THE RADIAL VELOCITIES OF FIVE HUNDRED STARS ${ }^{\text { }}$

By WALTER S. ADAMS

The program of radial velocity work for the Cassegrain spectrograph during the past few years has consisted for the most part of observations on the following classes of stars:

1. A- and B-type stars, mainly between magnitudes 5 and 6.5 , a knowledge of whose motions is of particular interest as aiding in the determination of the elements of the two principal star-streams.
2. A, F, G, K, and M stars of magnitudes 5.5 to 6.5 which have very small astronomical proper motions. These may in general be considered as very distant stars of high luminosity, and are of interest as regards both their radial velocities and certain characteristics of their spectra.
3. Stars with measured parallaxes, most of which have very large proper motions. The magnitudes of these stars are chiefly between 5.5 and 8.5 . 2

In addition to these lists a number of brighter stars have been observed, for which determinations of radial velocity have been published from other observatories.

It seems desirable to make the results so far obtained available for the use of astronomers who are engaged in the discussion of stellar motions, and accordingly values are given in this communication for five hundred stars for which, with a few exceptions, three or more observations have been secured. Many other stars have been observed once or twice, and results for these will be published as soon as additional material has been obtained.

Several different optical combinations have been employed in the spectrograph during the course of these observations. The principal consideration which governs the dispersion to be used is, of course, the character of the spectrum of the star, but this has been modified in many cases by other factors. . For example, the

[^0]spectra of the small proper-motion stars have in almost all cases been photographed with low dispersion, although most of them are of the solar type, and so are well adapted for the use of high dispersion. It seemed desirable in their case to sacrifice accuracy to some extent in order to secure statistical material more rapidly, and to make it possible to institute direct comparisons between their spectra and those of the fainter stars of large proper motion and measured parallax. The different combinations used in the spectrograph may be summarized as follows. The linear scale denotes the number of Ångström units per millimeter. The $18-\mathrm{cm}$ camera has been used in the case of only three of the published results.

TABLE I

No. Prisms	Camera	Linear Scale at $\mathrm{H} \boldsymbol{\gamma}$	Stars Observed
$2 .$. I . I . I.	$\begin{gathered} 38 \text { and } 46 \mathrm{~cm} \\ \text { 102 } \\ 46 \\ 18 \end{gathered}$	$\left.\begin{array}{c} 2 \mathrm{I} \text { and } 18 \mathrm{~A} \\ \text { I6 } \\ 36 \\ 92 \end{array}\right\}$	A, B, and brighter parallax stars Small p.m. and parallax stars Parallax stars fainter than 8.5

Table II contains values for the individual stars. In view of the importance of the Preliminary General Catalogue of Boss for determinations of proper motion it has seemed preferable to designate the stars which occur in his catalogue by their numbers rather than to give a heterogeneous collection of names and catalogue numbers. The stars with measured parallaxes have the designations given in Groningen Publication, No. 24. Additional stars are indicated by the Lalande number so far as possible, the B.D. number being used only in a very few cases. The magnitudes are those of Harvard, with the exception of such as are given in parentheses, which are from miscellaneous sources.

The spectral classification has been made from the Mount Wilson negatives, and most of the determinations, particularly for the A and B stars, are due to Mr . Kohlschütter. Especial attention should be called to the M stars which are marked "peculiar." The peculiarity in nearly all cases consists in the combination of hydrogen lines of an intensity corresponding to that in G- and K-type stars with the bands of the M stars. Some of these stars, classified
according to the intensity of their hydrogen lines, have been discussed by Adams and Kohlschütter in a previous communication. ${ }^{\text { }}$

The total proper motion μ is in most cases derived from the values given by Boss. For the parallax stars it is taken from Groningen Publication, No. 24. The angle λ is the angle between the star and the sun's apex. The co-ordinates used for the apex are those adopted by Kapteyn,

$$
a=17^{\mathrm{h}} 59^{\mathrm{m}}, \quad \delta=+30.8
$$

and the values both for μ and λ are taken from a list calculated under his direction for all of the stars given in Boss's catalogue.

The first of the two columns in Table II denoted by v contains the means of the observed radial velocities; the second the corresponding values published by other observatories. The following abbreviations are used: A, Allegheny Observatory; L, Lick Observatory; Y, Yerkes Observatory.

The final column of the table contains the values of v corrected for the solar motion. The values are given by the equation

$$
v^{\prime}=v+V \cos \lambda
$$

in which the value 20 km has been assumed for V, the sun's motion in space.
${ }^{\text {r }}$ Mt. Wilson Contr., No. 89; Astrophysical Journal, 40, 385, 1914.

TABLE II

Star		a 1900	$\delta 1900$	Mag.	Spec.	μ	λ	v	v	v^{\prime}
Boss	5	$\mathrm{O}^{\mathrm{h}} \mathrm{I}^{\mathrm{m}}{ }_{2}$	$+63^{\circ} 38^{\prime}$	5.5	B8	-".009	63°	-6.8		+2.3
	18.	- 4.9	+io 35	5.4	B8	0.034	86	+13.5		+14.9
	4 I .	- 11.6	+60 59	5.8	G2	0.002	65	-4. I		+ 4.4
	43.	- II. 9	+388	4.6	A^{2}	0.052	74	+o.r	+6.2L	+ 5.6
	56.	- 15.5	+ 738	5.6	Ko	0.015	89	+16.4		+16.7
	81..	- 22.8	+1720	$5 \cdot 3$	Mbp	-. 117	86	$+6.8$		+ 8.2
	90.	- 24.9	-431	6.0	K5	0.011	98	+ 5.2		+ 2.4
	II8.	- 30.6	+53 37	5.2	B_{7}	0.021	70	+ 2.8		+ 9.6
	124.	-31.6	+1441	5.9	${ }^{\text {B }}$	0.028	89	-18.3		-18.0
	125	-32.0	+3451	5.6	Go	0.019	79	-0.7		+ 3.1
Pi.	$0^{\text {b }}$ 130.	- 32.2	-2519	5.7	G_{5}	1. 36	109	+15.5	+18:L	+ 9.0
Boss	I3I.	- 33.6	+4848	5.7	K	-. 019	73	- 9.3		-3.5
54 Piscium		- 34.2	+2043	6.1	K I	0.59	87	-33.9		-32.9
Boss	138.	- 35.7	$+3855$	5.4	G6	0.007	78	-8.6		- 4.4
Lal.	1198.	- 39.9	+ 15	8. 1	K4	0.63	100	$+6.9$		$+3.4$
Boss	165.	$\bigcirc 42.2$	+612	6.2	G6	-. 0.016	96	+14.8		+12.7
	169.	- 43.1	-22 16	$5 \cdot 3$	Ar	0.036	iro	+19.1		+12.3
Groom	145.	- 43.2	+69 54	8.0	Ko	0.44	65	-28.0		-19.6
Boss	183.	- 45.2	+50 58	6.5	F5	-. 128	73	+ 1.8		+ 7.6
	198.	- 50.6	+2640	5.9	aI	0.006	86	-8.8		- 7.4
	209.	- 52.4	+28 27	5.6	Kop	0.017	86	0.0		+ 1.4
	210.	- 52.7	+13 9	6.4	G4	0.022	95	+r5.7		+14.0
	217.	- 54.6	+ 557	6.3	Map	0.023	99	-14.5		-17.6
Broom	. 211	$\bigcirc 55.6$	+4455	7.0	G_{4}	-. 105	78	-71.1		-66.9
	223.	- 57.3	+40 48	5.8	A6	0.024	80	+ 3.3		+6.8
	224.	- 57.3	+31 16	5.4	B9	0.039	85	+ 9.7		+11.4
Lal.	1799..	$\bigcirc 57.2$	+ 431	8.0	K6	0.48	100	+20.2		+r6.7
Boss	252.	3.2	+ 57	$5 \cdot 5$	A_{4}	0.326	IOI	+6.6		- 3.8
	261	4.5	+19 7	5.6	F_{3}	0.004	94	-8.5		- 9.9
	263.	5.0	+6340	$5 \cdot 5$	B9	0.038	69	-6.2		+ 1.0
	267.	$5 \cdot 4$	+ 155	6.2	KI	0.004	103	- 2.1		- 6.6
	284.	I 8.8	+r536	$5 \cdot 7$	B2p	0.028	96	-16.1		-18.2
	295..	$1 \begin{array}{ll}12.6 \\ \text { I } \\ \text { I }\end{array}$	+ 35	5.4	A_{2}	0.056	104	+ 4.6		-0.2
Lal.	2450.	I 16.9	+18 10	8.1	Go	0.57	96	-		- 2
Boss	305.	I 17.5	- 058	6.5	Ko	-. 017	107	+ 14.9		+ 9.1
	349 .	I 30.5	+7232	$5 \cdot 5$	- G_{5}	0.008	67	-6.7		+ I. ${ }^{\text {r }}$
	355.	I 31.6	+5728	5.7	G_{7}	0.004	76	-7.6		+ 2.8
Lal.	3022..	I 33.9	+2736	7.8	G7	0.50	94	$+57.0$		+55.6
Boss	375.	I 36.0	+29 32	6.0	G4	0.013	93	+ 5.7		+ 4.7 $+\quad .7$
	379.	I 36.3	+34 44	5.5	B9	0.053	90	+ 0.2		+ 0.2
107 Piscium.		I 37.1	+r947	$5 \cdot 3$	G8	0.72	99	-34.2		-37.3
Boss	410..	I 44.6	+2147	5.9	G9	-. 0.018	99	+ 3.3		+ 0.2
	414.	I 45.7	+ro 33	5.8	F_{2}	0.074	106	+10.6		+ 5.1
	420.	I 47.3	+40 14	5.6	Kı	0.009	88	-6.4		- 5.7
	430.	I 50.0	+3647.	6.1	KI	0.005	9 I	+ 7.0		+6.7
	432.	I 50.2	+3646	5.8	Ko	0.180	9 I	+59.0		+58.7
	434.	I 50.3	+23 5	6.0	G8	0.011	100	+14.1		+10.7
	457.	I 55.6	+6354	5.7	B8	0.011	74	-20.7		-15.2
	466.	I 57.1	+3248	5.5	Ar_{1}	0.023	94	+ 1.5		+ 0.1
	472 .	I 58.2	+1746	6.4	K2	0.024	104	+10.4		+ 5.6
	478.	21.7	+5757	5.9	A_{4}	0.009	78	-36.8		-32.6
Lal.	3922..	$2 \quad 2.5$	- I 5	7.5	Go	-0.5I	117	-40.7		-49.8
Boss	488.	24.5	+57 10	6.4	B8	0.013	79	-36.8		-33.0
	493	25.5	+25 28	6.2	K4	0.01 I	IOI	-18.3		-22.1

