THE RADIAL VELOCITIES OF THE STARS OF SPECTRAL CLASSES R AND N*

BY ROSCOE F. SANFORD

ABSTRACT

The catalogue.—An attempt is made to bring together in Table I all the radial velocities of the stars whose spectra show the bands of carbon. Those of class N have been reduced to a velocity system which harmonizes laboratory and stellar data.

Velocities from emission lines.—Twenty stars of class N having emission lines of hydrogen give -21.6 km/sec. for the mean difference between the radial velocities depending upon them and those from the absorption features. These stars are all variable with a mean period of 407 days and a mean range of 4 mag. Emission lines of hydrogen are usually associated with stars having a large magnitude range, and in such stars as fail to show them the explanation may be that the observations occur at the wrong phase, since the intensity of emission is known to fall to zero at certain phases. Moreover, the presence of emission in the spectrum of a star not known to vary should cause it to be suspected of variability.

Solar motion, galactic rotation, and absolute magnitude.—A least-squares solution based upon all the material for the class-N stars gives a solar motion quite similar to that for the naked-eye stars, a galactic rotation term of 13.4 km/sec., a mean distance of 0.727 kiloparsecs, a mean absolute magnitude of -1.4, and 315° as the longitude of the galactic center.

The reality of the galactic rotation term is strengthened by dividing the stars into three groups, whose mean apparent magnitudes are 6.5, 8.1, and 9.3, and solving these groups for galactic rotation alone after the elimination of the solar motion. The three results are 7.2, 16.3, and 22.4 km/sec.—a quite consistently progressive increase.

results are 7.2, 16.3, and 22.4 km/sec.—a quite consistently progressive increase. Mean absolute magnitudes for the three groups are computed on the basis of their mean apparent magnitudes and mean distances. These latter can be obtained from the constant for the increase of the galactic-rotation term per kiloparsec as obtained from the investigations of stars of class B and of Cepheid variables. Using the constant obtained by Joy for the latter stars, the values of the absolute magnitude are -1.4, -1.5, and -1.1, respectively. The constant for the B stars gives absolute magnitudes 0.4 brighter.

Heretofore the radial velocities of stars of spectral classes R and N were to be found only in the following lists: 8 N stars by Hale, Ellerman, and Parkhurst,¹ 10 R stars by W. C. Rufus,² 25 of class N by J. H. Moore,³ and 30 of class R by R. F. Sanford.⁴

Immediately following the completion of the last list a program for the radial velocities of stars of class N was started by the writer

* Contributions from the Mount Wilson Observatory, Carnegie Institution of Washington, No. 525.

¹ Pub. Yerkes Obs., 2, 341, 1903.

² Pub. Detroit Obs., 2, 135, 1916. ³ Lick Obs. Bull., 10, 160–168, 1922.

4 Mt. W. Contr., No. 276; Ap. J., 59, 339, 1924.

with the idea of increasing as far as possible the number obtained by Moore, an increase which would have been rather moderate if both the plates available and the spectrographic equipment had not in the meantime undergone marked improvement. With only a few exceptions, the spectrograms used in this investigation were obtained with the stellar plane-grating spectrograph designed by Merrill and described⁵ by him in *Mount Wilson Contribution* No. 432. Suitable spectrograms of stars of spectral class N as faint as visual magnitude $8\frac{1}{2}$ may under good conditions be obtained in the red with exposures of the order of two hours by using ammoniated Eastman 3C plates.

It thus became possible to photograph even more than had been anticipated of the stars of class N from the Henry Draper Catalogue. In addition, a considerable number of spectrograms was obtained for the purpose of checking the classification of discoveries⁶ of this spectral class upon objective-prism spectra photographed at Mount Wilson with the 10-inch telescope. Most of these latter stars were of the ninth visual magnitude or fainter and necessitated the use of a short-focus camera with a resultant dispersion of 110 A per millimeter. Some of the other faint stars were also photographed in this manner. Otherwise, for the most part, a camera of 10-inch focus, with a dispersion of 65 A per millimeter, was employed. A dispersion of 33 A per millimeter was obtained by using an 18-inch camera for a few stars. Some exposures of exceptionally high dispersion were made with various coudé spectrographs. Such a spectrogram of Y Canum Venaticorum made with a concave-grating spectrograph has a dispersion of approximately 3.5 A per millimeter.

In the spectra of stars of this class, the identification of the complex absorption features has never been entirely satisfactory. The Swann, cyanogen, and hydrocarbon bands and certain very conspicuous lines such as those of sodium are well known. But a large percentage of the details, notably those extending into the visual region which Shane⁷ measured, remained unidentified.

At first, therefore, it was decided to use Moore's results as a basis for the velocities of standards for the Hartmann spectrocomparator

⁵ Ap. J., 74, 188-200, 1931.

⁶ Pub. A.S.P., **45**, 306–308, 1933. ⁷ Lick Od

7 Lick Obs. Bull., 10, 79-92, 1920.

and for the wave-lengths to be used for micrometer measurement a practice followed until a large number of spectrograms had been obtained with the grating spectrograph. During this time these wave-lengths were improved, and some features adopted at first were rejected as not being generally useful.

The region measured on the grating spectrograms includes the D lines, which, when suitably exposed, offered an opportunity of comparison with the wave-length system employed. Twenty-one spectrograms were selected, each of which furnished a good determination of the radial velocity, both from the D lines, by using solar wave-lengths, and from other tabular features. The differences were remarkably consistent and significantly large, the sodium lines giving algebraically smaller radial velocities. Further checks seemed desirable.

A good opportunity was offered when Merrill⁸ found that in the far red the spectra of stars of class N could be largely accounted for by the details of the cyanogen band spectrum, and when, at his suggestion, I looked for and found the same to be true in the red region.

