the 27th of August; and the others of various stars. There are ten eclipses of Jupiter's satellites; viz. five of the first, and five of the second. To the whole is subjoined the monthly mean of the barometer and thermometer during the year, with a statement of the prevailing wind, which appears to be north-west and south.
II. A letter from Professor Bessel to Sir J. Herschel, Bart., dated Konigsberg, Oct. 23, 1838.

Esteemed Sir,-Having succeeded in obtaining a long-lookedfor result, and presuming that it will interest so great and zealous an explorer of the heavens as yourself, I take the liberty of making a communication to you thereupon. Should you consider this communication of sufficient importance to lay before other friends of Astronomy, I not only have no objection, but request you to do so. With this view, I might have sent it to you through Mr. Baily; and I should have preferred this course, as it would have interfered less with the important affairs claiming your immediate attention on your return to England. But, to you, I can write in my own language, and thus secure my meaning from indistinctness.

After so many unsuccessful attempts to determine the parallax of a fixed star, I thought it worth while to try what might be accomplished by means of the accuracy which my great Fraunhofer Heliometer gives to the observations. I undertook to make this investigation upon the star 61 Cygni, which, by reason of its great proper motion, is perhaps the best of all; which affords the advantage of being a double star, and on that account may be observed with greater accuracy; and which is so near the pole that, with the exception of a small part of the year, it can always be observed at night at a sufficient distance from the horizon. I began the comparisons of this star in September 1834, by measuring its distance from two small stars of the 11th magnitude, of which one precedes, and the other is to the northward. But I soon perceived that the atmosphere was seldom sufficiently favourable to allow of the observation of stars so small; and, therefore, I resolved to select brighter ones, although somewhat more distant. In the year 1835, researches on the length of the pendulum at Berlin took me away for three months from the observatory ; and when I returned, Halley's Comet had made its appearance, and claimed all the clear nights. In 1836, I was too much occupied with the calculations of the measurement of a degree in this country, and with editing my work on the subject, to be able to prosecute the observations of a Cygni so uninterruptedly as was necessary, in my opinion, in order that they might afford an unequivocal result. But, in 1837 these obstacles were removed, and I thereupon resumed the hope that I should be led to the same result which Struve grounded upon his observations of a Lyra, by similar observations of 61 Cygni.

I selected among the small stars which surround that double
star, two between the 9th and 10th magnitudes; of which one (a) is nearly perpendieular to the line of direction of the double star; the other (b) nearly in this direction. I have measured with the heliometer the distances of these stars from the point which bisects the distance between the two stars of 61 Cygni; as I considered this kind of observation the most correct that could be obtained, I have commonly repeated the observations sixteen times every night. When the atmosphere has been unusually unsteady, I have, however, made more numerous repetitions; although, by this, I fear the result has not attained that precision which it would have possessed by fewer observations on more favourable nights. This unsteadiness of the atmosphere is the great obstacle which attaches to, all the more delicate astronomical observations. In an unfavourable climate we cannot avoid its prejudicial influence, unless by observing only on the finest nights; by which, however, it would become still more difficult to collect the number of observations necessary for an investigation. The places of both stars, referred to the middle point of the double star, are for the beginning of 1838 ,

	Distance.	Angle of Pos.
a	$461^{\prime \prime \cdot} \cdot 617$	$201^{\circ} 29^{\prime} 24^{\prime \prime}$
b	$706 \cdot 279$	$109 \quad 22 \quad 10$

As the instrument gives, at the same time, the distance and angle of position, I have always observed both. But the position circle is divided only into whole minutes; which, in the distance of the first star, have the value of $0^{\prime \prime} \cdot 134$; in that of the second, $0^{\prime \prime} \cdot 205$. Moreover, other causes exist which may render the observation of the angle of position less certain than that of the distances. I have, accordingly, considered the first of these as of less consequence in so delicate an investigation, and concentrated my attention, as far as I could, upon the latter.

The following tables contain all my measures of distance, freed from the effects of refraction and aberration, and reduced to the beginning of 1838. In these reductions, the annual variations employed of both distances are $=+4^{\prime \prime} \cdot 3915$ and $-2^{\prime \prime} \cdot 825$; which I have deduced (on the supposition that the stars a and b have no proper motions) from the mean motions of both stars of 61 Cygni, which M. Argelander had lately found by comparison of my determination (from Bradley's observations) for 1755, with his own for 1830 . In the meantime, we cannot regard these variations of distance as the true variations; because the stars compared may have proper motions, and, also, because it is not known whether the mean of the motions of both stars of 61 Cygni appertains to its centre, and whether this (motion) is proportional to the time. In what follows, let us denote the true variations of the distances by $+4^{\prime \prime} \cdot 3915+\alpha^{\prime}$ and $-2^{\prime \prime} \cdot 825+\beta^{\prime}$, the mean distances for the beginning of 1835 by α and β; the time, reckoned from this beginning, by t; the difference of the constants of the annual parallax of 61 Cygni, and of the comparison-stars a and b, by $a a^{\prime \prime}$ and $\beta^{\prime \prime}$; and, lastly, the coefficients of the parallax depending on
the place of the earth by a. Then the expressions of the distances at the beginning of 1838 are--

> For the star $a=\alpha+t \alpha^{\prime}+a \alpha^{\prime \prime}$ For the star $b=\beta+t \beta^{\prime}+a \beta^{\prime \prime}$

These expressions, as they were at the time of each observation, I have written against the observations; we can, therefore, by inspection, perceive how the observations agree with the theory.

