THE RADIAL VELOCITIES OF LONG-PERIOD VARIABLE STARS ${ }^{\text {x }}$

By PAUL W. MERRILL

Abstract

Radial velocity observations of II2 long-period variables and five irregular variables have been secured at Mount Wilson since 1919 in continuation of the program begun at Ann Arbor in 1913. The observing list consisted of Md variables having maximum magnitudes brighter than 9.o. Most of the stars were observed only near the time of maximum. The instruments employed were one-prism spectrographs having a dispersion at $\mathrm{H} \gamma$ of 36 A per mm . They were attached to the roo-inch Hooker telescope or the 60 -inch telescope.

Measurements of the spectrograms were made by the usual method of micrometer bisections of the lines. The emission-line velocities depend largely upon $\mathrm{H} \gamma$ and $\mathrm{H} \delta$, but several other lines were used when available (Table I). The absorption-line velocities are based primarily upon the low-temperature lines of several metals. The wave-lengths were revised and additional lines added from measurements of about 50 stellar spectrograms, the new list (Table II) being used throughout. Mount Wilson measurements of the emission-line velocities for II2 stars and of the absorption-line velocities for 43 stars are given in Table III.

Discussion of results for individual stars.-Velocities at different maxima are probably the same within errors of measurement. A slight variation of emission-line velocity with phase is shown by R Leonis, R Virginis, X Ophiuchi, χ Cygni, T Cephei, and possibly by other stars. The velocities appear to have algebraically low values for a month or two after maximum light. Stars measured at more than one observatory are listed in Table IV. Collected radial velocity data for 133 stars are given in Table V together with periods and new estimates of spectral type. Fortyseven stars have radial velocities from both bright and dark lines. The differences of these velocities, with other data of interest, are tabulated in Table VI.

Statistical studies.-The relative displacements of the bright lines are found to increase on the average with advancing spectral type and increasing period and range. The correlation with period is used for establishing an empirical correction to be applied to the bright-line velocities to reduce them to a dark-line basis, since the displacements of the dark lines rather than those of the bright lines appear to correspond to the true radial velocities. Curves showing the relationship between period and relative displacement for classes Me and Se are reproduced in Figure 2. The absorptionline velocities, either measured directly or found from the bright lines by use of the curves just mentioned, are made the basis for studies of the apparent solar motion. The speed of the sun is almost three times that usually found for K and M stars, but the position of the apex is nearly the same. The following values are representative: $A_{0}=28 \mathrm{r}^{\circ} ; \quad D_{0}=+34^{\circ} ; \quad V_{0}=53 \mathrm{~km} ; K=+\mathrm{rkm}$; arithmetic mean residual, 31 km . Sixty-eight stars with residuals less than 25 km give $V_{0}=48 \mathrm{~km}$, and 65 with larger residuals, $V_{0}=65 \mathrm{~km}$. This increase in V_{0} furnishes an excellent illustration of the well-known velocity asymmetry of high-speed stars. The average residual radial velocity is found to decrease with advancing spectral type and increasing period. Very high velocities are largely confined to stars of types M_{2} e to $\mathrm{M}_{5} \mathrm{e}$ and to stars having periods in the neighborhood of 200 days.

A very brief general discussion of the properties of variables which show some degree of interdependence, and of the general evolutionary problems concerning these stars, is included.

${ }^{1}$ Contributions from the Mount Wilson Observatory, No. 264.

INTRODUCTION

The spectroscopic observations of long-period variable stars, made by the writer at Ann Arbor during the years 1913-16, ${ }^{\text {a }}$ and at Mount Wilson since igı9, were planned with two principal objects in view. One was the measurement of the radial velocities of a considerable number of variables, upon which could be based a determination of the apparent solar motion and average peculiar motion for comparison with similar data relating to other stars. The possible binary character of these variables, and the interpretation of the relative displacement of bright and dark lines, ${ }^{2}$ were, of course, to be considered in this connection. The second object was a study of the physical and chemical conditions which prevail in the long-period variables, with especial attention to changes which occur as the brightness varies.

The determination of radial velocities has thus far had the chief place on my observing program, and has now reached such a stage that it seems wise to collect and discuss the available data, as they are sufficiently numerous to yield fairly satisfactory results for several statistical inquiries. Should further observations of velocity be undertaken, the present discussion will serve to suggest how the work may most profitably be extended. The emission lines of many faint variables could still be observed with the Hooker telescope with exposure times of two or three hours. A few rather bright variables remain unobserved for the reason that during recent years the time of maximum brightness has nearly coincided with that of conjunction with the sun. Moreover, numerous stars already observed could profitably be made the subjects of further study. The total number of long-period variables now listed ${ }^{3}$ is about 600 , including 150 whose periods are not definitely known, but which are probably long, although some may be irregular. The spectra of 460 of these have been recorded: 415 are of class M, 385 having bright lines; 25 are of class N ; and 16 of class S .

Prior to igi6 the radial velocities of five long-period variables of classes M and S had been published. The writer's observations
${ }^{\text {x }}$ Publications of the Astronomical Observatory, University of Michigan, 2, 45, 1916.
${ }^{2}$ Previously recognized by other observers in the spectrum of o Ceti and of χ Cygni.
${ }^{3}$ Harvard Annals, 56, 197 (Table IX), 1912.
at Ann Arbor increased the number to 43. Since igi6 Paddock has reported ${ }^{x}$ the velocity of T Centauri, and the present investigation adds measurements of 89 variables, making 133 in all.

THE OBSERVATIONS
The observing program for the present investigation, as well as that for the previous work at Ann Arbor, was based on the list of variables in Harvard Annals, 56, 197 (Table IX), 19ı2. It included Md variables having maximum magnitudes brighter than 9.0. There are 264 such objects in the Harvard list, of which 201 are north of declination -30°; over the whole sky 122 Md stars with maximum magnitudes of 9.0 or fainter are known.

The formation of the program for each night's observation has required much more attention than would ordinarily be necessary in the investigation of a group of stars of a certain spectral type. The faintness of these variables during the greater part of their light-cycles made it essential that nearly all of them be observed within a few weeks of the maximum phase, and after a few dozen of the brighter variables had been observed and eliminated from the program, the number available for observation on a particular night was often surprisingly small.

The predicted times of maximum in Harvard Circulars, Nos. $212,220,222$, and 227 , served as a general guide for the selection of stars for each night's work. As the light-curves are not uniform, however, the actual time of maximum is likely to deviate somewhat from the predicted time, and, moreover, the maximum brightness often differs very considerably from the average maximum value. Accordingly, in order to make spectroscopic work with the large reflectors as effective as possible, it was necessary to rely on a considerable number of current magnitude determinations. Usually it was not feasible for the writer to make these at Mount Wilson, but at the suggestion of Professor Bailey a very satisfactory arrangement was made by which predicted magnitudes of selected stars were sent each month from the Harvard College Observatory. These predictions were by Mr. Leon Campbell from current observations made at Cambridge and by members of the American

[^0]Association of Variable Star Observers, which is rendering highly important service by systematic observations of a large number of long-period variables. The photometric data in Table III were also supplied by Mr. Campbell. It is a pleasure to express my thanks to Professor Bailey, Professor Shapley, and especially to Mr. Campbell, for their kind co-operation, which greatly facilitated the present investigation.

Practically all of the radial-velocity observations in the present investigation were made with two single-prism spectrographs having camera lenses with focal lengths of 18 inches. One of these, which has been described by Mr. Adams, ${ }^{\text {T }}$ is attached at the Cassegrain focus of the 60 -inch reflector, and the other, which has nearly the same optical dimensions, is attached at the Cassegrain focus of the 100 -inch Hooker reflector. The dispersion at various points in the spectrum is as follows: at $\mathrm{H} \beta, 56.6 \mathrm{~A}$ per mm ; at $\mathrm{H} \gamma$, 36.I A per mm ; at $\mathrm{H} \delta$, 28.2 A per mm. Nearly all of the photographs were on the Seed 30 emulsion. The slit-width was usually 0.05 or 0.06 mm . In connection with the 40 -inch collimator lens this gave a satisfactory degree of purity.

With the Hooker telescope, spectrograms can usually be obtained in not more than half the time required with the 60 -inch telescope. The importance of this gain in speed lies not so much in the reduction of the total exposure time on a long program as in the fact that most of the long-period variables are bright enough for observation during only a few weeks of each year, and must often be photographed, if at all, at large hour angles with exposure times not exceeding one or two hours.

As is well known, the color of the long-period variables is orange or red; the color-index of the Md stars is usually taken as r. 8 magnitudes. Compared with the visual brightness, the blue and violet light is very weak, and the continuous spectrum to the violet of λ_{4500} is relatively difficult to photograph. On many plates only the bright hydrogen lines $\mathrm{H} \gamma$ and $\mathrm{H} \delta$ are measurable, these lines usually being so strong that they can be photographed in 5 to 20 per cent of the time required for the adjacent continuous spectrum. The bright $\mathrm{H} \gamma$ and $\mathrm{H} \delta$ lines of a tenth-magnitude star

[^1]can ordinarily be photographed with the Hooker telescope in two hours or less. Stars fainter than the ninth magnitude, however, were seldom observed except for special reasons. Under average conditions an exposure of two hours on a star of visual magnitude 9.0 usually yields a plate with the bright hydrogen lines strong, and with the continuous spectrum sufficiently well recorded between $\lambda 4500$ and $\lambda 5000$ to allow a good estimate of the spectral type, but too weak in the region λ_{4100} to λ_{4500} for satisfactory measurement of the absorption lines.

I desire to express my appreciation of the efficient aid rendered in the observing by all the night assistants who have taken part in it. Those who have had the largest share in the work are Messrs. William Klemann and W. P. Hoge.

THE VELOCITY MEASUREMENTS

The velocity determinations have been carried out by the method of micrometer bisections of the lines on the spectrograms, with measuring machines of the usual type. All of the plates have been measured twice and a small number three or four times. Different measurements of the same plate usually agree well. Altogether about 800 plate measurements have been made, 60 per cent of them by the writer, and nearly all of the remainder by Miss Florence MacCreadie, Mr. T. S. Jacobsen, and Miss Cora G. Burwell. An interval of at least three months was allowed to elapse between two measurements of a plate by the same person.

Velocities from emission lines.-The velocities from the emission lines depend on the laboratory wave-lengths in Table I. The last two columns, which give, respectively, the numbers of plates upon which each line has been measured at Mount Wilson for the present investigation, and at Ann Arbor, show that $\mathrm{H} \gamma$ and $\mathrm{H} \delta$ have been used for the velocity measurements far more frequently than any of the other lines. $\mathrm{H} \beta$ and $\mathrm{H} \zeta$ have occasionally been omitted, even when visible on the plates, on account of poor focus. A spectrograph adjusted for the $\lambda 3900$ region and having optical parts more transparent in this region than those employed in the present investigation would give a greater relative frequency for the $\mathrm{H} \zeta$ and $\mathrm{H} \eta$ lines.

The bright lines offer very definite marks for the setting of the micrometer wire as they have been noticeably broadened in very few instances. The agreement between individual lines is generally good, ${ }^{\mathrm{r}}$ and the velocities for each plate are more accurate than one might expect from the small number of lines. Each bright line has as much weight for a velocity determination as four or five average absorption lines in the same stars.

Velocities from absorption lines.-A preliminary table for the absorption lines was formed by taking the available laboratory

TABLE I
Laboratory Wave-Lengths of Emission Lines

	I. A.	Number of Stellar Spectrograms	
		Mt. Wilson	Ann Arbor
$3835 \cdot 36$	$\mathrm{H} \eta$	10	4
3889.05	$\mathrm{H} \zeta$	I5	24
$3905 \cdot 51$	Si	9	5
3970.08	$\mathrm{H} \epsilon$	5	0
4101.74	H δ.	316	Ir5
4202.03	$F e$.	57	5
4307.91	$F e$	41	\bigcirc
4340.47	$\mathrm{H} \gamma$.	345	113
4571.11	Mg.	38	-
486 I .33	$\mathrm{H} \beta$.	133	35

measurements of the low-temperature lines of $C a, C r, F e, M g$, $M n, S r, T i$, and V. After about fifty stellar plates had been measured, the lines which had been used less than five times were rejected. The velocities, residuals, and probable errors were then computed for the remaining lines, and the list of wave-lengths was further revised as follows: (I) All lines showing a probable error for a single plate greater than o.io A were rejected; (2) wavelengths of the remaining lines were corrected by amounts corresponding to the average residuals when these exceeded two and a half times their probable errors, otherwise the original laboratory values were retained; (3) lines not in the preliminary table, but measured on five or more plates were added if the probable error from a single plate was not in excess of 0.08 A .
${ }^{1}$ Mt. Wilson Contr., No. 265; Astrophysical Journal, 58, 195, 1923.