An intercomparison of spectra of class-N stars and King's furnace spectra resulted in the identification of many features for which accurate wave-lengths could be measured on the laboratory spectrograms. A new set of wave-lengths was thus obtained which included the features already used. Radial velocities were then computed on the basis of the old tabular wave-lengths as well as on that of the new wave-lengths of these same features and also on the basis of the additional features measured. The three comparisons are given below together with their mean:

D lines-old tables	-5 km/sec.
Revised $\lambda\lambda$ -old $\lambda\lambda$ (same features)	8
New lines – old lines (old $\lambda\lambda$)	-9
Mean	-7

Hence velocities based upon the old tables need to be decreased by 7 km to conform to the new system.

This correction is significantly like the K term which Moore obtained from his solution for the solar motion. He was of course well

⁸ Mt. W. Contr., No. 486; Ap. J., 79, 202, 1933.

1935ApJ....82..202S

aware of the fact that this K term would have largely disappeared had he not applied a systematic correction to the velocities from low-dispersion spectrograms. He concluded to use this correction, however, since its necessity was indicated by such intercomparisons as were possible, although he was frank to point out some of their unavoidable deficiencies. His radial velocities, corrected by -7 km/sec., may be compared with the writer's in twenty-one cases. Since three of these intercomparisons involve low weight in one case or the other, eighteen well-determined values remain common to both lists. The mean of their differences is practically zero.

It may also be remarked that the mean of the differences between the velocities of the eight class-N stars given by Hale, Ellerman, and Parkhurst and their velocities determined at Mount Wilson is -4 km/sec.

Table I includes all the velocities of stars of class N obtained at Mount Wilson; of those few below our declination limit obtained by the D. O. Mills expedition, at Santiago, Chile, and appearing in Moore's list; and of some miscellaneous stars originally suspected of belonging to this spectral class. The velocities of stars of spectral Class R as given in *Contribution* No. 276^4 are included, together with a few observed later. Table I should therefore contain a complete list of the known radial velocities of stars in whose spectra the bands of carbon appear.

The class-N stars from the *Henry Draper Catalogue* within reach of Mount Wilson and not yet observed for radial velocity are as follows: HD 44653, 46321, 47396, 48664, 52225, 57160, 57884, 58195, 58385, 60952, 172804, 190606, 191783, 195665. To these should be added three stars from the Mount Wilson list,⁶ Nos. 26, 27, and 32. Practically all have visual apparent magnitudes 9 or fainter.

Among the class-R stars there remain likewise the following from the *Henry Draper Catalogue*: HD 27108, 63130, 70138, 78278, 163838, 166097, 166129, 170282, 171399, 179355, 187216, 188934, 215673, 216649, 218851. No magnitudes are given for six of these, while the mean apparent visual magnitude for the remainder is 10.4, which accounts for the lack of observations.

The Henry Draper Catalogue has, in large part, furnished its number, the BD designation, the co-ordinates for 1900, the magnitudes, and the types for Table I. Additional information on the mag-

	TE CTON A TTON										
HU NO.	NOTENDER	υ	ş	Max.	Min.	Түре	Abs.	Em.	1	9	Notes
1306	ST Cas	0 ^h I2 ^m 2	+40°44′	7.5	0.0	Nb	- 43		85°	-12°	(33)
1546	VX And	14.6	+44 9	8.1	9.5	NcN ₇	$+ \frac{5}{8}a$		8°.	- 18	(27)
1994	$BD+53^{\circ}66$	1.01	+53 44	0.1 7.0	. 0	R5R5 Nh	- 366	:	86 86	× 8	(1)
5223	$BD+23^{\circ}123$	48.0	+33 + 23 + 32	0. 8. 8	D. 0 0 0	\mathbb{R}_3	-234b		00	- 32	(1)
7561	ZPsc	1 IO.Ó	+25 14	7.4	8.1	NaNo	+ 22 b	· · · · · · · · · · · · · · · · · · ·	98	-36	(20)
8879	R Scl	22.4	-33 4	6.2	8. j	Np (-jv)	- 80	:	211	- 80	(20)
10636	BD+52°270	27.1	+57 14 +52 28	1.0	11.7	Re Re		:	6	 4∝	(2)(32)
•••••••	X Cas	49.8	+5846	× 8 4 4	13.I	(Nie)	- 576	80	66	н 	
13826	V Ari	2 9.6	+11 47	8.3	0.0	NbR8	-183 b	:	122	- 44	(2I)
	MSB 2 DD 1.001	20.I	+51 37			(N_3)	- 54 6	:	105	∞ q 	$\begin{pmatrix} 2 \\ \end{pmatrix}$
101250	UY And	30.2 32.I	- 9 53 + 38 44	0.3	14.0	N3N3	- + - 		150	1 1 2 8 2 8	(1)
19557	$BD+57^{\circ}702$	3 3.7	+5731	8.1		R_5R_5	- 56 a		108	0	(1)
19881	$BD+47^{\circ}783$	6.7	+47 27	9.2		Np	+ 10 e	· • • •	114	8 8	
20234	$CD - 57^{513}$	10.0	-57 41	5.7	· · ·	Na	+ 14		240	- 50	(3)
21280	Y Per	20.9	+43 50	×. ,	0.11	Nbe	- 40	- 14	118	6 ·	•••••••••••••••••••••••••••••••••••••••
22011		33.2	+02 19	6.0	0.0	NDN5	- 1	:	601	~ +	
		33.9	+51 Z	6.0		(N^2)	00 +	:	115	1	
	AC Fer	30.1	+44 28	10.2	12.3	(N3)		:	120	- 7	(2)(20)
	MSB 5	41.5	+52 54	:	:	N	- 82 e	:	115	0	(2)(34)

