positions of a piece of stout cardboard, carefully cut in the form of a semicircle of 200^{mm} diameter, the radius CA being

Kepler's Equation.
graduated in millimetres. A point F is taken on CA , so that $\frac{\mathrm{CF}}{\mathrm{CA}}=e$.

To use the apparatus, all that is necessary is to set AD at right angles to RS (which is easily done by the lines on the paper) at a distance from PQ equal to the mean anomaly ($n t$), and to roll the semicircular card along the ruler until the point F lies on the line $P Q$. Then the distance OC^{\prime} is equal to $u-n t$.

It only remains, therefore, to add OC^{\prime}, which is obtained in degrees directly from the scale RS , to $n t$ in order to obtain u in degrees.

In the example illustrated in the figure, I have taken $n t$ equal to twice the angular unit $=114^{\circ} .6$ and $e=0.75$. By rolling the card I find

$$
O C^{\prime}=26^{\circ} \cdot 8 ;
$$

whence

$$
u=114^{0} \cdot 6+26^{\circ} \cdot 8=141^{\circ} \cdot 4 .
$$

On the Parallax of Double Stars. By Arthur A. Rambaut, M.A.
(Communicated by Sir R. S. Ball, LL.D, F.R.S.)
In a paper published in the Proceedings of the Royal Irish Academy (2nd ser., vol. iv., No. 6), I pointed out the relation connecting the parallax and the relative velocity of the compo-
nents of a double star with the period and angular elements of its orbit, and discussed the possibility of determining the distance by means of spectroscopic observations of this velocity.

At the time my paper was read (May 1886), my examination of the question seemed to point to the conclusion that the velocities to be expected were too small to be measured with any degree of certainty, and although the photographic method eren then wore a very promising appearance, it seemed that, for some time to come, at least, there was but little prospect of success in this direction.

Since that date, however, the splendid progress made by Professor Pickering and others in the art of photographing stellar spectra has altered the whole aspect of the question, and in particular the magnificent series of results, lately published in the Astronumische Nachrichten by Professor Vogel and Dr. Scheiner, seems to demonstrate the possibility of applying this method with success to the determination of parallax.

It is in the hope of inducing astronomers who may be engaged on this kind of observation, or who have the requisite instruments at their disposal, to take up what, under present circumstances, appears to me a promising field of work that I venture once more to direct attention to the subject.

In my paper before referred to (p. 666) I have shown that if
ϕ denotes the angle between the tangent to the orbit and the major axis,

then

$$
\pi \mathrm{V}=\frac{l a^{2} \sqrt{1-\epsilon^{2}} \sin (\varphi-\lambda) \sin \gamma}{\operatorname{Pr} \sqrt{\mathbf{I}-e^{2} \cos ^{2} \phi}}
$$

This equation gives us a relation between π and V depending only on the period and angular elements of the orbit, by means of which, if V has been determined by observation, π can be immediately dedaced.

In my previous paper I took unity as the critical value of πV for this reason, that if $\pi \mathrm{V}$ is at any time equal to unity, we know either that π is not less than one-tenth of a second of arc, or that V is not less than ten miles per second-ten miles appearing to me at that time as being aboat the limit of velocity which could with certainiy be detected.

A perusal of Professor Vogel's paper in Nos. 2896 and 2897 of the Astronomische Nachrichten shows, however, that this value may now be very much reduced. He there gives, amongst other results, ten different values for the motion of a Aurigce in the line of sight, obtained on different nights, all lying between $+3 \cdot 1$ and $+4^{\circ} \circ$ German geographical miles, while his results for Venus agree within a tenth of a geographical mile with the calculated ralues. If, then, we assume that. where the components are fairly equal in brightness, a velocity of one English mile per second is not quite beyond the capabilities of the spectrographic $\mathrm{m} \cdot$ thod, we shall find that a number of donble stars whose orbits have been determined are within measurable distance either by the trigonometrical or spectrographic method, so far, at least, as the values of π and V are concerned.

This being the case it seems to me desirable to reduce the formulæ to a more convenient shape, and to compute $\pi \mathrm{V}$ for some other stars not included in my previous paper.

I have shown (p. 667) that we may write

$$
\pi V=\frac{l a p^{\prime} \sin (\phi-\lambda) \sin \gamma}{P b}
$$

where b is the semi-axis-minor and p^{\prime} the perpendicular from the

Parallax of Double Stars.
empty focus on the tangent to the orbit. Also $p^{\prime} \sin (\phi-\lambda)$ is the orthogonal projection of p^{\prime} on the line of nodes, and this (see figure) is equal to the sum of the projections of $F^{\prime} G$ and GT, where $F^{\prime} G$ is half the distance between the foci, and GT the line joining the foot of p^{\prime} with the centre of the ellipse.

