THE SHORT-PERIOD VARIABLE STAR RV CANUM VENATICORUM¹

By J. SCHILT

ABSTRACT

Light-curve.—From ninety-one plates the light-curve of RV Canum Venaticorum is found to be of the type of W Ursae Majoris, with a period of 0.269572 day. This makes it highly probable that the star is a dwarf eclipsing binary, instead of a variable of the cluster type, as stated by Graff. Spectrum and range in light.—The spectrum is F8; the photographic range is 0.75

Spectrum and range in light.—The spectrum is F8; the photographic range is 0.75 mag. and apparently does not exceed the visual range.

The variability of this star, which is 25' from the center of the globular cluster M₃, was first detected by J. Larink,² who found a period of 0.134786 day. A photometric visual light-curve has been published by K. Graff,³ who calls attention to many irregularities. The reality of these irregularities seems doubtful. I have combined Graff's observations into groups of three. The dispersion of the deviations of such normal points from a symmetrical smooth curve is $\pm 0.062 \pm 0.019$ mag. (mean error). Graff gives a mean error of ± 0.06 mag. for his individual observations, which, if the latter are independent, amounts to ± 0.036 mag. for the normal points. The difference between the observed dispersion and the value given is 0.026 ± 0.019 mag. Whether this is accidental or a consequence of some systematic error in Graff's observations do not corroborate the alleged irregularities.

To determine the photographic light-curve, ninety-six plates, each with eight minutes' exposure, were taken, mainly during four nights, with the 60-inch reflecting telescope. The plates used are Eastman 40, size 4 by 5 inches, so that the center of the globular cluster M₃ is just on the following edge of the plates. Ninety-one of these plates have been measured with the thermopile microphotometer. The magnitudes of the comparison stars were derived

¹ Contributions from the Mount Wilson Observatory, No. 330.

² Astronomische Nachrichten, 214, 71, 1921.

³ *Ibid.*, **217**, 310, 1923.

from the comparison plates SS 145, 146, and 147, which have the following exposures and zenith distances:

Plate	First Exposure	Second Exposure
SS 145	\dots Selected Area 57, 15°	RV Can. Ven., 12°
146	RV Can. Ven., 13	Selected Area 57, 8
147	Selected Area 57, 5	RV Can. Ven. 4

Because of the small zenith distances, no correction for differential extinction is required. The magnitudes, on the international scale, of the stars of the Selected Area were kindly supplied by Mr. Seares, and the resulting magnitudes of the comparison stars, together with their rectangular co-ordinates, are entered in Table I.

Smin	X	Y	Pg. Mag.	
STAR			Provis.	Adopted
RV Can. Ven	o″	o‴		
<i>a</i>	+358	+35	15.74	15.78
b	320	41	15.33	15.38 _.
<u>.</u>	+274	30	14.72	14.59
d	- 279	37	16.20	16.16
e	-417	+ 8	14.62	14.71

TABLE I Variable and Comparison Stars

The provisional values were derived directly from the three comparison plates, whereas the adopted magnitudes are the smoothed values found by using measurements from all the plates. The comparison stars c and e happen to be the same as Graff's stars f (vis. mag., 13.41) and a (vis. mag., 13.66), respectively.

The observational data are entered in Table II. The observations have been combined into groups of four in order of phase. The normal points thus obtained are given in Table III, and are shown graphically in Figure 1. The computed minimum is at phase 0.185 P. The mean magnitude at maximum from the eighteen observations between phases $0.685 \pm 0.100P$ is 14.897 ± 0.014 mag. (mean error); from the eleven observations between the narrower limits $0.685 \pm$ 0.050 it is 14.883 ± 0.017 mag. (mean error). The adopted maximum light is 14.88 mag. The magnitude at minimum is estimated to be 15.63 ± 0.04 mag., from which the photographic range is 0.75 ± 0.04 mag.

TABLE II

THE OBSERVATIONS

Plate	J.D. Hel. G.M.T. 2424000+	Epoch and Phase	Mag.	Plate	J.D. Hel. G.M.T. 2424000+	Epoch and Phase	Mag.
SS 64	564.9255	0.000P	15.33	SS 128	620.9386	415.571P	14.85
65	.9330	.055	15.38	129	.9455	.622	14.87
66	.9400	. 106	15.56	130	.9524	.673	14.83
67	.9469	. 158	15.69	131	.9593	.724	14.90
68	.9538	. 209	15.70	132	.9766	.853	14.94
69	. 9608	. 261	15.61	138	621.7003	421.222	15.55
70	.9677	. 312	15.38	139	. 7072	. 273	15.44
72	.9816	.415	15.23	140	.7142	.325	15.10
73	.9885	.467	15.06	141	.7211	. 376	15.02
74	.9954	. 518	15.11	142	.7280	.427	14.94
75	565.0024	. 569	15.15	143	.7349	.470	14.82
76	.0093	.621	14.89	144	.7418	. 530	14.90
77	.0163	.672	14.95	145	. 7883	.875	14.86
78	.0232	.723	14.93	146	.7953	.927	15.06
79	.0301	.775	14.95	147	.8243	422.142	15.60
80	.0371	.826	14.78*	149	. 8804	. 558	14.93
81	.0440	.878	15.03	150	.8874	.610	15.04
82	.0510	.930	15.02	151	.8943	.661	14.98
83	.0579	0.981	15.06	152	.9012	.712	14.87*
98	619.9025	407.884	15.02	153	.9082	. 764	14.91
99	.9140	.969	14.90	154	.9151	.816	14.94
102	620.7307	414.029	15.25	155	. 9220	.867	14.97
103	.7377	.080	15.34	156	.9289	.918	15.10
104	.7446	. 131	15.58	157	.9358	. 969	15.13
105	.7515	. 182	15.67	158	.9428	423.021	15.18
106	. 7585	. 234	15.58	159	.9497	.072	15.20
107	. 7654	. 286	15.36	171	642.6838	576.902	14.86
108	.7724	. 338	15.24	172	. 6908	.954	15.07
109	·7793	. 389	15.13	173	.6977	577.005	15.19
110	. 7862	.440	15.03	174	. 7046	.056	15.19
III	. 7932	.492	14.94	175	.7115	. 108	15.31
112	.8001	· 543	14.89	176	. 7184	. 159	15.39
113	.8070	• 594	14.86	177	.7253	. 210	15.55
114	.8140	.646	14.82	178	.7323	. 262	15.28
115	.8209	.697	14.86	179	.7392	.313	15.18
116	.8278	•749	14.83	180	.7461	. 364	15.10
117	.8347	.800	14.84	181	.7530	.415	15.00
118	.8416	.851	14.95	182	. 7600	.467	14.98
119	. 8486	.903	14.88	183	. 7669	. 518	14.95
120	.8555	·954	15.10	184	. 7738	. 570	14.94
122	.8971	415.263	15.28	185	. 7807	.621	14.91
123	.9040	.314	14.95	186	. 7877	.673	14.84
124	.9110	. 366	15.11	187	. 7946	.724	14.90
125	.9179	.417	15.04	188	.8113	.848	14.89
126	.9248	.468	14.97	190	642.8535	578.161	15.50
127	.9317	. 520	15.01				

