MONTHLY NOTICES

OF THF

ROYAL ASTRONOMICAL SOCIETY.

Vol. LXVIII. Supplementary Number. No. 9

On the Parallax and Proper Motion of the Double Star Krueger 60 (Burnham, Gen. Cat., if76r). By E. E. Barnard. (Plate 14.)

The History of Krueger 60.
Professor Krueger, in his catalogue of the Astronomische Gesellschaft, covering the zone $+55^{\circ}$ to $+65^{\circ}$, noted with the meridian instrument many stars which were double. He made a rough estimate of the quadrant and distances of these stars and of their magnitudes.

In 1890 Professor Burnham measured 67 stars from Krueger's list with the 12 -inch and 36 -inch telescopes of the Lick Observatory (Pub. L.O., vol. ii.). The star No. 60 was among those measured. Krueger's note on this object is :
"Dupl. 12 " pr. com. $9{ }^{\circ} 3$."
In measuring the principal star, Professor Burnham found that it was a wide and unequal double.

Of these A C is the Krueger pair.
No other measures were made of these stars until 1898, when Dr. Eric Doolittle remeasured them with the 18 -inch Brashear telescope of the Flower Observatory (A.J., vol. xxi. p. 47).

Doolittle's measures showed that the pair AB had a strong proper motion ($0^{\prime \prime} \cdot 93$ in the direction $247^{\circ} 9$). His measures are-

$$
\left.\begin{array}{rrrrr}
\mathrm{I} 898.446 & \mathrm{I} 40^{\circ} \cdot 66 & 3^{\prime \prime} \mathrm{I} 9 & 9^{\circ} \mathrm{I}-\mathrm{m}-\mathrm{m} \cdot 5 & \mathrm{AB} \\
& 5^{8 \cdot 7 \mathrm{I}} & 34.39 & 9 \cdot 4 & \mathrm{AC}
\end{array}\right\} 5 \mathrm{n} .
$$

Subsequent measures fully confirmed these results.
In $A . J .$, vol. xxi. p. 64, I have given measures of these stars which are in accord with the motion derived by Doolittle. (In the

Krueger 60. 1903•5.

Fig. I.
measures of $A B$ in that paper there is a misprint of $2^{\prime \prime} \cdot 23$ for $3^{\prime \prime} \cdot 23$.) In A.J., vol. xxiii.* pp. 169-172, I have given more observations, with a diagram showing the probable orbital motion of AB. A few years' measures soon showed that this was really a physical pair in rather rapid orbital motion. I also called attention to the probable proximity of these stars to our solar system. Acting on this last idea, I began in 1900 a series of measures, with the 40 -inch telescope, of A and C for the parallax of A.

* On p. 171 in that paper, the motion in right ascension should be - $\mathrm{o}^{8 \cdot 107}$ instead of $-\mathrm{I}^{8} 606$, and on p. 172 the seconds in the right ascension should be $3^{22^{8}} 00$ instead of $32^{8 .} 69$. In that paper I derived the proper motion $\mathrm{o}^{\prime \prime} \cdot 95 \mathrm{I}$ in the direction $24^{\circ}{ }^{\circ} 3^{\circ}$.

In the Astrophysical Journal, vol. xx. p. 128, for Sept. 1904, Dr. Schlesinger published his results of the parallax of A derived from photographs made with the 40 -inch telescope. Dr. Schlesinger found a parallax of about $\frac{1^{\prime \prime}}{4}$, verifying the prediction of its nearness to us. I will give, later on, his final values for the parallax.

Additional measures are given by Professor Burnham in Publications of the Yerkes Observatory, vol. ii., 1903, p. 67.

This is briefly the history of this remarkable stellar system.
In May of 1903 I measured the position of A with respect to Helsingfors-Gotha A.G.C. 13177. From the measures the place of A is

$$
\begin{aligned}
& 1903 \cdot \circ a=22^{\mathrm{h}} 24^{\mathrm{m}} 32^{8 \cdot} \cdot 09 \\
& \delta=+57^{\circ} \mathrm{I} 2^{\prime} 38^{\prime \prime \prime} \cdot 5 \\
& \text { Proper motion }-0^{\mathrm{g} \cdot \mathrm{IO}} \mathrm{IO}-0^{\prime \prime} \cdot 3^{82} .
\end{aligned}
$$

The star is Helsingfors-Gotha A.G.C. I3170.

Determination of the Parallax of A .

The present paper gives an investigation of the parallax of the star A from the visual micrometer measures made with the 40 -inch telescope.

The micrometer screw and the tube of the 40 -inch are both of steel. I have found from about ten years' experimental measures in the Pleiades (which are soon to be published) that the focus of the 40 -inch glass shortens from summer to winter by an extreme change of $\frac{3}{4}$ inch. In the meantime the steel tube shortens $\frac{1}{2}$ inch. The temperature change in the micrometer screw will correct $\frac{1}{2}$ inch of the total change of the focus of the object-glass. There remains uncorrected, therefore, $\frac{1}{4}$ inch of the extreme focal change. The exact amount of this uncorrected change, from the measures of the Pleiades referred to above, is 0.0032 inch (0.08 Imm .) for each degree of temperature. This would cause an extreme error in the measures of Krueger 60 for temperature of not quite $0^{\prime \prime} \cdot 0 \mathrm{r}$, and in the main it would not be appreciable. I have, therefore, not thought it necessary to correct the observations for temperature changes. I have not felt sure that the correction would be real. The corrections for aberration, being insensible, have been omitted.

All of the calculations for the parallax of this star were made, under my supervision, by my niece, Miss Mary Ross Calvert, who, through the courtesy of Mr. Andrew Carnegie, is at present my assistant. They have been carefully checked throughout, and seem to be free from errors. The observations, corrected for refraction, were first freed from proper motion. The parallax factors were then computed by Bessel's formulæ, as given in Chauvenet, vol. i. p. 695, fifth edition, where the parallax factor is

$$
R m \cos (\odot-M)
$$

in which R and \odot are the distance and longitude of the Sun ; m and M being derived from the formulæ
$m \cos \mathrm{M}=\sin \alpha \sin \mathrm{P}+\cos \alpha \sin \delta \cos \mathrm{P}$
$m \sin \mathrm{M}=(-\cos \alpha \sin \mathrm{P}+\sin \alpha \sin \delta \cos \mathrm{P}) \cos \omega-\cos \delta \cos \mathrm{P} \sin \omega^{*}$
where P is the position-angle of the stars, α and δ the right ascension and declination, and ω the obliquity of the ecliptic.

The formula

$$
n+a x+b y+c p=0
$$

was used for the equations of condition. In all, there were seventysix equations of condition. From these the normal equations were derived in the usual manner. The normal equations were solved by the ordinary methods of elimination. As a check, they were also solved by Chauvenet's "second method of computing the weights of unknown quantities" (Chauvenet, vol ii., art. 35, p. 516), from which the weights were also derived. From these last, the probable errors were computed by the formulæ.