TABLE II—Continued

	Star	a 1900	$\delta 1900$	Mag.	Spec.	μ	λ	v	v	v^{\prime}
Boss	498.	$2^{\text {b }} 6 \mathrm{~m} 6$	$+66^{\circ} 3^{\prime}$	6.2	F_{4}	0.003	73°	- 12.6		- 6.8
	508..	210.0	+32 54	$5 \cdot 3$	Ao	0.035	96	- 3.2		- 5.3
	521	212.6	+19 26	$5 \cdot 5$	B9	0.015	106	+ 11.6		$+6.1$
	526.	213.2	+28 II	$5 \cdot 3$	A_{2}	0.012	100	+ 4.4		+ 0.9
	$529 .$.	214.2	+4651	6.1	B_{7}	0.005	88	- 0.8		-0.1
	536..	216.6	+40 57	5.8	Fo	0. 128	92	- 35.0		-35.7
	539.	216.8	- 04	5.6	Map	0.006	119	+23.3		+13.6
	55 I .	2 2I. I	-I2 44	4.9	B8	0.027	127	$+\quad 0.8$		-II. 2
	572..	226.3	+ I 49	5.4	K4	0.013	120	+ 27.0		+17.0
	581..	229.5	$+3652$	5.9	Ko	0.010	96	- 5.8		-7.9
	616	237.1	+10 19	6.2	A2p	0.040	117	$+\quad 4.7$		-4.4
	619.	237.6	+43 52	5.6	F9	0.004	92	- 3.8		-4.5
	$648 .$.	246.0	+14 40	5.4	B5	0.045	II5	+ 16.9		$+8.5$
	$654 .$.	247.4	+3756	$5 \cdot 7$	F_{2}	0.10	98	+ 0.6		-2.2
	660..	250.2	+1756	5.9	Mc	0.018	113	$+46.5$		$+38.7$
	666.	251.6	-47	5.1	B9	0.054	I 28	+ 1.7		-10.6
	674 N	$253 \cdot 5$	+20 56		A_{3}	0.017	II2	- 7.7		- 15.2
	674 S	$253 \cdot 5$	+20 56	$4 \cdot 7$	A_{3}	0.017	112	- 5.3		-12.8
	$677 .$.	253.7	-311	5.1	A_{2}	0.070	128	- 4.4		-16.7
W.B. Boss	$2^{\text {h }} 927 .$.	255.2	+ 536	8.2	G8	0.68	123	+66.7		+55.8
	$707 .$.	31.6	- 629	5.6	Map	0.002	132	+17.2		+ 3.8
	719.	$\begin{array}{lll}3 & 6.3\end{array}$	+26 53	5.6	Ao	0.019	109	+ 12.0		+ 5.5
	724..	38.1	+56 46	5.9	A_{2}	0.004	85	- 14.9		- I3.2
W.B. Boss	$3^{\text {b }} 113 \ldots$	$\begin{array}{lll}3 & 9.4\end{array}$	+ 837	7.8	Ko	0.62	123	- 21.0		-31.9
	742..	3 II .5	+49 5I	$5 \cdot 3$	B3	0.045	91	- 0.6		-0.9
	757.	314.7	+42 58	5.I	AI	0.058	97	- 4.6	+ 2.0 L	-7.0
	$767 .$.	3 16.	+48 51	5.4	B4	0.035	92	+ 3.4		+ 2.7
	768..	316.2	+27 15	5.6	G8	0.020	110	$+\quad 3.7$		-0.1
	790.	322.2	+49 10	4.5	B_{5}	0.044	93	- 1.6		-2.6
	791	322.4	+55 6	5.I	B9p	0.033	88	+ 1.0	+ 6.oL	+ 1.7
	800	$3 \quad 24.9$	-I3 I	5.5	$\mathrm{Al}^{\text {a }}$	-. 0.01	140	+ 14.7		-0.6
	801	324.9	+II 0	5.1	B8p	0.021	124	+ 19.8		+ 8.6
	802	325.1	+474I	$5 \cdot 5$	B9	0.040	94	- 2.9		-4.3
	817.	329.4	+4752	4.2	B7p	0.044	94	+ 0.7		-0.7
	832.	3134.5	+5939	6.0	G8	0.002	84	- 9.9		-7.8
W.B. Boss	$3^{\mathrm{h}} 617$.	3155	- 332	7.2	F5	0. 78	137	+113.7		+99.I
	838.	335.8	+4728	3.1	B_{5}	0.046	96	+ 0.7		- 1.4
	845	338.0	$+369$	5.6	A_{2}	0.055	105	+ 21.8		+16.6
	849..	338.8	-10 48	5.7	A_{3}	0.020	142	+ 16.2		+ 0.4
B.D.	$23^{\circ} 535 \ldots$	341.4	+2325	7.9	F_{3}		116	- 10.5		- 19.3
Boss	896..	348.6	+6247	5.0	${ }^{\mathrm{B}} 9$	0.005	83	+ 4	+ $5: L$	+ 6
	898.	348.8	+4735	$5 \cdot 3$	B5	0.039	96	+ 9.9		+ 7.8
	933	358.4	+2350	5.6	F8p	0.022	1 I 8	+ 18.3		+ 8.9
	956..	44.8	- -6 39	$5 \cdot 3$	B_{5}	0.013	151	+ 13.3		-4.2
	960.	$4 \quad 5 \cdot 5$	-7 II	5.6	G6	0.010	144	- 12.1		-28.3
	977	$4 \quad 9.6$	+80 35	5.6	G7	0.020	67	- 8.6		-0.8
	989.	4 II. 4	+20 20	4.9	A_{3}	0.066	123	+ 15.8	+16.8L	+ 4.9
	997.	4 I3.5	+2054	5.4	B9	0.063	122	+ 13.8		$+3.2$
	IOI4. .	4 I6. 5	+20 35	6.1	G9	0.01 I	123	- 8.5		- 19.4
	1024.	418.7	- 359	$5 \cdot 3$	Ao	0.072	144	- 0.3		-16.5
	1039.	421.3	+2246	$5 \cdot 4$	B_{5}	-.or9	121	+ 10.5		$+0.2$
	1064.	427.0	+64 3	5.8	A_{2}	0.029	83	- 15.7		- I3.3
	ro69. .	428.8	+ 522	$5 \cdot 7$	A_{2}	0.028	138	- 7.2		-22.1
	1084.	432.1	+ 048	$5 \cdot 3$	B_{5}	0.018	142	+ 22.6		+6.8

