CATALOGUE AND BIBLIOGRAPHY OF STARS OF CLASSES B AND A WHOSE SPECTRA HAVE BRIGHT HYDROGEN LINES¹

BY PAUL W. MERRILL AND CORA G. BURWELL

ABSTRACT

The main *catalogue*, Table I, lists 410 stars of classes O, B, and A whose spectra have bright hydrogen lines, while Table II gives six anomalous objects whose spectra have bright lines of hydrogen and helium, but whose absorption spectra include titanium oxide bands. The exact meaning of the word "bright" as applied to lines having complex structure is discussed in the introduction. Notes to Table I record considerable unpublished data, besides calling attention to the chief features of a few of the more interesting peculiar spectra.

The *bibliography* includes 365 references to observational material concerning the objects in Tables I and II. The items referring to each star are indicated in a key list.

Discussion.—The numbers of stars discovered at various observatories are in Table IV. Tables V and VI show the distribution in type and magnitude. The largest numbers are in subdivision B₃ and magnitude 8. Stars of the P Cygni type are listed in Table VII. Tables VIII, IX, X, and XI compare the numbers of Be stars in various intervals of type and magnitude with the total numbers of H.D. stars in the same intervals. Stars of class B₂ have a stronger tendency toward emission than those of either earlier or later subdivisions. The proportion of bright-line stars decreases very rapidly from B₃ to Ao. The galactic distribution of Be stars is shown by Figs. 2a, 2b, and 3. The divergence from the galactic plane characteristic of the local system is less strongly marked than for non-emission B stars, probably because the emission stars are somewhat brighter intrinsically. Table XIII lists 12 areas rich in Be stars, among which star groups of two types may be recognized. An extremely interesting region is that of faint Be stars.

INTRODUCTION

About 1910 a card catalogue of B-type stars whose spectra were known to have bright hydrogen lines was formed by one of us as a basis for further spectroscopic observations of these objects.² Harvard lists of peculiar spectra and W. W. Campbell's visual observations of the Ha line³ were the chief sources. Cards have since been added as announcements of additional stars of this kind appeared, and it is believed that the list has been kept nearly complete. No general catalogue has appeared since the 1912 Harvard list of "Stars Having Bright Hydrogen Lines,"⁴ which has 93 entries. The number

¹ Contributions from the Mount Wilson Observatory, Carnegie Institution of Washington, No. 471.

² Lick Observatory Bulletins, 7, 162, 1913.

³ Astrophysical Journal, 2, 177, 1895.

4 Harvard Annals, 56, 182, 1912.

PAUL W. MERRILL AND CORA G. BURWELL

of Be stars now known exceeds 400, and descriptions of their spectra are widely scattered through astronomical publications. Several astronomers have therefore recently recommended the printing of the present catalogue. In its preparation we have had the advantage of referring to a somewhat similar unpublished catalogue compiled several years ago at the University of Michigan by the late Dr. R. H. Curtiss, who had offered its use for this purpose. It later became available through the kindness of Dr. W. C. Rufus and of Mr. W. J. Williams, who made a typewritten copy for our use. Other astronomers who have co-operated by supplying unpublished data concerning Be stars include V. M. Slipher, Lowell Observatory; W. E. Harper, J. A. Pearce, and C. S. Beals, Dominion Astrophysical Observatory; Dean B. McLaughlin, Observatory of the University of Michigan; Otto Struve, Yerkes Observatory; Frank C. Jordan, Allegheny Observatory; G. Shajn, Simeis Observatory; and several of our colleagues of the Mount Wilson Observatory. To all these gentlemen we express our cordial appreciation.

The main catalogue, Table I, includes all known stars of classes B and A whose spectra have bright hydrogen lines. It omits Wolf-Rayet stars and all other bright-line stars of class O, except five of classes O6–O9 whose bright lines resemble those characteristic of class Be. The stars omitted are those in the Harvard classes Oa, Ob, Oc, Od, Oe, and those additional stars with narrow emission lines at $\lambda\lambda$ 4634, 4640, and 4686, for which the Victoria observers have recently used the symbol "f."⁵ The spectra of the omitted objects seem sufficiently different from those of typical Be stars, e.g., γ Cassiopeiae, to make it inadvisable to include them with Be stars in statistical studies.⁶

In Table II are six anomalous objects whose absorption spectra include titanium oxide bands together with lines having a partial resemblance to those of class K, but which are related to early type

⁵ Publications of the Dominion Astrophysical Observatory, 5, 110, 1930.

⁶ Most spectra of classes Od and Oe (or O₅–O9 with narrow emission at $\lambda\lambda$ 4634, 4640, and 4686) have dark hydrogen lines. A few may have one or more bright hydrogen lines of low intensity, but the structure of these lines probably differs from that regularly found in Be spectra. The star H.D. 108, included in Table I, offers an exception in that the bright hydrogen lines are well marked and not greatly different from those observed in certain Be stars.

spectra through the presence of bright lines of hydrogen and helium. These stars are not included in the statistical studies in the latter part of this contribution.

In dealing with lines having complex structure, such as those frequently present in Be spectra, the exact meaning to be attached to the word "bright" may require consideration. The condition that the intensity-curve of the line rise above that of the adjacent continuous spectrum is of course sufficient, but it is not necessary. In

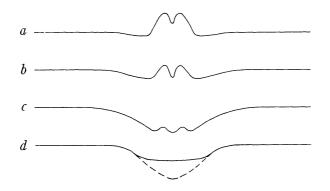


FIG. 1.—Illustrative intensity-curves of complex lines

the sequence of forms illustrated in Figure 1 it clearly seems appropriate to include c as well as a and b among the bright lines. Not to do so would terminate the sequence in an arbitrary and physically unjustifiable manner. When, however, no maxima are seen, and the central portion of the curve merely lies above the hypothetical extension of the wings, as in d, we consider it inadvisable to call the line bright.⁷ A practical criterion seems to be that definite maxima (not caused by the superposition of lines of other elements) shall be seen.⁸ The physical significance of this criterion is established by the fact that if a certain member of the Balmer series has a curve similar

⁷ If it is thought that the appearance arises from incipient emission, two tests may be applied: (1) the line may be observed in such a way as to accentuate indistinct maxima (by using greater purity or higher dispersion or a more contrasty emulsion) or (2) the Balmer lines of longer wave-length may be photographed; this is the most decisive test, applicable to all lines except Ha.

⁸ The same criterion might be useful for the bright components of the H and K lines in late-type spectra (Adams and Joy, *Publications of the Astronomical Society of the Pacific*, 43, 407, 1931).

90 PAUL W. MERRILL AND CORA G. BURWELL

to c, the members at longer wave-length have curves like b or a. In the spectra of many stars listed in Table I the structure of $H\gamma$ is qualitatively like c, and in a smaller number $H\beta$ is similar. We think, however, that in every instance the emission at the Ha line rises above the level of the continuous spectrum. If a spectrum should be found in which Ha is similar to c but with all the other hydrogen lines wholly dark, we should still be inclined to include it in the Be group.

DESCRIPTION OF TABLES I AND II

Col. Heading

- 1 MWC Mount Wilson Catalogue current number.
- 2 H.D. The number of the star in the Henry Draper Catalogue (Harvard Annals, 91-99). Numbers larger than 225,300 are from the Henry Draper Extension (ibid., 100).
- 3 Desig. The name by which the star is commonly known or the Durchmusterung number (given in the same system as that employed in the Henry Draper Catalogue). For a few faint stars lacking Durchmusterung numbers, MW refers to the Mount Wilson discovery lists of Be stars (Mt. Wilson Contr., Nos. 294 and 456; Astrophysical Journal, **61**, 389, 1925, and **76**, 156, 1932).
- 4, 5 $\left\{ \begin{matrix} R.A. \\ Dec. \end{matrix} \right\}$ Right ascension and declination for 1900.
- 6, 7 *l*, *b* Galactic longitude and latitude. The usual position for the north galactic pole, $R.A. = 12^{h}40^{m}$, Dec. = $+28^{\circ}$ (1900), has been assumed.
- 8 Mag. Most of the values are *visual* magnitudes determined by the Harvard observers. The B.D., the C.D., or the C.P.D. magnitudes are given for most stars not in the H.D., but for stars in the double cluster in Perseus the magnitudes by Trumpler (*Publications of the Astronomical Society of the Pacific*, **38**, 350, 1926) or by van Maanen (*Mt. Wilson Contr.*, No. 205) have been substituted. For a few faint stars the values (in italics) are photographic magnitudes determined by Mr. M. L. Humason at Mount Wilson.
- 9 Type The symbols have their usual meaning. In general the classifications made from slit spectrograms at Mount Wilson (Contr. Nos. 262, 294, 456) or at Victoria (Publications of the Dominion Astrophysical Observatory, 5, No. 2) have been used. Most of these agree closely with the Harvard determinations, especially for the brighter stars. In many in-

CATALOGUE OF Be AND Ae STARS

stances Mount Wilson spectrograms have been re-examined to check the classification and especially to determine whether the symbols "n" or "s" should be included. The spectra of many, possibly all, of the stars in Tables I and II are variable to a greater or less extent. In certain stars the variation appears to affect only the bright lines; in others, the variations are more extensive, and in a few instances are so general that the classification would depend on the date of observation. It has not seemed feasible to indicate these changes in the catalogue. A few special instances are remarked upon in the notes to Table I, but for detailed information the original papers should be consulted.

91

.

TABLE I

STARS OF CLASSES B AND A WHOSE SPECTRA HAVE BRIGHT HYDROGEN LINES

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	ı	Ь	Mag.	Type
Ι	108	2363	o ^h o ^m .9	$+63^{\circ}7'$	86°	+ 1°	7.4	Обер
2	144	2107	O I.2	+63 37	86	+ 2	5 · 5	Bonea
3		2829	0 I.6	+60 4	85	- 2	9.5	Bone
4 · · ·	698	28	o 6.3	+57 39	85	- 4	7.I	B8sea
5		39	o 14.8	+6154	87	. 0	8.9	B(o)e
6	2789	_35	o 26.3	+66 36	89	+ 5	8.2	B2ne
$7 \cdot \cdot \cdot$	2905	кCas	0 27.3	+62 23	89	0	4.2	Bosea
8	4180	o Cas	0 39.2	+47 44	90	-14	4.7	B4neβ
9	5394	γ Cas	0 50.7	+60 11	91	- 2	2.2	Bone
10	6343	129	o 59.4	+65 26	92	+ 3	7.I	B5eβ
II		180	I 5.9	+60 47	93	- I	9.4	B(3)e
12	7636	240	I II.2	+57 6	94	- 5	7.6	B_{2ne}
13	9105	259	I 24.6 I 27.0	+62 51	95	+ 1 + 2	7·5 8.2	$B_{5}s(e)$ B(8)e β
14		271 285		+63 7 +62 57	95 96	+ 2 + 2	8.6	B(8)ep
15 16	10516	285 φ Per	I 32.2 I 37.4	+50 11	90		4.2	Bone
17	-	MW 101	1 37.4 1 40.8	+60 12		-11 - 1	4.2 12.2	Pec.
18		358	I 40.8 I 42.7	+60 33	97 98	- I	9.0	B(3)ne
10	232552	398	I 45.9	+5450	90	- 6	7.6	B(3) ne B(2) ne
20	11554	425	I 48.4	+57 24	99	- 3	Q.2	B(3)e
21	11606	331	I 48.8	+5847	99	- 2	7.0	B3ne
22		261	I 50.I	+63 33	98	+3	9.I	Bne
23	12302	356	1 55.6	+59 12	100	- I	8.2	B ₃ e
24	236935	469	1 57.2	+58 0	100	- 2	Q.I	B4ne
25	12856	429	2 0.9	+56 38	101	- 3	8.4	B(2)ne
26	12882	295	2 1.1	+64 33	99	+4	7.5	B(2)ne
27	13051	432	2 2.6	+5631	101	- 4	8.ŏ	B(o)ne
28		515	2 5.7	+57 13	101	-3	9.3	B(3)e
29	13661	486	2 5.7 2 8.1	+54 4	103	- 6	8.6	B(3)ne
30		MW 112	2 9.0	+56 32	102	- 3	II.4	Be
31	13854	471	2 9.9	+56 36	102	-3	6.4	Bisea
32	14134	522	2 I2.I	+56 40	102	- 3	6.7	B3sea
33		534	2 12.4	+56 37	102	- 3	10.I	Bne
$34 \cdot \cdot \cdot$		Comp o Cet	2 14.2	+5651	103	- 3	10.7	Be
35		Comp o Cet	2 14.3	- 3 26	137	-57	IOV	Bep
36		563	2 14.7	+56 40	103	- 3	9.6	B3e
$37 \cdot \cdot \cdot$	14422	565	2 14.7	+56 56	103	- 3	9 _. ∙4	Bne
38		566	2 14.8	+56 42	103	- 3	10.1	B3e
39		Anon	2 15.0	+5643	103	- 3	10.6	B4e
40		573	2 15.0	+56 38	103	- 3	9.9	B3e B(a)a
41	••••	582	2 15.3 2 16.2	+56 50 +58 31	103 102	-3 -1	10.2	$\mathbf{B}(3)\mathbf{e}$ $\mathbf{B}(3)\mathbf{n}\mathbf{e}$
42 43		45 ⁸ MW 117	2 10.2		102	- 1 - 3	9.4 10.6	B(3)ne Be
	14605	605	2 10.2	+57 4 + 56 8	-			B(2)ne
44 · · · 45 · · ·	14818	612	2 10.5	+50 10	103 103	$\begin{vmatrix} -3 \\ -3 \end{vmatrix}$	9.7 6.2	Bisea
45	14010	624	2 10.2	+56 39	103	-3	9.3	$B_{(2)ea}$
40	15238	488	2 22.2	+60 13	103	+1	8.4	Blea
48	15450	642	2 24.2	+56 27	102	-3	8.7	Bone
49	15472	182	2 24.2	+70 30	99	+10	8.0	B4ne
50	- 3472	MW 122	2 24.6	+6056	103	+ 1	11.0	Be
J					- 5	· -		

TABLE I—Continued

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	ı	b	Mag.	Туре
51		510	2 ^h 26 ^m 3	+60 33	103	+ 1	9.0	B(9)ea
-		MW 124	2 27.5	+59 0	103	0	II.2	Be
•		516	2 28.4	+60 10	103	+ 1	9.5	Be
54		492	2 29.3	+58 56	104	0	9.5	Be
55		6 0 7	2 32.8	+57 21	105	- I	9.5	Be
56		MW 128	2 35.0	+6050	104	+ 2	9.5 11.6	Bep
•		487		+61 41		1.		B(o)ne
$57 \cdot \cdot \cdot$			2 42.3		104		9.4	B(5)e
58		727	2 44.1		107	-	9.5	Be
59		606	2 51.5	+60 12	106	+ 2	9.I	
6 0	237060	554	2 56.7	+59 2	107	+ 2	8.8	B(5)nea
61		525	3 0.7	$+62 \circ$	100	+ 4	6.5	B2e
62	237091	612	3 7.3	+59 32	108	+ 3	8.8	Be
63	20017	870	3 7.9	+48 19	114	- 7	7.9	Bne
64	20134	625 H D	3 9.1	+59 41	108	+ 3 + 8	7.5	B2e
65	20336	H.R. 985	3 11.2	+65 17	105	+ 8	4.8	B3e
66	237134	647	3 17.0	+59 54	109	+ 4	8.8	Bne
67	21212	587	3 20.3	+62 9	108	+ 6	8.7	B2e
68	21650	696	3 24.6	+41 25	120	-11	7.2	B5ne
69	22192	ψ Per	3 29.4	+47 51	117	- 5	4.3	B5ne
70	22298	698	3 30.3	+54 50	113	+ 1	8.4	B2ne
71		623	3 31.9	+61 31	109	+ 6	8.7	B2ne
72	23302	Electra	3 39.0	+23 48	134	-23	3.8	B5nea
· 73 · · ·	23480	Merope	3 40.4	+23 39	134	-22	4.2	B ₅ ne
74	23630	Alcyone	3 41.5	+23 48	135	-22	3.0	B5ne
75	23862	Pleione	3 43.3	+23 51	135	-22	5.2	$B\delta n(e)$
76	23982	458	3 44.3	+63 11	100	+ 8	8.I	B3e
77	24479	628	3 48.6	+62 47	110	+ 8	4.9	Bonea
78	24534	X Per	3 49.1	+30 45	131	-16	6 v	Bone
79	24560	816	3 49.3	+44 38	122	- 5	7.8	B(3)ne
80	25348	752	3 56.6	+53 3	117	+ 2	8.2	B(1)ne
81	25940	c Per	4 I.4	+47 27	121	- 2	4.0	B3ne
82	25940	830			121	- 6	7.6	B3nea
82	26906		4 5.7	+41 52	120	- 2	8.6	B(3)ne
83		904 MW 143	4 10.1	+45 58		· · ·		Bep
84		10	4 11.6	+55 46	117	+ 5	II.5	
85	232971	778	4 23.7	+53 36	120	+ 5	9.0	B(5)ne
86		893	4 24.5	-13 17	176	-36	5.5	Bane
87	237299	831	4 33.0	+57 43	117	+ 9	8.8	B(3)e
88	29866	1032	4 37.3	+40 36	131	- 2	6.I	B4ne
89	30076	56 Ēri	4 39.3	- 8 41	173	-3I	5.9	B5ne B5
90		MW 146	4 40.0	+46 3	127	+ 2	10.0	Be
91		974	4 43.2	+41 30	131	- I	9.2	Bone
92		9(a) Cam	4 44.I	+66 10	III	+15	4.4	Ogsea
93	31293	AB Aur	4 49.4	+30 24	140	- 7	$7 \cdot 5^{\circ}$	Aoep
94		1031	4 54.2	+4I 7	132	+ 1	9.0	B(3)ne
95		(N.G.C. 1763)	4 56.6	-66 34	244	-36		Pec.
96		11 Cam	4 57.4	+58 50	118	+12	5.3	B3e
97		_343	5 0.3	-70 20	248	-35	9.6	Pec.
98	32991	105 Tau	5 2.0	+21 34	149	-10	6.0	B3ne
99	33152	1021	5 3.2	+36 53	137	0	7.8	B2e
100		1196	5 3.7	+40 53	134	+ 2	8.1	B(3)e
101	33461	1106	5 5.3	+41 6	134	+ 2	8.0	B(ī)e
102			5 5.3 5 5.8	-71 3	249	-34	12.3	Beq
103		1213	5 6.3	+40 5	135	+ 2	7.3	B ₃ se
U		5			00	1	1.0	Ŭ
	<u></u>		<u> </u>		L	1		

Ξ

TABLE	I—Continued

		1			;	· · · ·		
MWC*	H.D.	Desig.	R.A. 1900	Dec. 1900	ı	ь	Mag.	Туре
104	33988	12 Aur	5 9.0	+46 19	130	+ 6	6.9	B5ne
105	34664	In N.G.C. 1871	5 14.0	-67 34	245	-34	<i>II.4</i>	Beq
106	34004	Anon		-60 28	245	-34	II.4 II.4	Beq
	24021	1160	· · ·			+ 2		Bone
107	34921			+37 35	138		7.4	
108	35343	S Dor	5 18.9	-69 21	246	-33	9 V	Beq
109	35345	1095	5 19.0	+35 33	140	+ 1	8.4	B2e
110	35439	25 Ori	5 19.6	+ I 45	169	-17	4.7	B3ne
III	36576	120 Tau	5 27.6	+18 29	155	- 6	5.5	B3ne
II2		Anon	5 28.5	-69 4	246	-32	13.0	Beq
113		(383)	5 29.0	-69 13	246	-32	12.2	Beq
114	37115	1330	5 31.0	- 5 41	177	-18	8.2	B5ne
115	37202	ζ Ťau	5 31.7	+21 5	153	- 4	3.0	B3e
11Ğ	37330	1138	5 32.7	+ 0 55	171	-14	7.2	B8ne
117	37490	ωÖri	5 33.9	+ 4 4	168	-13	4.5	B3e
118	37657	1,376	5 35.9	+43 0	135	+ 8	7.0	B3ne
110	37795	a Col	5 36.0	-34 8	206	-28	2.8	B8ne
120	37795	1344	5 36.1	-240	175	-15	8.6	Aoe
	37836	• · ·				-		Beg
121		401	5 36.2		247	-32	10.5 6.1	
122	37967	1015	5 37.2	+23 10	152	- 2		B3ne B3ne
123	37974	420	5 37.2	-69 26	246	-32	II.3	Beq
124	38010	941	5 37.5	+25 24	150	- I	6.9	B3ne
125	38191	958	5 38.9	+21 25	154	- 3	9.5	Bne
126	38489	478	5 41.0	-69 26	246	-31	12.0	Beq
127	39340	985	5 46.9	+26 25	151	+ 2	8.1	B3ne
128	248753	1019	5 47.3	+25 43	151	+ I	8.4	Bone
129	39478	992	5 47.8	+26 24	151	+ 2	8.4	B2ne
130	39557	1203	5 48.3	+ 0 46	173	-11	8.9	B(8)ne
131	40978	1001	5 57.2	+46 33	134	+13	7.0	B3ne
132	41117	χ² Óri	5 58.0	+20 8	157	+ I	4.7	Bisea
133	41335	1301	5 59.4	- 6 42	181	-12	5.1	B2(n)e
134	42054	2655	6 3.5	-34 18	208	-22	5.9	B5ne
135	253214	1300	6 6.4	+207	158	+ 2	9.4	Bone
136	43285	1172	6 10.3	+66	171	- 4	6.0	B5ne
137		MW 220	6 13.0	+15 19	163	+1	II.2	Pec.
		1460	6 16.8		188		5.5	B2ne
138	44458	•						
139	44637	1176		+15 9	164	+ 2	7.7	Bze
140	45314	1296 Com	6 21.6	+1457	165	+ 3	7.I	B2ne
141	45542	ν Gem	6 23.0	+20 17	160	+ 6	4.I	B5ne
142	45677	1500	6 23.7	-13 0	190	-10	7.5	Bep
143	45725	β Mon Pr	6 24.0	- 6 58	184	- 7	4.7	B3ne
144	45727	β Mon Fl	6 24.0	- 6 58	184	- 7	5.6	B3ne
145	45910	1267	6 25.2	+ 5 57	173	0	6.7	Beq
146	45995	1204	6 25.6	+11 19	168	+ 2	5.8	B2ne
147	259431	1172	6 27.6	+10 24	169	+ 2	9.0	B2e
148	259440	1291	6 27.6	+552	173	0	9.6	B(5)ne
1.1								

* Harvard Bulletin, No. 891, received after the completion of Table I, lists two additional stars of the P Cygni type in the Large Magellanic Cloud.