* Taken through the glass.

.

RV CANUM VENATICORUM

The observations by Graff have been plotted as crosses in Figure 1, each cross representing the mean of three successive observations. In order to make the ordinates correspond to the photographic light-curve, a constant, ± 1.35 mag., has been applied to Graff's visual observations. The magnitudes at maximum, 13.48 ± 0.03 mag., and at minimum, 14.29 ± 0.05 mag., give a visual range on

FIG. 1.—Observations of RV Canum Venaticorum in groups of four (dots) plotted according to phase as calculated from Larink's period (half-period). Crosses represent means of three consecutive observations by Graff, reduced to the zero point of the Mount Wilson measures.

Graff's scale of 0.81 ± 0.06 mag. The difference between the photographic and visual amplitudes is thus -0.06 ± 0.075 mag., from which we may conclude that, on the basis of the adopted scales, the photographic amplitude does not exceed the visual range.

It is evident from the measures that the light-curve is of the type of W Ursae Majoris, and this conclusion is not contradicted by Graff's observations.

The spectrum obtained with a slitless spectrograph at the 60inch reflector is F8. The lines seem to be diffuse, though there is some uncertainty on account of the low dispersion used.

J. SCHILT

The data so far obtained indicate that RV Canum Venaticorum is a very faint representative of the W Ursae Majoris class of stars, and presumably a dwarf. As it is an eclipsing binary, Larink's period

NORMAL POINTS

Phase	Mag.	Phase	Mag.
$\begin{array}{c} 0.014P. \\ .066. \\ .122. \\ .165. \\ .212. \\ .255. \\ .296. \\ .335. \\ .386. \\ .425. \\ .470. \\ 0.512. \\ \end{array}$	15.24 15.28 15.41 15.56 15.60* 15.44 15.34 15.10 15.12 15.00 14.96 15.00	0.550P	14.97 14.97 14.87 14.90 14.89 14.90 14.86 14.93 14.95 15.07 15.04

.425	13.00 14.96 15.00	0.968	15.04
* Mean of three of	servations.		
	TAH	BLE IV	

NORMAL POINTS FOR REVOLUTION PERIOD

Phase	Mag.	Phase	Mag.
0.006P .057 .122 .206 .242 .310 .344 .370	15.61 15.40 15.11 14.97 14.98 14.90 14.88 14.88 14.88 14.95 15.02	0.514P .553 .586 .624 .656 .694 .744 .820 .871 .928	15.40 15.21 15.08 14.99 14.94 14.90 14.86 14.90 14.99* 15.32
.390	15.11 15.22	0.974	15.01

* Mean of three observations.

must be doubled. New normal points for the complete period of revolution are entered in Table IV, where the phase is now counted from the primary minimum.¹ The light-curve for the double period,

¹ It is suspected that the comparison star e may be variable. The magnitudes were therefore determined a second time without using star e. The average difference, without regard to sign, between the two sets of values is 0.02 mag. The results of the first reduction have been retained.

shown in Figure 2, has slightly different minima and an asymmetry which, even if real, need cause no surprise, since it is quite comparable with asymmetries found in other stars of this class.

The heliocentric time of principal minimum derived from the present observations is J.D. (Greenwich Mean Time) 2424642.5863,

FIG. 2.--Normal points for RV Canum Venaticorum corresponding to complete period of revolution.

while that of the minimum observed by Graff is 2422811.5540. Since the period is known only with an accuracy of one second,¹ the interval between the two epochs is, unfortunately, too large to determine the number of intervening revolutions. The revised elements are:

> Min. (J.D. Hel. G.M.T.) = $2424642.5863 \pm 0.269572E$ $\pm .0020 \pm 0.000023$ (m.e.) Maximum light......14.88 \pm 0.02 mag. (m.e.) Primary minimum.....15.65 \pm 0.10 Secondary minimum....15.48±0.10

where the period is Larink's value doubled.

MOUNT WILSON OBSERVATORY August 1926

¹ J. Larink, loc. cit.