206

TABLE I*

1935ApJ....82..202S

ROSCOE F. SANFORD

476 166 3302 3302 3311 311 311 311	357
$ \begin{array}{c} (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (2) $	$\binom{2}{2}$ (2) (2) (2)(23)
+ + + + + + + +	1 + 17
111 128 1	. 177 . 179 3 134 . 171 . 184
	<u>;</u> ; + ; ; ;
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	+++++
R8R8 (N3) (N1) (N1) (N1) (N1) (N1) (N1) (N1) (N2) (N2) (N2) (N2) (N2) (N2) (N2) (N2	(N_{12}) (N_{12}) (N_{12}) (N_{12}) (N_{12})
12.5 17.0	<12.2
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	9.5
$\begin{array}{c} +++61\\ ++61\\ +-61\\ +-62\\ +-22$	
4 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	12.7 13.4 16.5 18.5
BD+ $6i^{\circ}667$ SY Per MSB 7 MSB 8 MSB 8 MSB 8 AV Per ST Can BD+ $13^{\circ}991$ TT Tau BD+ $15^{\circ}691$ TT Tau BD+ $5^{\circ}1174$ BD+ $5^{\circ}555$ MSB 11 R Lep BD+ $5^{\circ}555$ MSB 11 R Lep BD+ $5^{\circ}555$ MSB 112 BD+ $5^{\circ}555$ TT TAU BD+ $5^{\circ}1174$ BD+ $5^{\circ}5539$ TT Tau BD+ $5^{\circ}5539$ TT Tau BD+ $5^{\circ}5539$ TT Tau BD+ $5^{\circ}5539$ TT Tau BD+ $5^{\circ}5539$ TT Tau BD+ $5^{\circ}5539$ TU Tau S Cam S	$\begin{array}{c} BD - 0^{1240} \\ MSB 17 \\ V Aur \\ MSB 18 \\ BD - 7^{\circ} 1402 \end{array}$
25408 25408 30243 30243 30443 30710 30710 30710 30710 30710 31996 32078 32078 3207 3212 3602 3602 3602 3602 3602 37212 3602 37212 36072 37212 36572 38572	44388
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	53 55 56 57

		PERIOD	days	•				530							22.17		· · ·			· · ·	-		535
		Notes	74 Schj	$\binom{2}{2}$	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	(ווחב o/.	· · · ·	(30)	(2)		(1)(12)		$(\mathbf{I})(\mathbf{I}3)$	(2)(23)	(0)	· · · · · · · · · · · · · · · · · · ·	(I)	· · · ·		(2)(18)	(2)		(23)
	ACTIC	p	°° +	1 + 102	+-	$+1_{1}^{+1}$	0	1 - 1 1 - 1 1 - 1	-1 +	9 +-	~ - ++	- I	+12	6 +-	++	+18	+18	+13	+17	+14 +17	01 × 1	ور +	+23
	GAL	1	164°	161 202	167	144 I51	185	143	617 176	176	180 180	193	171	641 179	118 164	104 164	101	184	182 0	189	191 222	210	189
	/SEC.	Em.	•	· · ·			•	:		· · ·	:	· · ·	+ 42		:	· · ·		:	•	•			∞ I
	VEL. KM	Abs.	+ 13 C	+ 7d + 23e	- 14 e	+ 14 c	+ 38d	+ 0 0 6 +	+ 57 e	+ 10 p	+ 24 6	+ 21d	+ 53 d	+ 56 @	+ 1	- 1	+ 43 e	+ 40 €	+ 25 e	0 6 	+ 20 e + 28 d	+ 23 e	+ 17 6
ntinued	l	ТурЕ	Nb	N_{N3}	(N_2)	Na _{N3}	Nb	(N_3)	(N_3)	dN N	K5 (Nc)	Na	Rpe	(N3)	RcR3 RcR3	R5R3	R§Rg	Na	R8	(N3)	(ov)	Nb	Nbe
E I-Co	NITUDE	Min.				~8.8	10.4	12.0		8.2	· · · ·	7.5	14.9	:	0.0			9.I	11.3		10.2	<i>b.</i> 11	9.6
TABI	Mag	Max.	6.6		9.4	8.6	9.2	0.0	9.5	7.0	7.5	6.9	I0.8	9.5	7.9	8.0	8.2	8.7	9.8	:		9.4	8.3
	0	ş	+14°48′	+19 8 -27 1	+12 33	+3031	- 4 27	+41 14 - 12 14	+ 6 29	+ 6 18	1 3 0 7 2 1	— 11 46	+14 46	+ 5 14	+0052	+22 5	+24 44	+ 2 18	+ 5 40	- 038	-3820	-22 37	+ 3 5
	61	¢	6 ^h 19 ^m 8	20.3	25.3	35.7	48.2	50.3	51.7	53.0	50.I	3.4	7.2	10.3	20.01	20.2	25.8	31.3	43.4	45.0	8 I.7	3.2	14.9
	1	DESIGNATION	BL Ori	AB Gem CD-26°2083	$BD+12^{\circ}1177$	VW Gem	$BD-4^{\circ}1708$	$OW Aur CD - 40^{\circ}38r8$	BD+6°1451	RV Mon	$BU-3^{1085}$ RY Mon	W CMa	V Gem	$BD+5^{1606}$	$BD+22^{\circ}r670$	$BD+22^{\circ}168^{\circ}$	$BD+24^{\circ}1684$	$BD+2^{\circ}1715$	W CMi	MCR 31	RT Pup	RU Pup	RY Hya
		HD No.	44984	45087		47883	50436	50949 51208	·····	51620	52432	54361	55284		50107	58364	59643	60826	63353	: : : :		67507	70072
			58	62 60 60	19 19	63 03	64	02 02	67	68	00 00	71	72	73	74 75	202	17	78	62	δ ×	82 82	83	84