Probable error of parallax

$$
=\frac{\mathrm{P}}{\sqrt{w p}}
$$

where $w p$ is the weight of the parallax and

$$
\mathrm{P}= \pm 0.6745 \sqrt{\frac{\Sigma v^{2}}{n-3}}
$$

v being the residuals derived by substituting the known values of x, y, and p in the equations of condition. Similarly for the probable errors of x and y, using for them the same value of P.

This method of determining the probable errors was kindly communicated to me by Dr. Schlesinger.

The proper motion used in these calculations was derived by me from a comparison with Professor Burnham's measures of AC in 1890 and my measures in the last of 1905. This value was $0^{\prime \prime} \cdot 968$ in the direction $246^{\circ} \cdot 49$.

The corrections for motion, to the observed distances, were computed by the formulæ given on page 696, vol. i., of Chauvenet's Theoretical and Practical Astronomy.

In Table I. are given the observations and their reduction to rgor.o, the last column being the residuals from the mean of the corrected distances. Table II. contains the equations of condition.

[^0]Supp. 1908. Motion of the Double Star Krueger 60.

Table I.
Reductions to $1901{ }^{\circ} \mathrm{O}$.

Table I.-Reductions to 1901 ${ }^{\circ}$--continued.

$1903 \% 74$	Sept. 28	Pos. Ang. $60^{\circ} \cdot 02$	Dist. $39 \cdot 20$	Cor'n for motion. $-22^{\prime \prime} 634$	$\begin{aligned} & \text { 19ог•о. } \\ & 36^{\prime \prime} \cdot 566 \end{aligned}$	Resid. from mean. $-0 " 048$
$\cdot 757$	Oct. 5	$59 \cdot 66$	39*37	-2.649	$36 \cdot 721$	-0.203
$\cdot 782$	13	59.74	$39 \cdot 37$	-2.673	36.697	-0.179
$\cdot 799$	19	59.99	39.45	-2.689	$36 \cdot 761$	-0.243
-818	26	59.50	39.38	- 2.708	$36 \cdot 672$	-0.154
-82I	27	59.71	$39 \cdot{ }^{8}$	-2.711	36•769	-0.251
. 827	Nov. 2	59'53	$39^{\circ} 4 \mathrm{I}$	-2.726	$36 \cdot 684$	-0.166
-897	24	59.45	$39^{\circ} 66$	- -2.784	$36 \cdot 876$	-0.358
'974	Dec. 22	59.40	$39 \cdot 61$	-2.858	36.752	-0.234
1904*007	Jan 3	$59^{\circ} \mathrm{O}$	39.76	-2.889	$36 \cdot 871$	-0.353
'335	May 2	$59^{\circ} \mathrm{O}$	39.73	-3.205	36.525	-0.007
-338	3	$59^{\circ} \mathrm{O} 3$	39.48	-3.207	36.273	+0.245
-374	16	$58 \cdot 73$	$39 \cdot 50$	-3.242	$36 \cdot 258$	+0.260
$\cdot 393$	23	59'17	39.55	-3.260	36.290	+0.228
-434	June 7	59*16	39.78	$-3 \cdot 300$	$36 \cdot 480$	+0.038
- 502	July 2	58.91	$39 \cdot 62$	-3.365	36.255	+0.263
-521	9	$59 \cdot 34$	$39 \cdot 62$	$-3 \cdot 383$	36•237	+0.28I
-527	II	59.27	$39^{\circ} 73$	-3.389	36.34I	+0.177
-560	23	$59 * 47$	$39^{\circ} 80$	-3.42I	36.379	+0.139
-570	27	59.41	39.78	-3.430	$36 \cdot 350$	+0.168
$\cdot 584$	Aug. I	59.74	39.74	-3.444	$36 \cdot 296$	+0.222
-598	6	$59^{\circ} 5 \mathrm{I}$	$39 \cdot 69$	-3.457	$36 \cdot 233$	+0.285
$\cdot 603$	8	$59 \cdot 64$	$39 * 76$	-3.462	36.298	+0.220
-623	15	59.30	$39 \cdot 85$	-3.48I	36.369	+0.149
-642	22	$59 \cdot 60$	40×04	-3.499	36.54I	-0.023
655	27	$59 \cdot 69$	$40 \cdot 08$	-3.512	$36 \cdot 568$	-0.050
-661	29	$59 * 7$	$39^{\circ} 95$	-3.518	$36 \cdot 432$	+0.086
-675	Sept. 3	59*29	40×03	-3.53I	36.499	+0.019
-680	5	59.57	$40 \cdot 12$	-3.536	$36 \cdot 584$	-0.066
732	24	59*79	$40^{\circ} 10$	-3.586	36.514	+0.004
-751	Oct. I	59.43	$40 \cdot 22$	-3.604	$36 \cdot 516$	-0.098
'790	15	59.87	$40 \cdot 25$	-3.642	36.608	-0.090
'795	17	$59 \cdot 68$	$40 \cdot 19$	-3.647	36.543	-0.025
. 828	29	59.59	$40 \cdot 25$	-3.678	$36 \cdot 572$	-0.054
. 833	31	$59 \cdot 62$	4040	$-3 \cdot 683$	36.717	-0.199
-866	Nov. 12	59.26	$40 \cdot 53$	-3.715	$36 \cdot 815$	-0.297
1904.905	26	59.33	$40 \cdot 56$	-3.752	$36 \cdot 808$	-0.290
1905.904	Nov. 26	5970	$41 * 46$	-4.605	$36 \cdot 855$	-0.337
'910	28	59.55	4I 38	$-4.6 \mathrm{II}$	36.769	-0.25I

Table II.

Equations of Condition.

For x.