Desig.	R.A. (1900)	Dec. (1900)	Mag.
C.P.D69°427	5 ^h 14 ^m 39 ^s	-69°38'2	11.6
	5 37 32	-69 38.1	11.1

TABLE I—Continued

49 · · · 50 · · ·		Desig.	1900	1900	l	Ь	Mag.	Type
50	259597	1388	6 ^h 28 ^m 1	$+ 8^{\circ} 24'$	171°	+ 1°	8.8	B(o)ne
- 1	47054	1710	6 31.6	- 5 8	184	- 4	5.5	B8nea
51	77-57	R Mon	6 33.7	+ 8 49	171	+3	13 V	Pec.
52	48917	10 CMa	6 40.7	-30 58	208	-14	5.2	B3ne
-	49787	1815	6 45.0	-524	185	- I	-	B ₃ e
53		1615			•		$7 \cdot 3$	B2ne
$54 \cdot \cdot \cdot$	49977	к СМа	10 /	-14 0	193	- 5	7.9	B2ne
55	50013			-32 23	210	-13	3.8	1 million 1
56	50083	1448	6 46.5	+ 5 13	176	+ 4	6.8	B ₂ e
$57 \cdot \cdot \cdot$	50123	3717	6 46.6	-31 36	209	-13	5.6	B8ne
58	50138	1775	6 46.7	- 6 51	187	- 2	6.6	B8e
59	50209	1468	6 47.1	- 0 10	181	+ 1	8.3	B(5)ne
60	51354	1423	6 51.9	+18 2	165	+11	7.I	B(3)ne
61	51480	1774	6 52.4	-10 41	191	- 2	7.0	B8eq
62	51585		6 52.8	+16 28	167	+10		Beq?
63	52244	1694	6 55.3	-16 3	196	- 4	9.0	B5e
64	52721	1747	6 57.2	-11 9	192	- I	6.6	B3e
65	53179	Z CMa	6 59.0	-11 24	192	- I	9.1	Beq
66	53367	1848	6 59.7	-10 18	191	- I	7.0	Bine
67	54309	4908	7 3.2	-23 41	204	- 6	5.8	B3ne
68	55135	1908	7 6.6	-10 16	192	+ 1	7.2	B4ne
69	55271	1900	7 7.1	-21 38	202	- 4	6.7	B5ne
	56014	27 CMa	7 10.2	- 26 10	207	- 6		B ₅ e
		ω CMa	, ,	1 1		-6	4.7	B ₃ e
71	56139		7 10.7	-26 35	207		3.8	
72	56806	1769	7 13.4	-18 39	200	- 2	9.3	Be
73	57150	v ¹ Pup	7 14.8	-36 33	216	10	4.7	B3ne
74 · · ·	57386	1856	7 15.9	- 8 15	192	+ 4	8.1	B5ne
75	58011	4439	7 18.6	-25 49	207	- 4	7.0	Bie
76	58050	1564	7 18.8	+15 43	170	+16	6.4	B3e
77	5 ⁸ 343	1810	7 20.1	-16 o	199	+ 1	5.2	B3se
178	58715	β CMi	7 21.7	+ 8 29	177	+13	3.1	B8ne
79	58978	1874	7 22.8	-22 53	205	- 2	5.5	B2ne
80		2040	7 24.5	-13 34	197	+3	9.0	B2ne
81	59497	1962	7 25.1	-21 38	204	- I	8.4	B3ne
82	59773	1979	7 26.4	-21 35	204	0	8.1	B3e
83	60606	z Pup	7 30.2	-36 7	217	- 7	5.5	B ₅ e
	60848	1623	7 31.4	+17 7	170	+19	7.7	07ne
85	62753	3379	7 40.4	-40 5	222	- 7	6.7	B2ne
.86	63462	o Pup	7 43.9	-25 42	210	+ í	4.6	B3e
87	64100	1843	7 47.2	+45	184	+17	8.3	B8ne
. 88	65079	1848			186	+17	7.7	B3ne
	65176					+17 + 15	8.I	B(5) ne
89		1900	7 52.4		190			B2e
19 0	65875	2379	7 55.8	- 2 36	192	+15	6.4	
191	66700	5452	7 59.6	-31 24	217	+ I	8.0	B3e
í 92		r Pup	8 9.7	-35 35	221	0	4.8	B3ne
193		3951	8 11.7	-46 10	230	- 6	6.6	B3e
۲ 94	72754	3621	8 29.4	-49 16	234	- 5	7.3	Be
195	75311	f Car	8 44.1	-56 25	241	- 8	4.6	B3ne
196	78764	E Car	9 4.8	-70 8	253	-15	4.9	B3ne
	83953	I Hya	9 36.7	-23 8	224	+22	4.7	B3ne
198	87643	1865	10 1.1	- 58 11	250	- 2	Q.I	Be
199	88661	2781	10 8.3	-57 34	251	- I	6.1	B2e
200	1 .	3389	10 12.6	-55 5	250	+ 1	9.I	Be
200	89890	J Vel	10 12.0	-55 33	251	+ 1	4.6	B ₅ e

.

TABLE I-Continued

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	l	<i>b</i>	Mag.	Туре
202	90177	2145	10 ^h 19 ^m 4	$-59^{\circ}8'$	253°	- 2°	7.9	Be
203		3261	10 23.8	-579	252	0	9.2	Be
204	90 966	1595	10 24.9	-62 40	255	- 5	6.7	B3e
205	91120	3181	10 26.1	-13 5	227	+38	5.5	Bonea
2 0 6		Anon	10 26.7	-71 34	26 0	-I2		Pec.
207	• • • • • • • • •	2193	10 28.0	- 59 46	254	- 2	8.9	Be
2 0 8	91465	p Car	10 28.5	-61 II	255	- 3	3.6	B5ne
209	92714		10 37.2	-58 3	254	0	9.4	Be
210		2160	10 37.6	-60 15	255	- 2	9.2	Be
211	92964	2581	10 38.9	-58 42	255	0	5 · 4	Bise
212	93128,9	2617,8	10 40.1	-59 2	255	0	7.I	Be
213	93190	2637	10 40.5	-58 46	255	0	8.9	Be
214	93308	η Car	10 41.2	-59 10	255	- I	7 V	Pec.
215	94878	2855	10 52.0	-59 52	257	- I	8.5	Beq
216	94910	2860	10 52.2	-59 55	257	- I	7.6 8.0	Beq B2e
217	97151	3100 j Cen	11 5.8	-5933	258	0		
218 219	102776 105435	δ Cen	11 44.8 12 3.2	-63 14 -50 10	264 264	-2 +11	4.5 2.9	B5ne B3ne
220	105435	2166	12 3.2 12 4.8	-63 26	266	- 2	2.9 9.4	Be
221	105075	ζ Crv	12 4.0 12 15.4	-21 39	263	+40	9.4 5.3	B8ne
222	109387	кDra	12 20.2	+70 20	02 02	+48	3.9	B5e
223	110335	4393	12 36.2	-59 8	270	+3	5.0	B8e
224	110432	2898	12 36.9	-62 30	270	0	6.0	Bine
225	112091	$\mu^2 \operatorname{Cru}$	12 48.8	-56 37	271	+ 5	5.5	B3ne
226	113120	1553	12 56.3	-70 56	271	- 9	6.0	B3ne
227	114200	1567	13 3.9	-70 16	272	- 8	9.6	Be
228	116781	3270	13 20.7	-62 8	275	— I	8.8	Be
229	120324	μ Cen	13 43.6	-41 59	282	+18	3.3	B3e
230	120991	8931	13 47.7	-46 39	282	+14	5.9	B3e
231	124367	6206	14 8.0	-56 37	282	+3	5.2	B3ne
232	127972,3	η Cen	14 29.2	-41 43	291	+16	2.6	B3ne
233	128293	2622	14 30.9	-67 47	280	- 8	6.9	B3e
234	135160	5698	15 8.5	-60 32	287	- 4	6.0	Bie
235	137387	$\kappa^{\mathrm{I}} \mathrm{Aps}$	15 20.6	-73 2	281	-15	5.6	B5ne B5ne
236	138403	1889 θ CrB	15 26.7	-71 34	283	-14	9.0	Beq
237	138749		15 28.9	+31 42	16 288	+53	4.2	B5ne Beq
238 239	141969 142983	3171 4302	15 46.7 15 52.6	-65 52 -13 59	324	-10 + 27	9.2 17	Apea
239	142983	6348	15 52.0	-13 59 -60 13	324 202	$-\frac{12}{7}$	4.7 7.8	Взе
241	148184	$\chi \text{ Oph}$	16 21.2	-1814	326	+19	4.8	B3e
242	151895	v obn	16 45.1	-64 4	293	-14	12.5	Beq
243	152236	ζ ¹ Sco	16 47.0	-42 12	311	0	4.9	Biseq
244	153222	11105	16 52.9	-49 6	306	- 5	9.5	Boe
245	153261	6964	16 53.2	-58 48	298	-11	6.3	Boe
246	153879	10676	16 56.9	-51 15	305	- 7	8.6	B3e
247		MW 168	16 58.1	-33 50		+3	12.5	Bep
248	154154	11424	16 58.6	-48 17	307	- 6	8.6	Boe
249	154218	11217	16 59. 0	-36 36		+ 1	7.7	B5ne
250	154243	11221	16 59.2	-36 27	317	+ 1	8.3	B2e
251	154450	11320	17 0.4	-35 37		+ 2	8.5	Boe
252	155806	11875	17 8.7	-33 26		+ 2	5.5	O8e
253	155851	12518	17 9.0	-32 34		+ 2	8.0	Bone
254	156325	12573	17 11.8	-32 27	321	+ 2	6.4	B6nea

TABLE I—Continued

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	I	Ь	Mag.	Type
55	156468	11463	17 ^h 12 ^m 6	$-37^{\circ}54'$	317°	- 2°	8.o	B2e
56		11482	17 13.8	-35 39	319	- I	9.6	Be
57	156702	11773	17 14.0	-38 33	316	- 2	8 .4	B ₅ e
58	157042	ιAra	17 15.8	-47 23	310	- 7	5.5	B3ne
59	157832	11530			-	- 8		B ₂ e
6 0			17 20.5		310		7.3	
6~ 	158319	4526	17 23.5	-16 31	336	+ 8	8.7	B5ne
61	158427	a Ara	17 24.1	-49 48	308	-10	3.0	B3ne
6 2	1 59684	11750	17 30.9	-35 17	321	- 3	7.6	B2e
63	160095	12319	17 32.9	-33 29	323	- 3	8.7	B8e
64	160202	1 30 86	17 33.5	-32 9	324	- 2	6.9	B(1)ne
65		RT Ser	17 34.3	-11 53	342	+8	12 V	Pec.
66	160529	12361	17 35.3	-33 27	323	- 3	6.7	A4sea
67	161044	11816	17 38.2	-46 3	313	-10	11.0	Beq
68	161103	11872	17 38.5	-27 12	329	0	7.9	Bone
6 9	161114	XX Oph	17 38.6	-614			10 V	Pec.
-	· · ·	MW 174			347	+10		
70			17 39.5	-30 10	327	- 2	11.5	Bep
71	161306	4598	17 39.7	- 9 46	344	+8	8.3	B(o)ne
72		11944	17 41.9	-27 59	329	— I	9. 0	Beq
73	162718	13585	17 47.3	-24 45	332	- I	9. 0	Bone
74	163181	13517	17 49.7	-32 27	326	- 5	6.6	Bise
75	163296	4779	17 50.3	-21 56	335	0	6.6	A2e
76	163454	14987	17 51.1	-31 0	327	- 5	7.9	Bine
77	163868	12700	17 53.3	-33 24	325	— ŏ	7.2	B2ne
78	164284	66 Oph	17 55.3	+ 4 22	359	+12	4.8	B5ne
79	164447	3494	17 56.1	+1931		+18	6.4	Boe
	164906				13		-	
8 0		13832	17 58.3	-24 24	334	- 3	9.0	B(o) ne
81	165285	4836	18 0.1	-19 58	338	— I	8.7	B2ne
82	166188	4815	18 4.4	-18 13	340	- I	9.4	B2e
83	166256	3540	18 4.7	+13 28	8	+14	8.4	Aone
84	166566	4856	18 6.1	-15 42	342	0	8.1	Bise
85	166666	4861	18 6.6	-15 36	342	0	9.4	B2e
86	166734	4625	18 6.9	-10 46	347	+ 2	8.3	Boea
87		5060	18 9.7	-20 23	339	- 3	9.0	B(o)ne
88	167362	15469	18 9.7	-30 54	329	- 8	11.8	Pec.
89	168135	4991	18 13.2	-12 20	346	ŏ	8.1	B8nea
9 0	168229	4991	18 13.6	-1816				B(1)ne
	168607			$-16\ 25$	341	- 3	9.7	
91	108007	4829	18 15.5		343	- 2	8.9	Aose
92	168957	3395	18 17.3	+25 I	20	+16	6.9	B ₅ e
93	169226	5034	18 18.6	-12 15	347	— I	9.I	Be(q)
94	169454	5039	18 19.6	-14 2	345	- 2	6.8	Bose
95	169515	RY Sct	18 19.9	-12 45	346	- 2	9 V	Pec.
96	169805	5007 MW 181	18 21.3	-19 I	34I	- 5	8.7	Bine
97		MW 181	18 22.4	- 3 55	354	+ 2	<i>II.0</i>	Be
98	170061	5062	18 22.4	-14 47	345	- 3	10.6	Bone
	170235	13170	18 23.2	-25 19	336	— 8	6.2	B2e
		MW 182	18 24.0	-69	353	+ I	10.0	Bep
DI	171012		18 27.3	-18 26		-6		Bosea
		4994	10 2/.3		342		7.0	
52	171348	4790	18 29.3	-22 10	339	- 8	8.1	B3e
53	172694	5063	18 36.5	-15 57	345	- 7	8.3	Bpe
94	173219	4689	18 39.1	- 7 13	354	- 3	8.3	Bie
55	174105	3573	18 43.8	+15 17	14	+ 6	6.9	B8ne
5 6	174638,9	β Lyr	18 46.4	+33 15	31	+14	4 V	Bep
5 7	174886	4848	18 47.7	-10 21	352	- 6	8.I	B ₃ e

.

TABLE I-Continued

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	ı	<i>b</i>	Mag.	Туре
308	175863	1929	18 ^h 52 ^m 3	$+59^{\circ}53'$	57°	+22°	6.9	B4e
309	177015	5381	18 57.7	-20 16	344	-13	7.6	B3e
310	177648	3549	10 0.5	+23 11	23	+6	6.9	B3e
311	178175	5312	19 2.4	-19 27	345	-14	5.4	B3e
312	180398	3861	19 11.3	+12 56	15	— I	7.7	B(3)ne
313	181615,6	v Sgr	19 16.0	-16 8	350	-15	4.6	Ave
314		3887	19 17.0	+14 42	17	— I	9.5	Pec.
315		MW 187	19 19.9	+29 28	31	+ 6	I0.0	Bep
316		3687	19 20.5	+22 35	25	+ 2	8.6	B2e
317	183143	4085	19 23.0	+185	21	— I	6.9	Bosea
318	183362	3465	19 24.1	+37 44	38	+ 9	6.4	B3ne
319	184279	4065	19 28.6	+334	9	- 9	6.8	B2se
320		4285	19.41.3	+ 5 44	12	-11	8.5	B5ne
321	187399	3754	19 44.7	+29 10	33	+ 1	7.7	В9еβ
322	187567	4252	19 45.5	+ 7 39	15	-11	6.4	B3ne
323	187811	12 Vul	19 46.8	+22 21	27	- 3	4.9	B5ne
324	••••	3723	19 51.1	+26 19	31	- 2	8.7	B(5)ne
325	190073	4393	19 58.1	+ 5 28	14	-14	7.9	Aoep
326	190603	3925	20 0.7	+31 56	37	— I	5.7	Bosea
327	227611	3950	20 2.0	+35 37	40	+ I	9.5	Be
328	190944	2846	20 2.3	+46 24	49	+7	8.8	B(2)e
329	191610	b ² Cyg	20 5.7	$+36\ 33$	41	+ I	4.8	B3ne B(a)ra
330	228041	3998 20 Vul	20 6.2	+35 12	41	0	9.6	B(3)ne B8ne
331	192044		20 7.8	+26 11	33	- 5	5.9	Bone B2ne
332	192445 228438	4026	20 9.8 20 10.1	+36 2	42	0	7.I	Bone
$333 \cdot \cdot \cdot 334 \cdot \cdot \cdot$	228548	3946 4098	20 10.1 20 11.4	+36 20 +39 40	42	+ 2	9.0 10.8	B(2)ne
$334 \cdots$ $335 \cdots$	192954	4120	20 11.4 20 12.6	+39 40 +15 33	45 25	-12	10.3	A ₂ e
336	192934	4018	20 12.0	+32 4	39	-3	7.0	Bone
337	193009	MW 195	20 13.8	+36 34	43	0	10.0	$\mathbf{B}(2)\mathbf{e}$
338	193237	P Cyg	20 14.1	+37 43	43	0	4.9	Bieq
339	193516	3881	20 15.5	+37 28	43	0	8.8	$\tilde{B}I(e)$
340		4124	20 17.0	+41 2	47	+ 2	9.5	$B(2)\hat{e}$
341	193911	25 Vul	20 17.7	+24 7	33	- 8	5.4	B8ne
342		MŬ 197	20 19.5	+39 10	45	0	10.8	Be
343	194335	3916	20 20.0	+37 10	44	— I	5.7	B3ne
344	229221	4062	20 20.I	+38 11	45	0	I0.0	B(o)e
345	194883	2348	20 23.0	+54.22	58	+ 9	7.2	B3e
346	195407	4095	20 26.0	+36 39	44	- 2	7.7	Взе
$347 \cdot \cdot \cdot$	195592	3630	20 27.2	+43 59	50	+ 2	7.2	Bise
348	195907	4126	20 29.0	+31 19	40	- 6	7.6	B2e
349 · · ·		MW 203	20 29.2	+40 19	47	0	13.2	Bep
350	196712	5328	20 34.0	- 2 46	12	-26	6.3	Bge
351	197345	a Cyg	20 <u>3</u> 8.0	+44 55	52	+ I	I.3	A2sea
352	198183	λCyg	20 43.5	+36 7	46	- 5	4.5	B6e Basar
353	198478	3291	20 45.5	+45 45	53	+ 1	4.9 8.0	B2sea Bana
$354 \cdots$	198512	2495	20 45.7	+53 32	59 61	+ 6		B2ne B2e
$355 \cdots$	198895	2429	20 48.4	+55 7	61	+7	8.3 6 r	B ₂ e B ₅ ne
356	199218	4354	20 50.7 20 51 6	+40 20	50	-3	6.5	B3ne
357 · · · 358	199356 199478	4368 3111	20 51.6 20 52.4	$^{+39}_{+47}$ $^{55}_{2}$	50 55	- 4 + 1	7.0 5.8	B8sea
359	200120	f ¹ Cyg	20 52.4	+47 2 +47 8	55 56	T 1 0	5.0 4.9	B3ne
359··· 360	200120	60 Cyg	20 50.4 20 57.6	+47 6 +45 46	50	- I	4.9 5.2	B3ne
5.2	200310	00 0,5	20 37.0	1 HJ HV	55	-	J. 2	2020
	1							