These rules obviously favor the original laboratory wave-lengths rather than those obtained by measurement of stellar spectrograms. This was thought desirable in order that the velocities might depend as directly as possible upon laboratory wave-lengths, and not be unnecessarily subject to systematic errors introduced through the use of wave-lengths derived from a limited number of stellar measurements. This "Second Revised Table of Absorption Lines," containing sixty-five lines from λ_{4026} to $\lambda 4580$, is the basis of the

TABLE II
Wave-Lengths of Absorption Lines-Class Me
(Second Revised Table)

I. A.	Element	I. A.	Element	I. A.	Element
4026.88.		4147.68	$F e$	4325.93.	(Fe)
4030.85	(Mn)	4149.78		4330.02.	V
4033.07	$M n$	4179.62	(V)	4337.56	Cr
4034.58.	(Mn)	4200.07		4344.43	(Cr)
4045.87	(Fe)	4206.70	Fe	4347.27	
4054.86		4215.70.	(Sr)	4375.93	Fe
4077.85	(Sr)	4226.82 .	(Ca)	4379.39	(V)
4090.50	V	4234.08.		4383.64.	(Fe)
4092.53	(V)	4254.35	Cr	4384. 19.	($F e, V$)
4105.03		4274.80	Cr	43^{89}. 44	(Fe)
4109.67.	(V)	4282.62 .	(Fe) -	4389.60.	($F e, V$)
4111.76.	V	4285.86.	(Ti)	4395.22 .	V
4115.16.	V	4287.49.	(T.i)	4404.82 .	(Fe)
4116.58...	(V)	4289.57.	(Cr)	4408.24.	(V)
4118.58.		4291.47.	Fe	4408.42 .	Fe
4121.65		4294.28.	(Fe)	4412.22	
4123.59.	(V)	4296.04.		4427.30	$F e$
4128.00.	V	4299.03.		$4455 \cdot 39$	
4129.85		4300.79.		4461.94	(Fe?)
413 r .97.		4302.63.		4482.09	
4134.40.	(V)	4306.08.		4580.29.	
4139.93	Fe	4307.76.	(Fe)		

absorption-line velocities in Table III. It is reproduced in Table II. Lines having the chemical identification in parentheses are those for which slight changes from the laboratory values have been introduced as outlined above. Lines without identifications were derived directly from the stellar spectrograms.

When all the measurements had been completed, the residuals were again formed and the process of correcting the table was repeated. This led to the list printed as Table IV in Mt. Wilson Contribution No. 265. A logical step would have been to re-reduce
all the plates, using this final table, but this was not done because the resulting changes would probably have been too small to justify the additional labor. Table IV in Contribution No. 265 is, of course, the one recommended for future measurements of the spectra of long-period variables of class M , having dispersion comparable with that used in this investigation. ${ }^{\text {. }}$

Mount Wilson radial-velocity data.-Table III gives the data for the radial velocities of III long-period variables and six irregular variables observed at Mount Wilson. The first column contains the name of the star and the Harvard designation, of which the first four figures indicate the hours and minutes of right ascension for 1900, and the last two figures the degrees of declination, numbers in italics representing southern declinations. Dates of observation are given in the second column. Spectrograms on dates marked with an asterisk were made with the 60 -inch telescope, all others with the roo-inch telescope. The column headed "Phase" gives the number of days before $(-)$ or after $(+)$ the nearest maximum. In the column "Absorption Velocity" are given the measured velocities in kilometers per second, and the number of lines. The last column, "Emission Velocity," gives the measured velocities and the particular lines used, the Greek letters referring to hydrogen lines in the Balmer series. 'The individual velocities are printed to the nearest kilometer only, but in forming the means the original values to a tenth of a kilometer were used.
${ }^{\text {r }} 36 \mathrm{~A}$ per mm at $\mathrm{H} \gamma$.

TABLE III
Radial-Velocity Observations of Long-Period Variables at Mount Wilson

TABLE III-Continued

TABLE III－Continued

TABLE III－Continued

TABLE III－Continued

Star	Date	Mag．	Phase Days	Velocity		
				Absorption		Emission
	I92I Mar． 28	9.2	\bigcirc		－90	$\beta \boldsymbol{\gamma} \boldsymbol{\delta}$
$\begin{aligned} & \text { S Hydrae } \\ & \text { o84803...... } \end{aligned}$	1920 Mar． 6^{*} I922 Apr． 14 I923 Jan． 5^{*}	8.0 8.2 7.7	－ 11 － 21 $-\quad 3$		+62 $+\quad 70$ +66	$\boldsymbol{\beta} \gamma \delta$ $\beta \boldsymbol{\beta} \delta$ $\boldsymbol{\beta} \boldsymbol{\gamma} \delta$
					＋66．1	
$\begin{aligned} & \text { W Cancri } \\ & 090425 \ldots . . \text {. } \end{aligned}$	192I Nov． 13	8.5 8.4	－ 24 -23	．．．．．．．．．．．	+36 +33	${ }_{\gamma}^{\gamma \delta}$
					＋ 34.7	
$\begin{aligned} & \text { R Leo. Min. } \\ & \text { O } 3934 . \end{aligned}$		7.8 7.3 7.3	＋ 30 $+\quad 4$ $+\quad 4$		\pm \pm $-\quad 3$	
				＋ 9.5	－ 1.5	
$\begin{aligned} & \text { R Leonis } \\ & 0942 \text { II....... } \end{aligned}$	1920 Jan． 16	9.0				δ
	Apr． 8	6.4	a $+\quad 29$ $+\quad$	＋12	＋$\quad 1$	$\gamma \delta 4202$
	（ II^{*}	6.5	$\begin{array}{r}+\quad 27 \\ +\quad 27 \\ \hline\end{array}$	．．．．．．．．．．．．．	－ 4	$\gamma \delta 4202$
	II^{*}	6.5	＋ 27	．．．．．．．．．．．．．．．	－ 5	$\gamma \delta 4202$
	May 5＊	7.4	＋${ }_{5} \mathrm{I}$	＋ $16 \quad 14$	－ 2	$\begin{array}{r} \gamma \delta \in \zeta \eta 4571,4308, \\ 4202,3905 \end{array}$
	II*	7.6	$+57$	＋ 16 Io	－I	$\gamma \delta \epsilon \zeta \eta 4571,4308,$ 4202， 3005
		8.3	＋ 76		＋ 2	$\gamma \delta 457 \mathrm{I}, 4308,4202$
	${ }^{\text {Dec．}} 26$	5.8	＋ 15	＋14 47	＋ 0	$\dot{\gamma} \delta$
	1921 Jan． 28	6.2 6.9	＋ +18 $+\quad 46$	＋10 $32 \begin{array}{ll}\text {＋} & \\ +11\end{array}$	$+\quad 2$ $+\quad 1$	$\gamma \delta$ $\gamma \delta \epsilon \zeta \eta 4202,3905$
	Feb． 25	6.9 6.9	+46 $+\quad 47$	＋II 3I	a $+\quad 1$ $+\quad 1$	$\gamma \delta \epsilon \zeta \eta$ 4202， 3905 $\gamma \in \zeta \eta \theta_{l} 3905$
	Mar． 26	7.7	$\begin{array}{r}\text { a } \\ +\quad 75 \\ \hline\end{array}$		$\square 2$	$\gamma \delta 4571,4308,4202$
	27	7.7	＋ 76	＋18 14	＋ 3	$\begin{gathered} \gamma \delta \epsilon \xi^{J} \eta 457 \mathrm{I}, 4308, \\ 4202,3905 \end{gathered}$
	1922 Apr． 28	8.9	+108 +10	．．．	＋ 2	$\gamma \delta 4571,4308,4202$
	1922 Dec． 8	7.2	＋ 7 I	．．．．．．．．．．．．．．	＋ 2	$\gamma \delta 4202$
				＋ 13.8	0.0	
$\begin{aligned} & \text { V Leonis } \\ & \quad \text { O9542I...... } \end{aligned}$	I920 June $\begin{aligned} & \text { I } \\ & 2\end{aligned}$	9.0 9.0	－ 13	．．．．．．．．．．．．．．．．．	$\begin{array}{r}-\quad 29 \\ -\quad 32 \\ \hline\end{array}$	${ }_{\gamma}^{\gamma \delta}$
					-30.8	
$\underset{\substack{\text { Z Urs. Maj. } \\ \\ \hline 15158 .}}{ }$	1920 Mar． 3		．．．．．	-53 34 -52 14	$\begin{array}{r}-60 \\ -\quad 57 \\ \hline\end{array}$	$\begin{aligned} & \gamma \delta \\ & \gamma \delta \end{aligned}$
				－ 52.6	-58.4	
$\mathrm{R} \underset{\text { II59Ig....... }}{\text { Comae }}$	I9I9 June ${ }_{\text {ro＊}}^{\text {9＊＊}}$	7.9 7.9	－ 7		－ 22	$\begin{aligned} & \gamma \delta \\ & \gamma \delta \end{aligned}$
					－ 22.0	
T Urs．Maj． r23160．．．．．．	1922 Jan． $13 *$	8.8	$+8$		－I02	$\boldsymbol{\gamma} \boldsymbol{\delta}$

TABLE III－Continued

Star	Date	Mag．	Phase Days	Velocity		
				Absorption		Emission
$\underset{\mathbf{I 2 3 3 0 7}}{\mathrm{R}} .$	$\begin{array}{lll}\text { I920 } & \text { May } & \text { I } \\ \text { I922 } & \text { Feb．} \\ & \text { May } \\ & \text { I5 }\end{array}$	9.1 8.5 9.0	－ 41 +32 -32	－34．．．．．． 22	-26 $=43$ -24	r $\boldsymbol{\gamma} \boldsymbol{\gamma} \boldsymbol{\gamma}$ $\boldsymbol{\gamma} \boldsymbol{\delta}$
					-3 I ．	
$\begin{gathered} \text { S Urs. Maj. } \\ \mathbf{I 2 3 9 6 I} \end{gathered}$	1920 Apr． 8	8.5	－3I		－ 4	$\beta \gamma$
	10	8.5	－ 29		－ 7	$\beta \gamma$
	June 3^{*}	8.2	＋ 25 $+\quad$		－ 7	${ }_{\beta \gamma \delta}^{\boldsymbol{\beta} \boldsymbol{\gamma}}$
	Dec．29＊	8.4	＋ 25		－ 10	$\beta \gamma \delta$
	1921 Jan． 28	8.8	＋ 48		－ 7	$\beta \gamma$
	1922 Mar． 19	7.6	＋		$\begin{array}{r}+\quad 4 \\ -\quad 4 \\ \hline\end{array}$	$\beta \gamma \delta$
					－ 5.0	
U Can．Ven． I24238．．	1920 Mar． 5				－ 43	${ }_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma} \boldsymbol{\delta}}$
					－ 43.7	
$\begin{aligned} & \text { U Virginis } \\ & \quad 124606 \ldots . . \end{aligned}$	1920 Mar．${ }^{\text {M }}$（ ${ }^{*}$	9．1	-37 $-\quad 4$	$\cdots 2^{1} \ldots$	-6 x -56	$\underset{\beta \gamma \delta}{\gamma \delta}$
$\begin{aligned} & \text { RT } \underset{125705 a \ldots . .}{\text { Virginis }} . \end{aligned}$	1920 Mar． 3			＋21 24	$-58 . \mathrm{r}$	
SW Virginis 130802.	1920 Mar． 4			－ 1219		
V Virginis 132202．．．．．．	1921 Feb． 26	9.5	（		$\begin{array}{r} \\ +\quad 23 \\ +\quad 27 \\ \hline\end{array}$	${ }_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma} \boldsymbol{\delta}}$
					＋ 25.0	
R Hydrae 132422.		9.0	-162	．．．．．．．．．．．．．．		
	${ }^{\text {July }} 8$	7.9	-124 $+\quad 82$	．．．．．．．．．．．．．．	$\left(\begin{array}{l}(-22) \\ (-27)\end{array}\right.$	δ
	192I Jan． 30^{*}	6.7	P +82 +82		$\left(\begin{array}{l}(-27) \\ -18\end{array}\right.$	${ }^{\gamma} \delta$ ，
		6.7 6.7	+82 +82		－ 18	¢ δ 4571，4308， 4202 $\gamma \delta$ 4571，
	Feb． 25	7.7	＋108		－ 24	F $\gamma \delta$ 4571，4308，4202
	Mar． 27	8.6	＋138		－ 19	$\beta \gamma$ 4571，4308， 4202
	Apr． 29	9.3	＋171	．．．．．．．．．．	－ 20	457I，4308，4202
	May 26	9.6	＋198 $+\quad 52$		－ 21	4571，4308
		5.6 5.6	＋ $+\quad 52$ -38	－II 46	－ 21	$\underset{\gamma}{\gamma \delta}{ }^{\delta} 4202$
	1923 Jan．${ }_{5}^{4}{ }^{*}$	5.6 5.5	－ 38	$\begin{array}{rrr}\text {－II } & 46 \\ -\quad 80\end{array}$	－ 19	
				－ 9.3	－ 21.4	
S Virginis 132706．．．．．．	1920 Jan． 16	8.0	－ 28		－ 4	δ
	Mar．${ }_{6}$	7.7	＋ 20		\bigcirc	$\boldsymbol{\gamma} \boldsymbol{\delta}$
	1922 Mar．${ }^{\text {2＊＊＊}}$	7.8 7.9	$+\quad 22$ $+\quad 14$			
					－ 4.7	
$\begin{aligned} & \mathrm{T}_{\mathbf{2}} \text { Centauri } \\ & I 33633 \ldots \ldots \end{aligned}$	1921 Apr． 28 1922 July 12	$\begin{aligned} & 6.4 \\ & 6.3 \end{aligned}$	＋ 20 $+\quad 13$	$\begin{array}{r} \\ +22 \\ +\quad 27 \\ \hline\end{array}$	＋ 14	$\beta \gamma$
				＋ 24.6		