$$
\begin{aligned}
& 1900 \text { Dec. 8. }-0.423+x-0.063 y+0.939 p=0 \\
& \text { 9. }-0.210+x-0.060 y+0.944 p=0 \\
& \text { II. }-0.225+x-0.055 y+0.95 \mathrm{I} p=0 \\
& \text { 12. }-0 \cdot 192+x-0.052 y+0.966 p=0 \\
& \text { 1901 Sept. 23. }+0.038+x+0.729 y-0032 p=0 \\
& \text { 24. }+0.020+x+0.73 \mathrm{I} y-\text { o.01I } p=0 \\
& \text { 30. }-0.063+x+0.748 y+0.091 p=0 \\
& \text { Oct. 1. } \quad+0.090+x+0.75 \mathrm{I} y+0.102 p=0 \\
& \text { 13. }-0 \cdot 160+x+0.783 y+0.303 p=0 \\
& \text { 21. }-0.068+x+0.805 y+0.427 p=0 \\
& \text { 29. }-0.027+x+0.827 y+0.545 p=0 \\
& \text { 1902 Sept. 29. }-0.096+x+\mathrm{I} 744 y+0.068 p=0 \\
& \text { Oct. 6. }+ \text { o'II }^{\prime}+x+1 \cdot 764 y+0 \cdot 184 p=0 \\
& \text { 7. }- \text { o'105 }+x+\mathrm{I} 766 y+0.201 p=0 \\
& \text { 14. }-0.266+x+\mathrm{I} 786 y+0.314 p=0 \\
& 1903 \text { May } \\
& \text { 19. }+0.195+x+2.380 y-0.826 p=0 \\
& \text { 25. }+0.130+x+2.396 y-0.884 p=0 \\
& \text { June 2. }+0.001+x+2.418 y-0.936 p=0 \\
& \text { 9. }+ \text { o }^{\prime} \mathrm{IOO}+x+2.437 y-0.986 p=0 \\
& \text { 15. }+0^{\circ} 166+x+2.454 y-0.997 p=0 \\
& \text { 22. }+0 \cdot 154+x+2.473 y-1.006 p=0 \\
& \text { 29. }+0^{\circ} 172+x+2{ }^{\prime} 492 y-1002 p=0 \\
& \text { 30. }+0.205+x+2.495 y-\mathbf{1} \text {.oro } p=0 \\
& \text { July 6. }+0.091+x+2.511 y-0.990 p=0 \\
& \text { 7. }+0.224+x+2.514 y-0.983 p=0 \\
& \text { 13. }+0.219+x+2.530 y-0.952 p=0 \\
& \text { 14. }+0{ }^{\circ} 172+x+2{ }^{\circ} 533 y-0.952 p=0 \\
& \text { 20. }+0.087+x+2.549 y-0.914 p=0 \\
& \text { 21. }+0.210+x+2.552 y-0.902 p=0 \\
& \text { 27. }+0.286+x+2.569 y-0.858 p=0 \\
& \text { Aug. 4. }+0.287+x+2.590 y-0.775 p=0 \\
& \text { 10. }+0.163+x+2.607 y-0.712 p=0 \\
& \text { 17. }+0.161+x+2.626 y-0.620 p=0 \\
& \text { 24. }+0.039+x+2.645 y-0.519 p=0 \\
& \text { 31. }+0.008+x+2.664 y-0.417 p=0 \\
& \text { Sept. I. }-0.119+x+2.667 y-0.400 p=0 \\
& \text { 22. }-{ }^{\circ}{ }^{1} 74+x+2.725 y-0.055 p=0 \\
& \text { 28. }-0.048+x+2.74 \mathrm{I} y+0.050 p=0
\end{aligned}
$$

Table II.-Equations of Condition-For x-continued.
1903 Oct. 5. $-0.203+x+2.757 y+0.164 p=0$
13. $-0.179+x+2.782 y+0.295 p=0$
19. $-0.243+x+2.799 y+0.394 p=0$
26. $-0.154+x+2.818 y+0.495 p=0$
27. $-0.251+x+2.821 y+0.510 p=0$

Nov. 2. $-0.166+x+2.837 y+0.595 p=0$
24. $-0.358+x+2.897 y+0.839 p=0$

Dec. 22. $-0.234+x+2.974 y+0.977 p=0$
1904 Jan.
3. $-0.353+x+3.007 y+0.960 p=0$

May 2. $-0.007+x+3.335 y-0.638 p=0$
3. $+0.245+x+3.338 y-0.65$ I $p=0$
16. $+0.260+x+3.374 y-0.8 \mathrm{oI} p=0$
23. $+0.228+x+3.393 y-0.879 p=0$

June 7. $+0.038+x+3.434 y-0.980 p=0$
July 2. $+0.263+x+3.502 y-\mathrm{I} .003 p=0$
9. $+0.28 \mathrm{I}+x+3.521 y-0.973 p=0$
II. $+0.177+x+3.527 y-0.967 p=0$
23. $+0.139+x+3.560 y-0.886 p=0$
27. $+0.168+x+3.570 y-0.855 p=0$

Aug. I. $+0.222+x+3.584 y-0.799 p=0$
6. $+0.285+x+3.598 y-0.747 p=0$
8. $+0.220+x+3.603 y-0.723 p=0$
15. $+0.149+x+3.623 y-0.640 p=0$
22. $-0.023+x+3.642 y-0.511 p=0$
27. $-0.050+x+3.655 y-0.467 p=0$
29. $+0.086+x+3.66 \mathrm{I} y-0.434 p=0$

Sept. 3. $+0.019+x+3.675 y-0.364 p=0$
5. $-0.066+x+3.680 y-0.326 p=0$
24. $+0.004+\boldsymbol{x}+3.732 y-0.007 p=0$

Oct. \quad I. $-0.098+x+3.751 y+0.105 p=0$
15. $-0.090+x+3.790 y+0.342 p=0$
17. $-0.025+x+3.795 y+0.373 p=0$
29. $-0.054+x+3.828 y+0.548 p=0$
31. $-0.199+x+3.833 y+0.578 p=0$

Nov. 12. $\quad-0.297+x+3.866 y+0.726 p=0$
26. $-0.290+x+3.905 y+0.862 p=0$

1905 Nov. 26. $-0.337+x+4.904 y+0.863 p=0$
28. $-0.25 \mathrm{I}+x+4.910 y+0.875 p=0$ $+0.01 \mathrm{I}+76 x+204.053 y-14.804 p=0$

Corresponding equations were deduced for y and p, the resulting normal equations being

$$
\begin{aligned}
& +0.0110+76.000 x+204.0530 y-14.8040 p=0 \\
& +2.2742+204.053 x+642.2801 y-52.9454 p=0 \\
& -8.5866-14.804 x-52.9454 y+38.0005 p=0
\end{aligned}
$$

The solution of these gives the following values :-

$$
\begin{aligned}
& p=+0^{\prime \prime} .249 \pm 0^{\prime \prime} .0105 \\
& y=+0.01 \mathrm{I} \pm 0.0063 \\
& x=+0.020 \pm 0.0182
\end{aligned}
$$

The value of the parallax of the star A is, therefore,

$$
\pi=+0^{\prime \prime} \cdot 249 \pm 0^{\prime \prime} \cdot 0105
$$

This gives a distance of over 830,000 times that of the Sun. Light, therefore, requires 13 I years to come from Krueger 60.

Dr. Schlesinger has kindly supplied me with his final value for the parallax of this star. He determined the parallax by photography (during his connection with the Yerkes Observatory) from both right ascension and declination. These were from 19 plates taken with the 40 -inch telescope from 1903 to 1906. Three separate images were impressed on each plate. His results are-

$$
\begin{aligned}
\text { From R.A. } \pi & =+0.0 \cdot 257 \pm 0^{\prime \prime} 007 \\
\quad, \quad \text { Decl. } \pi & =+0.23^{8} \pm 0.01 \mathrm{I}
\end{aligned}
$$

It will be seen that the mean of these,

$$
\pi=+0^{\prime \prime} \cdot 248
$$

is essentially identical with my value.
The results with the same instrument, by visual and photographic methods respectively, in the one case by position-angle and distance, and in the other by right ascension and declination, should inspire confidence in both methods.