1933ApJ....78...87M

TABLE I-Continued

1	1		1	1		1		1
MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	ı	Ь	Mag.	Туре
361	200775	1283	21 ^h 0 ^m .4	$+67^{\circ}47'$	71°	+14°	7.2	B ₅ e
362	201522	3198	21 5.1	+46 51	57	- i	7.8	B3ne
363	201733	3718	21 6.4	+45 6	56	- 2	6.5	Bse
364	202904	v Ćyg	21 13.8	+34 29	49	-11	4.4	B3ne
365	203025	2309	21 14.6	+58 10	66	+ 6	6.4	B ₃ e
366	203374	2112	21 16.7	+61 25	68	+ 8	6.6	Bone
367	203467	6 Cep	21 17.3	+64 27	70	+10	5.2	B ₃ ne
368	203600	4692	21 18.8	+13 37	34	-26	6.7	B ₅ e
369	203731	4503	21 10.0	+40 16	54	- 7	7.4	B3ne
370	204722	3941	21 25.5	+43 54	57	- 5	7.5	B3ne
371	205060	4123	21 23.3	+43 54 +42 16	56	- 7	7.I	$B_5(n)e$
372	239703	2280	21 27.7	+59 I	68	+5	9.0	B(3)ne
372 373	205637	e Cap	21 31.5	-19 54	00	-46	4.7	B ₅ pe
	203037	34 ⁸ 7		+47 28	60		4.7 Q.I	B3eq
374 · · ·	235565	3487 3384	l v		63	- 4 - I	8.8	B2ne
$375 \cdot \cdot \cdot$			0.0	+51 3				Bone
376	206773	2374	21 39.3	+57 17	67 62	+ 3 - 2	7.0	B8ne
377 · · ·	207232	3430	21 42.4	+50 12	63	- 1	7.0	B2e
378	207329	3144	21 43.1	+51 39	64		7.4	
379 · · ·	207757	4673	21 46.2	+12 9 +62 8	38	-32	7.6v	Bep
380	208392	2210	21 50.9		72	+ 6	7.I	B3ne
381	208682	1607	21 52.9	+64 52	73	+ 8	5.8	B3ne
382	235683	3211	21 55.6	+51 55	66	- 2	9.0	B3e
383	209296	2676	21 57.2	+56 14	69	+ 1	8.1	B(5)e
384	209409	o Aqr	21 58.1	- 2 38	26	-44	4.7	Bone
385	210129	25 Peg	22 3.I	+21 13	48	- 28	5.7	B8ne
386	212044	3341	22 16.4	+51 21	68	- 5	7.I	B2e
387	212076	31 Peg	22 16.6	+11 42	44	-37	4.9	B3e
388	212571	$\pi \mathrm{Aqr}$	22 20.2	+ 0 52	35	-46	4.6	Bine
389	213088	3213	22 23.9	+52 28	70	- 4	8.2	B8ne
390	214168	8 Lac	22 31.4	+39 7	64	-16	5.8	B3ne
391	214197	RZ Lac	22 31.6	+52 14	71	- 5	9 V	Bge
392	214748	e PsA	22 35.1	-27 34	353	-62	4.2	B8ea
393 · · ·	216057	2993	22 44.6	+53 53	73	- 4	6.I	B8ne
394 · · ·	217050	3985	22 52.7	+48 9	72	-10	5.2	B3ne
395	217543	4744	22 56.3	+38 10	69	- 20	6.4	B3ne
396	217891	β Psc	22 58.8	+ 3 17	48	- 50	4.6	B ₅ e
397 • • •	218393	4045	23 2.6	+49 40	74	- 9	6.8	Ave
398	220058	2942	23 15.7	+55 15	78	- 5	8.5	B(1)ne
399	220116	2724	23 16.1	+57 43	79	- 2	8.8	B5ne
400		Comp R Aqr	23 38.6	-15 50	37	-71	9 V	Pec.
401	223387	3094	23 44.0	+56 40	82	- 5	9.2	B(o)ne
402	223501	2537	23 45.0	+61 39	84	0	8.2	B3e
403	223960	2636	23 48.9	+60 18	84	- I	7.0	Aosea
404	224055	2562	23 49.7	+61 17	84	0	7.2	B2sea
405	224424	2676	23 52.7	+59 9	84	- 2	7.8	Bosea
4 0 6	224544	5012	23 53.7	+31 48	79	-29	6.4	B5ne
407	224559	4381	23 53.8	+45 52	82	-15	6.5	B3ne
408	225094	2356	23 58.3	+63 5	85	+ I	6.3	B2sea
409	225095	3103	23 58.3	+55 0	84	- 7	7.6	Bie
410	225160	2585	23 58.9	+61 40	85	0	8.6	O8ea

TABLE II

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	l	ь	Mag.
412 413 414	143454 162214	AX Per RW Hya T CrB RS Oph CI Cyg Z And	1 ^h 30 ^m 0 13 28.8 15 55.3 17 44.8 19 46.5 23 28.8	$+53^{\circ}45' -24 53 +26 13 - 6 40 +35 26 +48 16$	97 284 9 348 39 78	$ \begin{array}{r} - 8 \\ + 36 \\ + 47 \\ + 9 \\ + 4 \\ - 12 \\ \end{array} $	11.0 10 v Nova Nova 11.0 10 v

STARS WITH PECULIAR SPECTRA HAVING DARK TiO BANDS AND BRIGHT λ 4686 (He II)

NOTES TO TABLES I AND II

The following notes, in addition to recording unpublished data, indicate the chief features of a few of the more interesting peculiar spectra.

MWC

- 1. H.D. 108. This is the only star in Table I in whose spectrum we have noticed emission at $\lambda\lambda$ 4634, 4640, and 4686. These bright lines are the features for which the Victoria observers have recently used the suffix "f." The bright hydrogen lines, however, are well marked and not greatly different from those found in certain Be stars. The classification symbol might be O6fe.
- 2. H.D. 144. Not previously announced. On a grating spectrogram (dispersion 66 A per millimeter) taken at Mount Wilson on September 18, 1932, Ha appears as an emission line of low intensity centrally superposed on broad absorption. A bright Ha had been suspected on an objective-prism plate taken September 20, 1925.
- 9. H.D. 5394, γ Cassiopeiae. Material published prior to 1915 given in reference 32 is omitted from Table I. A slit spectrogram taken at Lowell Observatory on November 27, 1912, and forwarded to us through the courtesy of Dr. V. M. Slipher shows well-marked bright lines at $H\beta$, $H\gamma$, and $H\delta$. Dr. Dean B. McLaughlin writes that plates taken at the Observatory of the University of Michigan during the fall of 1932 show the violet emission components of $H\beta$ and $H\gamma$ to be definitely more intense than the red components.
- 13. H.D. 9105. The bright lines seem to have disappeared since the Harvard observations were made.
- 16. H.D. 10516, ϕ Persei. Material published prior to 1913 given in reference 2 is omitted from Table I.
- 17. M.W. 101. The bright lines are extraordinarily intense and include forbidden lines of ionized iron as in η Carinae. The nebular line λ 4658 also is bright.
- 31. H.D. 13854. Not previously announced. On a grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on October 12, 1932, *Ha* appears as an emission line of low intensity centrally superposed on weak absorption.
- 32. H.D. 14134, Boss 519. The companion star H.D. 14143, B1s, probably has emission at Ha; a grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on October 13, 1932, shows an indistinct bright component, but we do not

- consider it sufficiently well marked to justify the inclusion of the star in the catalogue.
- 35. Companion to o Ceti (H.D. 14386). Irregular variable, magnitude 10–11. Approximately o.".8 from the long-period variable o Ceti; position angle 130°.
- 45. H.D. 14818, 10 Persei. Not previously announced. A bright *Ha* of low intensity was detected by O. C. Wilson, Jr., on one-prism slit spectrograms taken at Mount Wilson on September 19 and October 13, 1932. The observation was confirmed by a grating spectrogram (dispersion 34 A per millimeter) taken December 16, 1932.
- 49. H.D. 15472. The description by Adams and Joy in reference 55 refers to slit spectrograms taken at Mount Wilson on September 19, 22, and 25, 1915. The spectrum appears to be essentially the same on a low-dispersion plate taken August 29, 1923.
- 65. H.D. 20336, H.R. 985. Some doubt exists concerning the actual discoverer of bright lines in the spectrum of this star. W. W. Campbell's paper dated June 28, 1894 (undoubtedly a typographical error; 1895 probably is correct), printed in the Astrophysical Journal for October, 1895, gives a list of Be stars "possibly all, ..., up to January, 1895," with the statement that unless otherwise specified $H\beta$ had been observed to be bright by the Harvard College observers. This star, B.D.+65°340, is in the list and is not otherwise specified, implying that $H\beta$ was observed to be bright by Harvard prior to January, 1895. In Harvard Annals, 56, 182 (Table IV), 1912, however, the discoverer is stated to be Espin, 1896 (Astronomische Nachrichten, 140, 243, 1896). This reference gives Espin's observation as follows: "1895, Sept. 22. F bright?" A detailed account of Espin's observation, quoted by Lockyer (Monthly Notices of the Royal Astronomical Society, 91, 225, 1930), shows Espin's discovery to have been independent, but does not explain the presence of the star on Campbell's observing program at an earlier date.
- 69. H.D. 22192, ψ Persei. The spectrograms from which Adams determined the radial velocity of this star (*Mt. Wilson Contr.*, No. 105; *Astrophysical Journal*, 42, 172, 1915) were taken at Mount Wilson on January 10, 11, 16, 17, 1911, and October 20, 1912. $H\beta$ is a distinct double bright line superposed on diffuse absorption. At $H\gamma$ the bright portions appear as fringes to a well-marked central core. In both lines the two bright components have approximately equal intensities. Their measured separations are: $H\beta$, 3.1 A; $H\gamma$, 2.5 A.
- 73. H.D. 23480, Merope, 23 Tauri. On slit spectrograms taken at Mount Wilson on December 7, 1916, and February 28, 1917, $H\beta$ appears as a diffuse absorption line on which there may be superposed two bright components of extremely low intensity.
- 74. H.D. 23630, Alcyone, η Tauri. On slit spectrograms taken at Mount Wilson on December 7, 1916, and February 28, 1917, $H\beta$ appears as a broad absorption line within which incipient emission is barely visible. The emission may be double with components of nearly equal intensity.
- 75. H.D. 23862, Pleione, 28 Tauri. The bright lines seem to have disappeared since the time of the early Harvard observations.

MWC

MWC

- 77. H.D. 24479. The absorption lines of hydrogen and helium are diffuse, but λ 4481 Mg II is much better defined.
- 78. H.D. 24534, X Persei. Variable of the R Coronae type. Magnitude 6-7. D. B. McLaughlin writes that a spectrogram taken at Ann Arbor 1932.8 shows V/R= 1.4, indicating that the relative intensities of the emission components have been changing in the same direction since 1930.
- 81. H.D. 25940, c Persei. Moderately strong emission, possibly double but not clearly resolved, appears at $H\beta$ on slit spectrograms taken at Mount Wilson on January 7, 10, 19, 1911, and January 27, 1912. At $H\gamma$, emission of lower intensity is visible; on the last plate, which is the best of the series, it is clearly double, the separation being about 2.2 A.
- 84. M.W. 143. The bright lines of hydrogen are very intense, and in addition lines of neutral helium and ionized iron are bright.
- 93. H.D. 31293, AB Aurigae. Variable of the R Coronae type. Magnitude 7.2-8.4. The cores of the hydrogen lines change their positions independently of the wings.
- 95. H.D. 32256. It is not certain that this object should be included in the *Catalogue*. Remark in the *Henry Draper Catalogue*: "The continuous spectrum is strong and several bright lines are distinctly seen, two of which are $H\beta$ and $H\gamma$. The spectrum may belong to the P Cygni Class."
- 96. H.D. 32343, 11 Camelopardalis. Narrow emission lines of considerable strength are present at $H\beta$ and $H\gamma$ on slit spectrograms taken at Mount Wilson on January 11, March 17, December 14, 1911; November 26, December 23, 1912; January 24, 1913; and March 9, 1914.
- 97. H.D. 32763. It is not certain that this object should be included in the *Catalogue*. Remark in the *Henry Draper Catalogue*: "This spectrum contains bright hydrogen lines, but the image is too faint and indistinct to determine its true nature."
- 98. H.D. 32991, 105 Tauri. $H\beta$ appears as a fairly narrow bright line of moderate intensity on slit spectrograms taken at Mount Wilson on February 11, March 6 and 7, 1914; January 2, December 21, 1915; and November 2, 1917. Incipient emission appears at $H\gamma$ on the best plates.
- 99. H.D. 33152. The bright lines are unusually narrow.
- 100. H.D. 33232. The spectrum is somewhat peculiar, and the type appears to vary. The cores of the hydrogen lines are strong and well defined; their displacements, which are correlated with the behavior of the bright components, appear to vary in a period of more than ten years. The star is under investigation at Mount Wilson.
- 102. H.D. 33540. See remark in *Harvard Bulletin*, No. 891, p. 4, quoted in a footnote to Table VII.
- 108. H.D. 35343, S Doradus. Irregular variable, magnitude 8.2-9.8. In the Greater Magellanic Cloud; spectrum of the P Cygni type. Said by H. Shapley to be "probably the most luminous star now [March 18, 1925] known."
- 109. H.D. 35345. The bright hydrogen lines are unusually narrow and well defined.
- 114. H.D. 37115. Brighter component of A.D.S. 4202. The spectral type of the ninthmagnitude companion (P.A. 180°; Sep. 1") is Ao.
- 115. H.D. 37202, & Tauri. Bright lines were apparently first noticed by V. M. Slipher on slit spectrograms taken at the Lowell Observatory in 1912. Excellent nega-

MWC

tives taken November 14 and 18, 1912, were forwarded to us through the courtesy of Dr. Slipher. Emission is plainly visible on the violet edge of $H\beta$, and less distinctly on the red edge. The violet edge of $H\gamma$ is faintly bright. It is well known that the ultra-violet members of the Balmer series are remarkably strong and well-defined dark lines. Thirty members of the series, including m=32, have been measured by Miss Losh on spectrograms taken at Ann Arbor.

- 137. M.W. 229. The bright hydrogen lines are extraordinarily intense. The type is uncertain.
- 140. H.D. 45314. D3 (helium) is bright on a grating spectrogram (dispersion 66 A per millimeter) taken at Mount Wilson on January 7, 1933.
- 142. H.D. 45677. The spectrum is very peculiar and interesting. In addition to the lines of hydrogen and ionized iron (normal and forbidden), the nebular lines λ 4068 [S II] and $\lambda\lambda$ 6300, 6363 [O I] are bright.

143 H.D. 45725, 7; β Monocerotis. The following approximate data concerning this 144 well-known triple star are taken from Aitken's *Double Star Catalogue*:

	P.A.	Dist.	Mag.
AB	132°	7:3	5.0-5.5
BC	105		5.5-6.0

All observers agree that the spectra of the preceding and following components have emission lines, but some doubt exists in regard to the intermediate star, B, concerning which Frost, Barrett, and Struve (Astrophysical Journal, 64, 24, 1926) say: "The hydrogen lines show two bright components of small intensity. The red component is stronger than the violet." O. Struve (ibid., 73, 98, 1931) says of bright $H\beta$, "Narrow double." Struve writes that both these notes refer to a plate taken by Professor Frost on November 13, 1905. D. B. McLaughlin (Publications of the Observatory of the University of Michigan, 4, 183, 1932) says: "All three components of this visual triple are emission-line stars. . . . When a spectrogram is being taken the separation of the images of the two fainter components, β^2 and β^3 , on the slit of the spectrograph is approximately one-half the length of the slit as usually employed. As the position angle is close to 90° , it is possible to take the spectra of these two stars simultaneously, and with careful guiding and good seeing the spectra appear with little or no overlapping. Three such spectrograms have been taken, in October, 1928; October, 1930; and November, 1931.... β^2 has double emission at $H\beta$ with a width of about 7.5 A and a central absorption line somewhat stronger and wider than that of β^3 ." The question is whether the bright lines which have been seen in the spectrum of the intermediate component are inherent in its light or whether the appearance has been caused by the partial overlapping of the light of the following component. A plate was taken at Mount Wilson on January 28, 1026, with the intermediate and following components on the slit according to the method mentioned by McLaughlin. $H\beta$ is definitely bright in the spectrum of the following component, but probably not in that of the intermediate component, although a very slight defect in the emulsion makes it impossible to be absolutely certain on this point. The hydrogen absorption seems considerably stronger in the intermediate component. At our request Dr. Struve and Dr. McLaughlin have reviewed their observations of this star. Both report their continued impression that the bright line in the intermediate com-

MWC

104

ponent may be real, but agree that for the time being the star should be omitted from the catalogue.

The best test of the real existence of bright components at $H\beta$ is the presence of a stronger bright line at Ha, and here all available evidence is negative. Campbell (Astrophysical Journal, 2, 180 n., 1895) says: "The intermediate star does not show a bright Ha line." Merrill (Lick Observatory Bulletin, 7, 169, 1913) says: "1912, October 6.02, no indication of a bright line at Ha." On a plate taken at Mount Wilson on October 14, 1932, with the grating spectrograph (dispersion 34 A per millimeter), Ha is an absorption line near its normal position apparently without emission components.

The intermediate component has therefore been omitted from the catalogue pending confirmation of the evidence of bright lines in its spectrum. The type of the intermediate component is B_2 or B_3 . The absorption lines of H and He are more intense than in the spectrum of the following component.

- 145. H.D. 45910. The structure of the hydrogen lines is very remarkable and is subject to variation as are also other features of the spectrum.
- 146. H.D. 45995, A.D.S. 5153. P.A. 4°; Sep. 16". The spectral type of the eighthmagnitude companion is Ao.
- 147. H.D. 259431, B.D.+10°1172, N.G.C. 2247. Fourteen slit spectrograms taken at Mount Wilson during the years 1920–1928 are described by R. F. Sanford as follows: "The classification is uncertain. Neither helium nor λ 4481 of magnesium is at all conspicuous. Double bright lines appear at $H\beta$ and $H\gamma$, and there is some evidence of variability in their intensity."
- 151. R Monocerotis. In N.G.C. 2261. Irregular variable, possibly of the R Coronae type. Magnitude 9-14.
- 158. H.D. 50138. The violet component of the double bright $H\beta$ line exhibits extraordinary variations of intensity.
- 165. H.D. 53179, Z Canis Majoris. Variable of the R Coronae type. Magnitude 8.4-11.5. The behavior of this spectrum, which has numerous lines of iron and titanium, resembles, in a measure, that of the "iron star," XX Ophiuchi, H.D. 161114.
- 166. H.D. 53367. A bright line of low intensity is seen at $H\beta$ on slit spectrograms taken at Mount Wilson on December 29 and 30, 1920, and February 26, 1921.
- 169. H.D. 55271, A.D.S. 5863. P.A. 233°; Sep. 13". The spectral type of the eighthmagnitude companion is Ao.
- 170. H.D. 56014, 27 Canis Majoris. O. Struve has shown that if the displacements of dark lines are caused by orbital motion, the minimum total mass of the whole system is approximately two thousand times the mass of the sun. Referring to three slit spectrograms of the blue-violet region taken at Mount Wilson on December 7 and 8, 1927, R. F Sanford says: "Emission, if present, consists of very weak red components." On a grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on December 17, 1932, the dark core of Ha has a positive displacement. Conspicuous emission occurs on its violet side; on the other side the emission is much less intense.
- 173. H.D. 57150, v^I Puppis. A slit spectrogram taken at Mount Wilson on October 30, 1922, shows fairly narrow bright lines diminishing in intensity from $H\beta$ to $H\epsilon$.