TABLE III-Continued

Star	Date	Mag.	Phase Days	Velocity		
				Absorption		Emission
W Hydrae r34327...		$\begin{aligned} & (7.3) \\ & (6.5 \pm) \end{aligned}$		+ $\mathbf{4 1}^{\text {ra }}$		$\gamma \delta 4202$ र $\delta 4571,4308,4202$
				……...........	$\begin{array}{r} 24 \\ +\quad 24 \\ +\quad 25 \end{array}$	$\gamma \delta 4571,4308,4202$ $\gamma \delta 457 \mathrm{I}, 4308,4202$ B $\boldsymbol{\gamma} 4571,4308,4202$
		77.2$7.5 \pm$$7.5 \pm$	\|lac.	$\left\lvert\, \begin{array}{cc} \cdots \ldots ~ \\ +43 & 35 \\ +44 & 19 \end{array}\right.$	$\begin{array}{r} +25 \\ +\quad 29 \\ \hline \end{array}$	$\beta \gamma \delta$ 4571, 4308, 4202 γ 457I $\gamma \delta 457 \mathrm{I}, 4308,4202$
			…...		$\left(\begin{array}{c} +27 \\ +39 \\ +28 \\ + \\ +31 \end{array}\right.$	
		$\begin{aligned} & 7.5 \pm \\ & 7.5 \pm \\ & 7 \pm \end{aligned}$				
	1923 Jan. ${ }^{15}$			+ 42.3	$+26.4$	
$\begin{aligned} & \text { R Can. Ven. } \\ & \text { r } 34440 . . \end{aligned}$	1922 Apr. $\begin{array}{r}13 \\ \text { May } \\ \text { I } \\ \text { 1 }\end{array}$	7.77.78.4	$\begin{array}{r} =9 \\ \hline \\ \hline \end{array}$	- 646	$\begin{aligned} & =20 \\ & =24 \\ & =\quad 25 \end{aligned}$	$\begin{aligned} & \boldsymbol{\gamma} \delta \\ & \gamma \delta \delta \\ & \gamma \delta 4202 \end{aligned}$
				- 1240		
				- 8.9	- 23.1	
$\underset{\substack{\text { U } \\ 14 \times 567 \ldots}}{\text { Uns. Min. }}$	1919 Aug. ${ }_{6 *}^{6 *}$	$\begin{aligned} & 7.7 \\ & 7.7 \end{aligned}$	$\begin{aligned} & +9 \\ & +9 \end{aligned}$		$=44$	${ }_{\gamma}^{\boldsymbol{\gamma} \delta}$
					- 43.3	
S BoötisI4I954_....	rax July $\underset{\text { 10* }}{9^{*}}$	$\begin{aligned} & 8.8 \\ & 8.8 \end{aligned}$	$\begin{aligned} & -\quad 19 \\ & =18 \end{aligned}$		- 24 -26	${ }_{\beta \gamma \delta}^{\beta \gamma \delta}$
					- 25.0	
$\begin{aligned} & \text { RS Virginis } \\ & \text { I42205... } \end{aligned}$	r919 June ${ }_{\text {¢ }}^{\text {9** }}$	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	$\begin{aligned} & +35 \\ & +{ }_{36} \end{aligned}$		$\begin{aligned} & \quad 43 \\ & =\quad 37 \end{aligned}$	${ }_{\gamma}^{\boldsymbol{\gamma} \delta}$
					- 40.0	
$\text { R Camelop. } \begin{aligned} & \mathbf{I} 42584 . \end{aligned}$		$\begin{aligned} & 8.2 \\ & 8.2 \\ & 8.9 \\ & 8.2 \\ & 8.2 \end{aligned}$	$\begin{array}{r} +7 \\ +\quad 8 \\ +36 \\ +\quad 18 \\ \hline \quad 24 \end{array}$			$\begin{aligned} & \beta \gamma \\ & \beta \gamma \\ & \beta \gamma \\ & \beta \gamma \\ & \beta \gamma \end{aligned}$
				...	- 50	
					- $4 \mathrm{4I}$	
					二 ${ }^{49}$	
					- 42.9	
V Boötis 142539......	1919 June 9*	7.8	+ 7		-47	${ }^{\boldsymbol{\gamma}}$
Y Librae 150605......	$\begin{aligned} & \text { 1925 May 25 } \\ & \text { June 2I } \\ & \text { 1922 Mar. } 18 \end{aligned}$	$\begin{array}{r} 9.2 \\ \mathrm{IO} .2 \\ 9.6 \end{array}$	$\begin{aligned} & +13 \\ & +40 \\ & +45 \end{aligned}$			$\begin{aligned} & \gamma \delta \\ & \gamma \delta \\ & \gamma \delta \end{aligned}$
					-15.0	
$\underset{I 51520 \ldots \ldots}{S_{\text {Librae }}}$	$\begin{aligned} & 1922 \text { Apr. } \text { I3 } \\ & \text { I4 } \\ & \text { May } \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & -\quad 18 \\ & =17 \\ & +\quad 14 \end{aligned}$		+288	
					+283 +283 +	$\underset{\beta \gamma \delta}{\beta \gamma}$
					+284.6	
$\underset{\substack{\text { S } \\ 151714}}{ }$	1920 July $\begin{array}{r}30 \\ 3 \mathrm{I} \\ \hline\end{array}$	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	- 6			$\underset{\gamma \delta}{\gamma \delta}$
					- 3	
					- 1.9	

TABLE III—Continued

Star	Date	Mag．	Phase Days	Velocity		
				Absorption		Emission
RS Librae 151822 ．	1920 July I925 Feb．	8.0 7.4	－ 7		－${ }^{9} 8$	${ }_{\gamma}^{\gamma \delta}$
					－ 15.1	
RU Librae 152714．．．．．．	r92I July ${ }_{24}{ }^{24}$	8.5 8.4	－ 8		$\begin{array}{r} -62 \\ -57 \\ \hline \end{array}$	${ }_{\beta \gamma \delta}^{\beta \gamma \delta}$
					－ 59.5	
$\underset{\substack{\text { S Urs. Min. } \\ \text { I537 }}}{ }$		8.3 8.3 8.3	－ 30 $=12$ -11		$\begin{aligned} & =55 \\ & =50 \\ & -53 \end{aligned}$	$\boldsymbol{\gamma} \boldsymbol{\gamma}$ $\boldsymbol{\gamma} \boldsymbol{\delta}$ $\boldsymbol{\gamma} \boldsymbol{\delta}$
					－ 52.7	
R Serpentis 154615．．．．．．	$\begin{array}{ccc}\text { 1920 May } & \text { I } \\ \text { June } & 30 \\ \text { June } & \text { I } \\ \text { July } & 8 \\ \text { 1922 Mar．} & 8 \\ \text { 1923 } & \text { Feb．} & 5^{*}\end{array}$	7.6 8.8 8.8 10.7 7.1 $7.0 \pm$	＋ 46 $+\quad 75$ +77 +114 $+\quad 12$ $-\quad 9$	$\not+22 \quad 44$	$\begin{array}{r}+\quad 3 \\ +\quad 6 \\ +\quad 4 \\ +\quad 3 \\ +\quad 7 \\ +10 \\ \hline\end{array}$	$\begin{aligned} & \gamma \delta \\ & \beta \gamma \delta 457 \mathrm{I}, 4308,4202 \\ & \beta \gamma \delta 457 \mathrm{I}, 4308,4202 \\ & \gamma \delta 457 \mathrm{I}, 4308,4202 \\ & \gamma \delta \\ & \gamma \delta \end{aligned}$
					$+5.3$	
ST Herculis I54748...... RR Librae 155018．．．．．．	1920 Mar． 3			－ 3340		
	1920 Apr． 10 1922 July 1 I	9.2 8.8	$\begin{array}{r}+20 \\ \hline 12\end{array}$		$\begin{array}{r}-40 \\ -4 \mathrm{I} \\ \hline\end{array}$	${ }_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma} \boldsymbol{\delta}}$
					－ 40.6	
X Herculis I55947．	$\begin{aligned} \text { 1920 Mar. } & 3 \\ & 4 \\ & 7^{*} \\ \text { r92I Apr. } & 26^{*} \end{aligned}$	6.9 6.9 6.9 6.5	．．．． $\cdots \cdots \cdot$ $\cdots \cdots$	-92 45 -92 40 -91 38 -88 35		
				－90．1		
$\begin{aligned} & \text { R Herculis } \\ & \text { I60Ir8...... } \end{aligned}$	I92I June ${ }_{20}{ }^{20}$	8.6 8.7	＋ 11 $+\quad 13$		$\begin{array}{r}-40 \\ -44 \\ \hline\end{array}$	$\begin{aligned} & \beta \gamma \delta \\ & \gamma \delta \end{aligned}$
					－ 42.1	
U Serpentis 160210	r920 Sept． 3	8.3 8.2	－ 11	．．．．．．．．．．．．．．．．．	$\begin{aligned} & -37 \\ & -4^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \beta \gamma \delta \\ & \beta \gamma \delta \delta \end{aligned}$
					-39.8	
RU Herculis 160625．	r920 July 6	8.8	－ 18 -17	\cdots	-33 -42	$\begin{aligned} & \boldsymbol{\gamma} \delta \\ & \boldsymbol{\gamma} \delta \end{aligned}$
W Cor．Bor． r6ri38．．．．．．	1921 Feb． $\begin{array}{r}25 \\ 26\end{array}$	8.4 8.4	＋ $+\quad 2$		$\begin{array}{r}-37.6 \\ +\quad 12 \\ +\quad 9 \\ \hline\end{array}$	$\begin{aligned} & \beta \gamma \delta \\ & \beta \gamma \delta \delta \end{aligned}$
$\begin{aligned} & \text { G Herculis } \\ & \quad 16254^{2} \ldots \ldots \end{aligned}$	r920 May I	5.2		＋ 249	＋ 10.5	

TABLE III－Continued

TABLE III—Continued

TABLE III-Continued

TABLE III-Continued

Star	Date	Mag.	Phase Days	Velocity	
				- Absorption	Emission
$\underset{225120}{\substack{\text { S Aquarii }}}$	$\begin{array}{ll}\text { r919 Sept. } & 4 \\ \text { r922 } & \text { Nov. } \\ 9^{*}\end{array}$	8.07.99.2	$\begin{array}{r}\text { - } 6 \\ \hline \\ \hline\end{array}$		$\begin{array}{rrr}-59 & \boldsymbol{\gamma} \boldsymbol{\gamma} \\ -67 & \beta_{\gamma} \delta \\ -74 & \gamma \delta\end{array}$
					-66.4.
V Cassiop. 230759......		$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.6 \\ & 7.7 \\ & 7.9 \\ & 7.9 \end{aligned}$	$+\quad 2$$+\quad 3$$+\quad 4$$+\quad 6$$+\quad 8$$+\quad 8$		- $53 \quad \gamma \delta$
					- $47 \quad \beta \gamma \delta$
					- 5 I 㓌 δ
				- 2740	- $45 \quad \gamma \delta \zeta$
				- 3438	- $46 \quad$ ¢ $\delta \zeta \eta{ }^{202}$
				-31 16	$-43 \quad \boldsymbol{\beta \gamma \delta}$
				-30.5	- 47.6
$\text { R Aquarii }{ }_{233815}$				- 19	- 33
$\begin{aligned} & \text { V Ceti } \\ & \quad 235209 \ldots \ldots \end{aligned}$	1925 July 25	$\begin{aligned} & 8.8 \\ & 8.8 \end{aligned}$	- 4		$\begin{array}{ll} +47 & \boldsymbol{\beta \gamma \delta} \\ +40 & \boldsymbol{\beta \gamma} \delta \end{array}$
					+ 43.1
R Cassiop. 235350......	$\begin{array}{ccc}\text { 1920 Sept. } & 27 \\ \text { Oct. } & 28 \\ \text { 1923 Jan. } & 4^{*} \\ & & 8\end{array}$	$\begin{aligned} & 8.6 \\ & 9.2 \\ & 7.4 \\ & 7.5 \end{aligned}$	$+\quad 57$$+\quad 88$$+\quad 9$		
					$+6.3$
SV Androm. 235939...	$\begin{array}{r} \text { 192I Sept. } 2 \mathrm{I} \\ 22 \\ 23 \end{array}$	$\begin{aligned} & 9.4 \\ & 9.4 \\ & 9.3 \end{aligned}$	$\begin{aligned} & =6 \\ & =\quad 5 \\ & -\quad 4 \end{aligned}$		
					-100 ${ }^{10}$
					$-100 \boldsymbol{\gamma} \boldsymbol{\delta}$
					- 98.8

NOTES TO TABLE III
© 01755 , T Cassiopeiae: On the plate of Aug. 29, 1919, the comparison spectrum is imperfect. On the plate of Sept. 5, rass, the comparison spectrum is slightly shifted, owing to a change in the temperature of the spectrograph during the exposure. The definition of the stellar spectrum, however, is good and the measured difference of the velocities from the bright and the dark lines is considered reliable. The difference on this plate was found to be 15.5 km , which, when applied to the adopted velocity for the bright lines from the other plates, gives - 9.1 km as the velocity from the absorption lines. Bright Hy is very weak on the first plates, and increases in strength during the series. This is in harmony with the characteristic behavior as outlined in Mt. Wilson Contr., No. 200; Astrophysical Journal, 53, 185, 1921. Hर does not become a very conspicuous line on any of my plates, all of which, however, were taken well before maximum. In the notes to Henry Draper Catalogue, Miss Cannon has remarked upon the lack of strength of the bright $\mathrm{H} \boldsymbol{\gamma}$ and $\mathrm{H} \delta$ lines. The bright line λ_{4202} is beginning to appear on the last two Mount Wilson plates. The presence of $\lambda 3905$ as a bright line on the first plate is interesting as showing its occurrence in considerable strength so long before maximum. The close bright companion to $\mathrm{H} \delta$ on the red side is well marked on most of the plates. Bright $\lambda 45 I 2$ is especially strong in this star. The continuous spectrum from $\mathrm{H} \gamma$ to $\lambda 3900$ is surprisingly strong compared with that from $\mathrm{H} \gamma$ to $\mathrm{H} \beta$.
004047. U Cassiopeiae: On the last plate the titanium bands are decidedly stronger than on the first two, and bright $\mathrm{H} \delta$ is stronger relatively to $\mathrm{H} \gamma$. These changes in the spectra of class S stars will be discussed more fully in another contribution.