Irregularity in the Proper Motion of A.

At present the stars A and B are moving almost directly away from C. This latter star, therefore, is a good one from which to determine the motion.

If B has a considerable mass ratio to A , a large irregularity in the proper motion of either star must occur because of the large apparent distance between the two. If their masses should be nearly equal, this deviation from uniformity of motion in either - star may amount to as much as $\mathrm{I}^{\prime \prime} \cdot 5$. This last mass ratio is not
improbable, in view of the investigations of Mr. Lewis of the Greenwich Observatory who found * that in some cases the apparently smaller star of a binary is really the more massive of the two. It is important, therefore, frequently to measure the position of A with reference to C and other stars in the field. By this means, in the course of time, its mass will become accurately known. For this reason I have kept the star on my observing list, and have made frequent measures of it and the stars mentioned. Of my own work there are now some seven or eight years' observations. Of course, for various reasons, where it is possible, it is best to use the measures of one individual.

The known history of these stars perhaps covers too short an interval for the observations to show any very decided irregularity in the motion of A. To see if there was any such change, the measures were freed from parallax, and means of four or five taken. These were plotted on a large scale. A thread was then tightly stretched over the measures and carefully adjusted to give the best representation. This straight line does not represent the observations with entire satisfaction. The best average, however, was obtained, and the deviations read off. These differences are given in connection with the mean measures. The ends of the thread would represent the positions $1900^{\circ} 943$, distance $36^{\prime \prime} \cdot 49$, and 1908.302, distance $43^{\prime \prime} \cdot 53$.

As these measures may be of interest to others, they are given below. The first column after the dates is the measured distance corrected for refraction, the next column gives the correction for parallax, while the last is the distance affected only by motion. The means of these and their deviation from the straight line are also given.

Distances (A C) corrected for parallax.

1900			Obs. dist.	Cor'n for pllx.	True dist.
	Dec.	8	$36^{\prime \prime} \cdot 88$	$-0 \div 23$	$36^{\prime \prime} \cdot 65$
		9	$36 \cdot 67$	-0.23	$36 \cdot 44$
		II	$36 \cdot 69$	-0.24	$36 \cdot 45$
		12	$36 \cdot 66$	-0.24	$36 \cdot 42$
1900'943					$36 \cdot 49$ - 0.01
1901	Sept.		37'18	+0.01	37*19
		24	$37 \cdot 20$	$0 \cdot 00$	$37 \cdot 20$
		30	$37 \cdot 30$	-0.02	$37 \cdot 28$
	Oct	I	$37 \cdot 15$	-0.03	$37^{1} 12$
1901 740					$37 \cdot 20-0.04$
IgOI	Oct.	13	$37 * 43$	-0.08	37*35
		2I	37:36	-0.II	$37 \cdot 25$
		29	$37 \cdot 34$	-0.14	$37 \cdot 20$
1901 792					$37 \cdot 27-0.02$
			irs R.A.	vol. lvi.	xxi.

Supp. 1908. Motion of the Double Star Krueger 60.
Distances (A C) corrected for parallax-continued.

1902	Sept. 29	Obs. dist. $38 \cdot 29$	$\begin{aligned} & \text { Cor'n for } \\ & \text { pllx. } \\ & -0^{\prime \prime} \cdot 02 \end{aligned}$	True dist. $3^{\prime \prime} \cdot 27$
	Oct. 6	38*10	-0.04	$38 \cdot 06$
	7	$38 \cdot 32$	-0.05	$38 \cdot 27$
	14	$38 \cdot 50$	-0.08	$38 \cdot 42$
1902.764				$\overline{38 \cdot 25}+{ }^{\prime \prime} \cdot$ OI
1903	May 19	38-6I	+0.21	$38 \cdot 82$
	25	$38 \cdot 69$	+0.22	$38 \cdot 91$
	June 2	$38 \cdot 84$	+0.23	$39^{\circ} \mathrm{O} 7$
	9	$38 \cdot 76$	+0.25	$39^{\circ} \mathrm{OI}$
1903.407				$38 \cdot 95+0 \cdot 10$
1903	June I5	$38 \cdot 71$	+0.25	$38 \cdot 96$
	22	$38 \cdot 74$	+0.25	38.99
	29	38.74	+0.25	38.99
	30	38.71	$+0.25$	38.96
1903.480				$38.97+0.05$
1903	July 6	$38 \cdot 84$	+0.25	$39^{\circ} 09$
	7	$38 \cdot 71$	+0.24	$38 \cdot 95$
	13	$38 \cdot 73$	+0.24	38.97
	14	$38 \cdot 78$	+0.24	$39^{\circ} 02$
1903.524				$39^{\circ} \mathrm{OI}+0.04$
1903	July 20	$38 \cdot 88$	+0.23	$39^{\circ} \mathrm{II}$
	21	$38 \cdot 76$	+0.22	$38 \cdot 98$
	27	$38 \cdot 70$	+0.21	38.91
	Aug. 4	$38 \cdot 72$	+0.19	38.91
1903.568				$38 \cdot 98$-00
1903	Aug. 10	$38 \cdot 86$	+0.18	39*04
	17	$38 \cdot 88$	+0.15	39*03
	24	$39^{\circ} 02$	+0.13	39*15
	3 r	$39^{\circ} \mathrm{O} 7$	+0.10	39 17
1903.637				$39 \cdot 10+0 \cdot 03$
1903	Sept. I	39.20	+0.10	39*30
	22	$39 \cdot 31$	+O.OI	$39 \cdot 32$
	28	$39^{\circ} 20$	-0.01	39-19
	Oct. 5	39×37	-0.04	39*33
1903*725				$39.29+0.14$

Distances (A C) corrected for parallax-continued.