MWC

- 177. H.D. 58343. Dr. F. C. Jordan writes that bright lines were first photographed at Allegheny Observatory in 1908. Fairly strong lines were seen at $H\beta$ and $H\gamma$ on slit spectrograms taken December 28, 1908; March 1, 5, 15, 1910; December 28, 1911; February 23, December 12, 1912; February 21, 1914. On some of these plates bright $H\delta$ and $H\epsilon$ also appeared. On January 27, 1912, however, the emission appeared to have been weaker, as it was then barely visible, although the exposure was moderately strong. On a slit spectrogram taken at Lick Observatory on November 29, 1912, emission at $H\alpha$ and $H\beta$ was well marked. Slit spectrograms taken at Mount Wilson on December 23, 1910; January 19, February 11, 1911; and December 26, 1912, show $H\beta$ and $H\gamma$ as conspicuous narrow bright lines superposed on broad absorption.
- 178. H.D. 58715, β Canis Minoris. *Ha* is a conspicuous double bright line on grating spectrograms taken at Mount Wilson on February 15, 1030, and March 24, 1032.
- 197. H.D. 83953, I Hydrae. A bright line of moderate intensity is seen at $H\beta$ on a slit spectrogram taken at Mount Wilson on February 22, 1926.
- 214. H.D. 93308, η Carinae, Nova Carinae No. 1. The spectrum is very peculiar and interesting. The forbidden lines of ionized iron are very strong.
- 221. H.D. 107348, ζ Corvi. Not previously announced. Mr. O. C. Wilson, Jr., found a bright Ha line on a one-prism slit spectrogram taken at Mount Wilson on May 12, 1932. Re-examination of a slit spectrogram taken June 1, 1912, shows a weak double bright line at $H\beta$.
- 229. H.D. 120324, μ Centauri. This star offers a most striking example of changing intensities of the hydrogen lines. R. H. Curtiss summarized the early observations as follows: "Apparently the strong emission of the nineties was distinct in 1904, evanescent in 1912, and non-existent in 1918." For several years after 1918 the bright lines were absent or of low intensity. Grating spectrograms taken at Mount Wilson on June 20, 1929; February 14, 1930; May 6, 1931; and February 27, 1932, show Ha to be a conspicuous bright line, apparently gradually increasing in intensity.
- 237. H.D. 138749, θ Coronae Borealis. A grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on May 5, 1931, shows Ha as a wide, diffuse absorption line. One-prism slit spectrograms taken at Mount Wilson by O. C. Wilson, Jr., on February 26 and June 13, 1932, show Ha and H β as strong absorption lines without visible emission.
- 239. H.D. 142983. The spectrum is peculiar and may vary. The structure of Ha is interesting. Remark in the *Henry Draper Catalogue*: "The spectrum is peculiar in combining sharply defined hydrogen lines with wide and ill-defined helium lines. In this respect it resembles the spectrum of ϵ Capricorni."
- 241. H.D. 148184, χ Ophiuchi. The bright hydrogen lines are unusually narrow.
- 251. H.D. 154450. The bright hydrogen lines are unusually narrow and sharp.
- 263. H.D. 160095. This star may belong to that small group of Be stars which have a Cygni lines of variable intensity.
- 265. RT Serpentis. The spectrum of this nova-like variable has undergone extraordinary changes. In 1928 the forbidden lines of ionized iron were outstanding.
- 266. H.D. 160529. On the slit spectrograms taken at Mount Wilson the α Cygni lines are very strong.

MWC

- 269. H.D. 161114, XX Ophiuchi. Variable of the R Coronae type. Magnitude 9.6-10.7. The "iron star." The spectrum is peculiar and variable.
- 270. M.W. 174. The bright hydrogen lines are very intense.
- 272. M.W. 54, D.M. $-27^{\circ}11944$. The lines exhibit the P Cygni characteristics in a very marked degree. The spectrum may be said to be intermediate between that of P Cygni and of a typical nova.
- 275. H.D. 163296. The cores of the hydrogen lines probably change their positions independently of the wings. The behavior apparently resembles that of H.D. 31293.
- 279. H.D. 164447. Not previously announced. A description of the spectrum will be published by G. Shajn in the *Circulars* of the Poulkovo Observatory.
- 280. H.D. 164906. In N.G.C. 6523=M8.
- 292. H.D. 168957. Slit spectrograms taken at Victoria on May 20, 1924, and April 24, 1925, and forwarded to us through the courtesy of Dr. J. A. Pearce show a narrow emission component of low intensity superposed nearly centrally on broad absorption at $H\beta$ and $H\gamma$. Dr. C. S. Beals writes that a plate taken by him on May 14, 1932, shows no indication of emission lines.
- 293. H.D. 169226. On a slit spectrogram taken at Mount Wilson on July 20, 1924, the line $H\beta$ appears to be of the P Cygni type.
- 294. H.D. 169454. The spectrum is notable for the prominence of dark lines of ionized oxygen. Ha and $H\beta$ have, to a certain extent, the P Cygni characteristics. They may be variable in structure and intensity.
- 295. H.D. 169515, RY Scuti. Irregular variable. Magnitude 8.3–9.2. The nebular line λ 4658 is bright.
- 300. M.W. 182. The forbidden lines of neutral oxygen $\lambda\lambda$ 6300, 6363 are bright.
- 303. H.D. 172694. The absorption spectrum is peculiar. The dark line λ 4471 *He* is unusually strong and well defined.
- 306. H.D. 174638, 9; β Lyrae. Eclipsing variable. Period 12.9 days. Magnitude 3.4–
 4.1. The spectrum is very peculiar and varies with the light-phase. Material published prior to 1911 given in reference 1 is omitted from Table I.
- 311. H.D. 178175. Forty-nine slit spectrograms taken at Mount Wilson during the years 1912–1929 are described by R. F. Sanford as follows: "Double emission components of the hydrogen lines vary from slightly stronger than the adjacent continuous spectrum to an intensity so low that the effect upon the absorption line is nearly negligible."
- 313. H.D. 181615, 6; v Sagittarii. The spectrum is peculiar and variable.
- 314. M.W. 74, B.D.+14°3887. The bright hydrogen lines are unusually strong and narrow. Eight or ten enhanced lines of iron are bright.
- 315. M.W. 187. The bright hydrogen lines are very intense. The decrement in intensity from $H\beta$ to $H\zeta$ appears to be unusually small.
- 316. M.W. 75, B.D.+ $22^{\circ}3687$, β G.C. 9287. P.A. 138°, Sep. 16". The spectral type of the tenth-magnitude companion is A(\circ).
- 317. H.D. 183143. This star is remarkable for its large color excess.
- 319. H.D. 184279. The dark line λ 4471 *He* is unusually intense.
- 325. H.D. 190073. This star has a most peculiar spectrum. The sodium lines D1,2 are bright, and the structure of the H and K lines is very remarkable.

MWC

- 331. H.D. 192044, 20 Vulpeculae. On slit spectrograms taken at Mount Wilson on July 7, 10, 13, 18 and October 6, 7, 1911, $H\beta$ consists of a broad absorption line on which are symmetrically superposed two faint emission components (separation approximately 3.7 A) of nearly equal intensity. Their distinctness varies on different plates and the changes may be intrinsic.
- 335. H.D. 192954. Not previously announced. Ha was suspected to be bright on an objective-prism photograph taken at Mount Wilson on July 12, 1929. M. L. Humason noticed, independently, that $H\beta$ appeared to have weak bright edges on a slit spectrogram taken August 3, 1930. The presence of bright lines was definitely established by a slit spectrogram taken November 15, 1932, which shows $H\alpha$ as a strong bright line. The decrease from the intensity of emission at $H\alpha$ to that at $H\beta$ is remarkably great. The absorption lines are well defined.
- 338. H.D. 193237, P Cygni, Nova Cygni 1600. In the spectrum of this star, which serves as a prototype for a group of peculiar spectra, strong bright lines in approximately their normal positions are accompanied by dark companions on their violet edges.
- 341. H.D. 193911, 25 Vulpeculae. Slit spectrograms taken at Mount Wilson on August 10, 16, 17, 1911; July 30, October 19, November 25, 1912; and August 23, 1921, show $H\beta$ as a fairly strong absorption line on which is centrally superposed a bright line of moderate intensity. On the best plates the bright line has the appearance of an unresolved double with components of nearly equal intensity.
- 347. H.D. 195592. The dark helium line λ 4471 is unusually strong.
- 349. M.W. 203. In addition to bright lines of hydrogen and neutral helium, the nebular line λ 4658 is bright.
- 350. H.D. 196712. A description of the spectrum will be published by G. Shajn in the Circulars of the Poulkovo Observatory.
- 351. H.D. 197345, a Cygni. Ha consists of a displaced dark line with emission on the long wave-length edge. The normal position of Ha lies between the effective centers of the bright and dark components. Articles referring to the presence of emission are the only ones included in the bibliography. O. Struve states that observations made at the Perkins Observatory in December, 1932, show the Ha line in β Orionis, cB8, to be peculiar, apparently resembling the same line in a Cygni (Astrophysical Journal, 77, 67, 1933).
- 352. H.D. 198183, λ Cygni. A slit spectrogram taken at Mount Wilson on September 20, 1926, shows $H\beta$ to be a broad absorption line with a narrow bright component of low intensity superposed nearly centrally. $H\gamma$, $H\delta$, and $H\epsilon$ appear wholly dark. On a grating spectrogram (dispersion 66 A per millimeter) taken August 1, 1928, Ha is a clearly marked bright line, although of moderate intensity, superposed on broad weak absorption. Another grating plate (dispersion 34 A per millimeter) taken May 5, 1931, shows Ha to be a weak absorption line without definite bright components. The intensity of the bright component is certainly less on the later date.
- 353. H.D. 198478, 55 Cygni. On a grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on August 18, 1932, $H\alpha$ appears as an emission line of very low intensity with a dark companion on its violet edge.

- 358. H.D. 199478. Slit spectrograms taken at Mount Wilson on July 8, 1911; July 25, August 21, October 31, 1912; and October 13, 1930, show slight variations in the appearance of $H\beta$.
- 360. H.D. 200310, 60 Cygni. Slit spectrograms were taken at Mount Wilson on July 10, 1911; July 26, August 25, September 18, 1912; October 3, 1917. On the last plate, $H\beta$ has two bright components (separation 5.1 A) of low and nearly equal intensity. They may be faintly present on the first plate but cannot be seen on the 1912 plates.
- 361. H.D. 200775, N.G.C. 7023. About forty slit spectrograms taken at Mount Wilson during the years 1920–1929 are described by R. F. Sanford as follows: " $H\beta$ appears to have two emission components of approximately equal intensity. The profile of $H\gamma$ points to a similarity in its structure."
- 368. H.D. 203699. On slit spectrograms taken at Mount Wilson on September 26, October 23, November 16, 1912; October 18, 19, 1921, $H\beta$ is a rather narrow bright line superposed on broad absorption. $H\gamma$ is hazy as if partly neutralized by emission, but bright components are not clearly seen.
- 373. H.D. 205637, ϵ Capricorni. The spectrum is peculiar and variable.
- 379. H.D. 207757, B.D.+11°4673, AG Pegasi. Irregular variable. Magnitude 6.3–7.7. The spectrum is very peculiar and interesting. Prior to 1920 the helium lines were dark; since then they have been bright with dark borders on the violet edge. Lines of various elements exhibit variable displacements which have a common period of eight hundred days but differ in phase, amplitude, and "center-of-mass" velocity.
- 381. H.D. 208682. Slit spectrograms taken at Victoria on July 26, August 28, November 25, 1919, and forwarded to us through the courtesy of Dr. J. A. Pearce show at $H\beta$ two weak bright lines superposed on broad absorption. Traces of emission are visible at $H\gamma$ also. On slit spectrograms taken at Mount Wilson on August 5, 1922; August 18, September 20, October 22, November 20, 1923; July 21, September 14, 1926, the bright components are absent or extremely weak, and the dark hydrogen lines appear more intense than on the Victoria plates.
- 385. H.D. 210129, 25 Pegasi. Slit spectrograms taken at Mount Wilson on October 12, November 1, December 13, 1911, show $H\beta$ to be a bright line of moderate width and intensity (probably an unresolved double) superposed on wider absorption. Incipient emission is probably present within the broad absorption at $H\gamma$.
- 390. H.D. 214168, 8 Lacertae; northern and brighter component, A.D.S. 16095. P.A. 186°; Sep. 22". The spectral type of the fainter component is B2; the dark lines are stronger and narrower than in the northern component. On slit spectrograms of the northern component taken at Mount Wilson on August 11, 14, 17 and October 7, 1911; September 20, 1926, ill-defined emission of low intensity is present at $H\beta$; $H\gamma$ is nearly neutral. Dr. Dean B. McLaughlin writes that two slit spectrograms taken at Ann Arbor 1932.8 show V/R to be 1.3, and that the change in the relative intensity of the emission components has been continuing in the same direction since 1930.
- 391. H.D. 214197, RZ Lacertae. Irregular variable. Magnitude 8.6–9.2. Near Nova Lacertae 1910. Not previously announced. Bright lines were discovered by R. F. Sanford on slit spectrograms taken at Mount Wilson. Six plates taken during the years 1926–1929 are described by Dr. Sanford as follows: "A weak emission line

MWC

NOTES TO TABLES I AND II-Continued

MWC

appears centrally upon the absorption line $H\beta$. Some plates also show similar structure for $H\gamma$."

- 397. H.D. 218393. The spectrum has a Cygni lines of variable intensity. Mr. W. E. Harper writes that 6 slit spectrograms were taken at Victoria between September 23, 1931, and October 1, 1932. The mean velocity from the hydrogen absorption, H and K, λ 4481, and enhanced lines, including some rather widely discordant values, is -18 km/sec.; from helium λ 4471, -110 km/sec. "Emission seems to be present for the hydrogen lines, largely the redward component."
- 400. Companion to R Aquarii (H.D. 222800). Irregular variable. Magnitude 8-10. The position of this star appears to be identical with that of the long-period variable R Aquarii. The spectrum is peculiar and variable to a remarkable extent.
- 403. H.D. 223960. On a grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on August 20, 1932, Ha appears as a narrow dark line displaced toward the violet; emission is not clearly seen and is less intense than on October 12, 1929.
- 404. H.D. 224055. Classified Bo by Harvard, B8s by Victoria. Perhaps the spectrum changes.
- 405. H.D. 224424. Not previously announced. An emission line of low intensity is seen at Ha on a grating spectrogram (dispersion 66 A per millimeter) taken at Mount Wilson on September 19, 1932.
- 406. H.D. 224544. Ha is an intense bright line on a grating spectrogram (dispersion 34 A per millimeter) taken at Mount Wilson on September 16, 1932.
- 410. H.D. 225160. It is not certain that the characteristics of the Balmer lines are those typical of Be stars. They may resemble those of late O-type spectra in which bright lines of low intensity are seen at $\lambda\lambda$ 4634, 4640, 4686. As these bright lines are not definitely seen in this spectrum, however, the classification symbol "e" is used and the star is included in Table I.

BIBLIOGRAPHY

The bibliography lists references that give observational material concerning the objects in Tables I and II. Our intention has been to make it complete for spectroscopic observations; lists of data concerning magnitude, position, proper motion, and parallax have not been included. A few selected references to the light-curves of variable stars have, however, been added. Several references to the discovery of variable radial velocity were omitted because they are found in Moore's *Third Catalogue of Spectroscopic Binary Stars* (ref. 267). The tables and notes in the *Revised Harvard Photometry* and in the monumental *Henry Draper Catalogue* include data for many Be stars and should be consulted as a matter of course. These catalogues are mentioned at the beginning of the bibliography, but specific references to them are omitted from the key.

110 PAUL W. MERRILL AND CORA G. BURWELL

Publications included in the bibliography are arranged alphabetically either by author, by title of periodical, or, in case of observatory publications, by location of the observatory; under each publication the order of entries is chronological.

TABLE III

REFERENCES TO BE STARS

Before 1870	2	1900–1909	24
1870–1879	2	1910–1919	71
1880–1889	I	1920–1929	150
1890–1899	37	1930–1932	73

The total number of references to published material is 364. Two unnumbered references precede the 363 numbered items, while No. 49 refers to unpublished material. The increase during recent years in the frequency of appearance is shown by Table III.

KEY TO BIBLIOGRAPHY

The following section lists for each star of Tables I and II those items of the bibliography (p. 114) that contain information concerning its spectrum or light-curve. The numbers in bold-face type are the current numbers of the stars in the *Catalogue*, Tables I and II.

1 59, 275, 280, 295, 323, 354, 362 2 274, 275 **3** 295 4 59, 275, 280, **6** 70, 280, 295 **7** 95, 109, 110, 114, 140, 145, 150, 157, 158, 295, 339 **5** 295 161, 166, 267, 270, 274, 275, 305, 307, 312, 361, 362 **8** 95, 145, 158, 239, 274, 275, 308, 361, 362 **9** 32, 38, 39, 40, 47, 87, 107, 117, 118, 145, 152, 155, 158, 161, 165, 167, 169, 176, 183, 201, 267, 270, 274, 275, 279, 280, 284, 295, 302, 310, 313, 316, 321, 324, 325, 326, 329, 331, 337, 343, 353, 362 **10** 295 11 295 12 59, 275, 280, 295, 362 **13** 66, 275, 280, 295, 323, 354, 361, 362 14 63, 280, 295 15 **16** 2, 38, 40, 43, 47, 49, 87, 109, 111, 112, 145, 155, 161, 165, 180, 183, 257, 267, 295 270, 274, 275, 280, 284, 295, 310, 324, 326, 327, 334, 341, 353, 362 17 295 18 **19** 63, 280, 295 **20** 295 21 275, 295, 362 22 295 23 295 205 **24** 295 **25** 295 **29** 295 **26** 59, 280, 295 **27** 295 **28** 295 30 **33** 295 **31** 50, 275 **35** 12, 295 **32** 50, 275, 295, 361, 362 **34** 295 13, 57, 60, 73, 76, 77, 161, 192, 282, 284, 291 **36** 85 **37** 230 **38** 85 39 **40** 85, 295 **41** 295 **42** 295 **43** 295 **44** 295 **45** 275, 338 85 **47** 295 **49** 55 **50** 295 **46** 295 **48** 230, 280, 295 **51** 295 52 295 **53** 295 **54** 295 **55** 295 56 295 57 295 58 295 **59** 295 **60** 295 **61** 58, 59, 275, 280, 295, 361, 362 **62** 295 63 205 **65** 7, 17, 20, 35, 38, 46, 47, 58, 106, 114, 128, 145, 155, 161, 165, 168, 172, **64** 295 180, 239, 257, 267, 275, 280, 284, 295, 310, 312, 324, 326, 328, 334, 353, 362 66 295 **68** 275, 295, 361, 362 **69** 31, 38, 47, 128, 155, 161, 165, 172, 180, **67** 284, 295 239, 240, 242, 257, 274, 275, 280, 284, 295, 310, 324, 326, 331, 353, 362 **70** 67, 280,

72 47, 134, 145, 155, 158, 172, 174, 183, 237, 238, 239, 240, 241, 295 71 295 **2**51, 257, 270, 274, 275, 280, 324, 331, 362, 363 **73** 28, 47, 134, 145, 155, 158, 172, 174, 183, 237, 238, 239, 241, 251, 257, 274, 275, 280, 295, 324, 331, 362, 363 **74** 47, 128, 134, 145, 155, 174, 180, 183, 237, 238, 240, 241, 251, 257, 268, 269, 270, 274, 275, 280, 324, 331, 362, 363 **75** 4, 20, 39, 47, 52, 98, 122, 128, 145, 158, 172, 174, 175, 180, 183, 237, 242, 251, 257, 274, 275, 280, 363 **76** 295 77 95, 145, 158, 274, **79** 295 275 **78** 17, 47, 106, 126, 128, 180, 275, 280, 295, 361, 362 **80** 67, 280, 295 81 28, 38, 47, 51, 109, 133, 145, 155, 158, 165, 178, 180, 222, 239, 257, 267, 270, 274, 275, 280, 292, 295, 306, 310, 312, 324, 331, 353, 362 82 295 83 230, 280, 295 84 295, 296 85 295 86 124, 128, 178, 180, 257, 274, 275, 362 87 295 88 61, 275, 280, 290, 295, 361, 362 89 275, 361, 362 90 295 **91** 295 **92** 47, 59, 135, 139, 145, 155, 157, 158, 239, 267, 274, 275, 280, 300, 312, 323, 332, 361, 362 **93** 194, 233, 295 **94** 295 **95–96** 28, 38, 41, 47, 51, 145, 155, 157, 158, 161, 165, 178, 180, 219, 257, 274, 275, 276, 280, 284, 295, 310, 353, 362 **97** 180, 216 **98** 28, 47, 53, 55, 275, 295, 361, 362 **99** 61, 275, 280, 295, 362 100 61, 280, 295 101 63, 280, 295 **102** 195, 250 **103** 61, 275, 280, 295, 361, 362 104 275, 361, 362 105 180, 186, 195, 212 106 195 107 228, 275, 280, 295, 361, 362 108 180, 186, 195, 198, 212, 214, 235 109 228, 280, 284, 295 110 17, 20, 26, 45, 46, 47, 133, 145, 155, 161, 165, 178, 180, 221, 255, 257, 274, 275, 284, 295, 310, 312, 324, 326, 353, 361, 362 111 28, 47, 145, 155, 165, 178, 180, 224, 274, 275, 280, 295, 310, 361, 362 112 195 113 195 114 59, 280, **115** 15, 17, 20, 27, 29, 40, 41, 43, 44, 47, 132, 136, 145, 155, 158, 161, 247, 267, 205 270, 274, 275, 280, 284, 292, 295, 301, 312, 322, 324, 326, 331, 347, 348, 352, 362, 363 **117** 8, 47, 142, 145, 155, 257, 267, 274, 275, 295, 309, 312, 362 **118** 116 205 61, 275, 280, 295, 361, 362 119 145, 164, 174, 175, 180, 211, 257, 274, 275, 362 **120** 295 **121** 180, 195, 216 **122** 61, 275, 280, 295, 361, 362 **123** 180, 186, 195, 212 **124** 228, 275, 280, 361, 362 **125** 67, 280 **126** 180, 186, 195, **127** 63, 280, 295 **128** 63, 280 **129** 67, 280, 295 **130** 295 131 212 **132** 47, 49, 63, 109, 113, 145, 155, 157, 158, 267, 274, 275, 280, 295, 275, 361, 362 300, 307, 312, 338, 362 133 8, 28, 47, 100, 128, 145, 155, 161, 172, 180, 257, 274, 275, 280, 284, 295, 361, 362 **134** 271, 275, 295 **135** 63, 280 **136** 70, 275, 280, 205, 361, 362 **137** 205 **138** 28, 47, 145, 155, 178, 180, 218, 257, 274, 275, **139** 63, 280, 295 **140** 63, 267, 275, 280, 295, 354, 362 295, 362 **141** 37. 47, 115, 137, 145, 155, 267, 275, 295, 304, 312, 324, 331, 362 142 78, 161, 180, 215, **275**, 284, 288, 295, 337, 362 **143** 28, 31, 33, 38, 40, 47, 120, 128, 144, 145, 155, 161, 165, 171, 172, 180, 257, 274, 275, 280, 284, 295, 310, 353, 362 **144** 47, 128, 144, 145, 155, 180, 257, 274, 275, 312, 362 **145** 61, 71, 72, 215, 275, 280, 284, 295, 354, 356, 357, 360, 362 **146** 59, 267, 275, 280, 290, 295, 323, 354, 362 **147** 277, 279, 280, 151 246, 279, 284 295 **148** 295 **149** 295 **150** 145, 164, 274, 275, 295 154 295 **152** 8, 179, 180, 257, 274, 275, 295, 362 **153** 275, 361, 362 155 8, 127, 128, 161, 174, 175, 180, 203, 257, 274, 275, 295, 362 **156** 228, 275, 280, 295, 361, 362 **157** 295 **158** 61, 161, 275, 280, 291, 292, 295 159 63, 280, 295 **160** 275, 280, 295, 361, 362 161 125, 128, 180, 275, 280, 281, 284, 295, 361, 362 162 295 163 295 164 295 **165** 184, 226, 228, 233, 284, 295 166 275, 277, 279, 295, 361, 362 167 8, 174, 175, 180, 216, 257, 295 168 61, 275, **169** 61, 280, 295 **170** 3, 8, 127, 128, 145, 146, 147, 148, 151, 280, 295, 361, 362 156, 158, 159, 160, 161, 174, 175, 180, 213, 257, 267, 272, 274, 275, 280, 295, 332, 362 **171** 8, 128, 145, 155, 158, 161, 164, 172, 174, 175, 180, 257, 267, 272, 273, 274, 275, 280,