022000 , R Ceti: The plate of Sept. 3 is very poor.
065208 , X Monocerotis: The bright hydrogen lines are less intense than in most variables. This star has been considered irregular (Henry Draper Catalogue, Harvard Annals, 92, 308, 1918), and it was not included in the computations in this paper which relate to the period. A recent Harvard Bulletin (No. 787), however, gives the period as 155.3 days, and this value has been entered in Tables V and VI and the star has been added to the plot in Figure 2. The short period is in harmony with the star's high velocity and its spectrum.

074323 , T Geminorum: The M-type bands are weaker on the second plate than on the other two. The third plate is poor and the velocity derived from it is assigned half-weight.

08 rir2, R Cancri: The proper value for the mean velocity from the emission lines and especially that from the absorption lines is doubtful to the extent of a few kilometers, owing to the systematic divergence of the first three plates from the others. The discrepancy may be connected with the fact that the first three plates are strongly exposed, the bright hydrogen lines being much overexposed. In general, however, strong and weak exposures do not show any decided systematic differences, although there seems to be some obscure effect, which operates only occasionally, tending in a few instances to cause spectrograms made with the roo-inch telescope to yield algebraically larger velocities than spectrograms of the same star made with the 60 -inch telescope. The adopted emission-line velocity for R Cancri is the simple mean of all the individual results; to obtain the absorption velocity, the average value, absorption minus emission, for the first four plates, 13.7 km , was added to the mean emission-line velocity.

II5158, Z Urs. Maj.: The bright hydrogen lines are weak.
Ir5919, R Com. Ber.: Not in the Henry Draper Catalogue.
123307, R Virginis: The apparent variation in velocity is probably larger than the errors of observation. Both the Ann Arbor and the Mount Wilson measurements give the largest negative velocity after light maximum. The star has a short period and considerable range in magnitude; hence, if the light variations are dependent on changes of a geometrical nature, we might expect to find in this star an unusually large range in apparent radial velocity.

124606, U Virginis: On the first plate H β is not seen, but on the second it is a strong bright line.
125705a, RT Virginis: No definite bright lines were seen on the plate of March 3, 1920, or on another, unlisted plate, taken four days later. The continuous spectrum from λ_{4030} to λ_{4227} is strong compared to that at longer wave-lengths. This relative strength of the continuous spectrum at short wave-lengths was noted by Miss Cannon. A remark in the Henry Draper Catalogue states that "The portion of the continuous spectrum between $\mathrm{H} \delta$ and $\mathrm{H} \epsilon$ appears like a bright band, and the region between $\mathrm{H} \beta$ and $\mathrm{H} \boldsymbol{\gamma}$ is very faint."

130802, SW Virginis: The spectrum is much like that of RT Virginis (see preceding note) but an absorption line at $\lambda 4535$ is stronger. There appear to be absorption lines on either side of the position of $\mathrm{H} \boldsymbol{\gamma}$. Possibly the narrow space between them should be interpreted as a bright $\mathrm{H} \boldsymbol{\gamma}$. If so, it gives about the same velocity as the absorption lines. Remark in the Henry Draper Catalogue: "The brightest portion of the spectrum lies between $\mathrm{H} \epsilon$ and 4226.9 ."
I.32422, R Hydrae: In forming the mean of the velocities from the emission lines, the last five plates were given unit weight; the weights of the others were, $\frac{1}{2}, \frac{1}{4}, \frac{1}{2}, 2,2,3,2$, respectively.

133633, T Centauri: Bright lines are seen on the plate of July 12 , 1922, only, and are certainly stronger than on the other plates. The continuous spectrum also shows decided changes. On the first plate, which is too weak in the violet for measurement, the titanium bands are strongly marked in the region $\lambda 4500$ to λ_{5000}; the type is estimated as $\mathrm{M}_{4}-5$. The spectrum on the second plate is very similar to that of a Orionis and is of class M2. The absorption spectrum of the third plate more nearly resembles that of a Scorpii and is of class M7, having bright hydrogen lines superposed. Miss Cannon has noted in the remarks in the Henry Draper Catalogue that the spectrum varies from K2 having bright hydrogen lines to Ma having no bright lines. A comparison of the Mount Wilson measurements with those by PaddockT at Santiago, Chile, suggests that the radial velocity as well as the relative displacement of the bright lines may be variable. An extensive study of the variable spectrum of this star would be valuable.

134327, W Hydrae: The plate of June 11, 1922, was taken under poor conditions and is probably affected by some instrumental error. The velocity from this plate was not used in forming the mean. On the last plate the bright $\mathrm{H} \gamma$ line is weak, showing that the phase is considerably before maximum. Bright $\mathrm{H} \delta$ is strong and the close companion line on the red side is visible. The velocity from this plate was given small weight in forming the mean. This variable has a very small magnitude range, but appears nevertheless to exhibit the changes in spectrum characteristic ${ }^{2}$ of the long-period variables. From the behavior of the spectrum in 1921, it is estimated that maximum occurred about February 20. Combined with Chandler's date of maximum, February 27, r889, the period is found to be 389 or 377 days accordingly as 30 or 3 r periods are assumed to have elapsed in the interval. By comparing the spectrograms taken in 1922 with those of 1921 a period of approximately 384 days is found.

I42584, R Camelopardalis: The last plate was taken with a wide slit; the velocity from it has halfweight. 150
15r822, RS Librae: The first plate is given one-half weight as the velocities from $\mathrm{H} \gamma$ and $\mathrm{H} \delta$ do not agree. 154748, ST Herculis: Bright hydrogen lines are not seen in this spectrum.
r 55947 , X Herculis: Bright hydrogen lines are not seen in this spectrum.
r 75519 , RY Herculis: On the first plate the comparison spectrum is imperfect, but the stellar velocity appears not to be affected.

I83308, X Ophiuchi: A double star. See discussion of the velocity in Mt. Wilson Contr., No. 26r; Astrophysical Journal, 57, 251 , 1923.

194032, χ Cygni: Bright $H \beta$ is stronger than usual for a star with absorption spectrum of class M6. 200357, S Cygni: The second plate is very poor.
204405, T Aquarii: On the last two plates the comparison spectrum is slightly imperfect. On these plates the continuous spectrum is underexposed and the absorption-line velocities have small weight.

210868 , T Cephei: The velocity from the last plate, which was taken with the 7 -inch camera, was not used in forming the mean.

222439 , S Lacertae: The velocities from the first plate were given half-weight because the comparison spectrum is imperfect.

233815 , R Aquarii: In addition to the usual M8e features, the spectrum contains lines characteristic of gaseous nebulae. The velocities are taken from Mt. Wilson Contr., No. 206, p. 4; Astrophysical Journal, 53, 378, 1921.

235350, R Cassiopeiae: The last plate is rather poor and the velocities measured by two observers are discordant. This plate is given one-half weight in forming the mean.

ェLick Observatory Bulletin, 9, 69, 1917.

= Mt. Wilson Contr., No. 200; Astrophysical Journal, 53, 1, 1921.

DISCUSSION OF RESULTS FOR INDIVIDUAL STARS

Velocities from emission lines.-An examination of the velocity measurements in Table III, as well as those obtained at Ann Arbor, appears to show that the ranges for individual stars can, in general, be accounted for by errors of observation. This may be inferred from the fact that the agreement of plates of a particular star taken on the same night or on successive nights is not decidedly better than that of plates separated by longer intervals. Moreover, the agreement of several plates of a star is in most instances about as good as could reasonably be expected from the number and internal agreement of the lines on each plate. Some apparent exceptions have been discussed in the notes to Table III, and the subject will be dealt with more fully in the following paragraphs.

In the present investigation and in the similar one previously carried out at Ann Arbor, the effort has been to determine the velocities of as many stars as possible rather than to secure extensive sets of observations of individual stars. Hence, most of the observed stars are represented by a small number of spectrograms taken near maximum. The desirability of testing the constancy of the velocity at different maxima and throughout the light-cycle has been borne in mind, however, and data for this purpose have been secured for a few stars.

The available measures show that velocities at different maxima are nearly the same. In a few instances the observed variations may exceed the errors of measurement, but the data are too meager to establish this as a fact. This question might better be studied with more powerful spectrographs as in numerous stars the bright $\mathrm{H} \gamma$ and $\mathrm{H} \delta$ lines could easily be photographed at maximum with a dispersion several times that which I have used.

A slight variation of velocity with phase is indicated for a number of stars, and as approximately the same behavior seems to be shown by those stars for which the data are most extensive, the effect is probably real. A study of X Ophiuchi has already been published. ${ }^{\text { }}$ The conclusion was that the velocities are not constant but have algebraically low values for a month or two after maximum light. The same statement seems to apply to several other stars.
${ }^{\text { Mt. Wilson Contr., No. 26ı; Astrophysical Journal, 57, 251, } 1923 . ~}$

The Mount Wilson observations of R Leonis, R Hydrae, X Ophiuchi, χ Cygni, and T Cephei are plotted in Figure 1. With

Fig. x.-Variations in emission-line velocity. Circles represent observations of one-half weight.
the exception of R Hydrae, in which the effect is doubtful, they are better represented by a curve having a flat minimum a few weeks after maximum light than by a straight line. Several other stars
observed over shorter intervals show changes in velocity which are in harmony with a similar hypothesis. One of the most striking examples, although based on very few observations, is R Virginis. ${ }^{\text { }} \quad$ Another is the S-type star R Canis Minoris.

About the time of maximum light the bright line $\lambda 4202$ becomes measurable, followed, as the light decreases, by $\lambda 4308$ and $\lambda 457 \mathrm{I}$. As these lines have been used together with the hydrogen lines in the velocity determinations, it is essential that the system of wavelengths employed be relatively correct or apparent variations may be introduced. The wave-lengths used were the laboratory values indicated in Table I. The mean differences between the velocities from the hydrogen lines and those from the other bright lines have been computed and found to be small, showing that no large systematic errors exist. ${ }^{2}$ For individual stars the displacements shown by the lines $\lambda \lambda_{4202}, 4308$, and 457 I correspond reasonably well to those of the hydrogen lines on the same spectrograms.

It is not certain that the slight changes in the positions of the bright lines are due to variations in radial motion, but no other explanation presents itself. If the well-known displacement of the bright lines toward the violet with respect to the absorption spectrum represents an outflow of incandescent gas, it is possible that on first coming into view the gas has a low velocity and is subject to acceleration while under observation, or is replaced by other gas having a higher outward velocity, the process being reversed as the incandescent gas begins to disappear. This would indicate the existence of agencies acting during a considerable fraction of the light-period, rather than a sudden outburst followed by a gradual resumption of the previous conditions. The observation of the hydrogen lines is subject to this interpretation, but for the other gases a somewhat different state of affairs appears to exist. The lines $\lambda \lambda 4202,4308$, and 457 I appear later in the light-cycle than the hydrogen lines, but when they first become measurable, they have nearly the same velocities as the hydrogen
${ }^{r}$ See the note concerning this star on p. 235 .
${ }^{2}$ See Table II, Mt. Wilson Contr., No. 265; Astrophysical Journal, 58, 196, 1923. See also measurements of o Ceti by Adams and Joy, Publications Astronomical Society of the Pacific, 35, 168, 1923.
lines on the same plates. Later they agree with the hydrogen lines in showing a tendency toward algebraically larger velocities, as illustrated by the mean curves in Figure r. A detailed explanation of this behavior is impossible at present, but it seems justifiable to conclude that the appearances of bright lines at different times in the light-cycle do not correspond to separate outbursts of various elements, but are manifestations of successive phases of the same disturbance by which the bright hydrogen lines were produced shortly after minimum.

Velocities from absorption lines.-Not much can be said as to possible variations in the absorption-line velocities, owing to the small number of observations obtained for individual stars. Except for a few weeks near maximum, most of the stars are so faint that it is difficult to photograph the continuous spectrum. Moreover, when the stars are faint, the absorption spectrum may not yield a satisfactory velocity, even when normally exposed, because the lines are likely to be weak and indefinite and to be interfered with by the titanium-oxide bands.

Neither my observations nor the other available data present evidence of changes in velocity, but they do not prove that changes of a few kilometers may not occur. Apparent changes in absorptionline velocities indicated by Tables III and IV are probably due in most if not in all cases to errors of measurement. Observations of o Ceti at different maxima agree remarkably well, as shown in Table IV.

All the stars for which either the absorption or the emissionline velocity has been measured by more than one observatory are listed in Table IV. The agreement, on the whole, is very good. Hence, even though we admit the existence of slight variations, it appears that both the bright and dark-line velocities are definite and nearly constant quantities for which essentially the same values are found by different observers using different instruments and methods of reduction. The data are, therefore, suitable for a statistical study of the motions of these objects.