TABLE II-Continued

Star	a 1900	δ 1900	Mag.	Spec.	μ	λ	0	v	v^{\prime}
Boss 1088.	$4^{\text {b }} 32^{\text {m }}$. 6	$-2^{\circ} 40^{\prime}$	5.3.	A_{5}	0.067	146°	+ 18.2		+ 1.6
1089.	433.4	+1536	5.2	A_{2}	0.074	129	+23.0		+10.4
1093.	433.9	+48 6	5.7	Ao	0.052	99	+22.8		+19.7
1097.	434.5	+12 0	$5 \cdot 3$	B9	0.027	133	+ 18.1		+ 4.5
1103.	435.8	+43 10	5.4	Ao	0.067	104	+ 5.6		+ 0.8
1128.	442.7	+6320	5.8	Ma	0.11I	85	-35.5		-33.8
1136.	444.0	+r544	6.3	Ko	0.017	130	+13.5		+ 0.6
1146..	445.7	+4225	5.6	Ar	0.013	105	- 2.4		- 7.6
1163..	449.4	+10 0	4.7	B_{9}	0. 145	136	+17.0		+ 2.9
B.D. $35^{\circ} 930 .$.	449.7	+36 I	6.2	B_{3}		III	-II		-18
Boss 1165..	450.1	+1453	5.6	B9	0.025	131	+ 9		- 4
1176..	451.8	+53	6.4	K3	0.012	95	$-\mathrm{I} .8$		-3.5
1182..	453.4	+39 15	6.0	$\mathrm{Fr}^{\text {I }}$	0.013	109	+ 5.7		-0.8
1183..	453.5	+3930	6.9	K5	0.010	108	-23.4		-29.6
W.B. $4^{\mathrm{h}} 1189 .$.	455.9	- 55^{2}	6.5	K9	1.25	151	+20.1	+31:L	+ 2.6
Boss 1195..	457.4	+5850	5.4	B3p	0.007	89	-13.2		-12.9
1221..	$5 \quad 2.9$	+1944	6.6	G3	0.018	127	+ 6.0		- 6.0
I234.	$5 \quad 5.9$	+15 55	5.4	K6	0.004	131	- 7.0		-20.1
1247.	$5 \quad 9.4$	+ 52	5.8	K I	0.017	142	-7.0		-22.8
1268.	513.4	+3351	5.1	A_{4}	0.016	114	- 6.0		-14.1
I281.	516.2	-21 20	4.7	Ao	0.020	166	+29.2	$+31.5 \mathrm{~L}$	+ 9.8
1295.	518.6	- 015	$5 \cdot 5$	B3	0.015	148	+22.4		+ 5.4
1309.	520.7	+6259	5.8	Kıp	0.005	86	-18.0		-16.6
I310.	520.7	+30 7	$5 \cdot 7$	B9	0.019	118	+13.6		+ 4.2
1318.	522.0	+1547	$5 \cdot 5$	B8	0.03 I	132	+13.6		$+0.2$
1332.	526.0	+ 313	5.6	B3	0.009	145	+21.6		+ 5.2
1334.	526.3	+7459	6.4	K5	0.019	74	-2.5		+ 3.0
1348.	528.4	+5422	6.0	K_{2}	0.007	95	+ 1.4		-0.3
1354.	529.3	+2358	5.1	B_{3}	0.032	125	+23.2		+r1.7
Groom. ${ }_{\text {Boss }} 990$.	530.4	+51 23 +6530	8. I	Ko	-. 56	98	-43.8		-46.6
	532.4	+6539	5.8	K3	0.024	83	-18.6		-16.2
Pi. $5^{\mathrm{h}} 146$.	533.2	+5326	6.4	Ko	0.55	96	+ 1.7		- 0.4
Boss I394.	534.9	+61 26	6.4	G5	0.002	88	- 3.1		-2.4
Lal. 10797.	539.2	+3715	7.3	K_{2}	0.72	1 I	-30.4		-37.9
Boss 1424.	54 I .6	+1741	$5 \cdot 3$	Fo	0.010	131	+6.6		-6.5
1441.	544.5	+950	5.9	G4	0.014	139	+43.7		+28.6
1444.	544.7	+2756	5.6	G8	0.009	I2I	+8.1		-2.2
1453.	546.5	+5541	4.8	A_{2}	0.014	93	-15.6	-13.6L	- ı6.6
1479.	552.5	+45 56	4.6	Mbp	0.011	103	+ 0.9	+ 1.3L	-3.6
1513.	559.6	+ 526	5.8	G_{4}	0.007	144	+20.4		+ 4.2
1514.	559.7	+ 410	$5 \cdot 7$	G_{3}	0.012	144	$+32.7$		+16.5
1523.	6 1 6 8	-4 41	5.4	B6p	0.007	153	+16.1		- 1.7
1560.	$\begin{array}{ll}6 & 8.7\end{array}$	+61 33	$5 \cdot 3$	Map	0.005	87	+13.9		+14.9
1568.	$\begin{array}{ll}6 & 9.7\end{array}$	+16 10	5.2	B9	0.021	133	+29.5		+15.9
1572.	6 10.1	+1235	5.4	B9	0.017	I 36	+12.6		- 1.8
1573.	610.2	+240	6.1	G4	0.029	125	-20.4		-31.9
1575.	6 10. 8	+59 3	$4 \cdot 5$	Ar	0.022	90	-2.2	$-3 L$	- 2.2
1578.	610.9	+2346	6.3	B6	0.014	125	+ir. 6		+ 0.1
1599.	615.0	r $-\quad 254$ +58	$5 \cdot 2$	Ma	0.276	152	+48.3		+30.6
1608.	6 18.1	+5828	$5 \cdot 5$	K_{3}	O.OII	91	-4.6		-4.9
1627.	622.1	+58 14	6.0	G7	0.33	91	$+35.7$		+35.4
1632.	622.6	+46 45	6.0	K_{3}	0.007	103	-46.8		-51.3
1643.	624.9	+78 5	5.9	K6	0.019	7 I	-13.9		- 7.4