112 PAUL W. MERRILL AND CORA G. BURWELL

284, 295, 362 **172** 67, 280 173 8, 121, 128, 174, 175, 180, 257, 274, 275, 280, **174** 295 **175** 228, 280, 295 295, 362 **176** 275, 361, 362 177 8, 51, 257, 274, 275, 276, 280, 295, 362 **178** 37, 47, 144, 145, 155, 158, 240, 268, 269, 270, 274, 275, 280, 312, 331 **179** 161, 178, 180, 203, 219, 257, 274, 275, 280, 295, 362 **180** 67, 280, 295 **181** 67, 280, 295 **182** 67, 280, 295 **183** 79, 228, 271, **184** 267, 275, 295, 323, 354, 362 275, 280, 295 **185** 67, 280, 295 **186** 8, 174, 175, 180, 211, 257, 274, 275, 295, 362 **187** 295 188 295 189 205 **190** 228, 275, 280, 284, 295, 361, 362 **191** 295 192 8, 121, 128, 161, 174, 175, 180, 257, 274, 275, 280, 284, 295, 362 193 174, 180, 217 194 229 **195** 83, 274, 275, 362 **196** 8, 11, 174, 175, 180, 211, 274, 275, 362 197 178, 180, 219, 257, 274, 275, 362 **198** 226 **199** 180, 217 **200** 184, 225 201 3, 8, 39, 174, 175, 180, 215, 232, 274, 275, 362 **202** 180, 216 203 202 204 179, 180 205 145, 178, 275, 295 **206** 231 **207** 202 208 8, 11, 39, 105, 174, 175, 180, 232, 241, 274, 275, 362 **209** 202 210 202 211 174, 202, 271, 274, 275, 362 **212** 180, 215 213 202 214 24, 82, 88, 174, 181, 182, 187, 200, 261, 264, 274, 275, 284, 287, 318, 319, 320, 336, 337, 345, 346, 351, 359, 360 215 174, 180, 186, 200 **216** 121, 174, 180, 186 217 202 218 83, 174, **219** 84, 99, 128, 161, 174, 175, 180, 203, 241, 242, 274, 275, 352, 362 274, 275, 362 220 232 **221** 274, 275 **222** 9, 17, 18, 20, 38, 42, 46, 47, 108, 109, 128, 145, 155, 158, 162, 172, 180, 203, 239, 240, 242, 257, 259, 267, 269, 270, 274, 275, 280, 308, 312, 324, 331, 332, 353, 355, 362 **223** 262, 274, 275 **224** 11, 179, 180, 191, 222, 271, 275 **225** 174, 175, 180, 211, 274, 275, 362 **226** 101, 174, 175, 180, 271, 275 227 231 **228** 180, 222 **229** 8, 11, 39, 91, 99, 128, 161, 174, 175, 176, 180, 182, 205, 231, 241, 242, 248, 273, 274, 275, 280, 284, 337, 349, 350, 352, 362 **230** 8, 100, 128, 174, 175, 180, 271, 275 **231** 174, 175, 180, 211, 241, 274, 275, 362 **232** 3, 8, 100, 128, 174, 175, 180, 216, 249, 254, 267, 273, 274, 275, 280, 362 233 202, 223 234 202 **235** 3, 161, 174, 175, 180, 203, 216, 271, 275 **236** 180, 186, 215 **237** 145, 257, 259, 274, 275, 312, 333, 361, 362 **238** 180, 216, 232 239 145, 241 28, 47, 87, 102, 128, 164, 178, 274, 275, 292, 295, 362 **240** 179, 180, 222 145, 155, 158, 161, 165, 178, 180, 219, 253, 257, 267, 270, 274, 275, 276, 284, 295, 310, **243** 174, 175, 180, 210, 274, 275, 280, 362 353, 362 242 232 244 202 246 232 **247** 295 **249** 67, 280, 295 **245** 228 **248** 202 **250** 68, 251 68, 280, 295 280, 295 **252** 179, 180, 222, 274, 275, 280, 295, 362 253 180, 226, 280, 295 **254** 271, 275, 295 255 68, 280, 295 257 **256** 205 202 **258** 161, 179, 180, 203, 222, 274, 275, 362 259 179, 180, 222 260 205 **261** 174, 175, 180, 210, 241, 267, 274, 275, 362 262 295 263 70, 280, 290, 295 **264** 68, 280, 295 **265** 74, 90, 92, 267, 275, 278 **266** 295 **267** 104, 181, 186, 209, 232 **268** 68, 280, 295 **269** 75, 81, 119, 180, 207, 224, 234, 236, 280, **270** 295 **271** 68, 280, 295 **272** 68, 196, 280, 281, 284, 295 284, 293, 295 **275** 280, 290, 295 273 295 **274** 70, 161, 275, 280, 286, 295, 362 276 70, 277 68, 280, 295 278 83, 144, 145, 274, 275, 309, 312, 361, 362 280, 295 **282** 295 279-280 70, 280, 295 **281** 295 **283** 295 284 68, 280, 295 285 280, 295 **286** 280, 295 287 295 288 129, 181, 186, 232, 280, 295 289 295 **290** 68, 280, 295 291 70, 280, 295 292 275, 293 280, 295 295 65, 69, 70, 280, 285, 361, 362 294 70, 280, 290, 295 **297** 295 **298** 280, 295 299 180, 209, 259, 296 70, 280, 295 295 303 280, 290, 295 280, 295 300 93, 295 **301** 295 **302** 295 304 180, 211, 280, 295 **305** 280, 295 **306** 1, 16, 19, 22, 30, 47, 49, 143, 161, 170,

1933ApJ...78...87M

267, 275, 280, 303, 312, 316, 320 **307** 295 308 275, 280, 295, 361, 362 309 **295 310** 275, 361, 362 **311** 83, 274, 275, 295, 362 **312** 280, 290, 295 313 3, 5, 10, 23, 47, 49, 103, 128, 130, 145, 172, 178, 180, 199, 257, 259, 263, 267, 274, 280, 295, 311, 315, 329, 332, 338, 356, 357, 358 **314** 280, 284, 295 **315** 295 **318** 275, 295, 361, 362 275, 280, 295, 362 **317** 275, 280, 290, 295, 361, 362 **320** 295 **321** 280, 295 **319** 275, 295, 361, 362 322 275, 280, 295, 361, **323** 274, 275, 361, 362 **324** 295 **325** 295, 297, 351 362 326 267, 275, 295, 362 **327** 280, 295 **328** 229, 280, 284, 295 **329** 7, 17, 20, 21, 38, 47, 48, 145, 155, 158, 178, 180, 221, 239, 257, 267, 274, 275, 280, 295, 324, 353, 362 **330** 295 **331** 47, 51, 257, 267, 275, 276, 295 **332** 275, 280, 295, 361, 362 **333** 280, 295 **334** 295 **335–336** 275, 280, 295, 361, 362 **337** 295 **338** 4, 6, 25, 40, 47, 49, 52, 71, 87, 116, 123, 128, 131, 138, 149, 158, 163, 172, 173, 180, 186, 187, 204, 206, 239, 243, 252, 256, 260, 270, 275, 280, 292, 295, 299, 312, 324, 342, 352, 357, 360, 361, 362 **339** 231, 280, 295 **340** 295 **341** 47, 51, 259, 274, 275, 276, 295 **342** 295 **343** 267, 275, 295, 361, 362 344 295 345 275, 295, 361, 362 **346** 280, 290, 295 **347** 275, 295, 361, 362 348 295 **349** 295 **350** 314 **351** 176, 258, 265, 266, 267, 274 **352** 28, 47, 80, 145, 155, 239, 274, 275, 295, 361, 362 **353** 145, 157, 158, 239, 267, 274, 275, 295, 309, **355** 295 **354** 280, 295 **356** 59, 275, 280, 295 357 181, 218, 340, 362 231, 275, 280, 295, 361, 362 **358** 145, 155, 157, 275, 295 **359** 7, 20, 34, 38, 39, 46, 47, 87, 109, 145, 155, 178, 180, 219, 239, 257, 267, 270, 274, 275, 295, 324, 330, 331, 338, 353, 361, 362 **360** 145, 155, 161, 274, 275, 361, 362 **361** 54, 56, 275, 279, 280, 295, 361, 362 **362** 295 **363** 275, 295, 361, 362 **364** 17, 20, 47, 49, 103, 109, 128, 145, 155, 161, 165, 172, 180, 203, 239, 257, 274, 275, 280, 295, 309, 310, 312, 324, 331, 362 **365** 74, 267, 275, 280, 283, 295, 361, 362 **366** 230, 275, 280, 295, 361, 362 **367** 47, 114, 145, 155, 165, 178, 180, 218, 257, 267, 274, 275, 280, 295, 310, 361, 362 **368** 53, 275, 295, 361, 362 **369** 275, 295, 361, 362 370 **371** 275, 361, 362 **372** 295 **373** 3, 47, 145, 155, 161, 174, 180, 245, 257, 259, 267, 274, 275, 362 **374** 295 **375** 295 **376** 226, 275, 280, 295, 379 36, 40, 116, 126, 128, 180, **377** 280, 295 **378** 275, 361, 362 361, 362 186, 189, 275, 280, 284, 289, 294, 295, 337, 360, 362 **380** 158, 275, 295, 361, 362 **381** 114, 275, 362 **382** 295 **383** 295 **384** 17, 20, 47, 145, 155, 161, 178, **385** 28, 47, 267, 275, 239, 240, 257, 274, 275, 280, 295, 310, 324, 331, 353, 361, 362 276 **386** 275, 280, 295, 361, 362 **387** 8, 28, 47, 145, 155, 157, 161, 165, 178, 180, 221, 239, 257, 274, 275, 280, 295, 310, 324, 331, 353, 362 **388** 8, 17, 20, 26, 38, 45, 47, 128, 145, 153, 154, 155, 158, 161, 172, 173, 180, 239, 242, 257, 274, 275, 280, 284, 312, 324, 326, 331, 352, 353, 361, 362 **389** 295 **390** 28, 47, 51, 145, 155, 178, 180, 184 257, 267, 275, 276, 295, 361, 362 **391-392** 59, 155, 274, 275, **393** 295, 335, 338 280 **394** 39, 47, 141, 145, 267, 274, 275, 280, 295, 338, 361, **396** 8, 28, 38, 47, 52, 58, 133, 145, 155, 161, 165, 178, **395** 275, 361, 362 362 180, 239, 240, 257, 274, 275, 280, 284, 309, 310, 312, 324, 331, 353, 361, 362 397 **400** 86, 284 290, 295 **398** 295 **399** 295 **401** 295 402 205 **405–406** 275, 333, 338, 361, 362 407 403 295 **404** 275, 295, 361, 362 275, 280, 295, 361, 362 **408** 275, 295, 361, 362 409 178, 180, 218, 280, **411** 94, 208, 295, 296 **412** 94, 197, 296 **410** 295 413 62, 284. 205 64, 96, 177, 187, 188, 244, 317, 344 **414** 89, 177, 185, 188, 217, 220 415 94, 416 14, 97, 185, 193, 227, 284, 337, 359 190, 295, 296

REFERENCES TO Be STARS

General Catalogues

Revised Harvard Photometry: Harvard College Observatory Annals, 50, 1908. Henry Draper Catalogue: Harvard College Observatory Annals, 91–100, 1918–

Allegheny Observatory, Publications

Ref.

- 1. CURTISS, R. H. On the Photographic Spectrum of β Lyrae. 2, 73, 1912.
- 2. JORDAN, F. C. Spectrographic Observations of ϕ Persei. 3, 31, 1916.

American Astronomical Society, Publications

- 3. CANNON, A. J. Variations of the Bright Hydrogen Lines in Stellar Spectra. 1, 216, 1910; also *Science*, 21, 414, 1905.
- FROST, E. B. Observations of Radial Velocities. 1, 243, 1910; also Science, 23, 449, 1906.
- 5. ———. Spectrographic Observations. 1, 308, 1910; also Science, 28, 853, 1908.
- 6. CURTISS, R. H. Spectroscopic Notes from the Detroit Observatory. 3, 5, 1918; also Pop. Astr., 22, 133, 1914.
- 7. ——. Some Structure Variations in Hydrogen Emission Lines in Spectra of Class B. 3, 198, 1918; also *Pop. Astr.*, 24, 659, 1916.
- 8. PERRINE, C. D. Changes in the Spectra of Some Early Type Stars Showing Hydrogen Emission. 4, 38, 1923; also Pop. Astr., 27, 90, 1919.
- BAKER, R. H. The Association of Hydrogen Lines with the "Invariable" K Line in the Spectrum of κ Draconis. 4, 206, 1923; also Pop. Astr., 29, 146, 1921.
- MAURY, A. C. Preliminary Note on v Sagittarii. 4, 273, 1923; also Pop. Astr., 29, 636, 1921.
- CANNON, A. J. Recent Spectroscopic Results. 5, 6, 1927; also Pop. Astr., 31, 188, 1923.
- 12. JOY, A. H. The Spectrum of *o* Ceti at Minimum. 5, 14, 1927; also *Pop. Astr.*, 31, 237, 1923.
- 13. ——. Radial Velocity Measurements of the Spectrum of o Ceti. 5, 64, 1927; also *Pop. Astr.*, 31, 645, 1923.
- 14. PLASKETT, H. H. A Possible Origin of the Nebular Lines. 5, 77, 1927; also *Pop. Astr.*, 31, 658, 1923.
- 15. LOSH, H. M. The Spectrum of & Tauri. 5, 175, 1927; also Pop. Astr., 32, 557, 1924.
- 16. MAURY, A. C. Some Peculiarities in the Spectrum of β Lyrae. 5, 177, 1927; also *Pop. Astr.*, 32, 559, 1924.
- 17. CURTISS, R. H. Studies of Spectrum Variables of Class Be. 5, 284, 1927; also *Pop. Astr.*, 33, 537, 1925.
- STRUVE, OTTO. Changes in the Bright Lines of Hydrogen in 5 κ Draconis.
 5, 294, 1927; also Pop. Astr., 33, 596, 1925.

- MAURY, A. C. Variable Hydrogen and Helium Lines in the Spectrum of β Lyrae. 5, 394, 1927; also Pop. Astr., 34, 625, 1926.
- 20. CURTISS, R. H. Spectrum Variables of Class Be. 6, 258, 1929; also Pop. Astr., 37, 578, 1929.
- LOSH, H. M. Velocity Studies of b² 28 Cygni. 6, 267, 1931; also *Pop. Astr.*, 38, 25, 1930.
- 22. McLAUGHLIN, L. H. A Note on the Emission Lines in β Lyrae. 6, 272, 1931; also Pop. Astr., 38, 30, 1930.
- 23. SEYDEL, F. L. A Study of the Spectrum and Orbit of Upsilon Sagittarii.
 6, 278, 1931; also Pop. Astr., 38, 92, 1930.
- 24. BOK, B. J. The Spectrum of η Carinae. 6, 337, 1931; also Pop. Astr., 38, 309, 1930.
- 25. WILLIAMS, W. J. The Spectrum of P Cygni. 6, 377, 1931.
- 26. McLAUGHLIN, D. B. Characteristics of Class Be Spectrum Variables. 7, 31, 1931.
- 27. FATH, E. A. Report from Goodsell Observatory. 7, 61, 1931.
- 28. MCLAUGHLIN, D. B. Fourteen New Be Spectrum Variables. 7, 93, 1932.

Amsterdam, K. Akademie van Wentenschappen, Proceedings

29. PANNEKOEK, A. The Variability of the Pole Star. 15, 1192, 1913 n.; also Verslag, 21, 1116, 1913.

Ann Arbor, University of Michigan, Publications

- 30. CURTISS, R. H. A Determination of the Visual Light Curve of Beta Lyrae. 1, 87, 1915.
- 31. MERRILL, P. W. The Spectrum and Radial Velocity of ψ Persei and of the Brightest Component of β Monocerotis. 1, 136, 1915.
- 32. CURTISS, R. H. The Spectrum of γ Cassiopeiae. 2, 1, 1916.
- 33. ——. Ibid., Plate C and p. 182.
- 34. ———. Changes in the Spectrum of f¹ Cygni. 2, 36, 1916.
- 35. ———. Changes in the Spectrum of H.R. 985. 2, 39, 1916.
- 36. MERRILL, P. W. A Spectrum of the P Cygni Type. 2, 71, 1916.
- 37. ———. Discovery of Two Bright-Line Stars of Class B. 2, 181, 1916.
- 38. CURTISS, R. H. Widths of Hydrogen and Metallic Emission Lines in Class B Stellar Spectra. 3, 1, 1923.
- 39. ———. Studies of Class B Stellar Spectra Containing Emission Lines: Sixth Paper. 3, 16, 1923.
- 40. ———. Some Bright Line Stellar Spectra. 3, 256, 1923, and Plate B.
- 41. ——. Some Bright Line Stellar Spectra. 3, 256, 1923, and Plate C.
- 42. BAKER, R. H. The Spectrum of κ Draconis. 3, 29, 1923.
- 43. CURTISS, R. H. A Pictorial Study of the Spectrum of Nova Geminorum II.3, 254, 1923, and Plate I.
- 44. LOSH, H. M. The Spectrum of & Tauri. 4, 1, 1931.

- 45. McLAUGHLIN, D. B. The Spectral Variations of 25 Orionis and 52 (π) Aquarii. 4, 37, 1931.
- 46. CURTISS, R. H. Variations of Emission Lines in Three Be Spectra (prepared for publication by D. B. McLAUGHLIN). 4, 163, 1932.
- 47. McLAUGHLIN, D. B. A Spectroscopic Survey of the Brighter Be Stars.4, 175, 1932.
- 48. LOSH, H. M. The Spectrum of b² 28 Cygni. 4, 199, 1932.
- 49. Unpublished material.

Astronomical Journal

50. ADAMS, W. S., and VAN MAANEN, ADRIAAN. A Group of Stars of Common Motion in the h and χ Persei Clusters. 27, 187, 1911–1913.