1935ApJ....82..202S

416 130 500 80? 439 439 242
(1) (20) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
++++++++++++++++++++++++++++++++++++
$\begin{array}{c} 156^{\circ}\\ 1776\\ 17$
-132
++ ++ ++ + + + + ++ ++ + + ++ ++
$\begin{array}{c} (Noe)\\ R8R7\\ R8R7\\ R8R7\\ R58R7\\ R58\\ R5\\ R5\\ R5\\ R5\\ R5\\ R5\\ R5\\ R5\\ R5\\ R5$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8 20 8 8 9 9 8 9 0 0 2 2 8 4 0 0 9 8 8 2 9 8 0 0 8 7 9 8 8 7 9 8 8 7 9 8 8 7 9 8 8 7 7 7 9 9 1 9 7 7 9 9 7 7 7 9 9 1 9 7 9 9 7 7 7 9 9 1 9 7 9 9 7 7 7 9 9 1 9 7 9 9 9 7 7 9 9 1 9 7 9 9 9 7 9 7
1 +
$ \begin{smallmatrix} & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & &$
T Lyn CD-29 ⁶⁷³⁵ X Can BD+51°1462 T Can BD+51°1462 T Can BD+50°1603 BD+14°2048 W Sex Y Hya X Vel CD-34°6528 U Ant U Ant BD+68°617 Y Cyn S Cen S Vir S Cen S
775021 75021 75021 75021 75021 75021 75021 75021 77234 77234 77234 77234 77234 77234 77234 77234 77234 77234 77234 85405 85405 86111 885339 91795 92855 92859 917914 110914 1112559 110914 1112559 1125559 1122559 1125559 1125559 1122559 1122559 1122559 1122559 1125559 1125559 1125559 1125559 1122559 1122559 1122559 1122559 1125559 1125559 1125559 1125559 1125559 1122559 1125559 1122559 1125559 115
888 888 888 888 890 800 800 800 800 800

		PERIOD	days 301						128?	425	•	•					144		· · · · · · · · · · · · · · · · · · ·			· · · ·		400	
		Notes		(+)(+6)	(1)(10) (2)	•	· · · · ·	(20)	· · · · · · · · · · · · · · · · · · ·		(1)	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	•	(I)					(I)	•		$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	÷
	ACTIC	9	+23°		+34 4 4	+ 1		+ +	0.1	+29	1	، 4 ا	++ ~~	9 9 -	+17	— 14	רע יע	0 4	2 - 1 -	⊢ 4 r	- 13	0	- 15	+10 -13	,
	GAL	1	331°	317	316	334	310	336	322	53	344	343	01 ()	352	33	331	354	354	335	357	347	0	349	37 354	
	/Sec.	Em.	- 68			:		· · ·		1 38	:	:	:		:	· · ·	· · ·	:	:			:		30	
	VEL. KM	Abs.	- 48 <i>d</i>	- 19 C	- 30 6	+ 14 0	+ 10 e	+ 17 6	- 49 €	- 12 e	9 61 –	000	- 27 6	- 2 d	- 60	- 65 e	- 2 b	+ 20 6	+ 42 C + 21 h	+ 30 6	- 45 e	+ 30 6	- 40 d	- 2 <i>c</i> - 49 <i>a</i>	
mtinued	E	Түре	Nb	No PoP	(N_3)	dN Q	N ² 3	Nb	Nb	Noe	KS		(N)	Np QN	Nb	Ro	NbN3	NbN3	NbN,	NpN6	RoR4	Nb	NaN2	RoRo	
E I-C	HITUDE	Min.	I0.5	0.0			2.11	9.8	II.I	14.0	8.6	12.0	01	12.0		•	7.3	9.3		0.8		11.7		12.0	
TABL	Magi	Max.	7.0	7 . r 2 . r	· · · · · · · · · · · · · · · · · · ·	7.8	9.0	8.5	9.0	7.5	0.0	0.11	2 r X	0.7	8.1	9.2	4.0 4.0	x x x	9 0 2 0	0, 12	10.Ő	10.8	7.2	0.3 7.0	
	0	ø	-12°12'	-32 II +42 IF	- 39 55	-19 24	-4135 -3512	-18 37	-35 39	+58 14	-15 39	- 10 59 - 10 59	+ 4 19 - 7 5 19	- 7 4I	+36 51	-31 28	н хос 	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- zy 30	- + 2 + 2	-17 26	- I 33	- 10 5	-10 53	
	961 1	B	16 ^h 21 ^m 2	34.2	20.7	23.8	33.5	39.1	40.8	54.9	IS 13.0	24.0	80.2	31.7	39.4	40.0	44.9	50.0	52.4	50.I	IQ 3.0	6.3	13.4	10.7	-
	ſ	DESIGNATION	V Oph	SU Sco BD+42°2811	$CD - 39^{0}11452$	TW Oph	$CD - 25^{\circ}TR 20$	SZ Sgr	SX Sco	T Dra	BD-15 4923	TV Onh	T Lvr	RX Sct	$BD+36^{\circ}3243$	$CD - 3I^{\circ}I5954$	s Sct	T SCL	11V Ad 135/4	V Aql	$BD-17^{\circ}5492$	· · · · ·	TT T	BD-10°5057	
		HD No.	148182		4/00CT	158377	100205	161208	161511		108227	170495	1/0031	171804	173291	173409	174325	175377	176200	177336	178316	179153	180953	182040	
			611	120	121	123	124	126	127	128	129	130	131	133	134	135	130	137 138	120	140 140	141	142	143	144 145	

