotted curve to the poly tropic distribution n =3. The inner curves represent the 
density distributions for i/y0

2 =o-8, o-6, 0-5, 0-4, 0-3, 0-2, o-i, -05, -02, -oi respectively. 

APPENDIX 

The Equation of State for a Degenerate Gas.—The equation has been 
derived by Stoner (among others),f but we shall give a simpler derivation 
of the same. 

In a completely degenerate electron assembly all the electrons have 
momenta less than a certain “threshold” value and in the region of the 

* Dr. Chandrasekhar’s Tables can be consulted by Fellows on application to the 
Assistant Secretary (Editors). 

t M.N., 92, 444, 1931. 
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available phase space of volume ^7Tp0
zV every cell of volume A3 contains just 

two electrons. Clearly then we have 

n 
Ä3 

ro 
p*dp, 

J ft 

<s= 

_ 877 f^o dE 

p=ApWf' 

(i)* 

(2) 

(3) 

where w is the number of electrons per unit volume in the assembly of 
volume Vy (B the total energy and E the kinetic energy of a free electron. We 
have now denoted the pressure by P instead of by as in the text of the 
paper to avoid confusion with the momentum, which has to be denoted by 

From (1) and from (2) and (3) we have respectively 

Pq = 

/¡lvin <£ 

V (4) 

Equations (i) to (4) are quite general. Now in the relativistic mechanics 

we have 

E=mc2 
(5) 

0 E(E + zmc2) 

• 

Using (5') in (3) we have, after some minor transformations, that 

SttotW« 

where 

P = 0 sinh4 Qdd, 3Ä3 J0 

sinh 0 =p/mc ; sinh 60 =p0/mc. 

(7) yields at once that 

P = 
STTW^fsinh3 6 cosh 6 3 . ^ Q 3 

3A3 L 

Writing x for (pü/mc) we have 

7rm4c5 

--^2 sinh 20 +-0 
IO o 

p- 
3A3 x(zx2 - 3)(v2 + x)1/2 + 3 sinlv ^v 

(6) 

(7)t 

(8) 

(9) 

* This equation follows directly from the expression for the number of waves 
associated with electrons whose energies lie between E and E + dE given by Dirac 
(P.R.S., 112, 660, 1926, his unnumbered equation on p. 671). Actually Dirac 
obtains this result using the Klein-Gordon relativistic wave equation. That the 
same result would follow from Dirac’s relativistic wave equation (on neglecting the 
states of kinetic energy—which is permissible when no external perturbations are 
present) is clear from J. von Neumann, Z.f. Physik, 48, 868, 1928. 

f 0 here introduced will not be confused with the Emden function. 
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p — npiH — 
SimPcZpiH 

3h3 
x*. (10) 

which are the equations quoted in the text. Our derivation now shows 
“why” we are able to reduce the differential equation for degenerate gas 
spheres in gravitational equilibrium to such a simple form. The “reason” 
is that we have such an elementary integral for P as in (6). 

The function f(x) on the right-hand side of (9) has the following asymptotic 
forms :— 

f(x)~ix5-j-x7 + ix9-^zx11+ . . . x^o, (11) 

f(x) ~ 2#4 - 3#2 + . . . x 00 . 

Finally we notice that 

fix) 
2#4 

< I for all finite x. 

(12) 

(13) 

The inequality in (13) is a strict one. If only the first terms in the expansions 
(11) and (12) are retained, we can easily eliminate x from (9) and (10) for 
these limiting cases and obtain, as we should expect, that 

P = K^i* (* -> o) ; P = K^'z (x-+*>), 
with 

K =—(t\m - ■ K Jtr — 
1 20W m^H)5'3 ’ 2 W SifiH)*'3’ 

If we write our “equation of state” (9) and (10) parametrically as (changing 
to “^)” to denote pressure), 

p=A2f(x); p=BxZ, (16) 

we find, on putting in the numerical values for the constants, that (in C.G.S. 
units) 

^42 = 6*0406 x 1022 ; B =9*8848 x io5/z, (17) 
or 

log P = 5-995° + 3 log * + log i“> 
logp =22*7811 +logf(x) 

Stoner has previously made some calculations concerning the (p, p) relation 
for a degenerate gas, but for the study in the following paper more accurate 
tables for/(#) were needed. Accordingly the whole computation was re- 

* The law P=K2p*/s was first used by the author in his paper on “Highly 
Collapsed Configurations/* etc. (M.N., 91, 456, 1931). This law has also been 
derived by E. C. Stoner (M.N., 92, 444, 1932), T. E. Sterne (M.N., 93, 764, 1933), 
and is also implicitly contained in J. Frenkel (Z.f. Physik, 50, 234, 1928). The law 
has also been used by L. Landau (Physik. Zeits. d. Soviet Union, I, 285, 1932). It 
may also be pointed out that the law P=K2p

i/z is implicit in certain equations in a 
paper by F. Juttner (Z.f. Physik, 47, 542, 1928, equations in §§ 13, 17 ; our equation 
(6) above is a limiting form of Juttner’s integral Q(o., y \ +1)). This last work of 
Juttner is related to his earlier work on the relativistic theory of an ideal classical 
gas, for a convenient summary of which see W. Pauli, Relativitätstheorie (Leipzig, 
Teubner), § 49. 

(h) 

(15)* 
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done and the results are tabulated in Table V. I am indebted to Dr. 
Comrie and Mr. Sadler for the loan of a manuscript copy of a seven-figure 
table for sinh-1 which was valuable in the computations of/(#). 

Table V 

fix) f(x)/2X* 

o 
0-2 
O.4 
0*6 
0*8 
i-o 
1*2 
1- 4 
1-6 
1-8 
2*0 
2*2 
2- 4 
2-6 
2-8 
3- 0 
3*5 
4- 0 
4*5 
5- 0 
6- 0 
7.0 
8-0 
9-0 

10-0 
20-0 
30'° 
40-0 
50-0 
6o*o 
70-0 
8o-o 
90-0 

100-0 

o 
0-000505 
0-015527 
0-111126 
0- 435865 
1- 229907 
2- 82298 
5-62991 

10-14696 
16-94969 
26-69159 
40-10347 
57-99311 
81-24509 

110-8207 
I47-7578 
279-8113 
484-5644 
784-5271 

1205-2069 
2525-739 
4710-192 
8070-587 

1-296694 x104 

1-980725 x 104 

3- 192093 X106 

1-618212 x 106 

5-116812 x IO6 

1- 249501 X107 

2- 591280 X 107 

4- 801018 x107 

8-190727 x 107 

13-12039 x 107 

19-9980 X 107 

o 
0-15785 

•30325 
•42873 
•53206 
•61495 
•68070 
.73276 
•77415 
•80731 
•83411 
•85598 
•87398 
•88894 
•90149 
•91209 
•93232 
•94641 
•95659 
•96417 
•97444 
•98088 
•98518 
•98818 
.99036 
•99753 
•99890 
•99938 
•99960 
•99972 
•99980 
•99984 
•99988 
.99990 

Trinity College, Cambridge : 
January i. 
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