Astronomical Society of the Pacific, Publications

- 51. ADAMS, W. S., and LASBY, J. B. Stars of the Orion Type with Bright Hydrogen Lines. 23, 240, 1911.
- 52. MERRILL, P. W. Helium Stars Having Bright Lines in Their Spectra. 24, 181, 1912.
- 53. ADAMS, W. S. Three Stars with Bright Hydrogen Lines. 26, 260, 1914.
- 54. PEASE, F. G. Radial Velocities of Six Nebulae. 27, 239, 1915.
- 55. ADAMS, W. S., and Joy, A. H. Two Stars with Bright Hydrogen Lines. 29, 112, 1917.
- 56. SLIPHER, V. M. The Spectrum of N.G.C. 7023. 30, 63, 1918.
- 57. ADAMS, W. S., and Joy, A. H. Changes in the Spectrum of o Ceti. 32, 163, 1920.
- 58. MERRILL, P. W. A Special Field of Usefulness for Small Telescopes in Photographing Stellar Spectra. 32, 318, 1920, and Plate X.
- 59. MERRILL, P. W., and HUMASON, M. L. Ten Stars of Class B Having the *Ha* Line Bright. 32, 336, 1920.
- 60. ADAMS, W. S., and JOY, A. H. The Spectrum of *o* Ceti near Minimum of Light. 33, 107, 1921.
- 61. HUMASON, M. L., and MERRILL, P. W. Ten Stars of Class B Having the Ha Line Bright (2d list). 33, 112, 1921.
- 62. ADAMS, W. S., and JOY, A. H. The Spectra of Three M-Type Stars with Bright Lines. 33, 263, 1921.
- 63. HUMASON, M. L., and MERRILL, P. W. Ten Stars of Class B Having the Ha Line Bright (3d list). 33, 264, 1921.
- 64. LUNDMARK, KNUT. The Spectrum of T Coronae. 33, 271, 1921.
- 65. MERRILL, P. W. The Nebular Line λ 4658 in Stellar Spectra. 34, 134, 1922.
- 66. MERRILL, P. W., and HUMASON, M. L. Disappearance of Bright Lines from the Spectrum of H.D. 9105. 34, 180, 1922.
- 67. HUMASON, M. L., and MERRILL, P. W. Ten Stars of Class B Having the Ha Line Bright (4th list). 34, 223, 1922.

- 68. ———. Ten Stars of Class B Having the Hα Line Bright (5th list). 34, 294, 1922.
- 69. MERRILL, P. W. Note on the Spectrum of RY Scuti, B.D. 12°5045. 34, 295, 1922.
- 70. HUMASON, M. L., and MERRILL, P. W. Ten Stars of Class B Having the *Ha* Line Bright (6th list). 34, 351, 1922.
- 71. PLASKETT, J. S. A Remarkable Variable Spectrum. 35, 145, 1923.
- 72. MERRILL, P. W. Notes on the Spectrum of H.D. 45910. 35, 303, 1923.
- 73. AITKEN, R. G. Omicron Ceti a Visual Binary Star. 35, 323, 1923.
- 74. ADAMS, W. S., and OTHERS. Ninety-seven Stars with Variable Velocity. 36, 137, 1924.
- 75. MERRILL, P. W. The Iron Star H.D. 161114 (abstract). 36, 225, 1924.
- 76. JOY, A. H. The Spectrum of the Close Companion of o Ceti. 36, 290, 1924.
- 77. AITKEN, R. G. Measures of the Companion to Omicron Ceti. 36, 296, 1924.
- MERRILL, P. W. Unusual Bright Lines in the Spectrum of H.D. 45677.
 37, 163, 1925.
- 79. NEUBAUER, F. J. Note on the Spectrum of z Puppis, H.D. 60606. 37, 329, 1925.
- 80. BALMER, H. F. The Bright Line Spectrum of λ Cygni. 37, 330, 1925.
- 81. MERRILL, P. W. Titanium Lines in the Spectrum of the Iron Star, H.D. 161114. 38, 45, 1926.
- 82. PERRINE, C. D. Nova Carinae, No. 1 (η Carinae, η Argus). 38, 116, 1926.
- 83. BALMER, H. F. Four Stars of Spectral Type Be. 38, 248, 1926.
- 84. Note on the Spectrum of δ Centauri, H.D. 105435. 38, 255, 1926.
- 85. TRUMPLER, R. J. B-Type Stars with Bright Hydrogen Lines in the Cluster χ Persei. 38, 350, 1926.
- 86. MERRILL, P. W. Changes in the Spectrum of R Aquarii. 39, 48, 1927.
- 87. Yü, CH'ING-SUNG. Continuous Ultra-Violet Emission in Spectra of Class Be Stars and a Probable Continuous General Absorption in the Spectrum of P Cygni. 39, 112, 1927.
- 88. MERRILL, P. W. New Iron Lines in Stellar Spectra. 39, 363, 1927.
- 89. ADAMS, W. S., and OTHERS. Observations of Faint Spectra. 39, 365, 1927.
- 90. ADAMS, W. S., and Joy, A. H. The Spectrum of RT Serpentis. 40, 252, 1928.
- 91. MERRILL, P. W. Recent Observations of the Bright Hydrogen Lines in the Spectrum of μ Centauri. 41, 270, 1929.
- 92. JOY, A. H. Nebular Lines in the Spectrum of RT Serpentis. 43, 353, 1931.
- MERRILL, P. W. Forbidden Lines of Neutral Oxygen in Stellar Spectra.
 43, 411, 1931.
- 94. MERRILL, P. W., and HUMASON, M. L. A Bright Line of Ionized Helium λ 4686 in Three Stellar Spectra with Titanium Bands. 44, 56, 1932.
- 95. WILSON, O. C., JR. Three New Be Stars. 44, 124, 1932.

- 96. BERMAN, LOUIS. The Spectrum and Temperature of T Coronae (Nova 1866). 44, 318, 1932.
- 97. Hogg, F. S. On the Presence of Titanium Oxide Bands in the Spectrum of Z Andromedae. 44, 328, 1932.

Astronomische Nachrichten

- 98. PICKERING, E. C. Spectrum of Pleione. 123, 95, 1890.
- 99. FLEMING, W. P. Spectra of δ and μ Centauri. 123, 383, 1890.
- 100. ———. Stars Having Peculiar Spectra. 125, 363, 1890.
- 101. ———. Stars Having Peculiar Spectra Including New Variables in Triangulum and Hydra. 126, 117, 1891.
- 102. ———. Objects of Interest on Spectrum Plates and Two New Variable Stars in Perseus. 126, 163, 1891.
- 103. ———. Stars Having Peculiar Spectra. 126, 165, 1891.
- 104. ———. Stars Having Peculiar Spectra. 135, 195, 1894.
- 105. ———. Stars Having Peculiar Spectra. 137, 71, 1895.
- 106. ESPIN, T. E. Stars with Remarkable Spectra. 140, 241, 1896.
- 107. BOTTLINGER, K. F. Über die Intensitätsverteilung innerhalb der Spektrallinien von Sternen. 195, 117, 1913.
- 108. HNATEK, ADOLF. Beobachtung von Radialgeschwindigkeiten. 196, 389, 1914.
- 109. LAU, H. E. Bemerkungen zur Revised Harvard Photometry. 196, 425, 1914.
- 110. HNATEK, ADOLF. Beobachtungen von Radialgeschwindigkeiten. 197, 185, 1914.
- 111. LUDENDORFF, H. Notiz über ϕ Persei. 197, 219, 1914.
- 112. GUTHNIK, P. Übersicht über die Ergebnisse lichtelektrischer Messungen 1914–1917. 205, 97, 1918.
- 113. LAU, H. E. Beobachtungen von χ^{1} und χ^{2} Orionis. 207, 55, 1918; see also 208, 143, 1919.
- 114. HNATEK, ADOLF. Beobachtungen von Radialgeschwindigkeiten am Wiener Coudéspektrographen. 210, 245, 1920.
- 115. BERNEWITZ, E., und PAVEL, F. Duplizität von ν Geminorum. 211, 13, 1920.
- 116. LUNDMARK, KNUT. Ein Neuer Veränderlicher vom P Cygni-Typus. 213, 93, 1921.
- 117. STRUVE, OTTO. Über das Spektrum von γ Cassiopeiae. 246, 105, 1932.
- 118. KÖSIREV, N., und AMBARZUMIAN, V. Bemerkung über das Spektrum von γ Cassiopeiae. 246, 171, 1932.

Astronomische Nachrichten, Beobachtungs-Zirkular

119. LAUSE, F. Veränderliche. 14, 25, 1932.

CATALOGUE OF Be AND Ae STARS

Astronomy and Astrophysics

- 120. FLEMING, W. P. Stars Having Peculiar Spectra. 11, 418, 1892.
- 121. ———. Stars Having Peculiar Spectra. 11, 765, 1892.
- 122. KEELER, J. E. Visual Observations of the Spectrum of β Lyrae. 12, 352 n., 1893.
- 123. ——. Note on the Spectrum of P Cygni. 12, 361, 1893.
- 124. FLEMING, W. P. Stars Having Peculiar Spectra. 12, 546, 1893.
- 125. ———. Stars Having Peculiar Spectra. 12, 810, 1893.
- 126. ———. Stars Having Peculiar Spectra. 13, 501, 1894.

Astrophysical Journal⁹

- 127. FLEMING, W. P. Stars Having Peculiar Spectra. 1, 411, 1895; also A.N., 138, 175, 1895.
- 128. CAMPBELL, W. W. Stars Whose Spectra Contain Both Bright and Dark Hydrogen Lines. 2, 177, 1895.
- 129. FLEMING, W. P. Stars Having Peculiar Spectra. 2, 354, 1895.
- 130. CAMPBELL, W. W. The Variable Velocities of β Capricorni and v Sagittarii in the Line of Sight. 10, 241, 1800.
- 131. BELOPOLSKY, ARISTARCH. Note on the Spectrum of P Cygni. 10, 319, 1899; also A.N., 151, 37, 1900.
- 132. FROST, E. B., and ADAMS, W. S. Five Stars Whose Radial Velocities Vary. 17, 150, 1903.
- 133. Bright-Line Spectra. 18, 389, 1903.
- 134. ADAMS, W. S. The Radial Velocities of the Brighter Stars in the Pleiades. 19, 338, 1904.
- 135. FROST, E. B., and ADAMS, W. S. Four Stars Whose Radial Velocities Vary. 19, 350, 1904.
- 136. ADAMS, W. S. The Orbit of the Spectroscopic Binary & Tauri. 22, 115, 1905.
- 137. LEE, O. J. Measures on Nineteen New Spectroscopic Binaries. 32, 300, 1910.
- 138. FROST, E. B. On the Spectrum of P Cygni. 35, 286, 1912.
- 139. LEE, O. J. The Spectroscopic System 9 Camelopardalis. 37, 1, 1913.
- 140. ———. Measures of Variable Radial Velocities of Stars. 39, 39, 1914.
- 141. FROST, E. B. A Star with Disappearing Bright Lines. 49, 61, 1919.
- 142. STRUVE, OTTO. Notes on Two Stars Having Variable Bright Lines. 58, 138, 1923.
- 143. ROSSITER, R. A. On the Detection of an Effect of Rotation during Eclipse in the Velocity of the Brighter Component of Beta Lyrae and on the Constancy of Velocity of This System. **60**, 15, 1924.
- 144. STRUVE, OTTO. Twelve New Spectroscopic Binaries. 62, 434, 1925.

9 See also numerous articles listed under Mount Wilson Observatory Contributions.

Ref.

- Ref.
- 145. FROST, E. B., and OTHERS. Radial Velocities of 368 Helium Stars. 64, 1, 1926.
- 146. STRUVE, OTTO. An Unusual Spectroscopic Binary (27 Canis Majoris). 65, 273, 1927.
- 147. ———. On the Period of 27 Canis Majoris. 66, 113, 1927.
- 149. ELVEY, C. T. Spectrophotometric Observations of P Cygni. 68, 416, 1928.
- 150. STRUVE, OTTO. Variable Hydrogen Lines in 15 κ Cassiopeiae. 70, 135, 1929.
- 151. ELVEY, C. T. The Contours of Helium Lines in Stellar Spectra. 70, 141, 1929.
- 152. HIGGS, C. D. The Contours of Some Iron Lines in the Spectrum of 27γ Cassiopeiae. 70, 251, 1929.
- 153. Note on the Variable Lines of Hydrogen in the Spectrum of 52π Aquarii. 72, 187, 1930.
- 154. LOCKVER, W. J. S. Note on the Variable Lines of Hydrogen in the Spectrum of 52π Aquarii. 73, 55, 1931.
- 155. STRUVE, OTTO. On the Origin of Bright Lines in Spectra of Stars of Class B. 73, 94, 1931.
- 156. ———. Velocity-Curve and Spectral Variations of 27 Canis Majoris. 73, 301, 1931.
- 157. ———. A Study of the Spectra of B Stars. 74, 225, 1931.
- 158. ELVEY, C. T. Photo-electric Colors of Stars of Early Type. 74, 298, 1931.
- 159. McLaughlin, D. B. A Note on the Mass of 27 Canis Majoris. 75, 60, 1932.
- 160. STRUVE, OTTO. Note on 27 Canis Majoris. 75, 158, 1932.
- 161. STRUVE, OTTO, and SWINGS, P. On the Interpretation of the Emission Lines in Stars of Early Spectral Class. 75, 161, 1932.
- 162. JESSUP, M. K. Note on the Hydrogen Emission of κ Draconis. 76, 75, 1932.
- 163. STRUVE, OTTO. 17 Leporis: A New Type of Spectrum Variable. 76, 85, 1932.
- 164. ———. Notes on Be Stars. 76, 210, 1932.
- 165. ———. On the Absorption Lines of Hydrogen in Be Stars. 76, 309, 1932.
- 166. MARSHALL, R. K. A Note on the Occurrence of O III in Stellar Spectra. 76, 317, 1932.
- 167. STRUVE, OTTO. The Width of Bright Ha in γ Cassiopeiae. 77, 66, 1933.

Berlin-Babelsberg, Universitätssternwarte, Veröffentlichungen

168. GUTHNICK, PAUL, und PRAGER, RICHARD. Photoelektrische Untersuchungen an Spektroskopischen Doppelsternen und an Planeten. 1, Heft 1, 59, 1914.

CATALOGUE OF Be AND Ae STARS

Bulletin astronomique, mémoires et variétés

169. BAILLAUD, JULES. Etude de spectrophotométrie stellaire. 4, 275, 1923.

Cambridge, England, Solar Physics Observatory, Annals

170. BAXANDALL, F. E. The Spectrum of β Lyrae. 2, 1, 1930.

Cambridge, Massachusetts, Harvard College Observatory, Annals

- 171. MAURY, A. C. Spectra of Bright Stars. 28, 49, 1897.
- 172. ——. Ibid., p. 94 (remarks); Tables XI and XII.
- 173. ——. Ibid., pp. 122 ff. and Table XIV.
- 174. CANNON, A. J. Spectra of Bright Southern Stars. 28, 162, 1901; Tables XVI and XVII and remarks (p. 175).
- 175. ——. Ibid., pp. 227 ff. and Table XIX.
- 176. ——. Ibid., Plate II. 177. ——. Second Catalogue of Variable Stars. 55, 7, 1907; Table I and remarks.
- 178. ———. Classification of 1,477 Stars by Means of Their Photographic Spectra. 56, 71, 1912; Tables I and IV and remarks (p. 104).
- 179. ———. Classification of 1688 Southern Stars by Means of Their Spectra. 56, 117, 1912, Tables I and IV and remarks (p. 151).
- 180. FLEMING, W. P. Stars Having Peculiar Spectra. 56, 181, 1912, and Table IV and remarks.
- 181. ——. Ibid., p. 223; Table XIII and remarks.
- 182. ——. Ibid., Plate III.
- 183. CANNON, A. J. Comparison of Objective Prism and Slit Spectrograms. 56, 258, 1912; Table III and remarks.
- Table II.
- 185. ——. Ibid., Table II and remarks.
- -. Ibid., p. 31; Table III. 186. –
- 187. ———. *Ibid.*, p. 34; Table IV and remarks.
- 188. The Photographic Light Curves of 11 Novae. 84, 121, 1920.

Cambridge, Massachusetts, Harvard College Observatory, Bulletins

- 189. Variations in Spectrum and Light of B.D.+11°4673. No. 762, 1922; also Pop. Astr., 30, 133, 1922.
- 190. Star Resembling RS Ophiuchi. No. 778, 1922.
- 191. Hydrogen Emission in Class B Spectrum. No. 779, 1922.
- 192. Omicron Ceti a Double Star. No. 792, 1923.
- 193. Z Andromedae, 232848. No. 797, 1924.
- 194. Irregular Variability of Class A Star. No. 798, 1924.
- 195. CANNON, A. J. Peculiar Spectra in the Large Magellanic Cloud. No. 801, 1924.
- 196. Test of C.D.M. 27°11944 for Variability. No. 807, 1924.

Ref.

- 197. RW Hydrae. No. 810, 1924.
- 198. SHAPLEY, HARLOW. S Doradus, a Super-giant Variable Star. No. 814, 1925.
- 199. MAURY, A. C. Note on the Secondary Spectrum and Mass Function of v Sagittarii. No. 824, 1925.
- 200. DAVIDOVICH, PAUL. Comparison of the Spectra of η Carinae and Nova Pictoris 1925.4. No. 837, 1926.
- 201. PAYNE, C. H. Distribution of Intensity in Bright Hydrogen Lines of γ Cassiopeiae. No. 837, 1926.
- 202. ———. Twelve Stars of Class B Showing Emission Lines. No. 846, 8, 1927.
- 203. GERASIMOVIČ, B. P. Stars of Class B with Bright Lines of Ionized Iron. No. 851, 14, 1927.
- 204. ———. Changes in the Spectrum of P Cygni. No. 852, 16, 1927.
- 205. On the Variation of the Spectrum of μ Centauri. No. 854, 1, 1928.
- 206. ———. On the Abnormally Low Temperature of P Cygni. No. 857, 15, 1928.
- 207. SHAPLEY, HARLOW, and WOODS, I. E. Observations of XX Ophiuchi. No. 868, 11, 1929.
- 208. LINDSAY, E. M. Note on a Peculiar Star. No. 888, 22, 1932.

Cambridge, Massachusetts, Harvard College Observatory, Circulars

- 209. Stars Having Peculiar Spectra. No. 9, 1896; also A.N., 141, 169, 1896.
- 210. Stars Having Peculiar Spectra. New Variable Stars in Crux and Cygnus.
 No. 12, 1896; also A.N., 142, 87, 1897.
- 211. Stars Having Peculiar Spectra. No. 17, 1897; also A.N., 143, 227, 1897.
- 212. Large Magellanic Cloud. No. 19, 1897; also A.N., 145, 285, 1898.
- 213. A Variable Bright Hydrogen Line. No. 21, 1898; also A.N., 145, 271, 1898.
- 214. New Variable Stars. No. 24, 1898; also A.N., 146, 113, 1898.
- 215. Stars Having Peculiar Spectra. No. 32, 1898; also A.N., 147, 247, 1898.
- 216. Objects Having Peculiar Spectra. No. 60, 1901; also A.N., 156, 293, 1901.
- 217. Stars Having Peculiar Spectra. No. 76, 1904; also A.N., 165, 187, 1904.
- 218. Stars Having Peculiar Spectra. No. 92, 1904; also A.N., 167, 181, 1905.
- 219. Stars Having Peculiar Spectra. No. 98, 1905; also A.N., 168, 303, 1905.
- 220. A Probable New Star, RS Ophiuchi, No. 99, 1905; also A.N., 169, 45, 1905.
- 221. Stars Having Peculiar Spectra: 13 New Variable Stars. No. 111, 1906; also A.N., 171, 139, 1906.
- 222. Stars Having Peculiar Spectra: 18 New Variable Stars. No. 124, 1907; also A.N., 174, 101, 1907.
- 223. Stars Having Peculiar Spectra: 15 New Variable Stars. No. 132, 1907; also A.N., 176, 257, 1907.
- 224. Stars Having Peculiar Spectra: 28 New Variable Stars. No. 143, 1908; also A.N., 179, 191, 1909.

Ref.

- 225. Stars Having Peculiar Spectra: 38 New Variable Stars. No. 158, 1910; also A.N., 185, 255, 1910.
- 226. Stars Having Peculiar Spectra: 31 New Variable Stars. No. 167, 1911; also A.N., 190, 107, 1912.
- 227. The Variable Star, 232848, Z Andromedae. No. 168, 1911; also A.N., 191, 57, 1912.
- 228. Stars Having Peculiar Spectra. No. 178, 1913.
- 229. Stars Having Peculiar Spectra. No. 184, 1914.
- 230. Stars Having Peculiar Spectra: 13 New Variable Stars. No. 196, 1916.
- 231. Stars Having Peculiar Spectra: Six New Variable Stars. No. 221, 1920.
- 232. Stars Having Peculiar Spectra: 16 New Variable Stars. No. 224, 1921.
- 233. Fifty-one New Variable Stars. No. 225, 1921.
- 234. CANNON, A. J. Stars Having Peculiar Spectra: Eight New Variable Stars. No. 231, 1922.
- 235. SHAPLEY, HARLOW, and WILSON, H. H. The Magellanic Clouds, IV: The Absolute Magnitudes of Nebulae, Clusters, and Peculiar Stars in the Large Cloud. No. 271, 1925.
- 236. SHAPLEY, HARLOW, and WOODS, I. E. Variability of the "Iron Star," XX Ophiuchi. No. 292, 1926.
- 237. PAYNE, C. H., and HOGG, F. S. A Spectrophotometric Study of the Brighter Pleiades, I: The Line Intensities. No. 303, 1927.
- 238. Hogg, F. S. A Spectrophotometric Study of the Brighter Pleiades, II: The Continuous Background. No. 309, 1927.
- 239. GERASIMOVIČ, B. P. Spectrophotometric Temperatures of Early Stars. No. 339, 1929.
- 240. WILLIAMS, E. T. R. A Spectrophotometric Study of A Stars. No. 348, 1929.
- 241. PAYNE, C. H., and MAULBETSCH, GEORGETTE. Notes on the Scorpio-Centaurus Cluster, II: The Bright Line Stars and the Problem of Stellar Rotation. No. 364, 1931.
- 242. Fourth Annual Report of the Photographic Study of Stellar Spectra Conducted at the Harvard College Observatory (reprinted in the *Memorie della Società degli Spettroscopisti Italiani*, **19**, 85, 1890).