TABLE II-Continued

Star	a 1900	$\delta 1900$	Mag.	Spec.	μ	λ	v	v	v^{\prime}
Boss 1672.	$6^{\mathrm{h}} 29^{\mathrm{m}}$.	$+56^{\circ} 5^{\prime}$	5.8	Ao	-."OI3	92°	$+0.4$		- 0.3
23 Hev . Cam.	629.2	+79 40	5.6	A_{2}	0.64	69	+12.0		+19.2
Boss I704.	635.0	+28 17	6.5	GI	0.017	121	- 3.8		- 14.1
I739..	642.3	-I4 19	$5 \cdot 3$	B8	0.012	I6I	+17.3		- I. 6
1751	644.1	+16 19	5.8	B9p	0.023	132	+12.8		- 0.6
I 756	644.8	+I3 32	5.9	G9	0.013	I34	+26.8		+12.9
97 Monoc.	645.7	-025	5.8	${ }^{\text {A }}$	0.20	148	-I7.2		-34.2
Boss 1788.	650.9	+10 5	6.0	B8	0.027	I37	+33.0		+18.4
Lal. I3427..	654.0	$+4832$	8.2	K I	0.71	100	-22.3		-25.8
Boss 1846.	75.6	+51 36	$5 \cdot 7$	Map	0.019	96	-49.3		-51.4
1868.	$\begin{array}{ll}7 & 9.7\end{array}$	+28 4	$5 \cdot 9$	K_{3}	0.020	I 19	+22.2		+12.5
1873.	7 10. 2	+or	6.5	G_{4}	0.019	145	- 9.6		-26.0
Lal. 14146.	7 II. 3	- I2 53	$7 \cdot 3$	F9	0.56	I56	+57.0		$+38.7$
Boss 1894..	7 I3.5	+60 5	6.3	A_{7}	0.011	88	+ 6.2		+ 6.9
1897.	7 I4.I	+45 25	$5 \cdot 7$	A_{4}	0.036	102	+24.6		+20.4
1916.	7 16.5	+81 6	6.5	G5	0.004	68	- 1.5		+ 6.0
1926.	718.3	+2750	$5 \cdot 7$	Fo	0.020	118	- 5.0		- 14.4
I930. .	719.4	+II 52	$5 \cdot 3$	A_{2}	0.028	133	+ 6.3		-7.3
1935	7 20.I	- I6	5.I	$\mathrm{B}_{5 \mathrm{p}}$	0.034	I 56	- 7.6		-25.9
1956.	7 23.I	+28 19	5.0	A_{2}	0.067	II8	+42.8	+ $28: \mathrm{A}$	+33.4
2020.	736.4	+14 27	5.8	Mbp	0.015	130	- 15.6		-28.5
28 Hev . Cam	739.8	+80 31	6.5	G6	0.49	68	- 7.8		-0.3
Boss 2054..	742.6	+23 23	6.2	FI	0.020	121	-4.9		- I5.2
2144	80.4	+2255	6.2	Map	0.024	119	+26.7		+17.0
2 I 48.	$8 \quad 2.5$	+42 43	6.4	K_{2}	0.07	IOI	+38.4		$+34.6$
2150.	$8 \quad 2.9$	+68 46	$5 \cdot 5$	G_{3}	0.006	78	-9.5		- 5.3
2159.	$8 \quad 4.9$	-I5 57	$5 \cdot 5$	B3	0.014	148	+32.7		+15.7
2178.	$8 \quad 7.4$	+60 4I	6.4	A_{2}	0.017	85	- 16.2		-14.5
2203 .	8 I4.3	+60 57	6.5	G8	0.008	84	-5.4		$-3 \cdot 3$
2220.	8 I7.9	+42 20	6.2	Kıp	0.01 I	IOI	+27.1		+23.3
2236.	820.6	+45 59	6.3	Gi	0.021	126	-34.3		-36.7
2245.	8 2I. 2	+1259	5.8	Map	-. 116	I 24	- 7.0		- I8.2
2246.	8 2I. 5	-340	$5 \cdot 5$	A6	0.070	137	+25.5		+10.9
2293 -	831.9	$+534$	6.0	K_{3}	0.04	90	+26.6		+26.6
Lal. 16904.	833.1	+56 2	8.1	G3	0.44	87	+36.8		+37.8
Boss 2335..	838.8	-65^{2}	4.6	Go	0.007	136	$+30.3$		+15.9
2338	839.2	+31 4	6.1	G_{3}	0.020	107	- 12.4		-I8.2
2357.	842.2	- I 32	5.2	B9	0.046	132	+ 1.6		-II. 8
2378. .	846.5	+28 38	6.3	Mbp	0.022	108	+ir. 8		+ 5.6
2400. .	851.7	+I5 42	5.I	A_{3}	0.062	I 18	-0.8		-10.2
2407. .	853.0	+12 15	4.I	A3	0.054	I2I	-8.3	$-I_{5} \mathrm{~L}, \mathrm{~A}$	-18.6
2410.	853.5	+I8 3I	6.6	Mbp	0.089	II5	+21.7		+13.3
2413..	854.2	+42 II	4.1	F_{5}	0. 504	97	+23.9	$+27.3 \mathrm{~L}$	+21.5
2449..	93.6	+2227	5.2	G6	0.008	III	- 6.7		- 13.9
2455	94.6	+2224	6.1	G5	0.010	III	- 6.6		-13.8
C^{2461}	$9 \quad 5.8$	+7322	6.0	A_{3}	-. 100	71	+ 1.9		+ 8.4
81 π Cancri	$9 \quad 6.9$	+I5 24	6.4	G_{5}	-. 58	Ii6	+45.9		+37.1
Boss 2465	$9 \quad 7 \cdot 3$	$+4338$	$5 \cdot 4$	Aop	0.052	94	+26.6	+16A	+25.2
2490.	9 II. 7	- 556	$5 \cdot 5$	K_{5}	0.004	129	-7.3		- 19.9
2492.	9 II. 8	-820	$5 \cdot 5$	B9	0.040	130	+11.0		- 1.9
2584.	932.1	+40 41	$5 \cdot 2$	AI	0.020	93	- 5.8		-6.8
2598..	935.5	$+7936$	6.2	A_{5}	0.029	65	-6.5		+ 1.9
Lal. I9022.	937.1	+43 10	8.2	K5	0.80	9 I	- 12.9		-I3.2
Boss 26I2..	938.3	+14 29	5.6	Map	0.014	III	+ 8.2		+ 1.0