1903	Oct.		Obs. dist. 10	Cor'n for pllx.	True dist.
		13	$39^{\circ} 37$	-0.07	$39^{\circ} 30$
		19	39.45	-0.10	$39 * 35$
		26	$39 \cdot 38$	-0.12	39*26
		27	$39 \cdot 48$	-0.13	39*35
1903.804					$39^{\circ} 3 \mathrm{I}+0.09$
1903	Nov.	2	39.41	-0.15	$39 \cdot 26$
		24	$39^{\circ 66}$	-0.21	$39 * 45$
	Dec.	22	$39 \cdot 61$	-0.25	$39 \cdot 36$
1904	Jan.	3	$39 * 76$	-0.24	$39 \cdot 52$
1903.927					$39.40+0.06$
1904	May	2	39*73	+0.16	$39 \cdot 89$
		3	$39 \cdot 48$	+0.16	$39^{\circ} 64$
		16	$39 \cdot 50$	+0.20	$39^{\circ} 70$
		23	$39^{\circ} 55$	+0.22	39*77
1904.360					39*75 0.00
1904	June	7	$39^{\prime 7} 8$	+0.24	$40^{\circ} 02$
	July	2	$39^{\circ} 62$	+0.25	$39 \cdot 87$
		9	$39 \cdot 62$	+0.24	$39 \cdot 86$
		II	$39 * 73$	+0.24	39*97
$1904 \% 497$					$39^{\circ} 93+0.04$
1904	July	23	'39.80	+0.22	$40^{\circ} 02$
		27	39.78	$+0.21$	$39^{\circ} 99$
	Aug.	I	$39^{\circ} 74$	+0.20	$39^{\circ} 94$
		6	$39 \cdot 69$	+0.19	39*88
1904.579					-39.96 0.00
1904	Aug,	8	$39 * 76$	+0.18	39*94
		15	$39 \cdot 85$	+0•16	$40^{\circ} \mathrm{OI}$
		22	$40 \cdot 04$	$+0.12$	$40 \cdot 16$
		27	$40 \cdot 08$	$+0.12$	$40^{\prime 20}$
1904.631					$40.08+0.04$
1904	Aug.	29	$39^{\circ} 95$	+0'II	$40 \cdot 06$
	Sept.	3	$40 \cdot 03$	+0.09	4012
		5	$40 \cdot 12$	+0.08	40'20
		24	$40^{\prime} 10$	$0 \cdot 00$	40'10
1904.686					$40 \cdot 12+0.06$

Supp. 1908. Motion of the Double Star Kr'ueger 60.
Distances (A C) corrected for parallax-continued.

1904	Oct.		Obs. dist.	Cor'n for pllx.	True dist.
		I	$40^{\prime \prime} \cdot 22$	-0.03	$40^{\prime \prime} \cdot 19$
		15	$40 \cdot 25$	-0.08	$40^{1} 17$
		17	40'19	-0.09	40'10
		29	$40 \cdot 25$	-0.14	40'11
1904×790					40'14 O"00
1904	Oct.	3 I	$40 \cdot 40$	-0.14	40:26
	Nov.		40.53	-0.18	$40 \cdot 35$
		26	$40 \cdot 56$	-0.21	$40 \cdot 35$
1904.869					$40 \cdot 32+0.09$
1905	Nov.	26	41 46	-0.21	$41 \cdot 25$
		28	41 38	-0.22	41.16
$1905 \% 907$					4I.2I-0.03
1906	June	28	41.45	+0.25	41 ${ }^{\prime} 70$
	July	7	41 51	+0.24	4175
		10	41 54	+0.24	41 78
		24	41'76.	+0.22	4I 98
1906.523					41.80-0.03
1906	July	29	41*68	+0.21	41-89
	Aug.		$41 \cdot 72$	+0.17	41×8
		14	41×63	+0.16	41*79
1906.602					4I.86-0.20
1907 289	9 Apr.		$42 \cdot 52$	+0.10	$42 \cdot 62+0: 10$
1907	July	2	$42 \cdot 73$	+0.25	42.98
		12	$42 \cdot 57$	+0.24	$42 \cdot 8 \mathrm{I}$
		28	$42 \cdot 63$	+0.21	$42 \cdot 84$
		30	$42 \cdot 64$	+0.21	$42 \cdot 85$
1907.544					$42 \cdot 87+0.04$
1907	Aug.	6	$42 \cdot 77$	+0.19	42.96
		8	$42 \cdot 62$	+0.18	42.80
		II	$42 \cdot 53$	+0.17	$42 \cdot 70$
		13	$42 \cdot 78$	+0.17	42.95
		20	$42 \cdot 68$	+0.14	$42 \cdot 82$
1907.612					$42 \cdot 85-0.01$
1907749 Oct.		I	4291	-0`03	42.88-0.11
1908	Apr.		$43: 40$	$+0.12$	$43 \cdot 52$
		21	$43 \cdot 25$	+0.12	43.37
1908.302					43.44-0.08

This investigation led me to notice that the direction of motion of A was regularly diminishing with the increase of time when derived from a comparison with the measures of 1890.8 . The motion was also slightly increasing. To find out the cause of this change I plotted the observations for each year (fig. 2), correcting the distances for parallax, and selecting the positions so that there would be but little parallactic change in the angles. No correction for precession has been applied to the position-angles. The extreme change due to this last cause would be $0^{\circ} \circ \circ$. The result shows that between the epochs 1890.8 to 1901.8 and igor. 8 to $1907^{\circ} 7$ there has been a total change of some 8° or 9° in the direction of motion. If we take the interval 1901.8-1907.7 the direction of motion is 239°, while the previous values were about 247°. A simple inspection of the diagram will show the change. It is evident, therefore, that the motion of A is not rectilinear. This change is undoubtedly due to the orbital motion of A about the centre of gravity of the system. It is therefore not possible to give a value of its proper motion that will be constant for any considerable interval of time.

The following measures were used in constructing the diagram. The distances A C are corrected for parallax.

A C.			
$1890{ }^{\circ} 88$	$56^{\circ} \cdot 30$	$26^{\prime \prime} 73$	Observer. Burnham.
1898.446	$58 \cdot 71$	$34 \cdot 64$	Doolittle.
1900 '737	59'19	$36 \cdot 18$	"
1900 943	59.30	$36 \cdot 49$	Barnard.
19017766	$59 \cdot 62$	$37 \cdot 23$	"
$1902 \cdot 764$	59.64	$38 \cdot 25$,"
1903.765	59.77	$39 \cdot 30$	"
1904782	59.55	40'19	"
1905.907	59.63	$41^{\prime} 21$	"
$1906 \cdot 602$	59.54	41.86	"
$1907 \cdot 680$	$59 \cdot 57$	$42 \cdot 87$	"

A B.

$1890 \cdot 788$	178.80	$2 \cdot 32$	Observer. Burnham.
1898.446	140.66	3•19	Doolittle.
1900•737	134.02	3.18	,
$1900 \cdot 943$	$133 \cdot 14$	3.25	Barnard.
1901 767	${ }^{1} 30 \cdot 67$	$3 \cdot 28$,,
$1902 \cdot 765$	127.05	$3 \cdot 36$	",
1903.761	123.89	3.35	,
1904.791	$120 \cdot 30$	3.33	"
$1905{ }^{\prime 9} 9$	115.34	$3 \cdot 31$	"
1906.601	112.27	3.34	
$1907 \cdot 676$	107.00	3.27	

Fig. 3.

The Micrometer Measures.