Comptes rendus

- 243. DUFAY, J. Sur la courbe d'énergie de l'étoile P Cygni. 194, 1454, 1932.
- 244. DINGLE, HERBERT. Modern Astrophysics, p. 284, 1924.

Flagstaff, Lowell Observatory, Bulletins

- 245. SLIPHER, V. M. A List of Five Stars Having Variable Radial Velocities. 1, 57, 1904.
- 246. ———. A New Type of Nebular Spectrum, I: The Spectrum of Hubble's Variable Nebula N.G.C. 2261. 3, 63, 1918, and Plate.
- 247. FOOTE, P. D., and MOHLER, F. L. Origin of Spectra, p. 96a, 1922.

Johannesburg, Union Observatory, Circulars

- 248. WORSSELL, W. M. The Spectrum of μ Centaurus. No. 53, 108, 1921.
- 249. . The Spectrum of η Centaurus. No. 53, 108, 1921.
- 250. Variable Stars near the Large Magellanic Cloud. No. 61, 240, 1924.
- 251. JUNG, JOHANNES. Die Radialgeschwindigkeiten von elf Plejadensternen nach Spektrogrammen von Professor Hartmann. 1914 (Göttingen inaugural dissertation).

Lyon, l'Observatoire, Publications

252. DUFAY, J. La température de couleur et la courbe d'énergie de l'étoile P Cygni. 1, 1, 1932; also Journal des Observateurs, 15, 45, 1932.

Mount Hamilton, Lick Observatory, Bulletins

- 253. CAMPBELL, W. W., and ALBRECHT, SEBASTIAN. Stars Whose Radial Velocities Vary. 5, 174, 1908–1910.
- 254. WRIGHT, W. H. Six Southern Stars Having Variable Radial Velocities. 5, 176, 1908–1910.
- 255. CAMPBELL, W. W. Note on the Spectrum of 25 Orionis. 6, 153, 1910-1911.
- 256. MERRILL, P. W. Preliminary Note on the Spectrum of P Cygni. 6, 156, 1910-1911.
- 257. ———. Class B Stars Whose Spectra Contain Bright Hydrogen Lines. 7, 162, 1912–1913.
- 258. WATERMAN, E. P. The Visual Region of the Spectrum of Brighter Class A Stars. 8, 1, 1913–1916.
- 259. MERRILL, P. W. Stars Whose Spectra Contain Bright Hydrogen Lines: Second Paper. 8, 23, 1913-1916.
- 260. ———. The Spectrum of P Cygni between 4340 A and 4650 A. 8, 24, 1913–1916.
- 261. MOORE, J. H., and SANFORD, R. F. The Spectrum of η Carinae. 8, 55, 1913-1916.
- 262. MOORE, J. H. A Star Having Bright Hydrogen Lines. 8, 77, 1913-1916.
- 263. WILSON, R. E. The Orbit of the Spectroscopic Binary v Sagittarii. 8, 132, 1913-1916.
- 264. SANFORD, R. F. Note on η Carinae. 8, 134, 1913-1916.
- 265. CAMPBELL, W. W. Note on Lines in the Visual Spectrum of a Cygni. 10, 108, 1918-1923.
- 266. WRIGHT, W. H. Further Notes on Lines in the Visual Spectrum of α Cygni. 10, 108, 1918–1923.
- 267. MOORE, J. H. Third Catalogue of Spectroscopic Binary Stars. 11, 141, 1923-1924.
- 268. YÜ, CH'ING-SUNG. On the Continuous Hydrogen Absorption in Spectra of Class A Stars. 12, 104, 1924–1927.
- 269. ———. A Proposed Spectroscopic Method for Determining the Absolute Luminosities of Class A Stars. 12, 155, 1924–1927.

R af.

125

Ref.

- 270. ———. A Photometric Study of Stellar Spectra. 15, 1, 1930–1932.
- 271. NEUBAUER, F. J. Radial Velocities of 351 Stars Observed at the Chile Station of the Lick Observatory in the Period 1924–1929. 15, 46, 1930–1932.
- 272. ———. The Radial Velocity of Nineteen Stars. 15, 190, 1930–1932.

Mount Hamilton, Lick Observatory, Publications

- 273. WRIGHT, W. H. Radial Velocities of 150 Stars South of Declination -20° . 9, 73, 1907–1911.
- 274. CAMPBELL, W. W. Stellar Radial Velocities. 16, 1928.
- 275. MOORE, J. H. A General Catalogue of the Radial Velocities of Stars, Nebulae and Clusters. 18, 1932.

Mount Wilson Observatory, Carnegie Institution of Washington, Contributions

- 276. ADAMS, W. S. The Three-Prism Stellar Spectrograph of the Mount Wilson Solar Observatory. No. 59; also Ap. J., 35, 163, 1912.
- 277. SEARES, F. H., and HUBBLE, E. P. The Color of the Nebulous Stars. No. 187; also Ap. J., 52, 8, 1920.
- 278. ADAMS, W. S., and OTHERS. The Parallaxes of 1646 Stars Derived by the Spectroscopic Method. No. 199; also Ap. J., 53, 13, 1921.
- 279. HUBBLE, E. P. A General Study of Diffuse Galactic Nebulae. No. 241; also Ap. J., 56, 162, 1922.
- 280. MERRILL, P. W., and OTHERS. Discovery and Observations of Stars of Class Be. No. 294; also Ap. J., 61, 389, 1925.
- 281. MERRILL, P. W. Two Stellar Spectra of the P Cygni Type. No. 295; also *Ap. J.*, **61**, 418, 1925.
- 282. JOY, A. H. A Spectrographic Study of Mira Ceti. No. 311; also Ap. J., 63, 281, 1926.
- 283. SANFORD, R. F. On the Orbits of Four Spectroscopic Binaries. No. 317; also Ap. J., 64, 186, 1926.
- 284. MERRILL, P. W. Stars Whose Spectra Have Bright Iron Lines. No. 334; also Ap. J., 65, 286, 1927.
- 285. ———. The Peculiar Bright-Line Spectrum of RY Scuti. No. 349; also *Ap. J.*, **67**, 179, 1928.
- 286. HUMASON, M. L., and NICHOLSON, S. B. H.D. 163181: A Spectroscopic Binary. No. 353; also Ap. J., 67, 341, 1928.
- 287. MERRILL, P. W. Identification of Lines in the Spectrum of η Carinae. No. 354; also Ap. J., 67, 391, 1928.
- 288. ———. Bright Iron Lines in the Spectrum of H.D. 45677. No. 355; also Ap. J., 67, 405, 1928.
- 289. ———. The Spectrum of B.D.+11°4673. No. 381; also Ap. J., 69, 330, 1929.

Ref.

- 290. MERRILL, P. W. Notes on the Spectra of Ten Bright-Line Stars of Classes B and A. No. 409; also Ap. J., 72, 98, 1930.
- 291. ———. The Spectrum of H.D. 50138. No. 423; also Ap. J., 73, 348, 1931.
- 292. ———. A Plane-grating Spectrograph for the Red and Infra-red Regions of Stellar Spectra. No. 432; Plate IX; also A p. J., 74, 188, 1931; Plate VIII.
- 293. ——. Spectrum of the Iron Star XX Ophiuchi. No. 444; also Ap. J., 75, 133, 1932.
- 294. ———. The Spectrum of B.D.+11°4673 during the years 1929–1931. No. 450; also Ap. J., 75, 413, 1932.
- 295. MERRILL, P. W., and OTHERS. Discovery and Observations of Stars of Class Be: Second Paper. No. 456; also Ap. J., 76, 156, 1932.
- 296. MERRILL, P. W. Four Stars Whose Spectra Have Bright Helium Lines. No. 460; also Ap. J., 77, 44, 1933.
- 297. ———. Bright Sodium Lines in a Stellar Spectrum. No. 461; also Ap. J.,
 77, 51, 1933.
- 298. MERRILL, P. W., and BURWELL, C. G. Variations in Structure of the Hydrogen Lines in the Spectrum of H.D. 31293. No. 462; also Ap. J., 77, 103, 1933.

Nature

- 299. PICKERING, E. C. Draper Memorial Photographs of Stellar Spectra Exhibiting Bright Lines. 34, 439, 1886.
- 300. STRUVE, OTTO. The Helium Lines in Stellar Spectra. 122, 994, 1928.

Observatory

- 301. LOCKYER, W. J. S. Spectrum of & Tauri. 46, 109, 1923.
- 302. CORTIE, A. L. 7 Cassiopeiae. 47, 212, 1924.
- 303. STRATTON, F. J. M. The Spectrum of β Lyrae. 54, 84, 1931.

Ottawa, Dominion Observatory, Publications

- 304. HARPER, W. E. v Geminorum, a Long-Period Binary. 4, 279, 1920; also Journal R.A.S. Can., 13, 179, 1919; and *ibid.*, 15, 148, 1921.
- 305. Measures of Radial Velocity of κ Cassiopeiae. 4, 309, 1920.
- 306. ———. Radial Velocities of Thirty Stars. 4, 331, 1920.
- 307. HENROTEAU, F., and HENDERSON, J. P. A Spectrographic Study of Early Class B Stars. 5, 1, 1922.
- 308. HENROTEAU, F. A Spectrographic Study of Early Class B Stars: Second Paper. 5, 47, 1922.
- 309. ———. A Spectrographic Study of Early Class B Stars: Third Paper. 5, 331, 1922.

Physical Review

310. STRUVE, OTTO, and SCHWEDE, H. F. Intensities of Balmer Emission Lines in Stellar Spectra. 38, 1195, 1931. See correction, Zeitschrift für Astrophysik, 4, 179, 1932.

Popular Astronomy

311. MAURY, A. C. Note on the Secondary Spectrum and Mass Function of v Sagittarii. 33, 700, 1925.

Potsdam, Astrophysikalisches Observatorium, Publicationen

312. VOGEL, H. C., and WILSING, J. Untersuchungen über Spectra von 528 Sternen. 12, 13, 1899.

Poulkovo, Observatory, Circulars

- 313. AMBARZUMIAN, V., and KOSIREV, N. On the Spectrum of γ Cassiopeiae. No. 1, 12, 1932.
- 314. SHAJN, G. Sixteen New and Five Suspected Spectroscopic Binaries. No. 2, 11, 1932.

Preussische Akademie der Wissenschaften, Sitzungsberichte

315. LUDENDORFF, H. Über die Radialgeschwindigkeit von ϵ Aurigae. 1924, p. 66.

Rome, R. Osservatorio Astronomico al Collegio Romano, Contributi astronomici

316. ABETTI, GIORGIO. Esperienze fotografiche con il prisma-obiettivo Merz-Secchi. No. 1, 1920.

Royal Astronomical Society, Monthly Notices

- 317. Notes from Mr. Huggins' Observatory. 27, 130, 1867.
- 318. GILL, SIR DAVID. The Spectrum of η Argus. 61, [66], 1901.
- 319. BAXANDALL, F. E. Note on Apparent Changes in the Spectrum of η Carinae. 79, 619, 1919.
- 320. LUNT, JOSEPH. On the Spectrum of η Argus. 79, 621, 1919.
- 321. PLASKETT, H. H. The Intensity Distribution in the Continuous Spectrum and the Intensities of the Hydrogen Lines in γ Cassiopeiae. 80, 771, 1920.
- 322. LOCKYER, W. J. S. The Spectrum of & Tauri. 83, 326, 1923.
- 323. PLASKETT, J. S. The H and K Lines of Calcium in O-Type Stars. 84, 80, 1924.
- 324. LOCKYER, W. J. S. Recent Observations of Some Bright-Hydrogen-Line Stars. 84, 409, 1924.
- 325. Stonyhurst College Observatory. The Spectrum of γ Cassiopeiae, $H\beta$ to B. 84, 576, 1924.
- 326. LOCKYER, W. J. S. The Spectrum of ϕ Persei (Type Bope). 85, 580, 1925.
- 327. The Spectrum of ϕ Persei (Sp. Type Bope) throughout a Complete Cycle (1925–1926). **86**, 474, 1926.
- 328. The Spectrum of the Bright-Hydrogen-Line Star H.D.C. 20336 in Camelopardalis (Sp. Type B3pe). 86, 607, 1926.
- 329. CURTISS, R. H. Absorption Borders in the Spectrum of v Sagittarii. 88, 203, 1928.

Ref.

Ref.

- 330. CURTISS, R. H. Renewed Visibility of Hydrogen Emission in the Spectrum of f^I Cygni. 88, 205, 1928.
- 331. LOCKYER, W. J. S. Further Observations of Some Bright-Hydrogen-Line Stars, 1924–1927. 88, 683, 1928.
- 332. SHAJN, G., and STRUVE, OTTO. On the Rotation of the Stars. 89, 222, 1929.
- 333. LOCKYER, W. J. S. Two New Bright-Hydrogen-Line B5-Type Stars. 91, 187, 1930.
- 334. ———. The Spectrum of H.D. 20336 in Camelopardalis (Sp. Type B3neη) throughout a Complete Cycle (1925–1930). 91, 215, 1930.
- 335. A New Bright-Hydrogen-Line Star of Spectral Type B8 in Lacerta. 91, 259, 1931.
- 336. JONES, H. S. Note on the Spectrum of η Carinae. 91, 794, 1931.
- 337. PAVNE, C. H. An Interpretation of Absorption and Emission Lines in Early Type Spectra. 92, 368, 1932.
- 338. EDWARDS, D. L. Note on Some Peculiarities in Stellar Spectra of Type B. 92, 389, 1932.
- 339. PEARCE, J. A. The Coexistence of Stellar and Inter-stellar Calcium Lines in the Massive B9 Star H.D. 698. 92, 877, 1932.

Royal Astronomical Society of Canada, Journal

- 340. HENROTEAU, F. The Stars of the β Canis majoris Type. 16, 58, 1922.
- 341. FRÉDETTE, J. F. The Riddle of ϕ Persei. 19, 185, 1925.

Royal Society of London, Philosophical Transactions

- 342. LOCKYER, SIR J. N. On the Photographic Spectrum of the Great Nebula in Orion. A, 186, Part I, 83. 1895.
- 343. MILNE, E. A. Radiative Equilibrium. A, 223, 236, 1923.

Royal Society of London, Proceedings

- 344. HUGGINS, SIR WILLIAM, and MILLER, W. A. On the Spectrum of a New Star in Corona Borealis. 15, 146, 1866; also M.N., 26, 275, 1866.
- 345. LE SUEUR, A. On the Nebulae of Argo and Orion and on the Spectrum of Jupiter. 18, 245, 1869–1870.
- 346. ———. Observations with the Great Melbourne Telescope in a Letter to Professor Stokes. 19, 18, 1870–1871.
- 347. LOCKYER, SIR J. N. On the Chemistry of the Hottest Stars. 61, 184, 1897, and Plate II.
- 348. ———. On the Appearance of the Cleveite and Other New Gas Lines in the Hottest Stars. 62, 53, 1898.
- 349. MCCLEAN, FRANK. Comparison of Oxygen with the Extra Lines in the Spectra of the Helium Stars. 62, 422, 1898; Plate VI.
- 350. LOCKVER, SIR J. N., and BAXANDALL, F. E. Note on the Spectrum of μ Centauri. 74, 548, 1905.

Science

351. MERRILL, P. W. Forbidden Iron Lines in Stellar Spectra. 72, 407, 1930.

South Kensington, Solar Physics Committee

352. Catalogue of Four Hundred and Seventy of the Brighter Stars Classified According to Their Chemistry at the Solar Physics Observatory, South Kensington. 1902.

Die Sterne

353. STRUVE, OTTO. Eine Hypothese zur Erklärung der Hellen Linien in Sternspektren. 12, 1, 1932.

Victoria, Dominion Astrophysical Observatory, Publications

- 354. PLASKETT, J. S. The O-Type Stars. 2, 302, 1924, and Plate I.
- 355. HILL, S. N. The Orbits of Two Spectroscopic Binaries. 3, 349, 1927; abstract in *Pop. Astr.*, 34, 557, 1926.
- 356. PLASKETT, J. S. Three Peculiar Spectra. 4, 1, 1931; also M.N., 87, 31, 1927.
- 357. ——. Ibid., Plate I.
- 358. Notes on v Sagittarii. 4, 111, 1931.
- 359. PLASKETT, H. H. The Composite Stellar and Nebular Spectrum of Z Andromedae. 4, 119, 1931.
- 360. BEALS, C. S. The Wolf-Rayet Stars. 4, 271, 1931; also M.N., 90, 202, 1930.
- 361. PLASKETT, J. S., and PEARCE, J. A. The Radial Velocities of 523 O and B type Stars Obtained at Victoria, 1923–1929. 5, 1, 1931.
- 362. ———. A Catalogue of the Radial Velocities of O and B Type Stars. 5, 99, 1931.

Zeitschrift für Astrophysik

363. STRASSL, HANS. Die Intensitätsverteilung in den Spektren der helleren Plejadensterne. 5, 205, 1932; also Veröffentlichungen der Universität-Sternwarte Göttingen, No. 29.

DISCUSSION

Discovery.—Table IV shows the distribution of the discoveries of Be stars, beginning with γ Cassiopeiae and β Lyrae by Secchi in 1866. Only 5 of the 410 stars in Table I were discovered visually. The photographic surveys with the objective prism inaugurated at the Harvard Observatory by E. C. Pickering in 1886 produced rich results in this as in other fields of stellar spectroscopy. The lines used for the detection of hydrogen emission were $H\beta$ and $H\gamma$. At Mount Wilson, on the other hand, it has been possible to take advantage of the much stronger $H\alpha$ line, because of the development of rapid panchromatic emulsions not available to the early observers.

Ref.

Distribution in type and magnitude.—The distribution of the types and apparent magnitudes of the 410 stars is shown in Table V. The 13 variable stars, which are tabulated according to their median magnitudes, are included in the body of the table but are also given separately in the last line and the last column of the table. Five are of the R Coronae type, while 1, β Lyrae, is an eclipsing variable. The others are said to be irregular or like novae.

DISCOVERY OF 410 Be STARS

		Рнотос	RAPHIC
	VISUAL	Objective Prism	Slit Spectrograph
Secchi. Le Sueur. Campbell. Espin. Harvard. Mount Wilson. Lockyer. Lick (including Chile). Victoria. Yerkes. Lowell. University of Michigan. Simeis. Allegheny.	η Carinae Alcyone H.R. 985	207* 2	30 15 14 5 3 2
Total		333	72

* All the Mount Wilson stars credited to the objective prism were confirmed on slit spectrograms. Without such confirmation a number of them could not have been announced as certainly having bright lines.

The data show the normal increase in the numbers of stars with magnitude down to the fifth magnitude, and a much slower progression thereafter, the maximum number being in the eighth magnitude. These numbers reflect chiefly the thoroughness with which stars of different magnitudes have been observed. In this connection Table Ia in *Mount Wilson Contribution* No. 456^{10} is instructive. It appears that for the detection of bright lines in B-type stars the Harvard surveys were most nearly complete among stars brighter

¹⁰ Astrophysical Journal, 76, 156, 1932.

than magnitude 5.0, and that the Mount Wilson surveys were most effective for magnitudes 7 and 8. The relatively large number of peculiar (Pec.) and P Cygni (Beq) spectra among the fainter magnitudes arises from the great intensity of the hydrogen emission in these stars and the consequent ease of detection.

A more detailed distribution among the various spectral subdivisions is shown in Table VI, which also indicates the numbers hav-

TABLE V

D1	STR	IBUT	TION	OF 4	410]	Be S'	TAR	S IN	Түр		ND N	IAG:	NITU	JDE		
								MA	GNITU	DE						
Type	1*	2	3	4	5	6	7	8	9	10	11	12	13	?	Total	Vari- ables
06-09				I	I		2	I							5	0
Bo	1	I		2	I	4	6	IO	10	2					36	I
B1				4	I	6	5	7	I						24	0
B2			I	I	18	8	15	16	7	2					54	0
B3 B4-B6		2	4	16		16 11	20 7	I4 I2	12	2 T					104 58	0
B8			4 T	14 1	4 0	3	4	8	5	1					27	0
Bo			-	Ť	2	3	1 H	I	I I						9	ī
B			I		[6	6	17	8	7	I	I		47	3
A	I			2	1	3	4	3	1						13	Î
Pec							I	I	3	I	2	2	I	2	13	6
Beq†						I	I	I	6	I	4	4	I	I	20	I
Total	I	4	II	42	40	55	72	80	62	17	13	7	3	3	410	
Variables	0	0	I	0	0	I	3	2	2	2	0	I	I	0		13

* The magnitude intervals are 1.00–1.99, 2.00–2.99, etc.