TABLE II-Continued

Star		a 1900	$\delta 1900$	Mag.	Spec.	μ	λ	v	v	v^{\prime}
Boss	2614.	$9^{\mathrm{h}} 39^{\mathrm{m}} .4$	$+57^{\circ} 35^{\prime}$	5.4	Mbp	0.0025	80°	+ 9.4		+12.9
Lal.	19229.	943.5	+14 14	8.4	A2p	0.83	110	-23.2		-30.0
Boss	2647.	947.0	+ 255	5.9	A_{2}	0. 204	116	+95.8		+87.0
	2650.	947.6	-738	5.1	AI	0.076	122	+15.4		+ 4.8
	2701.	IO 5.0	+419	6.5	Ko	0.017	88	+13.4		+ 14.1
Lal.	19896..	IO 8.9	+ 339	7.7	Go	0.47	III	-24.7		-31.9
Boss	2726.	1010.8	+6536	5.8	A_{3}	0.090	72	- 1.8		+ 4.4
	2737	1013.4	+69 15	5.9	A_{2}	0.065	70	$+3.9$		+10.7
	2745 .	10 15.2	+84 46	$5 \cdot 7$	A_{2}	-. 130	62	+10.0		+19.4
	2756.	1017.3	+3425	5.9	Ar	0.027	91	-12.7		-13.0
	2773.	10 21.5	+42 7	5.9	Ar	-. 102	86	+ 5.2		+6.6
	2787.	10 24.3	+3926	5.9	Al_{1}	0.011	88	+ 8.2		+ 8.9
	2795 .	10 25.7	+8I 1	6.6	G6	0.016	63	-11.5		- 2.4
	2808.	10 27.8	+3530	5.6	Ar	0.040	88	+ 2.6		$+3.3$
	2813.	10 28.7	+5736	5.2	A8	0.074	75	-9.2		- 4.0
	2819.	1030.6	+3651	6.2	A6	0.050	87	-24.2		-23.2
	2822 .	10 31. 6	-II 42	5.7	Fi	0.67	115	- 9.0		-17.4
	2829.	1033.1	+3230	4.8	Go	0.008	90	- 7.6	-6.3L	- 7.6
	2887.	IO 44.4	+2830	6.1	A_{7}	0.021	89	+ 2.4		+ 2.7
	2909	10 50.2	+25 17	4.3	A_{3}	0.077	91	+6.1		+ 5.8
	2910	Io 50.2	+34 2	5.9	G8	-. 15	86	-23.4		-22.0
	2915	1050.8	+ 643	6.0	Mcp	0.023	IOI	-12.3		-16.1
	2921	Io 54.0	$+3638$	6.2	Ma	0.095	83	-22.7		-20.3
Lal.	21258	II 0.5	+44 2	8.9	Ma	4.46	78	+65		+69
Boss	2976.	II 9.9	+23 38	4.9	Map	0.018	88	+15.2	+r6.0L	+15.9
	2983.	II 12.I	+ 234	5.4	K8	-. 159	99	-57.5		-60.6
	2987.	II 13.7	$+3844$	4.8	Ao	-. 102	80	+ 5.7		+ 9.2
83 Leonis Br .		II 21.7	+ 333	6.5	G8	0.76	96	- 2.4		-4.5
83 Leonis Ft.		II 21.7	+ 333	7.6	K8	0.76	96	+ 2.2		+0.1
Boss	3045.	II 29.5	+1721	5.8	B_{3}	0.011	88	+17.8		+18.5
	3055.	II 31.6	- 9 I5	5.0	${ }^{\text {B9 }}$	0.061	100	-8.0		-II. 5
	3063.	II 33.0	+44 II	5.6	A_{3}	- 1554	74	+ 5.6		+if.i
	3067.	II 33.3	+841	$5 \cdot 5$	Mb	0.013	91	+ I .4		+ 0.9
Groom.	. 1822.	II 40.3	+48 14	7.9	Go	0.67	70	+23.9		$+30.7$
Boss	3089.	II 40.7	+ 7	4.2	Map	-. 188	90	+51.2	$+51.2 \mathrm{~L}$	+51.2
	3125.	1150.8	+57 9	5.9	G9	0.012	66	+13.1		+21.2
	3137.	I 55.6	-953	6.4	G6	0.47	96	0.0		-2.1
	3 I 43.	I1 57.0	+43 36	4.9	A_{5}	0.323	69	+ 8.2		+ 15.4
	3150.	1159.2	+22 1	5.9	${ }^{\text {A }}$	0.044	79	+ 4.3		+ 8.1
	3177.	126.5	+82 16	6.3	K4	0.019	59	-26.0		- 15.7
	3178.	126.6	+ 437	(7.2)	A8	0.006	86	- 6.0		-4.6
W.B.	$\mathrm{I}_{2}{ }^{6} 69$.	$12 \quad 7.4$	- 232	7.3	G_{4}	0. 74	90	+11.3		+11.3
Lal.	22908.	128.1	+11 24	7.5	G3	0.59	82	-30.0		-27.2
Boss	3183.	$\begin{array}{ll}12 & 8.3\end{array}$	+10 49	5.8	A8	-. 0.96	82	+ 3.4		+6.2
	3193.	12 II. 1	+41 13	5.7	K3	0.051	68	- 14.4		$\stackrel{+}{+} .9$
	3206.	1214.3	+23 35	6.1	${ }_{4}{ }_{7}$	0.038	75	+ I .2		+ 6.4
	3215.	$12 \begin{array}{ll}15 & 4\end{array}$	-21 40	5.4	B8	0.092	98	-20.9		-23.7
	3217.	$12 \begin{array}{lll}15.8\end{array}$	-13	5.5	K_{2}	0.002	93	+12.5		+11.5
	3234.	1220.3	+5720	6.0	Map	0.028	62	-16.7		-7.3
	3248.	1222.8	+56 16	5.8	Ma	0.031	62	+17.6		+27.0
	3266.	1226.0	+25 7	$5 \cdot 4$	A_{2}	0.020	71	-0.5		+ 6.0
	3290.	1231.6	- 517	5.9	Ao	0.040	84	-3.6		- 1.5
	3294.	1233.3	+ 224	6.0	Mb	0.090	8 r	- 15.0		-II. 9
	3309.	I 236.8	+ 1047	4.8	B8	-. 135	76	+ 3.5		+8.3

TABLE II-Continued

TABLE II-Continued

	Star	a 1900.	$\delta 1900$	Mag.	Spec.	μ	λ	v	0	v^{\prime}
Boss	4119.	$16^{\text {b }} 6^{\text {m }} \cdot 5$	$-9^{\circ} 48^{\prime}$	5.1	A2	O.'027	48°	- 1.7	$-8.9 \mathrm{~L}$	+ 11.7
	4120.	$16 \quad 6.7$	- 817	5.5	A2	0.041	47	- 6.4		+ 7.2
	4122.	$16 \quad 7.0$	+r655	5.9	A 2	0.014	29	- 12.6		+ 4.9
	4125.	$16 \quad 7.4$	+23 45	6.0	Mbp	0.028	26	- 24.2		- 6.2
	4131.	$16 \quad 8.3$	- 1135	$5 \cdot 5$	K6	0.020	50	- 26.3		- 13.4
	4134	16 9.1	- 326	3.0	Map	-. 161	43	- 17.5	$-19.5 \mathrm{~L}$	- 2.9
	4137..	$16 \quad 10.2$	-86	5.9	Gi	-. 53	47	+ 11.2		+ 24.8
	4138 Ft .	1610.9	+34 7	6.8	F5	0.29	23	- 18.1		+ 0.3
	4146.	1612.7	+2924	5.6	Ar	0.028	24	+ 6.4		+ 24.7
	4159	$16 \quad 15.6$	+60 o	5.6	Map	0.022	34	- 35.2		- 18.6
	4182 .	1620.8	+14 16	4.4	Ao	0.079	28	- 2.4	- 6.rL	+ 15.3
	4188.	1622.3	- 722	5.4	Map	0.176	44	+ 97.1		+III. 5
B.D. $5 \mathrm{I}^{\circ} 2097$		1623.0	+51 22	7.5	AI	-. 109	27	- 17.6		+ 0.2
Boss	4210.	1627.7	+ 544	$5 \cdot 5$	Ao	0.023	32	- 26.9		- 9.9
	422 I .	1631.0	+61 2	5.8	Ai	0.02 I	34	- 11.6		+ 5.0
Lal.	30271.	1632.6	+319	7.2	F2	0.46	18	- 8.0		+ 11.0
Boss	4228.	1633.3	+46 49	6.0	G9	0.020	23	- 16.8		+ 1.6
	4229.	1633.8	+53 6	$5 \cdot 7$	Ao	0.026	28	- 7.0		+ 10.7
	4291.	1647.5	+ 159	6.3	B9	0.011	23	- 22.8		- 4.4
	4300.	1649.2	+31 5^{2}	$5 \cdot 3$	A6	0.098	15	- 21.4		- 2.1
	4303.	1650.3	-16 39	6.5	G8	0.089	5I	- 2.2		+ 10.4
	4316.	16 53.4	+2530	6.7	G5	0.009	20	+ 9.1		+ 27.9
	4332.	1657.9	+33 43	$5 \cdot 3$	A_{5}	0.012	13	- 13.2		+ 6.3
Lal.	31055.	16 59.8	- 454	7.9	K5	1.47	38	+ 27.5		+ 43.3
Boss	4395.	1715.2	-1245	$4 \cdot 3$	${ }^{\text {AI }}$	0.036	45	+ 3.8	+ 8L	+ 17.9
	${ }_{4}^{4418 .}$	1720.0	+16 24	5.7	A8	0:044	17	+ 10.8		+ 29.9
W.B.	$17^{\text {b }} 322$.	1720.8	+ 214	7.8	K_{9}	I. 36	30	- 27.8		- 10.5
Boss	4427.	1722.5	+20 10	5.4	B6	0.016	13	- 28.2		- 8.7
	4438.	1726.7	+26 11	$4 \cdot 5$	K_{2}	0.021	9	- 25.2	-26.rL	- 5.4
Lal.	31905.	1726.5	+ 145	7.2	K_{4}		30	- 15.4		+ 1.9
Boss	$17^{\text {h }} 514 .$.	1729.9	+ 64	8.6	F_{1}	0.58	26	- 148		-I3 ${ }^{\text {I }}$
	4461.	1731.7	+214	5.8	A4	0.028	11	- 17.5		+ 2.1
	4494.	1741.9	+5351	5.6	Ao	0.043	23	$+\quad 1.8$		+ 20.2
	4514.	1747.4	+48 25	6.4	$\mathrm{B}_{2} \mathrm{p}$	0.008	17	- 16.3		+ 2.8
	4530.	1751.6	+22 29	5.7	K4	0.002	8	- 43.1		- 23.3
	4546.	1755.6	-17 9	6.3	Ko	0.012	48	- 21.5		- 8.1
	4547 .	1755.6	+r645	$4 \cdot 7$	G8	-.or 2	14	- 24.4	$-21.5 \mathrm{~L}$	- 5.0
	4554	1756.9	+72	$5 \cdot 5$	F2	0.009	4 I	- 5.9		+ 9.2
	4592.	184.6	+20	5.2	${ }^{\text {A }}$	0.027	11	- 16.1		+ 3.5
Lal.	33439.	$18 \quad 6.3$	+38 27	6.7	K_{2}	0.65	8	- 17.7		+ 2.1
Boss	4601.	$18 \quad 6.5$	+3627	5.9	G7	0.009	6	- 25.9		- 6.0
	4620.	1812.5	+428	5.2	B8	0.009	12	- 20.4		- 0.8
	4629.	1815.1	+24 24	$5 \cdot 5$	Ko	0.016	8	+ 0.5		+ 20.3
	4630.	1815.4	-24 58	6.4	Mbp	-. OII	56	+ 3.9		+ 15.1
B.D.	$8^{\circ} 3^{689}$.	$18 \quad 2 \mathrm{r} .4$	+ 844	7.7	GI	0.50	23	- 22.5		- 4.1
Boss	4668.	1822.1	-17 5^{2}	6.0	B8	0.007	49	- 34.9		- 21.8
	4685.	1825.6	-18 28	5.2	B8	0.035	49	- 37.8		- 24.7
	4686..	1825.7	+65 30	5.0	G99	0.104	35	+ 30.0	$+33.4 \mathrm{~L}$	+ 46.4
	4702..	1829.0	+30 29	$5 \cdot 4$	${ }^{\mathrm{B}} 9$	0.007	7	- II. 2		+ 8.7
	4707.	1830.9	+5658	5.1	F8	0.011	27	- 9.9	-10.4L	+ 7.9
	4719..	1832.5	- o 24	5.8	A_{3}	0.026	32	+ 13.3		+ 30.3
	4724.	1834.6	+7728	5.8	Ko	0.006	46	+ 1.6		+ 15.5
	4740.	1839.8	+ 157	4.9	B7	0.022	30	- 2.2		+ 15.1
	4748.	1841.0	+39 34	6.7	Ao	0.06	12	- 37.1		- 17.5