210

ROSCOE F. SANFORD

120 120 410 73? 73? 73? 175 175
$\begin{array}{c} (2) \\ (20) \\ (1) \\ (1) \\ (2) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) $
++ + + + + + + + + + + + + + + + + + + +
750 351 351 351 351 351 351 351 351
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} (N)\\ (N)\\ Nb\\ Nb\\ Nb\\ Nb\\ Nb\\ Nb\\ Nb\\ Nb\\ Nb\\ Nb$
7.1 10.2 8.4 10.2 8.7 10.2 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11
10222 1022 1022
++++++++++++++++++++++++++++++++++++++
Id ^b 255.8 255.8 255.8 255.9 255.7 20.555.7 20
UX Dra AW Cyg AW Cyg AW Sgr TT Cyg BD $-\circ^3 383$ AX Cyg BD -7^5_{5141} BD -9^4_{369} AX Cyg BD -9^4_{369} AX Cyg BD -9^4_{369} AX Cyg RS C
183556 184283 184283 186047 186047 1880647 1880545 189711 191738 192737 192737 192737 192737 192735655 193765 193765 193765 195655 195655 195655 1956555 19565555 19565555555555
1146 1146 1146 1146 1155 <t< td=""></t<>

211

212		ROSCOL 1.	
	PERIOD	days 149 338	umber is vered in-
	Notes	(1) (2) (1) (1) (1) (1) (1) (20)280 Schj (1) (24)	ese stars the n 1931b). Disco
CTIC	q		e of th agata (alates. c.
GALA	1	866 82 82 85 85 85 85 85 85 85 85 85 85 85 85 85	for on met N veral p km/se
/Sec.	Em.		n exists hs of cou m of sec. to +23
VEL.KM	Abs.	1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	designatio photograp) potograp) co + 18.4 k is the met nes, - 13 t
	Түре	Nb Nb Ro (N3) Nb NaNo R3 R3 R3 Ro Ro Nb Nb	ABLE I - en no other 7 km/sec. redness on J ig28. om + 10.0 t aission lines emission lines
NITUDE	Min.	11.00 10.80 8.5	S TO T 33. Wh 33. Wh 33. Wh 33. Wh 33. Wh aby
Magi	Max.		NOTE:
0	Ŷ	++53 ++53 ++55 ++55 ++55 ++55 ++55 ++55	r E.I. <i>S.P.</i> , 45 , . 50, 1922, c 50, 1922, c 1, who not 1, who not 2. 2. 372; <i>A</i> 5,
I9	8	$\begin{array}{c} 2^{2}h_{5}T^{m}_{9}\\ 2,57,3\\ 5,7,3\\ 2,57,3\\ 2,57,3\\ 4,1,3\\ 4,1,3\\ 4,1,3\\ 5,6,2\\ 5,5\\ 5,2\\ 5,2\\ 5,2\\ 5,2\\ 5,2\\ 5,2\\ 5$	276, Table ell, Pub. A sull., \mathbf{r} o, \mathbf{r} (\mathbf{s} sull., \mathbf{r} o, \mathbf{r} (\mathbf{s} sull., \mathbf{r}). Nicholson and Merrill. \mathbf{r} (\mathbf{s} , \mathbf{r} (\mathbf{s}) w. Contr., \mathbf{r} . \mathbf{r} (\mathbf{s} , \mathbf{r}) \mathbf{r} (\mathbf{s} , \mathbf{r}) \mathbf{r} (\mathbf{s}) and \mathbf{r} of \mathbf{r}) \mathbf{r} , \mathbf{r} so \mathbf{r} added \mathbf{r} (\mathbf{s}) \mathbf{r} (\mathbf{s}) \mathbf{r} , \mathbf{s} added
	DESIGNATION	BD+53°3033 VY And BD-21°6376 MSB 42 BD+48°4051 ST And 19 Psc BD+5°5223 WZ Cas BD-5°5223 WZ Cas BD-3°5751 SU And	<i>t. W. Contr.</i> , No. anford, and Burw s publication. ity, in <i>Lick Obs.</i> I attention by S. B attention by S. B attention by S. B tot $+26$ to $+$ \pm by Sanford, <i>Mt</i> . \pm from $+7.1$ to $+$ \pm from \pm 2.1 to \pm \pm for absorption lines \pm for absorption lines \pm for absorption lines atter gives $+23$ kr
	HD No.	216913 218851 218851 220870 2220870 223392 223392 223392 224959 224959 224959 225217	ken from <i>M</i> <i>Merrill</i> , Se en from thi ore's veloci ore's veloci lled to my <i>i</i> oretury b oretury trange locity range locity range locity range uss S with s e grating pl
		181 182 183 184 185 185 185 185 190 190 190	(r) Ta (r) Ta (r) Ta (r) Sec (r) Sec (r) Sec (r) Sec (r) Sec (r) Sec (r) Vel (r) Vel (
	I 1900 MAGNITUDE VEL.KM/SEC. GALACTIC	HD No. DESIGNATION a δ Magnitude Type Abs. Em. 1 b Notes Period Period	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