I have collected here for this paper all my published and unpublished measures of these stars, so that my work on the subject up to the present may be presented as completely as possible. All the distances have been corrected for refraction.

The diagram (fig. r) will show the relative positions of these various stars.

The measures follow.

Measures of Krueger 60 and Comparison Stars.
AB.

1900 '937 Dec.	8	132.06	3"30	${ }_{0} \quad$ mag.	$\begin{aligned} & \text { mag. } \\ & \text { 10' } \end{aligned}$
-940	9	133*19	3.25		
'945	II	1 33.59	3.24		
-948	12	133.71	3.23		
1900*943		133.14	3.25	$9 \cdot 2$	$10 \cdot 5$

A B-continued.

1901 729 Sept. 23		$130^{\circ} \cdot 05$	${ }^{\prime \prime} 37$	mag.	mag.
731	24	129.11	3.39	$9 \cdot 5$	10×5
77^{8}	30	131.50	. 3.37		
75^{1} Oct.	1	131.65	3.25		
${ }^{7} 88$	13	129.69	3.31		
. 805	21	130×59	$3 \cdot 26$	$9 \cdot 2$	10.5
$\cdot 827$	29	130.59	3.22		
1901768		I 30.45	$3 \cdot 31$	$9 \cdot 3$	10.5

1902.744 Sept. 29	127.25	3.33	
.764 Oct.	6	128.17	3.43
766	7	126.73	3.35
7.785	14	$\frac{126.06}{1902.765}$	
	$\frac{3.35}{127.05}$	3.37	

1903.380 May	19	122.36	33^{2}
418 June	2	122.34	3.42
437	9	123.85	$3 \cdot 40$
454	15	123.49	$3 \cdot 37$
$\cdot 473$	22	123.47	3.33
-492	29	124.90	$3 \cdot 36$
-495	30	125.96	$3 \cdot 26$
${ }^{511}$ July	6	12 I 3 I	$3 \cdot 51$
'514	7	123.18	3.30
645 Àug.	24	124.52	3.45
$\cdot 664$	31	122.91	$3 \cdot 35$
${ }^{6} 667$ Sept.	1	12 I 98	3.37
${ }^{7} 25$	22	124.54	3.27
'741	28	123.54	345
-818 Oct.	26	123.60	$3 \cdot 33$
1903.562		123.46	$3 \cdot 37$

A B—continued.

1905904 Nov. 26		116.04	33°
-910	28	114.64	$3 \cdot 31$
1905.907		115.34	3.31
1906.490 June 28		113.63	$3 \cdot 28$
${ }^{515} 5$ July	7	112.44	$3 \cdot 28$
${ }^{5} 53$	10	109.72	$3 \cdot 34$
-561	24	112.57	$3 \cdot 33$
-575	29	112.71	3.31
610 Aug.	II	112.31	$3 \cdot 33$
${ }^{6} 19$	14	11178 7	$3 \cdot 38$
1906•556		112.17	$3 \cdot 32$

Supp. 1908. Motion of the Double Star Krueger 60.
A B-continued.

1907.289 Apr. 16	108.06	$3^{\prime \prime}{ }^{1} 4$	mag.
'500 July ${ }^{2}$	108.09	3.26	
-528 12	$106 \cdot 31$	3.29	
-571 28	$106 \cdot 59$	3.28	
'577 30	10783	3.23	
-596 Aug. 6	106.06	3.42	
-601 . 8	10792	$3 \cdot 28$	
610 II	106.93	$3 \cdot 38$	
${ }^{615} 13$	107.47	$3 \cdot 20$	
-634 20	107 13	3'17	
706 Sept. 15	105.34	$3 \cdot 37$	
${ }^{7} 49$ Oct. I	108.06	$3 \cdot 36$	
1907 ${ }^{\text {5 }}$ (107.15	$3 \cdot 28$	

1908.300 Apr.	19	105.65	2.97
.338 May	3	105.19	3.30
.376	17	103.99	3.21
.382	19	104.63	3.23
.390	22	104.18	3.26
.401	26	102.70	$\frac{3.13}{1908.373}$

A C
In this table all the previous measures of A C-those used in the determination of the parallax-have been omitted, because they are given in Table I.

A C-continued.

1907.289 Apr. 16	$59 .{ }^{\circ} \mathrm{I} 8$	$42 \cdot 52$
-500 July 2	59*34	$42 \cdot 73$
-528 12	59*55	$42 \cdot 57$
-57 $\quad 28$	59.40	$42 \cdot 63$
-577 30	59'19	$42 \cdot 64$
-596 Aug. 6	59.44	$42 \cdot 77$
-60I 8	59.59	$42 \cdot 62$
-6IO II	59'14	$42 \cdot 53$
-615 13	$59 \cdot 50$	42.78
-634 20	59.55	$42 \cdot 68$
749 Oct. I	59'71	42.91
1907.570	$59 * 42$	$42 \cdot 67$
1908.300 Apr. 19	59*32	43.41
-305 2I	$58 \cdot 99$	$43^{\circ} 25$
$\cdot 338$ May 3	$58 \cdot 76$	$43 \cdot 51$
-357 IO	$59^{\prime} 15$	43.72
'376 17	58.98	$43 \cdot 32$
$\cdot 382$ 19	$59 \cdot 24$	$43 \cdot 52$
- 39022	58'98	$43 \cdot 57$
40126	59'19	43.54
$1908 \cdot 356$	59.08	$43 \cdot 48$

A D.

$\begin{gathered} 1900 \cdot 945 \mathrm{Dec} . \\ 948 \end{gathered}$	11	$\begin{aligned} & 21 \div 25 \\ & 20 \cdot 86 \end{aligned}$	21'26 21:34	$\begin{aligned} & 15 \\ & 15.5 \end{aligned}$
1900×947		21.05	21.30	15.3
Igòr '783 Oct.	13	23.56	2I ${ }^{5} 4$	15
786	14	21.58	21.85	
-805	21	23.04	2172	15%
-827	29	23.07	21 78	
1901.800		$22 \cdot 81$	21'72	$15^{\prime} \mathrm{I}$
1903.51 I July	6	24.68	22.75	
'514	7	24*09	$22 \cdot 83$	15
1903.512		24.39	$22 \cdot 79$	15
1908.415 May		29.25	26.69	
$\cdot 467$ June		29.51	26.99	
${ }^{472}$	21	29.48	26.93	
1908.45 I		29.41	$26 \cdot 87$	

A E.