TABLE II-Continued

TABLE II-Continued

TABLE II-Continued

Star	a 1900	$\delta 1900$	Mag.	Spec.	μ	λ	v	\%	v^{\prime}
A.Oe. 25685.	$23^{\mathrm{h}} 6^{\mathrm{m}} \cdot 5$	$+58^{\circ} 37^{\prime}$	7.5	K ${ }_{\text {I }}$	I. 08	60	-24.7		-14.7
B.D. $62^{\circ} 2244$.	2328.2	+6236	$7 \cdot 3$	G4	0.44	60	$+8.0$		+18.0
Boss 6063.	2329.7	+39 4I	5.4	Aop	0.042	66	+13.2		+21.3
6089.	2338.3	+ 947	5.4	Map	0.007	81	-35.2		-32.1
6105.	23 42.1	+5654	5.8	Ko	0.021	62	- 5.4		+ 4.0
6106.	2342.2	+58 6	5.1	G9	0.087	62	-22.9	$-20.3 \mathrm{~L}$	-13.4
6111.	2344.0	+61 40	5.6	A3p	0.010	61	-55.7		-46.0
6113.	2344.3	+o3I	5.8	${ }^{\text {A }}$	0.027	86	+ 9.4		+10.7
6123.	2346.8	+ 222	5.8	Kı	0.020	86	+ 0.9		+2.3
6133.	2348.0	+ 132	6.2	Ais	0.013	87	+ 9.7		+10.7
${ }^{61} 35$.	2349.4	+56 57	5.0	F9p	0.007	63	-42.6	-42.mL	-33.5
6145.	2352.0	+42 6	6.0	$\mathrm{F}_{2} \mathrm{p}$	0.012	69	- 7.7		-0.5
6166.	2356.5	+60 40	$5 \cdot 7$	A6	0.007	63	-22.4		-13.3
6176.	2357.5	+6533	5.8	Ko	0.018	62	-16.9		-7.5
6180.	23 59.1	+61 44	6.0	Ao	0.008	63	-18.9		-9.8

ACCURACY OF THE OBSERVATIONS
The great variety of spectral types among the stars of Table II involves a wide range in the accuracy of the determinations of radial velocity. Many of the A- and B-type stars have vague and very ill-defined lines, and for such stars the accuracy necessarily is low. In some cases as many as seven or eight determinations have been made to guard against the inclusion of possible spectroscopic binaries, and the range among the individual plates occasionally amounts to more than io km . On the other hand, the results for spectra having well-defined lines are usually in excellent agreement. The accompanying short table (III) shows the average of the probable errors of v for ten stars of each type selected at random from Table II.

TABLE III

Type	Quality for Measurement	Average No. Plates	Linear Scale of Plates	Probable Error
A and B	Poor	5	per mm I6 A	$\pm \mathrm{I} .16 \mathrm{~km}$
A and B	Good	3	16	0.73
F. .	Good	3	36	0.98
G and K	Good	3	36	0.97
M .	Good	3	36	± 1.09

For the sake of uniformity it has seemed preferable to retain the fractional part of the kilometer for v wherever three observations
are available, although it can have little significance in the case of individual stars photographed with such relatively low dispersion. The fact that the linear scale of the spectra of the A and B stars is over twice that of the $\mathrm{F}, \mathrm{G}, \mathrm{K}$, and M stars aids in counteracting the effect of the poorer quality of their lines, and so tends to make the accuracy of the determinations for all of the stars in Table II more nearly the same.

COMPARISON WITH RESULTS OF OTHER OBSERVERS

There are fifty stars in the list for which determinations of radial velocity have been published by other observers, a very large proportion being from the Lick Observatory photographs. The Lick spectrograms were in most cases taken with a dispersion of three prisms, and have a linear scale about three times that employed for most of the F, G, K, and M stars of Table II. A comparison by spectral types with the Lick Observatory results gives the values shown in Table IV.

TABLE IV

Type	No. Stars	Lick -Mount Wilson
B and A.......	2 I	+0.9 km
F and G......	I4	+I .6
K and $\mathrm{M} \ldots \ldots \ldots$	I2	+0.4

The star W.B. $4^{\mathrm{h}} \cdot 1 \mathrm{I} 89$ has been omitted from this comparison, as it seems probable that the large difference between the two results may be due to the fact that the star has a variable velocity. The same remark may apply to one or two other stars in the list, particularly Boss 5904 and 5044. The exclusion of these stars would reduce the difference for the B and A stars from +0.9 to +0.4 km , and for the F and G stars from +i .6 to $+\mathrm{r} . \mathrm{rkm}$.

A large number of observations on the two stars a Boötis and a Tauri have been made during the period covered by the results shown in Table II. The values for these stars are given in Table V.

The evidence seems to indicate a small systematic difference in the direction of larger negative or smaller positive values for the Mount Wilson results, but it is probably no larger than may be
accounted for by the wave-lengths of the lines employed. A slight difference might arise from the fact that the iron arc has been used for comparison purposes at Mount Wilson, and that Rowland's wave-lengths have been utilized both for comparison lines and for such stellar lines as appear in the sun. The adopted values of the

TABLE V

Star	No. Plates	Mount Wilson	Lick	Yerkes
a Boötis. a Tauri.	$\begin{aligned} & 3 \mathrm{II} \\ & \mathrm{I} 6 \end{aligned}$	$\begin{aligned} & -4.3 \mathrm{~km} \\ & +54.0 \end{aligned}$	$\begin{aligned} & -3.9 \mathrm{~km} \\ & +55.1 \end{aligned}$	$-4.5 \mathrm{~km}$

laboratory wave-lengths used for the helium lines of type B and the magnesium line λ 448 i of type A may also differ to some extent. In view of the fact that the Mount Wilson results are based mainly on comparatively low-dispersion photographs, the agreement with the Lick Observatory values must be considered as quite satisfactory.