212

1935ApJ....82..202S

ROSCOE F. SANFORD

© American Astronomical Society • Provided by the NASA Astrophysics Data System

(13) May be class S.	
(14) Overlooked in solution.	
(15) May be class K5R.	
(16) Additional plate gives -12 km/sec.	
(17) This is of spectral class S.	
(18) This star has a fainter companion.	
(19) Mean of two later plates, - 383 km/sec.	
(20) Very strong D lines.	
(21) Seems to be variation in strength of the D lines.	
(22) Velocity probably variable. Range -11 to $+30$ km/sec.	
(23) D lines very weak.	
(24) The good plates give ± 15 , -17 , and -15 km/sec. Velocity variable?	
(25) Doubtful evidence of weak bright $H\alpha$ for this star.	
(26) Velocity probably variable.	
(27) Spectral classifications with numerical subscripts are those of Shane, <i>Lick Obs. Bull.</i> , 13, 123, 1928, ex	28, except those in parentheses, which
are rough estimates by the writer based on Shane's system.	
(28) General spectrum most nearly like that of 19 Piscium but much redder and D lines much more intene	intense as, e.g., in R Leporis.
(29) Two better-exposed spectrograms give -167 and -167 km/sec. and seem also to have a pair of inte	of interstellar D lines with velocities of
+1 and -5 km/sec.	
(30) More recent data (Prager, "Katalog und Ephemeriden veränderlicher Sterne für 1935," Kleinere Ver	e Veröff. Universitätssternwarte Berlin-
Babelsberg, No. 14, 1934. Star 34 AV Aur 13 ^m 5-15 ^m ph; 39 SY Eri 8 ^m 0-9 ^m 6; 42 S Aur 8 ^m 3-12	m3-12m; 51 AZ Aur 10m5-15m5 ph;
169 DS Cyg 12 ^m 9–15 ^m 1 ph; 175 LW Cyg 10 ^m 5–11 ^m 5 ph; 181 TV Lac 11 ^m 7–12 ^m 7 ph.	
(31) Obtained after solution was made.	
(32) More recent velocity determinations for the following stars are:	
No. Vel. No. Vel. $8, \dots, -50$ km/sec. $50, \dots, +20$ km/sec. $50, \dots, 53$ $21, \dots, -31$ $57, \dots, 53$ $53, \dots, 53$ $30, \dots, +40$ $53, \dots, 53$	
(33) Velocity may be variable; range -35 to -55 km/sec. (34) Velocity from D lines only.	
(35) Composite spectrum; class Ao in the violet region. See Shane, $op. cit$, p. 124.	
(36) Ha appears as an emission line on a spectrogram covering the region $\lambda\lambda$ 6500–7600, March 19, 193.	, 1935, but with no certainty on any
of the earlier spectrograms.	

nitudes and periods was obtained from Prager's catalogue⁹ and from the Mount Wilson discoveries previously alluded to. Galactic coordinates were taken from the Lund tables¹⁰ for the nearest 4^{m} in a and 1° in δ . The magnitudes for some of the class-N stars in the *Henry Draper Catalogue* and most of those in the Mount Wilson list are not known. These latter were not in the *Henry Draper Catalogue* either because of extreme redness or extreme faintness or because the Harvard observations occurred at unfavorable phases in a great magnitude variation. Magnitudes in italics are photographic; the remainder are visual. Spectral classifications with numerical subscripts are from Shane's work,¹¹ rough estimates on his system for such stars as have not been otherwise classified being placed in parentheses. Under "Abs." are given the velocities from the absorption features, while "Em." denotes velocities from the emission lines of hydrogen, generally *Ha* alone.

Velocities from the emission lines.—Two lists of stars of classes N and R with emission lines of hydrogen have been previously published,¹² and all these are again included in Table I. In these two lists the means of the difference in velocity between emission (generally Ha) and absorption lines are -27 and -25 km/sec., respectively. These, however, involve a few stars of spectral class R and all the absorption-line velocities for N-type stars on the old uncorrected system. In all, twenty stars of spectral class N with emission lines of hydrogen are entered in Table I. The mean difference between their velocities from emission and absorption is -21.6 km/ sec., a numerical decrease from the two previously published values, attributable mainly to the application of the systematic correction to the absorption velocities and slightly to additional observations and to the limitation to only stars of class N.

The mean period for the seventeen of these twenty stars for which data are available is 407 days. The velocity difference here found

9 "Katalog und Ephemeriden veränderlicher Sterne in 1934," Kleinere Veröff. Universitätssternwarte Berlin-Babelsberg, No. 13, 1933.

¹⁰ John Ohlsson, Ann. Obs. Lund, No. 3, 1932.

¹¹ Op. cit., 13, 123, 1928.

¹² Pub. A.S.P., 42, 287, 1930; 45, 44, 1933.

lies between those predicted by Merrill's¹³ curves for stars of classes Me and Se. There is a slight correlation with period, smaller differences being associated with shorter periods, but this correlation is too poor to be stressed. With one exception these stars are variable, with a mean range of 4 mag. For some of them there are several spectrograms, representing all phases pretty well, which show that the hydrogen lines may vary from intense emission to practical extinction. Counting from maximum, the emission lines in R Leporis and U Cygni, for example, fade to extinction during the first quarter-period, remain suppressed for another quarter-period or until about light-minimum, then gradually increase, attaining maximum strength during the third quarter-period, which intensity continues until light maximum. The failure to find emission lines in the case of a star with large magnitude range might be attributed to the phase at which it was observed, the star being therefore no exception to the rule. In fact, I have found no certain evidence of bright hydrogen lines for four stars in whose spectra they were noted by Shane.⁷ These are RV Cygni, 7^m1-9^m3; Y Tauri, 6^m9-8^m9, period 233 days; U Camelopardalis, 6^m9-9^m0, period 418 days; and V Aquilae, $6^{m}_{..}5-8^{m}_{..}o.$

It would seem, therefore, that emission lines accompany a large magnitude range, that their failure to be observed in case the range is large is not necessarily evidence that they are not present at the appropriate phases, and that their appearance in a star of class N not known to vary should arouse a suspicion of variability. MSB II $a = 4^{h}46^{m}8$, $\delta = +49^{\circ}46'$ (1900), is an example of the last point.

Solar motion, galactic rotation, and absolute magnitude from the radial velocities of stars of spectral class N.—The recent success of Plaskett and Pearce¹⁴ in finding evidence of galactic rotation, both from the radial velocities of the B-type stars and from their detached lines of calcium, and of A. H. Joy,¹⁵ from the Cepheid variables, demands a similar treatment of whatever other data are available. Such an investigation evidently requires objects located at relatively large distances.