$1900 \cdot 937$ Dec.	8	$98^{\circ} \cdot 85$	$68^{\prime \prime} 03$	mag.	$\begin{gathered} \operatorname{mag} . \\ 12.5 \end{gathered}$
'940	9	$99^{\circ} 06$	67.79		13.5
-945	II	99*00	67×76		13.5
1900 ${ }^{\circ} 9$ I 1		$98 \cdot 97$	67.86		13.2

1901 729 Sept.		98:93	68•20	12
731	24	99*14	$68 \cdot 49$	12.5
778	30.	99×06	$68 \cdot 64$	
'751 Oct.	1	$98 \cdot 92$	$68 \cdot 22$	
$\cdot 783$	13	99*01	$68 \cdot 32$	
-805	21	98.91	$68 \cdot 39$	1 $1 \cdot 3$
-827	29	98.83	$68 \cdot 64$	
1901 768		98.97	$68 \cdot 41$	II ${ }^{\circ} 9$

1903.437 June	9	97*89	$69 \cdot 17$	13
$\cdot 454$	15	97×99	$69 \cdot 37$	
-473	22	$97 \cdot 87$	$69^{\circ} 20$	12
-495	30	97*96	69.42	
-511 July	6	98*07	$69 * 47$	
-514	7	97×78	69.51	
-530	13	98-26	69.38	
-533	14	98•18	69.44	
-549	20	98*09	69.55	
-569	27	98.OI	69.47	
$\cdot 607$ Aug.	10	$97 \cdot 64$	69.44	
-626	17	$97 \cdot 84$	$69 \cdot 64$	
-645	24	97×97	69.90	
-664	31	97.86	69.72	
-667 Sept.	1	97*93	69\%7	
$\cdot 725$	22	98.02	70.12	
741	28	$97 * 90$	69.89	12
$\cdot 757$ Oct.	5	97*86	69.93	
782	13	$97 \cdot 59$	70'11	
'799	19	$97 \cdot 80$	$70 \cdot 26$	I3
-818	26	97.78	$70 \cdot 22$	
-821	27	97.70	70:08	12.5
-837 Nov.	2	$97 \cdot 64$	70'11	12
-897	24	97'56	$70 \cdot 26$	12
-974 Dec.	22	97*41	$70 \cdot 22$	12
1904.007 Jan.	3	97.49	$70 \cdot 47$	12
1903.670		97.85	69.81	$12 \cdot 3$

A E-continued.

1904.335 May	2	$97{ }^{\circ} \mathrm{I} 4$	$70^{\prime \prime} \cdot 10$	mag.	$\begin{aligned} & \text { mag. } \\ & 12 \end{aligned}$
$\cdot 338$	3	$97 * 44$	$69^{\circ} 91$		12
- 527 July	II	$97 \cdot 42$	$70 \cdot 38$		12
-560	23	97.53	$70 \cdot 19$		12
-570	27	97.43	70*13		13
$\cdot 584$ Aug.	I	$97 \cdot 64$	70.21		I3
-598	6	$97 \cdot 32$	$70 \cdot 47$		
-603	8	$97 \cdot 89$	$70 \cdot 76$		
-623	15	$97 \cdot 66$	$70 \cdot 76$		
-642	22	97'54	$70 \cdot 49$		12
-655	27	97*50	$70 \cdot 61$		13
-661	29	97×56	70.93		
-675 Sept.	3	97.44	$70 \cdot 61$		12
-680	5	97*66	$70 \cdot 81$		12.5
-751 Oct.	1	97'53	70.80		12.5
'790	15	97*54'	71.00		12
795	17	$97 \cdot 40$	$70 \cdot 77$		12
-828	29	97×48	$70 \cdot 97$		12.5
-833	3I	$97 \cdot 27$	$70 \cdot 99$		$12 \cdot 8$
-866 Nov.	12	$97 \cdot 23$	71×06		
'905	26	$97 \cdot 29$	70\%94		12
1904.653		97×4	$70 \cdot 61$		12.3

1905*910 Nov. 28	$96 \cdot 87$	71'97

I906.610 Aug. II	97.08	72.04	12.5
.619	14	$\frac{96.61}{96.85}$	
1906.6 I 5		$\frac{72.20}{72.12}$	$\frac{12.5}{12.5}$

1907 596 Aug.	6	$96 \cdot 04$	72.51	13
-60I	8	$95 \cdot 96$	$72 \cdot 66$	
-610	II	$95^{\circ} 70$	72.80	
-615	13	$96 \cdot 29$	72.80	
-634	20	95*93	72.59	
$\cdot 667$ Sept.	1	$95 \cdot 82$	72.88	12.8
706	15	$96 \cdot 24$	$72 \cdot 89$	
$\cdot 749$ Oct.	I	96•14	72.80	
$1907 \cdot 647$		$96 \cdot \mathrm{OI}$	$72 \cdot 74$	12.9

Supp. 1908. Motion of the Double Star Krueger 60.651

1908.415 May		A E-continued.	
	31	95×53	$73^{\circ} \cdot 05$
-417 June	1	$95 \cdot 39$	$73^{\circ} 00$
-428	5	$95 \cdot 47$	$73 \cdot 10$
$\cdot 467$	19	95.41	$73 \cdot 14$
${ }^{472}$	21	95.50	73.08
1908.440		95.46	$73^{\circ} 07$

AF.

1901'729 Sept.		$275^{\circ} \cdot 36$	$39^{\prime} \cdot 61$	14
731	24	$274 \% 8$	39*53	14
$\cdot 751$ Oct.	1	275.20	$39^{\circ} \mathrm{6I}$	
784	13	275*33	$39 \cdot 52$	15
-805	21	$275{ }^{\circ} 34$	39*53	15
$\cdot 827$	29	275.53	39*57	
1901 771		$275 \cdot 26$	39*56	14.5

1903.473 June	22	$277 \cdot 24$	$38 \cdot 47$	13
-492	29	277 -59	...	13 clouds.
-495	30	276•84	$38 \cdot 46$	12.7
-511 July	6	277.06	$3^{8 \cdot} 34$	12
$\cdot 514$	7	277.09	$38 \cdot 51$	
-533	14	$276 \cdot 52$	$38 \cdot 37$	
-549	20	$276 \cdot 34$	$38 \cdot 50$	
$\cdot 626$ Aug.	17	$276 \cdot 92$	$3^{8 \cdot} 45$	
$\cdot 645$	24	$276 \cdot 49$	$38 \cdot 11$	
-664	31	276.70	$38 \cdot 21$	
725 Sept.	22	276.74	$38 \cdot 16$	
$\cdot 741$	28	$276 \cdot 87$	$37 \cdot 80$	15
7782 Oct.	13	277.06	$3^{8 \cdot 15}$	
${ }^{7} 799$	19	277.14	38.07	14.5
-818	26	277*31	$38 \cdot 80$	
-82I	27	$277 \cdot 36$	3779	15\%
-897 Nov.	24	277 35	$38 \cdot 29$	14.5
1903.652		$276 \cdot 98$	$38 \cdot 28$	137

A F-continued.