The data in Table IV are taken largely from Table, III and from the Publications of the Observatory, University of Michigan, 2, 50 ff., 1916. Professor Frost has had the kindness to send me for use in

TABLE IV
Long-Period Variables Observed at More than One Observatory

Designation	Name	Observatory	Radial Velocity				Adopted	
			A.	Wt.	E.	Wt.	A.	E.
©01755........	T Cassiop.	Detroit Mt. Wilson			- 27	0.5	...	- 24.8
cor838.	R Androm.	Detroit Mt. Wilson			- 36	I		- 36.3
021024...	R Arietis	Detroit Mt. Wilson			+101 +104	3 2		+r02.0
O2II43........	W Androm.	Detroit Mt. Wilson			- 44	1		- 44.6
021403.......	o Ceti	Lick 1897-98 Lick Nov. 1898	+62.3	14	a $+\quad 54$ $+\quad 44$	8 ro	$+64.3$	+48.1 ...
		Lick Stebbins 3 -pr			+44 $+\quad 44$	r8		\ldots
		Lick Stebbins r-pr	+66	1	+ 52	8
		Ottawa	+65.4	4	+ 46.1	14		.
		Yerkes 3-pr	+64.1	7	+ 446	7	
		Yerkes 1-pr	+67.6 +66.1	10	(+ $+\quad 49.6$	27 8
		Bonn Detroit	+66.1 +63.9	3	+ 51 $+\quad 52$	4		-.......
		Cape	+63.4	ro				-
		Mt. Wilson	+63.7	18	$+46.7$	18		
050953........	R Aurigae	Detroit Mt. Wilson			- 9	1 2		- 13
084803.......	S Hydrae	Detroit Mt. Wilson			+ $+\quad 77$ +66	1		$+70$
093943........	R Leo. Min.	Detroit Mt. Wilson			- 6	2 3		- 3.1
-942II........	R Leonis	Yerkes		2	- 6.2	8	+ 15.0	- $\quad 1.8$
		Lick	+18 $+\quad 15$ +26	2	$-\quad 7.0$	1		\ldots
		Mt. Wilson	+13.8	7	0.0	15		
123160........	T Urs. Maj.	Detroit			- 107	3		-106
		Mt. Wilson			-102	I		
123307........	R Virginis	Detroit Mt. Wilson			-35 -31	2		- 33
I23961........	S Urs. Maj.	Detroit			- I	2		- 4.1
		Mt. Wilson.			- 5	7		
r32422........	R Hydrae				- 26	2	- 5.0	- 22.8
		Detroit	+ 5	0.5	- 26	3		
133633........	T Centauri	D. O. Mills	+24 +25	2	+28 $+\quad 28$	I	+ 24	+21
		Mt. Wilson	+25	1	+ 14	I		
134440.........	R Can.Ven.	Detroit Mt. Wilson			- 24 $-\quad 23$	4 3		- 23.6
142539.......	V Boötis	Detroit			- 41	3		-42.
		Mt. Wilson			- 47	1		
154615.......	R Serpentis	Yerkes	$+30$	1	+ 10	2	+ 27.	$+6.9$
		Detroit	+30 +30	0.5	a	4		
180531........	T Herculis				- I30			
		Mt. Wilson			. $\left\lvert\, \begin{aligned} & -130 \\ & -136\end{aligned}\right.$	$\stackrel{4}{1}$		-131.

TABLE IV-Continued

Designation	Name	Observatory	Radial Velocity				Adopted	
			A.	Wt.	E.	Wt.	A.	E.
18II36.......	W Lyrae	Detroit Mt. Wilson			$\begin{aligned} & -180 \\ & -178 \end{aligned}$	3 2	-183.
183308........	X Ophiuchi	Detroit Mt. Wilson			$\begin{aligned} & -86 \\ & -83.4 \end{aligned}$	3 16	- 83.8
193449........	R Cygni	Lick Mt. Wilson			- 34.2	1 9	- 45.0
194048........	RT Cygni	Yerkes Detroit			- 125	6 4	.	-125.5
194632.......	χ Cygni	Potsdam rgor Potsdam 1902 Detroit Mt. Wilson	$+\quad 2.4$ -2.3 $\cdots \cdots .7$	4 4 \cdots 3	$\begin{aligned} & \text { - } 19.8 \\ &= 21.0 \\ &=17 \\ &=17.8\end{aligned}$	25 15 2 10	-0.5	-19.7 $\cdots \cdots \cdots .$.
210868.	T Cephei	Yerkes Detroit Mt. Wilson	-14 $\cdots-9.6$	3	- 30 $=30$ $-\quad 24.1$	2 2 8	-10.7	- 26.1
235350..	R Cassiop.	Detroit Mt. Wilson			$\begin{array}{\|c} + \\ +\quad 6.4 \\ +\quad 6.3 \end{array}$	5 3		+ 8.2

NOTES TO TABLE IV
o21403, o Ceti: Lick, Astrophysical Journal, 9, 32, 1809; Lick Observatory Bulletin, 2, 93, 1902; Ottawa, Journal Royal Astronomical Society of Canada, 1, 53, 1907; Bonn, Astrophysical Journal, 27, 304 1908; Cape, Astrophysical Journal, 48, 265, 1918; Mount Wilson, unpublished measures by Mr. Joy, to whom I am indebted for permission to include them here.

0942 Ir, R Leonis: Lick, a slightly revised value of the emission-line velocity was communicated to me by Dr. Moore.

I33633, T Centauri: D. O. Mills, Lick Observatory Bulletin, 9, 68, 1917.
194632, x Cygni: Potsdam, Astrophysical Journal, 18, I98, I903.
this connection unpublished measures of o Ceti, R Leonis, R Serpentis, RT Cygni, and T Cephei made at the Yerkes Observatory: The notes indicate data from other sources.

Collected radial-velocity data.-The adopted velocities are collected in Table V, which contains other data of value for statistical studies. The first four columns require no explanation. The fifth column gives my estimates of spectral type at maximum, on the new system adopted by the International Astronomical Union in 1922. The typical stars selected for the subdivisions Mo to M6 by Mr. Joy and the writer are as follows:

Mo β Andromedae, H.D. 6860
Mi ν Virginis, H.D. 102212 ; a Scorpii, H.D. 148478
M2 a Ceti, H.D. ı8884; a Orionis, H.D. 398 or
M3 μ Geminorum, H.D. 44478
M4 ρ Persei, H.D. 19058
M5 a Herculis, H.D. 156014
M6 Boss 660, H.D. 18igi

TABLE V
Radial Velocitites of Long－Period Variables

No．	Name	a 1900	$\delta 1900$	Sp．	Period	Velocity	
						Abs．	Em．
					days	km／sec	
1 ：	S Sculptoris	$\mathrm{O}^{\mathrm{h}} \mathrm{O}^{\left(0 \mathrm{~m}_{3}\right.}$	$-32^{\circ} 36^{\prime}$	M8e	366	（＋28．4）	＋ 13.2
2.	X Androm．	－ 10.9	＋4627	Se	346	（＋r．）	－ 18.2
3	T Androm．	$\bigcirc 17.2$	＋2626	M6e	281	－90．	－ 94.8
4	T Cassiop．	0 17.8	＋55 14 +38	M8e	444	－II． 0	－ 24.8
5	R Androm．	－ 18.8	＋38	Se	411	－8．2	－ 36.3
6.	S Ceti	－ 19.0	－ 953	M5e	32 I	（＋32．）	＋ 20.
	U Cassiop．	－ 40.8	＋4743	Se	276	－45．	－ 56.6
8	V Androm．	－ 44.6	＋35 6	（M2e）	259	（＋16．1）	＋ 8.0
9.	S Cassiop．	I 12.3	＋725	Se	610	（－20．土）	-54.
Io	R Piscium	125.5	＋222	（M5e）	344	（－45．）	-59.
II	Y Androm．	I 33.8	$+3850$	（M3e）	218	（－3．8）	－ 16.8
12	U Persei	I 53.0	＋5420	M6e	320	＋15．	＋ 9.9
13.	R Arietis	210.4	＋2435	M3e	186	＋114．4	＋102．0
14	W Androm．	211.2	＋4350	M8e	395	-28.5	－ 44.6
15	－Ceti	214.3	－ 326	M6e	332	＋64．3	＋ 48.1
16.	R Ceti	220.9	－－ 38	M4e	167	＋42．5	$+31.6$
17	U Ceti	228.9	－I3 35	M3e	236	－27．	－ 39.4
18	R Trianguli	231.0	＋3350	M5e	267	＋66．7	＋ 59.6
19	R Persei	323.7	＋3520	M3e	210	-78.2	-89.1
	T Eridani	351.0	－24 20	（M7e）	252	（＋43．）	+34 ．
21	W Eridani	$4 \quad 7 \cdot 3$	－25 24	M7e	374	（＋27．1）	＋ 11.4
21．	R Tauri	422.8	＋ 956	M5e	324	（＋3I．3）	＋ 19.2
23	T Camelop．	430.3	＋6557	Se	370	（＋3．）	－ 19.
24	X Camelop．	432.6	＋7456	M3e	142	（－2．3）	－ 5.8
	T Leporis	50.6	-222	（M8e）	366	（－2．8）	－ 18.
26.	V Orionis	$5 \quad 0.8$	＋ 358	M3e	267	（＋21．9）	＋ 13.9
27	R Aurigae	$5 \quad 9.2$	＋5328	M 7 e	459	（ +8.$)$	－ 13.
年	T Columbae	515.6	－33 49	M5e	225	（ +66.4 ）	＋ 53.4
29	U Orionis	549.9	＋20 10	M8e	374	－17．	-37.2
	X Aurigae	$\begin{array}{lll}6 & 4.4\end{array}$	＋50 15	（M2e）	163	（－20．2）	－ 26.2
	V Monocer．	6 17．7	－29	（M6e）	332	（＋29．）	＋ 16.
32	X Gemin．	640.7	＋30 23	M5e	262	（＋75．2）	＋ 67.2
33	X Monocer．	652.4	－856	M_{4}	155	＋157．	＋147．5
34	R Lyncis	653.0	＋5528	$\stackrel{\mathrm{Se}}{\mathrm{S}}$	379	（ +34.$)$	＋ 11.
	R Gemin．	$7 \quad 1.3$	＋2252	Se	370	36.	-57.4
36.	R Can．Min．	$7 \quad 3.2$	＋ro II	Se	338	（＋51．）	＋ 33.3
	L_{2} Puppis	710.5	－44 29	（M5e）	140	＋52．6	＋${ }^{1} \mathrm{I}$ ．
38	\checkmark Gemin．	717.6	＋13 17	$\mathrm{M}_{4} \mathrm{e}$	276	＋22．	＋ 10.6
39	S Can．Min．	727.2	＋ 833	（M8e）	330	（＋67．2）	＋ 54.6
40.	Z Puppis	728.3	－20 27	M7e	5 I 6	（＋35．6）	＋ 12.6
4 I ．	T Gemin．		＋2359	Se	288	$(+25$.	＋ 1 m .8
42	R Cancri	8 II． 0	＋r2 2	M7e	362	＋32．1	＋ 18.4
43	V Cancri	8 16．0	＋1736		272	（－2．）	－ 13.5
44	RT Hydrae	$8 \quad 24.7$	－ 559		irreg．		
	U Cancri	8 30．5	＋19 14	（M2e）	305	（＋7x．）	＋61．
46.	X Urs．Maj．	833.7	＋5030	$\mathrm{M}_{4} \mathrm{e}$	251	（－8I．）	－90．
47.	S Hydrae	848.4	＋ +327	$\mathrm{M}_{4} \mathrm{e}$	256	（＋78．）	＋ 70.
48	T Hydrae	850.8	－846	（M3e）	289	（－3．）	－ 12.
49	W Cancri	94.0	＋ 2539 +25	（M7e）	385	$\left(+_{51.3}\right)$	$\underline{+34.7}$
50.	R Leo．Min．	939.6	＋3458	M8e	372	＋9．5	－ 3.1
51.	R Leonis	942.2	＋Ir 54	M8e	313	＋15．0	$-\quad 1.8$
52.	V Leonis	954.5	＋2144	M7e	273	（－22．7）	－ 30.8
53	R Urs．Maj．	10 37.6	＋69 18	（M6e）	302	＋34．	＋ 23.
54	Z Urs．Maj．	II $5 \mathrm{I} \cdot 3$	＋+585	M6e	120	（－52．6	－ 58.4
55.	R Comae	II 59．I	＋1920	（M4e）	362	（－7．0）	－ 22.0