But the projection of $\mathrm{F}^{\prime} \mathrm{G}$ is equal to $a e \cos \lambda$, and that of GT is equal to $a \cos (\theta-\lambda), \theta$ being the true anomaly, so that we have

$$
\left.\begin{array}{rl}
\pi V & =\frac{l a^{2} \sin \gamma}{\mathrm{P} \tilde{b}}[e \cos \lambda+\cos (\theta-\lambda)], \\
\text { or } \pi V & =\mathrm{A}+\mathrm{B} \cos (\theta-\lambda) \\
\text { where } \mathrm{A} & =\frac{l a e \sin \gamma \cos \lambda}{\mathrm{P} \sqrt{\mathrm{I}-e^{2}}} \tag{a}\\
\text { and } \mathrm{B} & =\frac{l a \sin \gamma}{\mathrm{P} \sqrt{ } \overline{\mathrm{I}-e^{2}}}
\end{array}\right\} .
$$

A and B being constants depending only on the elements of the orbit.

If we wish to know at what time the value of $\pi \mathrm{V}$ reaches its maximum value for any particular binary pair we have to make

$$
\mathrm{A}+\mathrm{B} \cos (\theta-\lambda) a \text { maximum, }
$$

or

$$
\sin (\theta-\lambda)=0 .
$$

Hence we see that, if we disregard the sign of V, the value of πV will be greatest when $\theta=\lambda$ or $\pi+\lambda$, or, as I showed otherwise in my previous paper, the relative velocity in the line of sight is a maximum when the body is passing through the line of nodes, and the first of equations (α) shows that its greatest value is $\pm A+B$, the upper or lower sign being taken according as λ is in the first or fonrth, or in the second or third quadrants.

I may take this opportunity of saying that the method which computers of double-star orbits adopt of placing $\delta 8$ (on which the quadrant of λ depends) in all four quadrants is entirely misleading, as it is calculated to give the impression that there is some means of determining which is the ascending node from micrometric observations alone; whereas the fact is that we cannot from these data decide at which node the companion is receding from or approaching the Sun, nor is there even any convention as to which direction of motion should be implied by the term ascending. We can, of course, from micrometric measures fix the position of the line of nodes, but the Iongitude of the ascending node must always be doubtful to the extent of 180°, unless the spectroscope be employed and the resolved part of the velocity be sufficiently large to become sensible.

With regard to this point Villarceau, in his paper on doublestar orbits, in the Connaissance des T'emps, 1877, remarks:"L’angle $\delta 6$ sera indéterminée à 180 degrés près. Cela doit être, puisque il est impossible de distinguer si le satellite en traversant l'un des nœuds s'écarte on se rapproche de notre système solaire." Lower down he says : "Le signe de I" (the inclination of the orbit) " reste arbitraire. La longitude Ω, étant celle du nœud ascendant, est ambiguë, comme il vient d'être dit, et l'on peut toujours prendre I positif et compris entre 0 et 180 degrés. . . . L'hypothèse de I négatif change effectivement le nœud ascendant en nœud descendant." And, again, "La valeur, de I restera affectée du double signe qu'on ne peut éviter."

Now, although this ambiguity is of no importance when we are concerned with ouly one particular binary system, and aim
only at predicting the distance and position of the pair for any given time, yet if we wish to draw general conclusions from the situations of a large number of groups, such, for the sake of illustration, as Mädler's conception of a "stellar equatorial plane," to which he supposes the planes of the double-star orbits to be approximately parallel, this ambiguity meets us at the very outset. If, for instance, we take the star p Eridani, and inquire how the plane of its orbit is situated with regard to the plane passing through Procyon, Mira Ceti, and the Sun, we shall find that we cannot tell whether it is approximately perpendicular or approximately parallel to it. Or if we compare the plane of the orbit of δ Cygni with that of the Earth's equator, we cannot determine whether it is inclined to it at an angle of 7 or of 82 degrees. The advantages, therefore, to be expected from spectroscopic, or rather spectrographic, observations of double stars for which $\pi \mathrm{V}$ is greater than $O^{\circ} \mathrm{I}$, are
(1) An independent check on the parallax where this has been determined trigonometrically.
(2) A determination of the parallax where, owing to its smallness, the trigonometrical method fails.
(3) A determination of the sign of the inclination which will remove the ambiguity attaching to the situation of the orbit.