1904 335 May	2	$278^{\circ} \cdot 20$	37×76	mag.	mag. 12.7
- 393	23	$277 \cdot 89$	38.05		$2 \cdot 5$
-560 July	23	277.71	$37 \cdot 39$		14
-570	27	$277 \cdot 64$	$37 \cdot 62$		
$\cdot 584$ Aug.		$277 \cdot 36$	$37 \cdot 35$		15
'598.	6	$277{ }^{\circ} \mathrm{O}$	$37 \% 90$		
-655	27	27774	$37 \cdot 15$		14
- 675 Sept.	3	277 •6	$37 \cdot 40$		15
${ }^{7} 751$ Oct.	1	277 -84	$37 \cdot 15$		14.5
790	15	$278 \cdot 17$	$37 \cdot 38$		15
795	17	$277 \cdot 64$	$36 \cdot 83$		14.5
-828	29	$278 \cdot 19$	37*18		14.7
-83	31	277 •7	$37 \cdot 34$		14.5
'905 Nov.		$278 \cdot 16$	$36 \cdot 99$		14.5
1904.734		27779	37×39		14°

1907.667 Sept.		$280 \cdot 56$	$35^{\circ} 23$
-706	15	$280 \cdot 76$	$34 \cdot 47$
- 749 Oct.	1	$280 \cdot 75$	34.73
$\cdot 782$	13	28I.05	$34 \cdot 67$
1907 7 726		281 78	34.77
1908.415 May	31	$28 \mathrm{I} \cdot 80$	34.94
${ }^{417}$ June	1	282.06	$35 \cdot 16$
${ }^{428}$	5	282.13	35.15
-467	19	281.58	34.63
$\cdot 472$	21	281.40	34.78
1908.440		281.94	34.93

C E.

1903.552 July 2I	$129^{\circ} 71$	$46^{\prime \prime} 19$	
1907.634 Aug. 20	129.4 I	45.84	
$\frac{782 \text { Oct. 13 }}{1907.708}$	$\frac{129.88}{129.65}$	$\frac{45.98}{45.91}$	$\frac{13.7}{13.7}$

It will be seen from the measures that the distance AB is begiuning to lessen, having attained a maximum about 1903 or 1904. The position-angle AC seems to have reached its greatest value about 1907 and is now slowly diminishing. Both changes are due to the orbital motion of A in the system AB.

The following estimates of the magnitude of C were made at the time of the observations which have been included in Table I.

$$
\begin{array}{rrr}
\text { I900 } & \text { Dec. } & 8 \\
\text { I901 } & \text { Sept. } & 24 \\
9^{\circ} 5 \\
\text { 19.5 } & 9^{\circ} 5 \\
\text { Oct. } 2 \text { I } & 9^{\circ} 7 \\
\text { 1902 } & \text { Sept. } 29 & 9^{\circ} 9
\end{array}
$$

At the observation of 1900 Dec. 9 the following note occurs:"Both A and C are slightly yellowish."

Two small Double Stars near Krueger 60.
During these measures two small double stars were found and measured. Though they are not in any way connected with Krueger 60 , their proximity to this star, and the general resemblance of one of them to AB , would seem to warrant their insertion here.

No. i.

		$247^{\circ} \circ 4$	$2^{\prime \prime} 99$	$\begin{gathered} \text { mag. } \\ 9.5 \end{gathered}$	$\underset{12}{ } \text { mag. }$
		247 19	$3^{\circ} \mathrm{I}$	9	11
1901 768		$247{ }^{\text {¹ I }}$	3.05	9×3	II*5
1902.766 Oct.	7	247 '23	$2 \cdot 67$	$9^{\circ} 5$	I I
1903*454 June	15	$246 \cdot 70$	$3 \cdot 20$	$9 \cdot 8$	II
-473	22	$248 \cdot 79$	$3^{\circ} 09$		
-511 July	6	$247 \cdot 62$	3'04		
-514	7	$246 \cdot 68$	$3 \cdot 25$		
1903.488		247×45	3'14	$9 \cdot 8$	II
1908.428 June	5	248.05	3*04		
$\cdot 467$	19	$2+5$.08	3.22	$9^{\circ} 3$	11.2
1908.447		$246 \cdot 57$	3.13	$9 * 3$	11'2

No. 2.

(1903.0 $\alpha 22^{\text {h }} 22^{\mathrm{m}} 52^{8 . \mathrm{I}}$, $\delta+57^{\circ} 13^{\prime} 33^{\prime \prime}$.)				
$1902 \cdot 744$ Sept. 29	$260^{\circ} \cdot 15$	$\stackrel{1}{1} 37$	$\underset{\text { Io }}{\text { mag. }}$	$\underset{11}{\text { mag. }}$
1903.454 June 15	262.50	$1{ }^{1} \mathrm{I}$		
1907749 Oct. I	$259{ }^{\circ} \mathrm{5}$	$1 \cdot 37$		
1908.382 May 19	261.32	I 35	10	1 I
40126	$260 \cdot 95$	145	$9^{\circ} 6$	$10 \cdot 5$
${ }^{467}$ June 19	259.95	1.46		
1908.417	260 74	1.42	$9 \cdot 8$	10%

The Following Component of No. 2 and a Faint Star North.

Additional measures of some of the stars have been inserted since this paper was submitted to the R.A.S.

Yerkes Observatory : 1908 May 18.

Postscript.

I am very glad to be able to add to this paper the value of the parallax of Krueger 60 determined by Dr. Henry Norris Russell from photographs with the Cambridge (England) refractor. Dr. Russell has kindly supplied me with his value since my paper was put in type.

His result is :-

$$
\pi=+0^{\prime \prime} \cdot 25^{8} \pm 0^{\prime \prime} \cdot \mathrm{OI}_{3}
$$

from measures of Δa. Nine comparison stars were used, and the probable error for a single plate was $\pm 0^{\prime \prime} \cdot 026$.

The following, therefore, are all of the values of the parallax of this star known to me:

$$
\begin{aligned}
\text { Schlesinger } & =+0^{\prime \prime} \cdot 248 \pm 0^{\prime \prime} \cdot 009 \\
\text { Barnard } & =+0 \cdot 249 \pm 0 \cdot 010 \\
\text { Russell } & =+0 \cdot 258 \pm 0 \cdot 013
\end{aligned}
$$

Photograph containing three exposures of the double star Krueger 60 A B and the comparison star C. Taken with the 40 -inch refractor of the Yerkes Observatory, 1908 July 10 (enlarged). Exposures 10 minutes each. E. E Barnard.

[^0]: * We have found that this last ternu is incorrectly given in Bessel's original paper, A.N. 366 , pp. 83-84, as $-\sin \delta \cos \mathrm{P} \sin \omega$.

 The same error occurs in the second of the formulæ for determining the parallax from the position-angle on the same page of $A . N ., 366$, the last term of which should also be $-\cos \delta \cos \mathrm{P} \cos \omega$.