† Four additional q stars are included in their assigned spectral subdivisions.

ing nebulous (n) and sharp (s) lines. The lower intensity of the hydrogen emission and the greater stellar luminosity are characteristics of the "s" stars¹¹ which should be kept in mind in general investigations of Be stars.

Very few bright-line stars of the kind under consideration are found in class O. The maximum frequency occurs at B_3 ; the numbers then rapidly decline toward class A.

Twenty-eight stars of the P Cygni type are listed in Table VII. The first nine are in the Greater Magellanic Cloud. The last four have variable spectra which show P Cygni characteristics only at times. The high galactic latitudes of these stars suggest that their nature is not the same as that of the preceding stars. The approxi-

¹¹ Publications of the Astronomical Society of the Pacific, 45, 49, 1933.

mate absolute magnitude of the companion to o Ceti is +7; that of the companion to R Aquarii, +2.

To examine the ratio of the total number of stars in the various spectral subdivisions to the number having bright lines, we may use the counts of stars in the *Henry Draper Catalogue* made by Charlier¹² and by Shapley and Miss Cannon.¹³ Counting in Table I only those stars which are in the *Henry Draper Catalogue*, we have

Class	n	S	Unclassified	Total
D6	0	0	I	I
D7	I	0	0	I
)8	0	0	2	2
9	0	I	0	I
Bo	24	58	7	36
B1	9	8	7	24
32	24	4	26	54
33	58	3	43	104
34	5	0	2	7
35	. 32	I	15	7 48
36	2	0	I	3
38	17	2	8	27
39	3 6	I	5	9
3	6	0	61	9 67
lo	I	2	3	6
A2-A4	0	2	2	4
\	0	0	3	3
ec	0	0	13	13
Totals	182	29	199	410

	TABLE VI				
-	Dropp to	 m	~ ~	n	0.

DETAILED DISTRIBUTION IN SPECTRAL TYPE OF 410 Be STARS

the data in Table VIII.¹⁴ The ratio for BI is unduly small because this subdivision is relatively little used in the *Henry Draper Catalogue* except for stars brighter than the fifth magnitude, whereas observers with slit spectrographs apparently have used BI as freely as Bo. Of the 24 H.D. stars classified as BI in Table I, only 7 are thus classified in the *Henry Draper Catalogue*.¹⁵ For this number, the ratio for all stars becomes 10.9, or 10.7 for those brighter than mag-

¹² Meddelande från Lunds Astronomiska Observatorium, No. 19, Table 3c, p. 14, 1926.

- ¹³ Harvard Circular, No. 226, 1921.
- ¹⁴ In Tables VIII-XI, B5 includes also the small number of B4 and B6 stars.
- ¹⁵ Their average magnitude is 5.7, compared with 7.5 for the remaining 17 stars.

nitude 9.0. These values are probably more appropriate than the smaller ratios given in Table VIII. It thus appears that stars of class B₂ have a more general tendency toward emission than those

TABLE VII

P CYGNI TYPE STARS

MWC	H.D.	Desig.	R.A. 1900	Dec. 1900	l	Ь	Mag.	Type
102	33540*		5 ^h 5 ^m .8	-71° 3'	249°	-34°	12.3	Beq
105	34664	In N.G.C. 1871	5 14.0	-67 34	245	-34	II.4	Beq
106		Anon	5 14.4	-69 28	247	-34	II.4	Beq
108	35343	S Dor	5 18.9	-69 21	246	-33	9 V	Beq
ľ		Anon	5 28.5	-69 4	246	-32	13.0	Beq
113		(383)	5 29.0	-69 13	246	-32	I2.2	Beq
121	37836	401	5 36.2	-69 44	247	-32	10.5	Beq
123	37974	420	5 37.2	-69 26	246	-32	II.3	Beq
126	38489	478	5 41.0	-69 26	246	-31	<i>12.0</i>	Beq
145	45910	1267	6 25.2	+ 5 57	173	0	6.7	Beq
161	51480	1774	6 52.4	-10 41	191	- 2	7.0	B8eq
162	51585		6 52.8	+16 28	167	+10		Beq?
165	53179	Z CMa	6 59.0	-11 24	192	- r	9.I	Beq
215	94878	2855	10 52.0	-59 52	257	- I	8.5	Beq
216	94910	2860	10 52.2	-59 55	257	— I	7.6	Beq
236	138403	1889	15 26.7	-71 34	283	-14	9.0	Beq
238	141969	3171	15 46.7	-65 52	288	-10	9.2	Beq
242	151895		16 45.1	-64 4	293	-14	12.5	Beq
243	152236	ζ ¹ Sco	16 47.0	-42 12	311	0	4.9	Biseq
267	161044	11816	17 38.2	-46 3	313	-10	11.0	Beq
272		11944	17 41.9	-27 59	329	— I	9.0	Beq
293	169226	5034	18 18.6	-12 15	347	— I	9.I	Be(q)
338	193237	P Cyg	20 14.1	+37 43	43	0	4.9	Breq
374		3487	21 32.2	+47 28	60	- 4	9.1	B3eq

Stars at Times Resembling P Cygni

269 379	161114 207757	XX Oph	17 38.6 21 46.2	+12 9	347 38	+10 -32	10 V 10 V 7.6V 9 V	Pec. Bep	
------------	------------------	--------	--------------------	-------	-----------	------------	-----------------------------	-------------	--

* In Harvard Bulletin No. 891, received after the completion of the present manuscript, there is the following note: "H.D. 33540, hitherto assumed to be of the P Cygni class. On recent photographs, however, the nebular lines are clearly seen. $H\beta$ is twice as strong as the chief nebular line. On plates taken with the ro-inch telescope, the continuous spectrum is strong and several absorption lines are visible." This Bulletin also lists two additional stars of the P Cygni type, as tabulated. These stars should be included in Table I, and possibly H.D. 33540 should be removed.

Desig.	R.A. (1900)	Dec. (1900)	Mag.
C.P.D69°427	5 ^h 14 ^m 39 ^s	-69°38'.2	11.6
	5 37 32	-69 33.1	11.1

of either earlier or later spectral subdivisions. The relative number of bright-line stars decreases very rapidly from B_3 to Ao.

Туре		All Stars		Stars Brighter than Mag. 9.0 [*]				
	H.D.	Em.	Ratio	H.D.	Em.	Ratio		
Bo	376	26	14.5	289	21	13.8		
Β1	76	24	(3.2)†	75	23	(3.3)		
B2	369	44	8.4	305	41	7.4		
B3	1041	90	11.6	902	41 89	10.1		
Bo-B3	1862	184	10.I	1571	174	9.0		
B5	1348	50	27.0	1021	49	20.8		
B8	4395	25 8	176	2318	24	96.6		
B9	8408	8	1051	4096	7	585		
lo	30816	6	5136	11184	5	2237		
$A_2, 3(4) \dots \dots$	20630	4	5157	8734	4	2184		

TABLE VIII

STARS IN THE Henry Draper Catalogue

* For the last four lines the limiting magnitude is 8.75 instead of 8.99.

† 10.9 is considered a more representative value.

‡ 10.7 is considered a more representative value.

TABLE IX

DISTRIBUTION OF H.D. STARS IN TYPE AND MAGNITUDE Bo-B5

	MAGNITUDE									
Туре	Br4.9		5.0-6.9		7.0-8.9		9.0-Ft.			
	H.D.	Em.	H.D.	Em.	H.D.	Em.	H.D.	Em.		
Bo	19	3	69	5	201	13	87	5		
B1	30	4	26	7	19	I 2	I	I		
B2	35	2	68	12	202	27	64	3		
B3	116	22	387	34	399	33	139	I		
Bo–B3	200	31	550	34 58	821	33 85	291	10		
B5	72	18	288	15	661	16	327	I		

The distribution of the H.D. stars among the spectral subdivisions and several intervals of apparent magnitude is shown in Tables IX and X. The ratios, all stars to those having bright lines, computed from Tables IX and X, are in Table XI, which brings out several

135

facts of interest. The rapid increase of the ratios from B_3 to Ao, already remarked upon, corresponds to the physical behavior of stars with decreasing surface temperature, whereas, in any given type,

TABLE 3	ζ
---------	---

DISTRIBUTION OF H.D. STARS IN TYPE AND MAGNITUDE $B8-A_3$

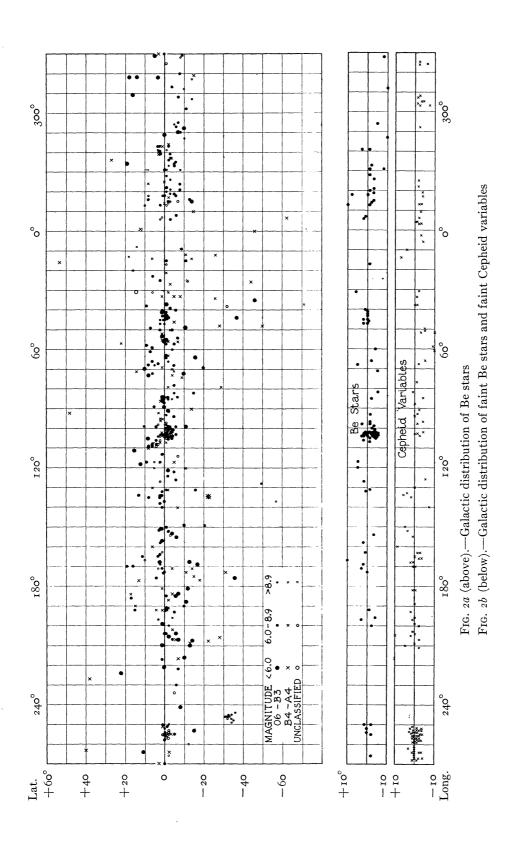
	MAGNITUDE									
Туре	Br6.25		6.26-7.75		7.76-	-8.75	8.76-Ft.			
	H.D.	Em.	H.D.	Em.	H.D.	Em.	H.D.	Em.		
B8	274	13	772	6	1272	5	2077	I		
B9	280	3	1448	4	2368	0	4312	r		
Ao	736	0	2824	2	7624	3	19632	I		
A ₂ , 3, (4)	728	I	2264	3	5742	0	11896	0		

TABLE X	Ι
---------	---

DISTRIBUTION OF RATIOS, ALL/EMISSION, IN TYPE AND MAGNITUDE

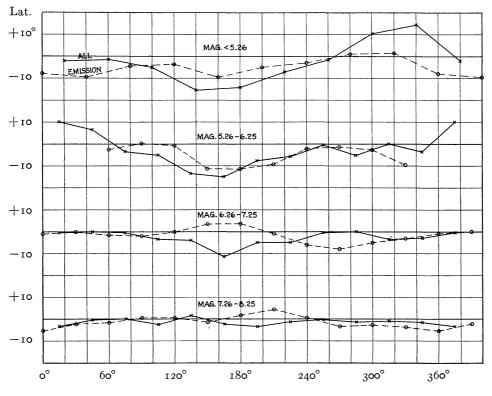
Туре	Charlier		Harvard Circular, No. 226			
Mag.	Bo-B3	B ₅	B 8	Bg	Ao	A2, 3, (4)
Br4.9 Br6.25 5.00-6.99			2I.I	93.3	>736	728
6.26-7.75 7.00-8.99			129	362	1412	755
7.76-8.75 8.76-Ft 9.00-Ft			254 2077	>2368 4312	2541 19632	>5742 >11896
All	IO.I	27.0	176	1051	5136	5157

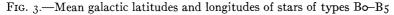
the increase of ratio with apparent magnitude indicates a declining discovery factor. For classes $Bo-B_3$ this factor changes slowly until magnitude 9.0 is reached, below which, of course, surveys for bright lines are as yet wholly inadequate.¹⁶ For classes B_5 -Ao the ratios


¹⁶ Among such faint stars the plates of the Mount Wilson Ha survey are, for the most part, competent to disclose only those objects with unusually intense bright lines.

increase with magnitude much more rapidly than for classes $Bo-B_3$, probably because of the low intensity of the hydrogen emission in the later classes and the consequent difficulty of detection in objective-prism spectra of low dispersion. In the more thorough examination given the spectra of the brighter stars, the relative disadvantage of the emission-line stars of classes B_5 -Ao is less marked.

The Ha survey has not included the southern sky, and many bright-line stars in the northern sky have undoubtedly as yet been missed. In view of these facts it seems probable that among the early B stars, at least those in class B₂, one star in every five or six actually has bright lines. The data suggest that a relatively large number of bright-line stars remain to be discovered in classes B₅-Ao. For the detection of bright lines in these classes observations with slit spectrographs will be especially effective.


Galactic distribution.-To a first approximation the galactic distribution of B-type stars whose spectra have emission lines resembles that of other B stars, although the emission stars have, perhaps, a somewhat stronger tendency to appear in condensed groups (Fig. 2a). A comparison of the distribution of the brighter emission stars of types Bo-B5 with that of non-emission stars of the same types shows, however, a certain general difference. Such a comparison is conveniently made by using the data and charts in Harvard Circular No. 239 by Harlow Shapley and Annie J. Cannon. The normal stars exhibit a systematic departure from the galactic circle, attributed to a "local system" or flattened condensation of stars in the neighborhood of the sun, whose plane is inclined some 15° to that of the galaxy. The angular departure is greatest for the brightest stars and disappears in the magnitude interval 7.26-8.25 (Fig. 3). Be stars brighter than magnitude 5.26 and those in the interval 5.26-6.25 show the effects of the local system, although less strongly than do the corresponding non-emission stars; but for Be stars of magnitudes 6.26-7.25, as well as those of magnitudes 7.26-8.25, the average galactic latitudes are small and not suggestive of the local system. It appears, therefore, that the divergence from the galactic plane characteristic of the local system is less strongly marked for emission than for non-emission stars of the same apparent magnitudes, and disappears at a brighter magnitude. This is probably


1933ApJ....78...87M

because the emission stars are intrinsically brighter than the others, and consequently the boundary of the local system is reached at a somewhat brighter apparent magnitude. The difference in luminosity may be about 1 mag.

The numbers of stars in various galactic zones are shown in Table XII. Seventy-seven per cent are within 10° of the galactic circle.

The galactic positions of the stars in Table I are plotted in Figure 2a. The irregularities in distribution are striking; the Be stars exhibit to a high degree that property to which Miss Clerke applied the adjective "gregarious." Table XIII lists 12 areas in which Be stars are particularly numerous. Some of them, e.g., Nos. 1, 7, 8, probably represent clusters relatively near us, while others, notably Nos. 2 and 10, are apparently portions of the Milky Way clouds which chance to suffer relatively little dimming by absorbing ma-

139

terial. Wolf-Rayet stars are numerous in areas 2 and 10, while few are found in groups of the other type.

Group 10 is marked by a well-defined boundary at longitude 250° . An abrupt rise in the general stellar density is shown at this point

TABLE XII

NUMBERS OF STARS AT VARIOUS GALACTIC LATITUDES

		<u> </u>
Gal. Lat.	North	South
90°-30°	4	22*
30 - 20	3	10
20 -10	22	32
10 - 0	127	190
90 - 0	156	254

* Including 11 stars in the Greater Magellanic Cloud.

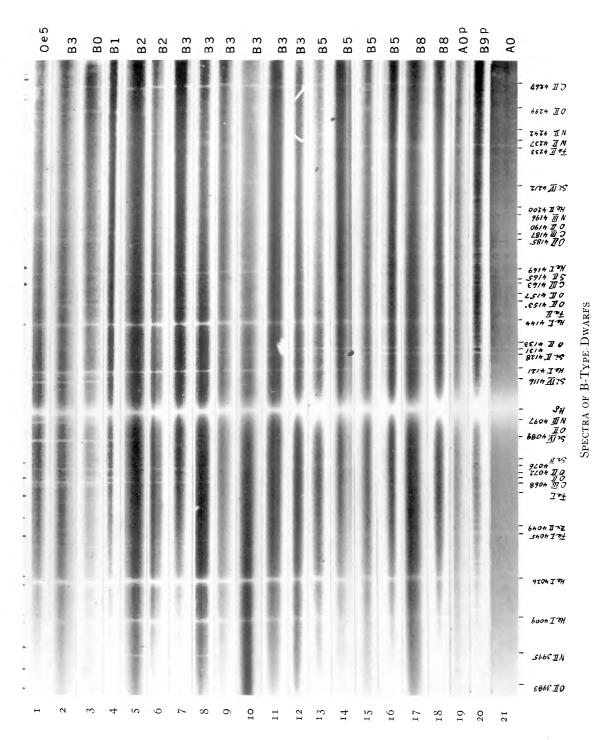
TABLE XIII

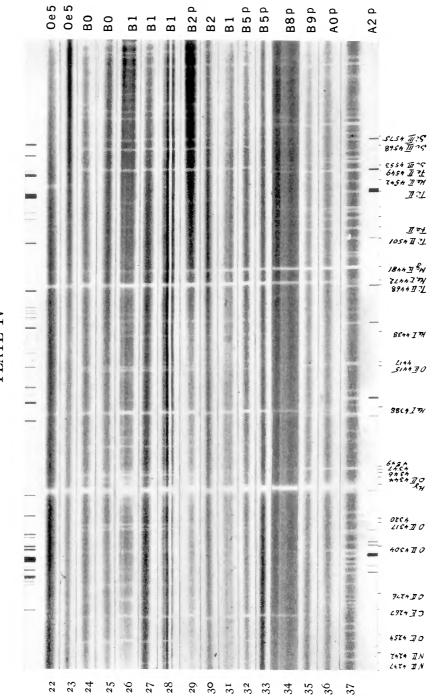
AREAS RICH IN Be STARS

No.	G. Long.	G. Lat.	R.A.	Dec.	Remarks
I	44 54 85 103 107 135 206 247 254	$ \begin{array}{r} -40^{\circ} \\ 0 \\ -3 \\ +3 \\ -22 \\ -5 \\ -33 \\ -1 \\ -1 \\ -2 \\ \end{array} $	$\begin{array}{c} 22^{h}14^{m} \\ 20 & 16 \\ 20 & 52 \\ 0 & 0 \\ 2 & 16 \\ 3 & 2 \\ 3 & 44 \\ 7 & 10 \\ 5 & 22 \\ 10 & 30 \\ 17 & 16 \\ 18 & 12 \end{array}$	$ + 7^{\circ} + 38 + 46 + 62 + 57 + 60 + 24 - 25 - 70 - 59 - 35 - 17 $	Scattered group of bright stars Near γ and P Cygni Small group of bright stars Cassiopeia Region of double cluster in Perseus Pleiades Group of bright stars Greater Magellanic Cloud Near η Carinae Scorpius Sagittarius

by sixteenth-magnitude stars but not by those down to magnitude 13.5.¹⁷ This presumably indicates that the Be stars in this region are much brighter intrinsically than the average background stars. The region of the double cluster in Perseus, area 5, is extraordinarily

¹⁷ F. H. Seares and M. C. Joyner, *Mt. Wilson Contr.*, No. 346; Astrophysical Journal, **67**, 24, 1928.

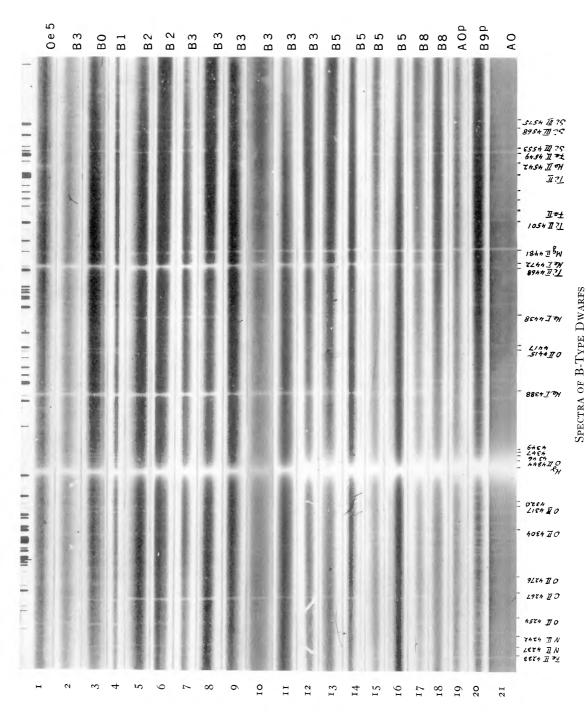

rich in Be stars, although the general stellar density is scarcely equal to the average for the galaxy. The characteristic spectroscopic properties of the stars in this region invite detailed investigation.


The following areas along the Milky Way are deficient in Be stars: longitudes $355^{\circ}-15^{\circ}$, $140^{\circ}-150^{\circ}$, $220^{\circ}-250^{\circ}$, $285^{\circ}-310^{\circ}$. In these regions dark clouds may hide the more distant stars.

The distribution of faint Cepheid variables is remarkably similar to that of faint Be stars (Fig. 2b). This is probably because these intrinsically bright objects are so distant that their apparent distribution is largely governed by the location of dark absorbing clouds.

CARNEGIE INSTITUTION OF WASHINGTON MOUNT WILSON OBSERVATORY March 1933

Η	
ЧĻ	
PT A	



SPECTRA OF B-TYPE GIANTS

PLATE IV

SPECTRA OF B-TYPE GIANTS

PLATE VI