¹³ Mt. W. Contr., No. 264; Ap. J., 58, 251, Fig. 2, 1923.
¹⁴ Pub. Dom. Ap. Obs., 5, 167–237, 1933.
¹⁵ Pub. A.S.P., 45, 202, 1933.

Various investigators find values for the mean absolute magnitude of stars of spectral class N between the limits -1.3 and -2.5. Since their apparent magnitudes are in only a few cases brighter than 6 and in many cases fainter than 8, it is evident that N stars too are relatively distant objects and worthy of consideration in connection with the problem of galactic rotation. The 146 radial velocities of class-N stars in Table I are distributed among the different apparent visual magnitudes¹⁶ roughly as follows:

Brighter than 6	11
6.0-6.9	27
7.0-7.9	32
8.0-8.9	28
9.0	48

The velocities show a very considerable spread which has been smoothed out for the purpose of solution by forming two groups for each band of 30° of galactic longitude, in one of which the galactic latitudes are positive and in the other negative. Since some bands are deficient in stars with negative values of the galactic latitude, twenty groups resulted. All velocities were given equal weight in forming a normal, as it seemed more important that each group depend upon all the stars included in it than largely upon the few better observed stars. No velocity, however large, was omitted.

Except for the effect of random motion, each of these twenty mean velocities (V) was assumed to be conditioned as follows:

 $V = K + X \cos b \cos l + Y \cos b \sin l + Z \sin b + du + ev.$

l and b are the galactic longitude and latitude. The first member on the right is the well-known K-term; X, Y, and Z are the components of the solar motion referred to galactic co-ordinates. Further,

 $u = \bar{r}A \cos 2l_o, \qquad d = \sin 2l \cos^2 b,$ $v = \bar{r}A \sin 2l_o, \qquad e = -\cos 2l \cos^2 b.$

A is the galactic rotation effect for a distance of 1 kiloparsec and \bar{r} is the mean distance in kiloparsecs; l_0 denotes the longitude of the galactic center.

¹⁶ A variable star was assigned its magnitude at maximum; a photographic magnitude was reduced to a visual magnitude by the mean color index +2.6; and some of the Mount Wilson discoveries for which magnitudes are not available have been arbitrarily assigned to the ninth magnitude.

A least-squares solution of the twenty normal equations was then carried through, weights being assigned to each roughly proportional to the number of stars involved. The results are given in Table II.

TAB	LE II
$K = - 0.9 \pm 1.7 \text{ km/sec.}$	$Z = -12.4 \pm 5.8 \text{ km/sec.}$
$X = -18.6 \pm 2.2$	$u = - 0.15 \pm 2.3$
$Y = -6.5 \pm 2.8$	$v = -13.4 \pm 2.8$

The K-term is about one-half its probable error. The solar motion is 23.2 km/sec. toward the apex, whose right ascension is 17^h8^m and declination $+30^{\circ}$, and thus agrees much better with that obtained from the naked-eye stars (20 km/sec. toward the apex with $a = 18^{h}$ and $\delta = +30^{\circ}$) than it does with Moore's¹⁷ value (17.1 km/sec. toward the apex with $a = 15^{h}$ and $\delta = +11^{\circ}$ obtained from the radial velocities of only twenty-five bright class-N stars.

This solution gives the galactic rotation term $(\bar{r}A)$ 13.4 km/sec. and the galactic center in the direction of $l_o = 315^\circ$, for which Plaskett obtained 331° and Joy 324°. The latter's study of the Cepheid variables showed that galactic rotation increases by 18.5 km/sec. per kiloparsec from our stellar neighborhood, if absorption in space is allowed for. The mean distance in kiloparsecs may therefore be obtained, for the stars upon which it is based, by dividing the galactic rotation value $(\bar{r}A)$ by 18.5. In this case the distance is 0.727 kiloparsecs, corresponding to an approximate mean parallax $\overline{\pi} = 0.0014$. Although such a summary treatment of the data cannot give a rigorous value, it is of interest to note that the mean absolute magnitude from the foregoing value of $\overline{\pi}$ and the mean apparent magnitude, 7.9, is -1.4. Plaskett's value of A (=15.5) gives M = -1.8. Wilson¹⁸ obtained the approximate value -1.4 for the mean absolute magnitude, using the proper motions of ninety-two class-N stars and assuming Moore's value of the velocity of the solar motion. With the solar motion here obtained, his absolute magnitude would become -2.1. Other absolute magnitudes from proper motions are:

No. of Stars ?....-I.3 Luplau-Janssen and Haarh* 23..... 1.5 Moore† 120....-2.6 Kapteyn[‡] * A.N., 214, 388, 1921. † Lick Obs. Bull., 10, 168, 1923. ‡ Ap. J., 32, 91, 1910. ¹⁷ *Op. cit.*, p. 168. ¹⁸ A.J., 34, 191, 1922.

Figure 1 shows how well the curve from this solution fits the twenty normal places reduced to b=0. The ordinates are radial velocities and the abscissae, galactic longitudes. Barred circles represent the normal places from stars with negative galactic latitudes, and open circles those from stars with positive ones, accompanying numbers indicating how many stars are involved in each normal place.

FIG. 1.—Solar motion and galactic rotation. Each circle represents a normal place, a bar indicating one derived from the velocities of stars in negative galactic latitudes. The number of velocities upon which a normal depends is given beside the circle. The full-line curve represents the combined solar motion and galactic rotation in the plane of the galaxy; the broken-line curve, the solar motion alone. Null, maximum, and minimum points for both galactic rotation and solar motion are given at the top of the figure.

It is frankly admitted that the scatter about the curve is considerable, which explains the large probable errors for the solution. It must be pointed out, however, that a representation of these normal places by solar motion alone would be quite unsatisfactory because the greater weight for the normals between galactic longitudes 70° and 180° would produce a sine-curve which would not at all represent the remaining galactic-longitude interval.