TABLE V－Continued

No．	Name	a 1900	$\delta 1900$	Sp．	Period	Velocity	
						Abs．	Em．
					days	km／sec	
	${ }_{\text {R }}^{\text {R Corvi }}$ Urs．Maj．		$-18{ }^{\circ} 4^{\prime}$ +602	（M6e） （M6e）	318 257	$\begin{aligned} & \binom{22 .)}{(-98 .)} \end{aligned}$	二 34
	R Virginis．			M6e	146		
59	${ }_{\text {S }}$ U Urs．Maj．	1239.6 129	＋6I +68 +385	$\mathrm{Se}_{(\mathrm{Sle}}$	226	$\left(\begin{array}{l}\text {（ }+2 . \\ (27 .)\end{array}\right.$	－ 4.1
	U Can．Ven．	1242.6	＋3855	（M8e）		（－27．）	－ 43.7
61	${ }^{\mathrm{U}}$ Virginis	1246.0	＋ 66	M5e	207	$\square^{-42 .}$	－ 58.1
	V Virginis	$\mathrm{I}_{3} 22.6$	－ 239	M6e	250	$(+33.7)$	＋ 25.1
	${ }_{\text {R }} \mathrm{S}$ Hydrae		-2246 -645	${ }_{\text {M8e }}$	425	（ + －5．${ }^{\text {c }}$	－ 22.8
	${ }_{\text {T }}^{\text {S }}$ Centauri	13 13 13 13	－${ }^{6} 4 \mathrm{4I}$	M7e Mie	377 90	$(+11.3)$ +24.	－${ }_{2 \mathrm{ra}}^{4.7}$
66	W Hydrae	1343.4	－27 52	M8e	384	$+42.3$	＋ 20.4
	R Can．Ven．	${ }^{13} 44.5$	＋40 2	M6e	333	$\xrightarrow{-8.9}$	＋23．4
	${ }_{\text {U }}$ U Urs．Min．	$\begin{array}{ll}14 & 15.11 \\ 14 \\ 19 & 19.5\end{array}$		（M6e）	327 327	（－31．0）	－ 43.3
	RS Virginis	$\begin{array}{ll}14 & 19.5 \\ 14 & 22.3\end{array}$	a +548 +58	$\underset{\text {（M6e）}}{ }$	270 355	$\left(\begin{array}{l}\text {（－17．0）} \\ -25.6)\end{array}\right.$	－ 25.0 -40.0
71	R Camelop．	1425.1	＋84 I 7	Se	270	（－32．）	－ 42.9
72		14 25.7 1 3	＋39 18	（M6e）	256	－31．	－ 42.
73	$\stackrel{\text { R }}{ } \mathrm{Y}$ Boötis		＋ +2710 $-\quad 38$	（ ${ }_{\text {M }}^{4}$ e	223 272	${ }^{-46 .}$	
75	${ }_{\text {S }}$ Librae	15 15 15.7	－${ }^{-5} 58$	（M2e）	192 192	（＋295．3）	＋${ }^{15} 5.0$
76.	S Serpentis	1517.0	＋1440	M5e	368	（＋13．5）	$-\mathrm{I} .9$
77	S Cor．Bor．		$\pm{ }^{+31} 44$	（M8e）	361	－-1.0	－ 22.
78	RS Librae	1518.2	－ 2233	$\mathrm{Mr}^{\text {e }}$	219	（－2．I）	-15.1
	RU Librae	$\begin{array}{ccc}15 & 27.7 \\ 15 & 33.4\end{array}$	－14 59 +785	$\left(\mathrm{M}_{4} \mathrm{e}\right)$	${ }_{3} 314$	(-48.2)	－ 59.5
		1533.4	＋78 58	M7e	324	（－40．7）	-52.7
81	${ }^{\text {R }}$ Serpentis	1546.1	＋15 26	M7e	357	＋27	＋ 6.9
	RR Librae	$\begin{array}{rl}15 & 50.6 \\ 16 \\ 18 \\ 1.7\end{array}$	-18 +18 +18	${ }_{\left(M_{55}\right)}^{M_{5}}$	277 3 3	（－32．3）	$=40.6$
	U Serpentis	$\begin{array}{ll}16 & 1.7 \\ 16\end{array}$	＋10 12	${ }^{\text {M }}$	328 248	(-29.3)	－ $\begin{aligned} & \text { 22．7 } \\ & -39.8\end{aligned}$
	RU Herculis	166.0	＋2520	M 7 e	486	（－15．3）	－ 37.6
86.	W Cor．Bor．	$\underline{16}$ II． 8	＋38 3	$\mathrm{M}_{4} \mathrm{e}$	244	（＋20．1）	＋ 10.5
	U Herculis		＋19 7		403	（－22．5）	－ 40.4
88	W Herculis	$1{ }^{16} 31.8$	＋3732	$\left(\mathrm{M}_{4} \mathrm{e}\right)$	280	（－5I．）	－ 59.
89	R Draconis	${ }^{16} 322.4$	＋66 58	（M5e）	${ }^{246}$	${ }^{-138 .}$	－144．2
	S Herculis	16 47.4	＋15	（M5e）	308	（－10．7）	－ 21.3
$9 \mathrm{9x}$	RR Scorpii	1650.2	－30 25	M7e	28 I	（－36．6）	－ 45.1
	SS Ophiuchi	${ }^{16} 52.7$		（M6e）	230	（－30．3）	－ 42.9
	${ }_{\text {R }}^{\text {R Ophiuchi }}$	$\begin{array}{ll}17 & 2.0 \\ 17 \\ 17 & 14.5\end{array}$	－15 58 $+\quad 137$	${ }_{\left(M_{42}\right)}$	302 348 3	（－49．）	－ 59.
	RS Herculis	${ }_{17} 178$	＋23	（M6e）	223	（－37．8）	－
96.	RY Herculis		＋1929	M4e			
97.	T Herculis	I8 5.3	＋37 ${ }^{\circ}$	（M3e）	165	（－125．）	－ 313.
98		18 II． 5	＋3638		197		
100．	RY Ophiuchi X Ophiuchi	I8 81 II .6 I 8 33.6	a +340 +844	M ${ }_{\text {M }}$	153 335	(-67.2) -70.6	
roi．	AE Herculis	1839.0	＋22 54	M6e		（－48．）	
102	R Aquilae	19 1． 6	＋85 5.	M7e	355		＋${ }^{62.4}$
	${ }_{\text {T }}$ R Sagittarii	19 10.5 19 10.8 0	－${ }^{17} 9^{\prime}$		38 r	$(+4$.	－ 19.4
104	RT Aquilae	$\begin{array}{lll}\text { I9 } & \text { Io．} \\ \text { I9 } & 33.3\end{array}$	－ 1929	（M6e）	269	（－44．3）	－ 52.3
105	RT Aquilae	1933.3	＋11 30	M8e	326	（－42．0）	－ 54.2
106.	${ }^{\text {R C Cygni }}$		＋4958		426	（－15．）	-45.0
	RT Cygni	1940.8	＋4832	（M3e）	${ }_{19} 9$	（－115．0）	－ 125.5
108.	${ }^{\chi} \mathrm{C}$ Cygni		$\begin{array}{r}\text {＋} \\ +3240 \\ +4946 \\ \hline\end{array}$	M6e	406		－ 19.7
109		1958.6 20 20.4	$\begin{array}{r}\text {＋} \\ +49 \\ +5{ }^{46} \\ \hline\end{array}$	M5e （M2e）	${ }^{263}$	(-165.1)	－173．1
	S Cygni	203.4	＋5\％ 42	（M2e）	323	（－21．7）	－ 33.7

TABLE V-Continued

No.	Name	a 1900	$\delta 1900$	Sp.	Period	Velocity	
						Abs.	Em.
					days	km/sec	
111	Z Aquilae	$20^{\text {b }} 9 \mathrm{~m}{ }^{\text {m }}$	$-6^{\circ} 27^{\prime}$	M3e	129	(-7.9)	- 10.3
11	R Delphini	20 ro. ${ }^{\text {r }}$	+ 847	(M6e)	284	(-46.r)	- 54.8
113	V Aquarii	204 r .8	+ 24	M6e	246	(-43.4)	- 52.9
114	T Aquarii	2044.7	-53x	M3e	203	-38.2	- 54.9
115.	X Delphini	2050.3	+17 16	M5e	281	-56.2	-62.9
1 m 6.	R Vulpeculae	2059.9	+2326	(M4e)	137	(-14.)	-17.
117	T Cephei	2 P 8.2	+68 5	M7e	387	-ro.7	- 26.1
118	R Equulei	2 l 8.4	+1223	(M6e)	262	(-54.0)	- 62.0
119.	RR Aquarii	2 Lr 9.8	- 319	M3e	180	(-182.0)	-191.0
120.	W Cygni	2132.2	+4456	(M4e)	132	-27.	- 26.
121.	T Pegasi	224.0	+12 3	(M6e)	374	(-8.2)	- 23.9
12	RS Pegasi	$22 \quad 7.4$	+14 4	(M6e)	436	(-20.0)	- 40.0
123	RT Aquarii	2217.7	-22 34	M6e	241	(-33.)	- 43.
124	S Lacertae	2224.6	+3948	M5e	238	-59.7	-65.9
125.	R Lacertae	2238.8	+4151	(M6e)	300	(+18.1)	+ 8.2
126.	S Aquarii	2251.8	-20 53	(M6e)	280	(-57.9)	- 66.4
127.	V Cassiop.	$23 \quad 7.4$	+598	M6e ${ }^{\text {。 }}$	230	-30.5	- 47.6
128.	W Pegasi	2314.8	+2544	(M7e) ${ }^{\circ}$	342	(-22.)	- 35.
129	S Pegasi	2315.5	+82	(M6e)	318	$(+5$.	- 7.
130.	R Aquarii	2338.6	-15 50	$\mathrm{M}_{7} \mathrm{e}+\mathrm{P}$	387	-19.	- 33.
131.	V Ceti	2352.8	- 931	(M3e)	261	(+51.1)	$+43.1$
132.	R Cassiop.	2353.3	+50 50	M7e	432	+30.	+ 8.2
133	SV Androm.	2359.2	+3933	M7e	298	(-89.1)	- 98.8

Two more subdivisions in continuation of this sequence, M_{7} and M8, were used, but no standard spectra not subject to variation are known to us. $\quad \mathrm{M}_{9}$ and Mio are available for the spectra of certain stars at times other than maximum. Parentheses in the fifth column indicate that the classification is somewhat uncertain because, in most instances, of underexposure of the spectrograms. No star was included in this table unless emission lines of hydrogen had been measured in its spectrum.

The Harvard values of the period are given in the sixth column. Two stars marked as irregular, namely, X Monocerotis ${ }^{\mathrm{I}}$ and RT Hydrae, are included because their spectra are much like those of the periodic stars.

All the figures in the last column, and all those in the preceding column not in parentheses, are observed values and are taken from Tables III and IV or from the Publications of the Observatory, University of Michigan, 2, 50 ff , 19ı6. Slight corrections have been
${ }^{1}$ See note on p. 234.
made to some of the absorption-line velocities in the Ann Arbor list by using additional lines in the reductions. The absorption values in parentheses have been found from the emission velocities in a manner that will be described presently.

Relative displacement of bright and dark lines.-Spectrographic observations made at the Lick Observatory in 1897 and 18988^{1} showed the effective centers of the bright $\mathrm{H} \gamma$ and $\mathrm{H} \delta$ lines to be displaced toward the violet with respect to the absorption spectrum. Bright lines at λ_{4308} and λ_{4376}, if identified with iron lines, showed corresponding displacements. These results were confirmed and extended by Stebbins in 1902. ${ }^{2}$ Similar behavior was found for the bright lines of χ Cygni by Eberhard in I90I and 1902. ${ }^{3}$ It seemed probable, as Eberhard remarked, that this is typical of long-period variables having the same type of spectrum. The present investigation, including the Ann Arbor measurements, makes it certain that this is the case, and also indicates the same effect for three S-type stars. Moore has found the same phenomenon in the spectrum of one N-type variable, U Cygni. ${ }^{4}$ The occurrence of this relative displacement in such diverse types of spectra is very interesting and should be held in mind in considering the general problems of long-period variables of the three spectral classes.

The relative displacements of the bright lines have been measured for 47 variables of classes M and S . The results, computed from data in Table V, together with the spectral class, the period, and the magnitude range are collected in Table VI. Omission of the decimal of a kilometer in the column A. - E. denotes considerable uncertainty, except for the stars S Coronae Borealis and R Aquarii, in which cases the record does not show the decimal. As a matter of fact, no value in Table VI is reliable to a tenth of a kilometer, but the decimal has been used when available to prevent the accumulation of errors in plotting and computing.