In Table I. below I give the elements of a number of orbits, and the values of A and B as computed from these elements. These quantities will enable as to compute the value of $\pi \mathrm{V}$ corresponding to any given time with the least possible labour, as it is only necessary to compute the value of θ for the given time, and to substitute the value thas found in the first of equations (α). In the last column of this table is given the greatest value to which $\pi \mathrm{V}$ can attain; and if it is required to ascertain at what epoch πV reaches its maximum value, it, is only necessary to find the date corresponding to $\theta=\lambda$ or $\theta=\pi+\lambda$, according to the quadrant in which λ lies, as explained above. In Table II. will be found the values of $\pi \mathrm{V}$ for some of the most remarkable pairs, corresponding to the date 1891.0, and in those cases where the parallax has been determined I have added the value of V in the third column. It will be noticed that in the case of these stars, as might have been expected in consequence of their comparative nearness to us, the velocities are for the most part very small and such as direct eyeobservations must fail to deal with. The success of Professor Vogel's method, however, and of the Henry Draper Memorial photographs, seems to hold out the hope that even velocities such as these may become sensible on the plates, and, in view of the very striking observations on ζ Ursce Majoris lately published by Professor Pickering, it is not improbable that the highest velocities will be found, not in the wide and easy doubles, but in those close pairs such as δ Equulei, where, owing either to their remoteness or the smallness of the linear dimensions of their orbits, it is extremely difficult to divide the discs optically or to separate the two spectra on the photographic plate.

A	B	$\pm A+B$
-0.469	0.782	1.251
-0.035	0.070	0.105
+0.145	0.456	0.601
+0.105	0.781	0.886
-1.629	3.788	5417
+0.010	0.269	0.279
+0.14	0.100	0.114
-0.010	0.076	0.086
-0.079	0.353	0.432
-0.044	0.158	0.202
+0.029	0.119	0.148
-0.066	0.090	0.156
-0.172	0.720	0.892
-0.084	0.224	0.308
-0.109	0.513	0.622

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & \infty \\
i n & \hat{0} & 0 & i & 0 \\
& \mathrm{o} & = \\
1 & 1 & 1 & +
\end{array}
$$

$$
\infty_{y} \neq 寸 \times \infty \text { 呙 }
$$

a Canis Miajoris

$$
\begin{aligned}
& \quad \text { Name of Star. } \\
& \eta \text { Cassiopeiæ } \\
& 36 \text { Andromedie } \\
& p \text { Eridani } \\
& 40 \text { Eridani (B.C.) } \\
& \alpha \text { Canis Maioris }
\end{aligned}
$$

$$
\stackrel{\circ}{\hat{0}} \quad \stackrel{\infty}{i} \underset{i}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{+}
$$

$\stackrel{2}{9}$

$$
\underset{\sim}{m} \dot{\sim}
$$

$$
\circ \text { 낭 }
$$

0 風 $\infty \infty$ 人
に 0 －

$\dot{0}$
in
in
N

＊The position－angle of periastron is

$$
\text { n in } \cong \circ \text { N }
$$

ㅇin in in

$$
\text { 붕 움 } \ddagger
$$

$$
\approx \cong \infty
$$

คิก์ベヘ
n
0
子
$\left\{\begin{array}{l}\text { Indeter－} \\ \text { minate }\end{array}\right\}$

March 1890.
 of Doulle Stars.