This solution is based upon class-N stars of all apparent magnitudes, but would be more convincing if the size of the galactic rotation term could be shown to depend upon mean apparent magnitude. To derive an approximate idea of this, the following procedure was adopted. It was first assumed that these stars give the ordinary solar apex with the solar motion velocity (23 km/sec.) here obtained,

and their individual velocities were corrected accordingly. Only stars with galactic latitudes between $+40^{\circ}$ and -40° were used, and one velocity exceeding -100 km/sec., which may in reality belong to spectral class R, was excluded. These were next divided into three groups according to apparent magnitude: the first, the stars brighter than 7.2; the second, those between this limit and 8.9; and a third group, the remainder, 9.0 or fainter. Finally, a least-squares solution was carried through for the stars in each group in which the residual velocity is represented by the conditional equation

	$\rho = \bar{r}A$	\sin	2($(l - 315^{\circ})$	\cos^2	b	
--	-------------------	--------	----	---------------------	----------	---	--

				<u>.</u>			
	7A Km∕Sec.	7 Kiloparsecs		Mean Magnitude			
No.				Ann	Abs.		р Км/Sec.
6		A = 18.5	A = 15.5	npp.	A = 18.5	A = 15.5	```
41 48 44	7.2 16.3 22.4	0.390 0.879 1.211	0.465 1.050 1.445	6.5 8.2 9.3	- I.4 I.5 - I.I	-1.8 1.9 -1.5	17.3 21.6 22.1

TABLE	TIT

Column 2, Table III,¹⁹ gives the results of these solutions. The other columns contain, respectively: (1) the number of stars; (3) and (4) the mean distances obtained when Joy's A and Plaskett's A are assumed; (5) the mean apparent magnitudes; (6) and (7) the mean absolute magnitudes on the basis of the two values of A_i and (8) the mean velocities freed from solar motion, sign being disregarded.

 $\bar{r}A$ increases steadily with mean apparent magnitude; hence the reality of the rotation term from the general solution is greatly strengthened by the foregoing treatment. The spread in the derived absolute magnitudes is no more than might be expected from the probable errors, the uncertainties of the individual mean magnitudes

¹⁹ The data in this table are to be preferred to those already given in *Pub. A.S.P.*, **46**, 228, 1934. The changes arise mainly from the use of the velocity from the solution for solar motion based on the N stars themselves; whereas the velocity derived from the naked-eye stars was used for the earlier results. for the fainter stars, and the effect of space absorption. Moreover, any spread in the individual absolute magnitudes could result in a fainter mean absolute magnitude for the group of apparently faintest stars, since more of the absolutely fainter stars would conceivably enter such a group.

Although the absolute magnitudes of column 7 (using Plaskett's A) agree better with Wilson's mean absolute magnitude as revised, -2.1, the absolute magnitudes of column 6 are tentatively adopted; for Joy's A upon which they depend is based upon not only the radial velocities of, but also the space absorption for, the Cepheid variables, the range of whose distances considerably exceeds those for the stars of class B. The weighted mean M from column 6 is -1.34, in good agreement with the value -1.4 given earlier from all class-N stars.

The weighted mean of the peculiar motions without regard to sign $(\bar{\rho})$ is 20.4 km/sec., thus exceeding by 3.9 km/sec. the mean peculiar motion of class-M stars found by Campbell. Larger values, however, have been obtained by Merrill²⁰ for some subdivisions of spectral classes Me and Se.

Double stars.—The following class-N stars have companions:

The components of the last three stars are widely separated, with the secondaries considerably fainter than the primaries. The first and third entries furnish some data about the absolute magnitudes of the class-N primaries. In the case of TU Tauri the secondary is estimated by Shane²¹ to be a class-Ao star of apparent magnitude 11. The absolute visual magnitude of TU Tauri comes out -1.8 at maximum, if the most frequent absolute magnitude (+0.5) for type Ao, as given by Strömberg,²² is assumed. A spectrogram of com-

- ²¹ Op. cit., 13, 124, 1928.
- ²² Mt. W. Contr., No. 442; Ap. J., 75, 341, 1931.

²⁰ Mt. W. Contr., No. 264; Ap. J., 58, 166, 1923.

ponent B of the third entry shows a class-G6 spectrum from which the absolute magnitude was estimated to be +0.1. On the assumption of physical connection, the derived absolute magnitude of A is -0.8. Its radial velocity is -11 km/sec. (low weight) and that of B, +8 km/sec. (depending on a single plate). Neither the magnitudes of the components nor the spectra of the secondaries are known in the other two cases. Such evidence as the first and third pairs furnish is in as good agreement with the results for absolute magnitude from the rotation effect as could be expected.

In conclusion, it seems appropriate to admit candidly the limitations in the accuracy of the velocities in Table I, which depend in a considerable degree upon few observations and often upon spectrograms of low dispersion. The velocities from spectrograms of low dispersion when compared with velocities obtained with higher dispersion have revealed no anomalies. Sufficient stars have been repeatedly observed to establish the fact that only a very few have velocity ranges which much exceed the accidental error to be expected. Hence it seemed best to concentrate upon securing approximate velocities for the greatest possible number of stars of class N rather than struggle for greater accuracy for a few stars. This assumes that the mean of a large number of approximate velocities better typifies the mean motion of a group of stars than does the mean of a few accurate velocities, some of which might represent abnormally large peculiar motions. Indeed, the final results would have differed very little from those actually obtained if the velocities from the first spectrogram of each star had been made the basis of the solutions.

CARNEGIE INSTITUTION OF WASHINGTON MOUNT WILSON OBSERVATORY April 1935