[^2]TABLE VI
Measured Displacements of Absorption and Emission Lines

No.	Name	Spect.	Period	Mag. Range	A. -E.	Wt.
			days		km	
3	T Androm.	M6e	28I	6.0	$+4.8$	1
4	T Cassiop.	M8e	444	5.8	+r3.8	2
5	R Androm.	Se	411	8.4	+28.1	2
7	U Cassiop.	Se	276	8.0	+ir. 6	I
12	U Persei	M6e	320	3.9	+ 5.1	I
13	R Arietis	M3e	186	5.9	+12.4	2
14.	W Androm.	M8e	395	7.5	+16. ${ }^{\text {r }}$	2
15	o Ceti	M6e	332	7.6	+16.2	2
16	R Ceti	M4e	167	6.2	+10.9	I
17	U Ceti	$\mathrm{M}_{3} \mathrm{e}$	236	6.1	+12.4	I
18.	R Trianguli	$\mathrm{M}_{5} \mathrm{e}$	267	6.7	+ 7.1	2
19	R Persei	M3e	210	5.9	+ro.9	I
29	U Orionis	M8e	374	7.0	+20.2	1
33	X Monocer.	$\mathrm{M}_{4} \mathrm{e}$	155	2.0	+ 9.5	I
35	R Gemin.	Se	370	7.4	+21.4	I
37.	L_{2} Puppis	(M5e)	140	2.8	+ m .6	2
38.	V Gemin.	M4e	276	6.5	+il. 4	I
42	R Cancri	M7e	362	5.3	+13.7	2
44	RT Hydrae	M7e	irreg.	I. 8	+ 5.	1
50.	R Leo. Min.	M8e	372	6.0	+12.6	2
51	R Leonis	M8e	313	5.9	+r6.8	2
53	R Urs. Maj.	(M6e)	302	6.5	+11.	1
54	Z Urs. Maj.	M6e	120	1.5	+ 5.8	2
58	R Virginis	M6e	146	5.7	-I .	I
61	U Virginis	$\mathrm{M}_{5} \mathrm{e}$	207	6.0	+r6.	1
63.	R Hydrae	M8e	425	5.8	+17.8	2
65	T Centauri	Mre	90	2.7	+ 3.	1
66	W Hydrae	M8e	384	I. 3	+r5.9	2
67	R Can. Ven.	M6e	333	6.6	+14.7	1
72	V Boötis	(M6e)	256	4.1	+if.	1
	R Boötis	$\mathrm{M}_{4} \mathrm{e}$	223	6.3	+ir.	I
77.	S Cor. Bor.	(M8e)	361	$7 \cdot 3$	+21.	2
8 I	R Serpentis	M7e	357	7.4	+20.1	1
89.	R Draconis	(M5e)	246	$5 \cdot 7$	+6.2	1
96.	RY Herculis	M4e	222	$5 \cdot 3$	+11.2	2
98.	W Lyrae	M5e	197	4.9	+ 9.	I
100.	X Ophiuchi	M6e	335	5.2	+13.2	2
102	R Aquilae	M7e	355	>6.2	+8.7	2
108	χ Cygni	M6e	406	9.5	+19.2	2
114.	T Aquarii	M3e	203	6.3	+16.7	I
115.	X Delphini	$\mathrm{M}_{5} \mathrm{e}$	28 I	>5.	+ 6.7	2
117.	T Cephei	M7e	387.	5.4	+15.4	I
120.	W Cygni	(M4e)	132	1.7	- I .	I
124.	S Lacertae	M ${ }_{5}$	238	$4 \cdot 5$	$+6.2$	2
127.	V Cassiop.	M6e	230	$5 \cdot 3$	+17.1	2
130.	R Aquarii	M7e	387	4.8	+14.	2
132.	R Cassiop.	M7e	432	$7 \cdot 5$	+21.8	2

STATISTICAL STUDIES
Relative displacement of bright lines.-Inspection of Table VI shows that the relative displacements (absorption minus emissionline velocity) for different stars differ by amounts greater than the errors of measurement. Studies were therefore made of the relationship of the displacement to spectral type, period, and range, respectively.

The mean displacements for each spectral type are shown in Table VII. The second column gives the average displacement (absorption minus emission) when each star is counted as one; the

TABLE VII
Displacement of Emission Lines as Related to Spectral Type

Type	Equal Weights		Weights x and 2	
	Mean Displ.	No.	Mean Displ.	Wt.
Mre.	3. km	I	3. km	1
M2e.		-		-
M3e.	13.1	4	13.0	5
M4e.	8.7	6	9.2	7
M 5 .	9.0	7	7.3	10
M6e.	10.6	1 I	11.8	16
M7e.	14.1	7	15.7	Io
M8e.	16.8	8	16.2	14
Se.	20.4	3	22.3	4

fourth column gives the displacements with weights I and 2, as indicated in Table VI, except that L_{2} Puppis and S Coronae were given weight I because of some uncertainty in the determination of the spectral type. The table shows that the displacement increases with advancing spectral type, although class $\mathrm{M}_{3} \mathrm{e}$ is an exception, possibly because of the small number of stars included. The three stars of class Se have high values, but Figure 2 shows an influence depending on the period. The curve defined by the three S-type stars lies about 6 km above the corresponding portion of the curve for Me stars.

The stars were then divided into three nearly equal groups according to the size of the displacements, omitting the three stars of class S. The resulting mean displacements and types are given
in Table VIII. The correspondence between advancing type and increasing displacement is again shown.

If the stars with known periods are divided into three groups according to the period, we find the results given in the first portion of Table IX. If the same stars are grouped according to the

TABLE VIII
Mean Displacements and Mean Types by Groups

Group	No.	Mean Displ.	Mean Type
I.	I5	5.6 km	M 5.0
2.	I5	12.5	M 5.5
3..	14	I7.8	M 6.9

TABLE IX
Mean Displacement and Mean Period by Groups

	Group	No.	Mean Period	Mean Displ.
Arranged by period.	I	I5	days	km 9.2
	$\{2$	I5	297	10.3
	3	I5	394	I7.9
Arranged by displacement...	I 1	I5	219	$5 \cdot 7$
	22	I5	314	12.7
	3	I5	356	19.0

TABLE X
Mean Displacement and Mean Range by Groups

	Group	No.	Mean Range	Mean Displ.
Arranged by range.			mag.	km
		15	3.6	9.4
	2	I5	5.8	12.2
	3	I5	$7 \cdot 5$	I7.5
Arranged by displacement...	1	15	4.I	$5 \cdot 5$
	2	I5	$5 \cdot 7$	12.7
	3	I5	6.7	19.0

size of the displacement, we obtain the figures in the second portion of Table IX. In both cases the period increases with the displacement.

Proceeding in the same way for displacement and magnitude range, we have the figures in Table X , which show that the displacement increases with the range.

It thus appears that the displacement increases, on the average, with spectral type, with period, and with magnitude range. The accordance of individual stars for the period relationship is fair, but for spectral type and especially for range it is poor, the plotted results being scattering. We might expect the displacements to be closely correlated with spectral type, but this is not the case, although a statistical relationship is undoubtedly present.

The stars with ranges of less than five magnitudes have in general small displacements, and those with ranges above seven magnitudes have large displacements, but for the numerous stars having ranges between five and seven magnitudes the dispersion in displacement is large. One star, W Hydrae, deserves special mention as the outstanding exception to the rule that stars with small ranges have small displacements. Its period and spectroscopic behavior are typical of stars of type M8e, but it has the remarkably small range of I. 3 magnitudes. It is barely possible that, like X Ophiuchi, it is a double star. R Aquarii also has a magnitude range somewhat smaller than is typical of its period and spectral type. This may be due to the influence of the portion of the star connected with the emission of the nebular lines.

The best accordance shown by individual stars is in the case of the period relationship. Even here the deviations of some stars appear to exceed the errors of observation, although more material is perhaps necessary to establish this beyond doubt. In any event the period relationship offers the best method available of reducing the measured bright-line velocity of a star to a dark-line basis.

We must now face the question whether the displacements of the bright lines, or of the dark lines, or neither, yield the true radial velocity. In the case of one star, X Ophiuchi, a direct answer is available in favor of the absorption lines. The evidence is fully stated in another paper ${ }^{r}$ and need not be repeated here. In R Aquarii the velocities from the nebular lines more nearly coincide with those from the absorption lines than with those from the bright lines connected with the M-type spectrum. ${ }^{2}$ In both of these stars the Me spectrum seems to be a normal one. Statistical investigations of the motions also favor the absorption lines as yielding

[^3]essentially the true radial velocities. A solution for the sun's motion with respect to 83 Me variables, using emission-line velocities, gave a K term of -1.7 km , but a solution from the darkline velocities of 133 stars. (II9 of class Me and I4 of class Se) gave a K term of +3.9 km ; omitting one very high velocity star, S Librae, the K term came out -0.2 km . The K term for 76 of the slower moving variables (using absorption-line velocities) was +r. 3 km . Another selection of 68 slow-moving variables gave a K term of + r. km . It seems clear therefore that for a study of the motions of these stars the absorption-line velocities are to be preferred to those from the emission lines.

In order to reduce the emission-line velocities to an absorptionline basis, the measured displacements were plotted against the periods; a curve drawn to represent the resulting points is shown in Figure 2. The observations seem to demand a maximum near 220 days, but it is uncertain what physical meaning should be attached to this feature. From the appearance of the plot we might infer that there exists a group of stars with periods in the neighborhood of 200 days, which have larger displacements than called for by the general progression shown by stars of longer and shorter periods. We might accordingly continue the general run of the curve across the interval from 140 to 260 days, but for the purpose of making an empirical determination of the displacement corresponding to a given period, it seemed best to draw the curve as indicated. .For those stars for which emission lines only have been measured, the hypothetical dark-line velocities were obtained by applying the displacements read from the curve. The S-type stars were treated separately; only 3 were available as standards and these are marked by the letter S in Figure 2. The dark-line velocities determined in this manner are given in the next to the last column in Table V, in parentheses to distinguish them from values depending directly upon measurement.

In the earlier work at Ann Arbor it was noticed that two stars with especially short periods, namely L_{2} Puppis and W Cygni, showed practically zero displacements. From a study of the Ann Arbor data Ludendorff was led to state ${ }^{x}$ that "the magnitude of
${ }^{2}$ Astronomische Nachrichten, 212, 483, 1921.
the displacement of the hydrogen emission lines depends on the period of the star." In spite of the meager material at his disposal, this conclusion is essentially correct, being substantiated by the more extensive data reported in the present paper. It has seemed best, however, not to assume a linear relationship between displacement and period, as was done by Heiskanen and Ludendorff, ${ }^{\text {r }}$ to reduce emission-line velocities to a dark-line basis.

Fig.2.-Relative displacement of emission lines (Abs. - Em). Observations represented by dots have one-half the weight of those represented by circles.

Group-motion of long-period variables.-The highly specialized character of the light variations and of the spectra of long-period variables leads us to examine their motions to ascertain whether they differ in any way from the average motions of other stars. We may consider first the common or group-motion of the variables, and second their random or individual motions.

The Ann Arbor data ${ }^{2}$ strongly suggested a group-motion in a general direction opposite to that in which the sun is moving with respect to other stars. Heiskanen and Ludendorff ${ }^{3}$ emphasized the fact that the result depended to a considerable extent on the
r Ibid., 213, 297, 1921.
${ }^{2}$ Publications of the Observatory, University of Michigan, 2, 63, 1916.
${ }^{3}$ Astronomische Nachrichten, 213, 297, 1921.
influence of a few rapidly moving stars, and thought that no real stream-motion existed. With the additional velocity determinations now available, we are in a position to discuss this question to much better advantage than before.

The following computations have been based on the absorptionline velocities as tabulated in the next to the last column in Table V. The positions and velocities of the 133 stars included in this table are charted in Figure 3. The deficiency of observed stars in the

Fig. 3.-Chart of long-period variables whose radial velocities have been measured. Class Se stars are indicated by circles. The position of the solar apex for the 133 stars is marked by the cross just below the word "apex"; another cross, to the right and below, indicates the computed position when the most rapidly moving star, S Librae, is omitted. The dotted curve is the great circle whose poles are the apex and ant-apex.
southern hemisphere is, of course, an unsatisfactory feature. It is hoped that before long data will be available for additional southern stars. Other irregularities in the chart correspond more or less closely to the actual distribution of variables in the sky. As has been frequently pointed out, this is by no means uniform, a decided lack of stars existing near right ascension eleven hours.

In the first place, a least-squares solution for the solar motion with respect to all the 133 variables was made with the following results:

$$
A_{0}=287^{\circ} \div, D_{0}=+4 \mathrm{I} \because 0, V_{0}=55.0 \mathrm{~km} / \mathrm{sec} ., K=+3.9 \mathrm{~km} / \mathrm{sec} .
$$

The position of the apex is about the same as that given by several investigators for stars of classes K and M , but the speed of the sun is nearly three times as great as that usually found. As the variables have high random motions, ${ }^{\text { }}$ we may recognize in the facts above a phase of the dependence of solar motion upon the speed of the stars, as brought out by Boss, ${ }^{2}$ Adams and Joy, ${ }^{3}$ and Strömberg. ${ }^{4}$

In computations concerning the motions of the stars the questions of grouping the material and of rejecting apparently exceptional stars are often troublesome, especially when, as in the present investigation, the total number of stars treated is small. If the stars are divided into strictly homogeneous groups, the number in each group may become so small that the results are untrustworthy. For this reason I have avoided the use of more than two groups in solutions for the solar motion. Several methods of grouping are possible, but the only one used here is that based on the random motion of the individual stars as a criterion of selection. The following computations are those which seemed the most suggestive, but they do not constitute an exhaustive treatment of the data. Other investigators may find further computations profitable.

One star, S Librae, has such a high velocity that it stands quite by itself in the plot in Figure 4. A solution for the solar motion with this star omitted is shown in Table XI. The large effect of this star is, of course, due to the fact that the determining factors are the squares of the residuals. Some other system of solution would probably be preferable. The arithmetic mean residual for the 132 stars has not been computed, but it is estimated to be between 30 and 3I kilometers.

The small value of the K term gives us confidence that the method of reducing the emission-line velocities to a dark-line basis is reasonably accurate.

In order to bring out the possible dependence of the computed solar motion upon the peculiar velocities of the stars involved, the variables were divided into two groups according to the numerical size of their residual velocities, which were found by applying

[^4]to the absorption-line velocities a correction for the solar motion computed from the I33 variables themselves, as given on page 252 . Sixty-eight stars were found to have residual velocities equal to or less than 25 km , and 65 to have residual velocities exceeding this figure. Separate solutions for the solar motion were based on these

Fig. 4.-Residual radial velocity and spectral type. Spectroscopically class Se is not a continuation of the sequence Mre-M8e; it is placed at the end of the diagram for convenience and to show the correspondence in velocity to classes M7e and M8e.
two groups. The resulting data are shown in Table XI. A previous solution based on the emission-line velocities of 83 stars 1 is included for comparison. The solution based on 76 stars with low residuals will be described presently.

The increase in V_{o} in going from the 68 slow-moving stars to the 65 rapid ones is very marked, and seems to be a fine illustration of the velocity asymmetry of high-speed stars.
${ }^{1}$ These stars were not selected for small velocity but included all that were available when the solution was made.