Magnitudes of	Ω	γ	λ	e	a	P	T	Authority.	A	B	$\pm A+B$
Compozents. 6, 6	$\begin{array}{cc}\circ \\ 152 & 3\end{array}$	$80 \quad 53$	$7{ }^{\circ} \mathrm{I} 6$	-135	1'009	$\begin{gathered} \text { years. } \\ -\quad 45^{\circ} 4 \end{gathered}$	1872.9	Dunér	+0.055	0.409	$0 \cdot 464$
$9 \frac{1}{2}, 10 \frac{1}{2}$	5757	6043	15621	-302	$1 \cdot 46$	$+54.25$	$1877{ }^{1}$ I	Doberck	-0.126	$0 \cdot 455$	0.581
5, $5^{\frac{1}{2}}$	67	468	3626	$\cdot 6055$	1•193	+2179	1818:5	"	+0.045	0.092	$\bigcirc 137$
4, 6	12723	$58 \quad 5$	15155	$\cdot 467$	4790	- 94.4	$1808 \cdot 9$	Pritchard	-0.370	0.899	I 269
6, 9	8322	5848	26321	$\cdot 170$	$0 \cdot 53$	- 18.7	1882.9	Gore	-0.009	0.455	$0 \cdot 464$
$5 \frac{1}{2}, \quad 5 \frac{1}{2}$	499	6838	25524	-699	2.400	- 55.6	18828	Schiaparelli	-0.183	1039	1222
3, 8	918	3746	2032	- 285	$2 \cdot 310$	$-415 \cdot 1$	1904 1	Behrmann	-0.017	0.066	83
3, II	1056	6135	22057	-096	0.460	+ 16.955	186885	Celoria	-0.040	0.556	- 595
5, 6	10518	5848	1396	-602	0.602	- 93.4	$1926 \cdot 9$	Glasenapp	-0058	-.128	- 186
6, 7	34014	5637	2350	$\cdot 461$	0.717	- 129.8	1752*0	Doberck	-0.025	0.096	- 121
5, 6	3403	7125	27133	-534	$30 \cdot 42$	$+523$	$1834 \cdot 8$	Peters (Provisional)	+0.017	I 204	1.221
5, 6	3414	6355	278 I6	'174	29.48	+ 782.6	$1834 \cdot 8$, (Final)	+ 0.016	0.635	0.651
$4 \frac{1}{2}, 5$	243	81 45	74 I	-201	$0 \cdot 406$	- 11478	18920	Glasenapp	+0.037	0.660	$0 \cdot 697$
5, 8	83 -	4440	20526	$\cdot 3475$	1•19	- 53.9	18640	Gore	-0.096	- 306	$0 \cdot 402$
4, 4	14051	4442	13440	-652	$7 \cdot 64$	- $1578 \cdot 8$	1924 I 5	Doberck	-0.038	0.083	$0 \cdot 121$
7, 8	3835	32 II	927	$\cdot 461$	I 27	+104.4	18349	"	- 0.002	O. 135	$0 \cdot 137$

\quad Name of Star.
$\sum 2173$
μ^{2} Herculis
τ Ophiuchi
$70 p$ Ophiuchi
ζ Sagittarii
γ Coronæ Australis
δ Cygni
β Delphini
λ Cygni
4 Aquarii
61 Cygni
$\quad "$,
δ Equulei
τ Cygni
ζ Aquarii
$\sum 3062$

Table II.

Values for $\mathbf{1 8 9 1} \mathbf{r}^{\circ}$.

Name. η Cassiopeiz	$\pi \mathrm{V}$ -0.348	V $2 \cdot 3$	π and Authority. O.'15 O.E.
36 Andromedæ	+ 0.034		
p Eridani	-0.305		
a Canis Maj.	-5.326	134	0.39 Gill and Elkin.
$\Sigma 1037$	+0.151		
a Geminorum	+0.112	o 6	O 20 Johnson.
$\boldsymbol{\xi}$ Ursæ Maj.	-0.294	74	o o4 Klinkerfues.
γ Virginis	+0076		
a Centauri	+2.741	37	0.74 Gill and Elkin.
ξ Boötis	+0.372		
$44 i$ Boötis	-0.082		
η Coronæ Bor.	-0.352		
51 $\boldsymbol{\xi}$ Libræ	$+0.184$		
ζ Herculis	-0.325		
$70 p$ Ophiuchi	+ 0197	$1 \cdot 2$	o.16 Krueger.
γ Coronæ Austr.	+ 0698		
之 2173	-0.327		
O. 2.235	$+0.076$		
6ı Cygni	-I.I73	$2 \cdot 5$	0.47 Ball.
"	-0285	0.7	," ",
ζ Aquarii	+0041		

On some Celestial Photographs made with a large Portrait Lens at the Lick Observatory. By E. E. Barnard, M.A.

Professor Holden having secured for the Lick Observatory a very large portrait lens (maker, Willard, New York, 1859), I have taken advantage of the opportunity to make with it some experimental long-exposure negatives of the Milky Way, the great nebula of Andromeda, and the Pleiudes. This lens, with the diaphragm removed, has an equivalent aperture of 5.9 inches, and a focal length of 3 I inches.

The lens was mounted temporarily in a rough wooden box, and before beginning work the stellar focas was accurately determined by a series of exposures on Polaris, \&c.

The camera was then strapped firmly upon the tube of the $6 \frac{1}{2}$-inch equatoreal, which, with a high power, was used as a following telescope. This instrument, having slow-motion rods in right ascension and declination at the eye-end, was specially