SOME INDIVIDUAL STARS

Among the stars with exceptionally high velocities the following are of especial interest:

	∇^{\prime}		v^{\prime}
A.Oe. 14320.	+299 km	Lal. 21258	+69 km
A.Oe. 20452.	- 170	Boss 2647	+87.0
W.B. $7^{\text {b }} 514$	- 131		

The first of these stars has a proper motion of $3^{\prime \prime} .76$ and a parallax, as determined by Russell, of $+\circ^{\prime \prime} .035$. Its motion in space as based on these values and its radial velocity would amount to 577 km , directed toward the vertex $a=189^{\circ}, \delta=-70^{\circ}$. At a distance of 5^{\prime} there is a second star which shares in the proper motion. The spectrum of this star is Go.

The star Lalande 21258 has a proper motion of 4 " 46 and a parallax of $0^{\prime \prime} 20$. Its absolute brightness is extremely small, its magnitude being io.4 (sun $=5 \cdot 5$): In proper motion, absolute magnitude, and spectrum it resembles very strongly Lalande 21185 , but the radial velocities of the two stars, though both large, are of opposite sign.

Boss 2647 is one of the very few stars of type A with a high radial velocity.

A star of exceptional interest because of the character of its spectrum is Lalande 19229. The spectral type is A2, but the line $\lambda 448 \mathrm{r}$, usually so prominent in stars of this type, is either absent or very faint. Two stars with a very similar spectrum had been found previously in the list of those having large proper motions. The data for the three stars are given in Table VI.

TABLE VI

Star	Mag.	μ	π	Spectrum
Lal. 576x	8.0	O. 90	+o."039	$A_{3 p}$
Lal. 19229	8.4	0.83	-0.046	A2p
Lal. 28607	$7 \cdot 3$	I. 17	+0.029	A2p

The hydrogen lines in these stars are exceptionally narrow and well defined. Although the measured parallaxes are small, it seems probable that these stars are of comparatively low luminosity, and the suggestion may be made that the normal A-type spectrum is modified in this way in the case of stars of small absolute brightness. If such is the case, these spectral peculiarities should serve as a valuable criterion for the discovery of stars of this character. On physical grounds the absence of the spark line of magnesium at $\lambda 448 \mathrm{r}$, which is associated in the laboratory with high vapordensity and probably high temperature, and the narrowness and sharpness of the hydrogen lines, which would indicate a hydrogen atmosphere of low density, would be in harmony with this hypothesis.

Attention was called in the publication already referred to on the radial velocities of 100 stars with measured parallaxes ${ }^{1}$ to the marked preponderance of the negative sign among the highest velocities. There seems to be no such noticeable effect in the case of the velocities given in Table II. The number of positive and negative velocities is essentially equal if $v^{\prime}=50 \mathrm{~km}$ is set as a limit. Between 45 and 50 km , however, there are six negative velocities and only one with the positive sign.

[^1]
RADIAL VELOCITY AND PROPER MOTION

It is well known that, in general, the proper motions of the stars of type B are extremely small, those of type A considerably larger, and those of types F, G, and K larger still. The M-type stars have proper motions averaging about the same as the A stars. An observing list of stars of different types selected on the basis of apparent magnitude alone would, therefore, contain material which would not be homogeneous as regards the distances of the stars. Since large proper motions when treated statistically indicate not only small distance, but also high velocity, as is shown clearly by the values for stars of large proper motion, ${ }^{\text { }}$ the tendency would be in such an observing list to compare rapidly moving stars of one type with slowly moving stars of another type.

Most of the F, G, K, and M stars and some of the A stars which appear in Table II have been selected for observation because of their small proper motions. A knowledge of their radial velocities enables us to institute a comparison between the average velocities of groups of stars having these spectra with those of types B and A. of the same average proper motion. In Table IV are collected the radial velocities of all of the stars in Table II, for which the proper motion is less than 0.0030 annually. One K-type star and one M star with velocities exceeding 50 km have been omitted. This makes it possible to compare directly with a similar table published by Professor Campbell based on his velocities of stars of all types. ${ }^{2}$ For the present purpose Campbell's first table based on 1034 stars is used, no constant correction K having been applied to these results. The proper motions for Campbell's stars have been taken from Boss's catalogue for the individual stars published in Lick Observatory Bulletins, Nos. 195, 211 , and 229. Not all of these stars are used in Campbell's table, and, accordingly, the average proper motions derived are not strictly correct. In view of the large number of stars used, however, it does not seem probable that the values can be materially in error.

[^2]The peculiar feature of this comparison is the relatively close agreement of the A and B stars and the large difference for the other stars. The question at once arises whether this may not be associated with the great increase in proper motion for Campbell's stars between type A and type F. In a recent publication by Kapteyn and Adams, ${ }^{\text {, }}$ Professor Kapteyn has made a computation of the relationship between radial velocity and proper motion for the K stars, using as a basis Campbell's published values of radial

TABLE VII

Spectral Types	Campbell				Mount Wilson		
	No. Stars for v^{\prime}	No. Stars for P.M.	Proper Motion	$\begin{gathered} v^{\prime} \\ \mathrm{km} \end{gathered}$	No. Stars	Proper Motion	$\begin{gathered} v^{\prime \prime} \\ \mathrm{km} \end{gathered}$
O and B	141	224	O.'031	8.99	61	-."oi6	8.23
A.	133	206	-.094*	9.94	55	0.019	10.04
F.	I59	192	0. 234	13.90	20	0.011	10. 14
G and K	529	549	-. 202	15.15	II9	0.014	11.03 \dagger
M .	72	78	0.074	16.55	27	O.OI5	12.56

*The omission of 5 stars would reduce this value to o."o79.

velocity and some of the Mount Wilson observations. The stars were selected in such a way as to eliminate so far as possible the effect of stream motion, and the components of the linear velocities were computed by aid of the mean parallaxes for stars of known proper motion and magnitude given in Groningen Publication, No. 8. If we assume that the results of this computation for the K stars may be applied to stars of other types, we have Table VIII connecting proper motion and radial velocity.

TABLE VIII

μ	v^{\prime}	μ	v^{\prime}
0.0000 to	O.O25 I 2 . I km	O.'IOO to O.'II9.	14.3 km
$0.026{ }^{6}$	O.O39..... 12.5	O.I20 " O.I49	I4. 8
$0.040{ }^{6}$	0.059..... 12.9	O.I50 " O.199	I5.9
$0.060{ }^{\prime \prime}$	0.079..... . I 3 . 3	0.200 " 0.299	I7.7
$0.080{ }^{6}$	O.099..... 13 - 7	$\geqq 0.300$	$24 \cdot 5$

${ }^{\text {x }}$ Communications to the National Academy of Sciences, No. 1; Proceedings of the National Academy of Sciences, 1, 14, 1915.

The use of these values gives the following corrections to the radial velocities for the proper motions of the Campbell stars in Table VII in order to reduce to the average proper motion 0 ". 03 I of the O and B stars:

$$
A,-\mathrm{I} .3 ; F,-4.9 ; G \text { and } K,-4 . \mathrm{I} ; M,-\mathrm{I} . \mathrm{o} \mathrm{~km} .
$$

Table IX shows the values with these corrections applied, and also with the reductions applied to correct for stream motion which have been calculated by Eddington. ${ }^{\text {r }}$

TABLE IX

Type	v^{\prime} km	Campbell v^{\prime} Corrected for Stream Motion	Proper Motion	$\begin{gathered} v^{\prime} \\ \mathrm{km} \end{gathered}$	Mount Wilson v^{\prime} Corrected for Stream Motion	Proper Motion
O and B	9.0	9.0 km	0.031	8.2	8.2 km	-..016
A.	8.6	6.8		10.0	7.7	0.019
F.	9.0	7.8	"	10. I	8.8	0.011
G.		9.6	"	10. 6	9.2	0.013
K.	¢ II.O	9.6	\ldots	II. 5	10.0	0.014
	I5.6	I3.6	"	I 2.6	10.9	-. 015

In his definitive solutions of the solar motion for the several spectral types ${ }^{2}$ Campbell has given the average radial velocity for each type with a constant correction K applied to the velocity of each star. This constant has a value ranging from about zero for the F and G stars to over 4 km for the B stars. If we treat these values in the same way as those of Table VII we obtain Table X.