The 68 slow-moving stars give a value of V_{o} much greater than that usually found, and, on the face of it, this indicates a strong group-motion prevailing among the variables independently of their high speed. These figures may be somewhat misleading, however, as a little consideration will show that the two solutions lead of necessity to results much like those based on all the stars. As far as the 68 stars are concerned, they have been selected in such a way that their motions must nearly equal that called for by the general solution, and hence they are not likely to yield very different results. On the other hand, the group of 65 rapidly moving stars will contain the high residuals which, since the method of solution is that of least squares, counted most heavily in the general

TABLE XI
Solutions for Solar Motion

	All	Omitting S Librae	Low R	duals	High Residuals	Emission-Line Velocities
Number.	133	132	68	76	65	83
A_{0}	287. 1	280.7	283.5	$263 \cdot 9$	289.2	$274 \cdot 4$
D_{0}	+41.0	$+33.2$	+35.6	+34.4	+46.2	+44.0
V_{0}	55.0 km	52.5 km	47.9 km	29.0 km	64.6 km	55.9 km
K.	+ 3.9	-0.2	+ I.I	+ I. 3	+ 7.9	- 11.7
Arith.						
$\left.\begin{array}{l}\text { Mean } \\ \text { Resid. }\end{array}\right\}$.	33.4		II. I	I3 3	56.8	30.9

solution, and hence will tend to reproduce the same figures. We must therefore exercise caution in interpreting similarities in the results of the three solutions. The same reasoning, however, leads us to rely on differences in the figures as probably having a real meaning. The increase in V_{0} with speed, for example, is scarcely to be explained except as a physical fact.

Another procedure was adopted to test the systematic motions of the slowly moving variables. The residuals from the ordinary solar motion, $A_{0}=270^{\circ}, D_{0}=+30^{\circ}, V_{0}=20 \mathrm{~km}$, were first computed. Seventy-six stars having residuals less than 30 km were then made the basis of a new solution. The results are in the fifth column of Table XI. Although the mean residual, regardless of sign, 13.3 km , is not greater than that for stars of classes F, G, K , and M , the solar motion nevertheless is increased from 20 to 29 km . Moreover, reasoning similar to that outlined above shows
that the method of selection tends to make this difference unduly small. Hence the conclusion seems to be justified that long-period variables have a general group-motion, largest, it is true, for the high-speed stars, but not zero for the slow ones.

Random motions.-It is well known that the average random motion varies for groups of stars of different spectral types or different absolute magnitudes. The general rule is that it increases with advancing spectral type, and decreases with increasing luminosity. The residual motions of the individual variables have been computed from several solutions for the group-motion, and have been grouped and tabulated in various ways in an attempt to bring out possible systematic relationships to other quantities.

TABLE XII
Spectral Type and Residual Velocity

Type	Number	Arith. Mean Residual
Mie.		km
M2e.	6	78
M3e.	13	56
M4e.	16	32
M5e.	19	40
M6e.	30	28
M7e.	20	25
M8e.	14	2 I
	14	24

First, the residuals from the ordinary solar motion were found, assuming $A_{0}=270^{\circ} .0, D_{0}=+30^{\circ} .0, V_{0}=20.0 \mathrm{~km}$. The arithmetic mean residual is 35.5 km . This is the largest value found for any group of stars selected on the basis of spectral type. ${ }^{\text {r }}$ It may be reduced to 35.3 km by applying an arbitrary correction of +3.6 km to all the residuals. For a solar motion based on the I33 variables themselves the arithmetic mean residual velocity is 33.4 km . By omitting one star this would be reduced about 2.5 km .

The relationship of residual motion to spectral type was next considered. The mean residual velocities for each type from the solution for 133 stars were found with the results shown in Table XII.

[^5]Here we find a strong tendency for the random motion to decrease with advancing type, the velocity of the Se stars corresponding to that of classes M_{7} e and M8e. The residuals from the other solutions have also been grouped according to spectral type, the results being exhibited in Table XIII.

The most rapidly moving stars show an evident tendency to favor the earlier spectral classes. Among the slowly moving stars one could not expect to find a decided progression with type, but in the case of the 68 stars selected by residuals from the solution based on the variables themselves, there appears to be a trace of it. In the case of the 76 stars selected on the basis of the residuals from the ordinary solar motion, the selection has little or nothing

TABLE XIII
Mean Spectral Type and Resmual Velocity by Groups

Types	All			Hige Residuals			Low Residuals								
				68 Stars	76 Stars										
	Mean Type	No.	Mean Resid.				$\begin{aligned} & \text { Mean } \\ & \text { Type } \end{aligned}$	No.	Mean Resid.	Mean Type	No.	Mean Resid.	Mean Type	No.	Mean Resid
			km			km			km			km			
Mie-M4e.	$3 \cdot 5$	36	47	3.1	20	74	3.4	16	14	3.1	I7	10			
M5e-M6e.	5.6	49	32	5.6	25	53	$5 \cdot 7$	24	II	$5 \cdot 7$	23	15			
M7e-M8e.	7.4	34	24	7.4	I3	46	7.4	2 I	10	7.4	26	15			
Se.		14	24		7	40		7	II		10	12			

to do with characteristic properties of variable stars and the mean residuals probably have no significance. The correlation of high speed with early spectral type is evidenced, however, by the numbers of stars involved in the various groups. Among the high residuals the ratio of the number of stars in classes M_{1} to M_{4} to those in classes M7 and M8 is 1.5 , while the same ratio for the stars with low residuals is 0.8 in one case and 0.7 in the other. If the stars are divided into several groups according to size of the residual velocity, the mean spectral type of each group tends to decrease with increasing velocity. Both methods of grouping exhibit irregularities in the correlation between type and velocity, however, showing that the relationship is of a general statistical nature and not binding on individual stars.

The relationship between light－period and velocity was next examined．The stars involved in each solution were arranged in order of period and divided into equal or nearly equal groups．In the main solution for 133 stars，seven groups were formed；in the solution for 68 and 65 stars，five groups each．The mean periods and the mean residuals for these groups are tabulated in Table XIV．

On the whole there is a decided tendency toward slower motion with increasing period．This appears most clearly among the stars with high residuals．Among the stars with low residuals the

TABLE XIV
Period and Residual Velocity

Group	All		Hige Residuals		Low Residoals	
	Mean Period	Mean Residual	Mean Period	Mean Residual	Mean Period	Mean Residual
	days	km	days	km	days	km
I	I 55	64	174	90	I7	13
2.	227	27	254	62	242	12
3.	260	37	293	50	291	10
4.	289	36	328	38	350	7
5.	323	2 I	380	48	428	15
6.	359	3 I				
7.	418	24				

total range of velocity is so small that a strong progression cannot be expected．The fact that long－period stars tend to have small residuals is indicated，however，by the fact that the last two groups have a larger mean period than the corresponding groups of the stars with high residuals．

The correlation between period and velocity is incomplete in that stars of low velocity may have any length of period．It seems clear，however，that very high velocities are largely confined to stars having short periods．${ }^{\text { }}$

Heiskanen and Ludendorff，in a study based on 44 variables，${ }^{2}$ called attention to the probable dependence of velocity upon period， and pointed out that at least the dispersion of the radial velocities

[^6]decreases with increasing period. This is confirmed by the more extensive data of the present article.

That the apparently fainter variables are moving more rapidly than the brighter ones, as indicated by the Ann Arbor measurements, appears to have been an accidental result due to high velocities of comparatively few stars, as the present data do not afford much evidence of such a relationship.

Fig. 5.-Residual radial velocity and period. Class Se stars are indicated by circles.

It is a pleasure to acknowledge the able assistance of Miss Cora G. Burwell in making the computations described in the foregoing pages.

GENERAL DISCUSSION

The main purpose of this article, which is to present observational results concerning the radial velocities of long-period variables, has been accomplished in the preceding pages, which contain also some computations and tabulations exhibiting certain statistical relationships. Some features of the data are very puzzling and
seem quite out of harmony with the more general facts of stellar motions and with plausible hypotheses as to the place of the variable stars in stellar evolution. No attempt is made to explain these phenomena and to co-ordinate them with other astronomical facts, and the article is concluded with only a brief recapitulation of the general results and a cursory examination of some of the problems involved.

The very extensive photometric and spectroscopic data concerning long-period variables of class Me gathered by many observers, but chiefly by those of the Harvard College Observatory, have shown that the average values of the following characteristics vary together as indicated:
r. Advancing spectral type ${ }^{r}$
2. Increasing period
3. Increasing magnitude range

The spectrographic observations discussed in this paper enable us to add to the list:
4. Increasing displacement of bright lines relative to absorption lines
5. Decreasing random velocity

It is not easy to decide which of these relationships arise directly from physical causes, and which are incidental. The correlation of magnitude-range with relative displacement of the bright lines and with random velocity appears to have little direct significance. The relative displacement of the bright lines seems to be most clearly connected with the period, while the random velocity is correlated about equally well with type and with period. But in all these correlations neglected factors are evidently present, which in some stars are more potent than the general statistical tendencies and cause a considerable spread in values from individual stars.

One might expect the relative displacement of the bright lines to vary more directly with type than with period, but this is not the case, and it is really not surprising in view of the fact that S- and

[^7]N-type stars exhibit similar displacements and that the S stars also show a progression with period. Some fundamental property such as mass or density probably influences both period and displacement.

The decrease of average random velocity with advancing type and increasing period is difficult to understand if we make the natural assumption that the Me stars continue the main sequence of types from B to M . According to this view, there is a great increase in velocity in passing from the ordinary M stars to those of classes $\mathrm{M}_{3} \mathrm{e}$ to M_{5} e and then a decrease for classes M6e to M8e. This is so improbable that one can scarcely avoid the conclusion that we have to deal with something more complex than a single evolutionary sequence of identical objects passing from M8e to K. It may well be that individual stars differ in certain properties; e.g., mass or chemical composition, or that their cosmical environments are not sufficiently uniform to cause all stars to pursue precisely the same train of behavior.

The periods and the random velocities of the S-type stars are nearly the same as those of types M7e and M8e, but their spectra certainly do not belong at the end of the sequence Mre-M8e. Judging from its general appearance, the typical S spectrum more nearly corresponds to that of Class Mr_{1} or M_{2}.

From twenty-five stars of class N, Moore ${ }^{\mathrm{I}}$ found a mean residual velocity of 18.0 km , which is decidedly less than the corresponding value for class Me , and somewhat less than that for class Se . The solar motion from the N stars does not resemble that from the Me stars, so that we may say that radial velocity data do not suggest a close connection between variables of classes M and N .

The average residual radial velocity of the Me stars is nearly the same as that of 102 planetary nebulae. ${ }^{2}$ Whether or not this fact has any physical significance is a question for the future.

If the Me variables form a part of the main evolutionary sequence, they apparently represent either an initial or a final stage; their high velocities, however, make it difficult to consider
${ }^{\text {x }}$ Lick Observatory Bulletins, 10, 160, 1922.
${ }^{2}$ Publications of the Lick Observatory, 13, 168, 1918.
them very young stars just beginning their visible careers, while, on the other hand, it is very improbable that they are aged and highly condensed objects about to sink into obscurity.

In spite of our very considerable store of data concerning these objects, it seems plain that we cannot cope with the fascinating problems which they present without securing many more facts. of various kinds.

The discussion of the velocity determinations may profitably be extended by using the proper motions which, chiefly through Wilson's work, ${ }^{\text { }}$ are now available for about 90 of the 133 stars having measured radial velocities. It is the intention of Dr . Strömberg and the writer to do this in another contribution.

Mount Wilson Observatory
June 1923
${ }^{\text { }}$ Astronomical Journal, 34, 183, 1923.

[^0]: ${ }^{\text {r }}$ Lick Observatory Bulletins, 9, 68, 1917.

[^1]: ${ }^{\text {土 }}$ Mt. Wilson Contr., No. 59; Astrophysical Journal, 35, 163, 1912.

[^2]: ${ }^{\text {I }}$ Astrophysical Journal, 9, 31, 1899.
 ${ }^{2}$ Lick Observatory Bulletin, 2, 93, 1902.
 ${ }^{3}$ Astrophysical Journal, 18, 198, 1903.
 ${ }^{4}$ Lick Observatory Bulletin, 10, 166, 1922.

[^3]: ${ }^{\text {土 }}$ Mi. Wilson Contr., No. 26ı; Astrophysical Journal, 57, 251, 1923.
 ${ }^{2}$ Mt. Wilson Contr., No. 200; Astrophysical Journal, 53, 375, 1921.

[^4]: ${ }^{1}$ The arithmetic mean residual from this solution is 33.4 km .
 ${ }^{2}$ Astronomical Journal, 35, 26, 1923, and references there given to earlier papers.
 ${ }^{3}$ Mt. Wilson Contr., No. 163; Astrophysical Journal, 49, 179, 1919.
 ${ }^{4}$ Mt. Wilson Contr., No. 245; Astrophysical Journal, 56, 265, 1922.

[^5]: ${ }^{\text {r }}$ The corresponding value for ro2 planetary nebulae is 36 km (Publications of the Lick Observatory, 13, 168, 1918). Is the agreement accidental?

[^6]: ${ }^{1}$ Averaging a little over 200 days．The stars with the very shortest periods， $90-150$ days，do not appear，from present data，to have extremely high velocities．
 ${ }^{2}$ Astronomische Nachrichten，213，297，1921．

[^7]: ${ }^{1}$ The correlation of the subdivisions of class Me with period becomes quite clear when the S-type stars are removed from the list. See Mt. Wilson Contr., No. 252; Astrophysical Journal, 46, 472, 1922.