TABLE X

Type	v^{\prime}	v^{\prime} Corrected for Stream Motion	Proper Motion
O and B	6.5 km	6.5 km	$0.03 \mathrm{I}$
A.	9.6	$7 \cdot 4$	"
F.	9.5	8.3	"
G	9.1	7.9	"
K.	13.2	II. 5	"
M	16. 1	I4.0	"

The value of the constant K as used by Campbell is the average velocity v^{\prime} taken according to sign for the stars of the several spectral types, and is, of course, dependent upon the value of the solar

[^3]motion V as derived for each type. Since the same value of V has been used for all of the Mount Wilson stars, no direct comparison is possible. It is, however, of interest to note how the value $V=$ 20 km satisfies the stars of the several types. The average velocity v^{\prime} taken according to sign for the stars of Table VII is as follows: $B,+1.26 ; A,-0.24 ; F,-0.86 ; G,+0.05 ; K,-\mathrm{r} .18 ; M,+0.3 \mathrm{Ikm}$.

A change in the value of V from 20 to 19 km would reduce the residual for the B stars from +r .26 to +r .06 km . These quantities must be regarded as very moderate in size. The number of stars used is not very large, however, and hence the values might be changed materially by the inclusion of additional velocities. Thus if all of the M stars both of large and of small proper motion in Table II are included, together with one or two stars for which only a single observation is available, we obtain the following result:

No. Stars	μ	v^{\prime}	v^{\prime} According to Sign
43	0.058	14.54 km	-0.97 km

A similar computation for the B stars gives:

No. Stars	μ	v^{\prime}	v^{\prime} According to Sign
II3	0.028	8.89 km	+1.62 km

The value +1.62 km would be reduced about io per cent by employing a value of the solar motion $V=19 \mathrm{~km}$.

The Mount Wilson results of Table IX seem to indicate, if interpreted directly, that among the very distant stars the change of velocity with spectral type is slight, and Campbell's results, except perhaps in the case of the M-stars, point to the same conclusion when allowance has been made for the effect of the large number of relatively near stars included among his F- to M-type spectra. This would be in agreement with the hypothesis put forward by Eddington in igis, ${ }^{\text {r }}$ but later entirely disproved, as he
${ }^{\text {r }}$ British Association Report, 19 Ir.
considered, by the evidence of the A stars, ${ }^{\mathrm{I}}$ that the relation between velocity and spectral type might be a relation between velocity and distance, the stars nearest the sun, which are mainly of types F to K , moving more rapidly than the distant stars. The evidence which Eddington regarded as conclusive in disproving this hypothesis was provided by an analysis according to proper motion of the A-type stars for which velocities had been published. No increase of radial velocity with proper motion was indicated by the results. It has already been stated in this communication that such a conclusion is by no means tenable in the case of the K stars, for which Kapteyn has found from the Lick and Mount Wilson values an increase of velocity of from 10.9 km for stars having an average proper motion of about 0.020 to 26.7 km for stars with a proper motion exceeding $\circ^{\prime \prime} 30$. The following evidence derived entirely from the Mount Wilson observations for the other types of spectra will be of interest in this connection. The effect of stream motion has not been eliminated. ${ }^{2}$

TABLE XI

	No. Stars	μ	v^{\prime}	No. Stars	μ	v^{\prime}
B.	61	O.'.or6	8.2 km	52	0."041	9.6 km
A.	55	-.019	10.0	104	0.067	10. 7
F.	20	O.OII	10. 1	45	-0. 53	24.6
G.	63	0.013	10.6	69	0.67	24.9
M	27	0.015	12.6	12	-. 17	17.6

- The agreement of these results with those obtained from the K-type stars is surprisingly close, and suggests that the empirical law connecting proper motion and radial velocity derived by Kapteyn may be applied to the other types of spectra quite as well. Only a few A-type stars of very large proper motion have been observed at Mount Wilson. Of those for which μ exceeds $\circ^{\prime \prime}$. 20 , two have velocities exceeding 150 km ; one has a velocity of 87 km ; and the average for the other six is 20 km .

The main feature of interest resulting from this comparison of proper motion and radial velocity is the low average velocity found

[^4]for the very distant stars of types F to M. The selection of stars on the basis of small proper motion means, of course, the selection not alone of distant stars but also of those which have small intrinsic velocities as well as those whose motion is mainly in the line of sight. These factors will affect the results to some extent, especially when comparatively small numbers of stars are used. On the other hand, the direct comparison of the average velocities of groups of stars of greatly different average proper motions means a comparison in part between stars of widely different distance, and in part between slowly moving stars of one type and rapidly moving stars of another. If the rate of change of velocity with spectral type is as gradual as seems probable from these results, a very accurate knowledge of the stream motions for the different types of stars will be essential for a determination of its true value.

No attempt is made here to discuss the well-known investigation by Kapteyn, ${ }^{1}$ in the course of which he first analyzed the relationship of radial velocities and proper motions to spectral types; nor the work of Boss, ${ }^{2}$ in which he deduced the linear crossmotions of the stars of his catalogue according to spectral type. There can, of course, be no doubt that among the stars selected on the basis of apparent brightness those of the solar type are moving more rapidly than those of types A and B. The question which is raised is whether there exists any such marked difference for the stars of the solar type with distances comparable to those of types A and B .

The small proper-motion stars of types F to M whose motions are considered here are on the average stars of very high absolute luminosity. The possible existence of a relationship between absolute brightness and velocity has been discussed in the communication by Kapteyn and Adams, to which reference has already been made. The observational material essential to an investigation of this question would necessarily be much more extensive than that given here, and should be selected with this purpose in view. It may, however, be noted in passing that the average radial velocity of the stars of very low absolute luminosity is extraordinarily great.

[^5]Of the stars in the Groningen list of parallaxes with absolute magnitudes of 8 or fainter (sun $=5.5$) sixteen have been observed to some extent at Mount Wilson. The average velocity of these stars (corrected for the sum's motion) is 36 km ; eight have velocities exceeding 40 km , although none have been included with values higher than 100 km . It is difficult to think of these stars as other than stars of small mass, and the results for their velocities would be in agreement with the hypothesis suggested by Halm ${ }^{\text {r }}$ that the motions of stars are a function of their masses.

I am greatly indebted to several of my colleagues at the Observatory, and particularly to Dr. Kohlschütter, for much of the observational material upon which these results are based. Several of the members of the Computing Division have assisted in measuring and reducing the photographs.

Mount Wilson Solar Observatory
June $19{ }^{15}$
${ }^{1}$ Monthly Notices, 7x, 634, 191 I .

[^0]: ${ }^{\text {x }}$ Contributions from the Mount Wilson Solar Observatory, No. 105 .
 ${ }^{2}$ The radial velocities of 100 of these stars were published in Mt. Wilson Contr., No. 79; Astrophysical Journal, 39, 341, 1914.

[^1]: ${ }^{\text {r }}$ Mt. Wilson Contr., No. 79; Astrophysical Journal, 39, 341, 1914.

[^2]: ${ }^{1}$ The average value of the radial velocity (corrected for the sun's motion) of 135 stars of large proper motion, $\mu=0.382$, as determined at Mount Wilson is 24.3 km . Stars with velocities exceeding 100 km are omitted.
 ${ }^{2}$ Lick Observatory Bulletin, No. 196.

[^3]: ${ }^{\text {r Stellar Movements, p. } 57 . \quad{ }^{2} \text { Lick Observatory Bulletin, No. } 196 . ~}$

[^4]: ${ }^{\mathrm{x}}$ Stellar Movements, p. 16ı.
 ${ }^{2}$ Velocities exceeding 100 km have been omitted.

[^5]: ${ }^{\text {r }}$ Mt. Wilson Contr., No. 45; Astrophysical Journal, 31, 258, 1910.
 ${ }^{2}$ Astronomical Journal, 26, 187, Nos. 623-624, i91ı.