OBSERVATIONS OF THE STAR a.

1	$\begin{gathered} 1837 . \\ \text { Aug. } 18 \end{gathered}$	$462 \cdot 050$	$\alpha-0.369 \alpha$	$+0.635 \alpha^{\prime \prime}$	34	$\begin{gathered} 1838 . \\ \text { May } 16 \end{gathered}$	$461{ }^{\prime \prime} \cdot 915$	$\alpha+0.372 \alpha^{\prime}+0.661 \alpha^{\prime \prime}$	
2	19	1.619	-0.367	+0.624	35	17	$2 \cdot 015$	+0.375	$+0.680$
3	20	$1 \cdot 693$	-0.364	+0.611	36	19	$1 \cdot 813$	$+0.380$	+0.701
4	28	$1 \cdot 726$	-0.342	$+0.513$	37	21	1.902	+0.386	$+0.721$
5	30	1-940	-0.337	$+0.487$	38	22	$1 \cdot 840$	$+0.389$	$+0.730$
6	Sept. 4	1.912	-0.323	+0.414	39	23	1.978	+0.392	+0.740
7	8	$1 \cdot 841$	-0.312	$+0 \cdot 363$	40	June 1	$1 \cdot 879$	$+0.416$	$+0.817$
8	9	1.597	-0.309	$+0.349$	41	2	$2 \cdot 100$	$+0.419$	$+0.825$
9	11	1.633	-0.304	$+0.321$	42	12	$1 \cdot 867$	+0.446	$+0.885$
10	14	1.779	-0.296	+0.270	43	13	1.951	$+0.449$	$+0.889$
11	20	$1 \cdot 502$	-0.279	$+0 \cdot 184$	44	22	$1 \cdot 658$	$+0.474$	$+0.919$
12	23	$1 \cdot 814$	-0.271	$+0 \cdot 138$	45	26	$1 \cdot 886$	$+0.485$	$+0.926$
13	24	1.591	-0.268	$+0 \cdot 123$	46	27	1.940	+0.488	+0.928
14	Oct. 1	1.614	-0.249	$+0.012$	47	28	$2 \cdot 111$	+0.490	+0.928
15	2	1.760	-0.246	-0.003	48	29	$2 \cdot 132$	$+0.493$	$+0.928$
16	16	1.708	-0.208	-0.222	49	30	$2 \cdot 168$	$+0.496$	$+0.929$
17	28	$1 \cdot 512$	-0.175	-0.398	50	July 1	$1 \cdot 790$	$+0.499$	+0.928
18	Nov. 22	1.395	-0.107	-0.699	51	8	1.778	$+0.518$	$+0.921$
19	Dec. 1	1.321	-0.083	-0.779	52	10	1.927	$+0.524$	$+0.917$
20	30	1.233	-0.003	-0.897	53	14	1.631	+0.534	+0.910
21	31	$1 \cdot 306$	-0.001	-0.897	54	17	1.851	$+0.543$	$+0.892$
22	$\begin{array}{\|l\|} 1838 . \\ \text { Jan. } 8 \end{array}$	$1 \cdot 168$	$+0.023$	-0.886	55	29	1.973	$+0.575$	$+0.825$
23	Jar. 10	1.226	+0.023 +0.028	-0.881	56	Aug. 4	$1 \cdot 817$	$+0.592$	+0.778
24	14	$1 \cdot 175$	+0.044	-0.855	57	11	1.803	$+0.611$	+0.713
24 25	17	1.485	+0.047	-0.852	58	20	1.579	$+0.636$	$+0.615$
26	20	1-112	+0.056	-0.837	59	21	$1 \cdot 833$	+0.638	$+0.604$
27	Feb. 1	$1 \cdot 491$	+0.088	-0.751	60	25	$1 \cdot 707$	+0.649	$+0.556$
28	5	$1 \cdot 620$	+0.098 +0	-0.715	61	26	$1 \cdot 770$	$+0.652$	$+0.543$
29	10	1.048	+0.113	-0.665	62	29	$1 \cdot 812$	$+0.660$	$+0 \cdot 500$
30	May 3	1.675	-113	$+0.51$	63	Sept. 3	$1 \cdot 822$	+0.674	$+0.432$
30	May	$1 \cdot 880$	+0.340	$+0.529$	64	5	$1 \cdot 691$	$+0.679$	+0.405
32	6	1.811	+0.345	$+0.553$	65	7	1.911	+0.685	$+0.377$
33	12	$1 \cdot 686$	$+0.361$	+0.623	66	8	1.774	$+0.687$	$+0.363$

observations of the star a (continued).

67	$\begin{gathered} 1838.12 \\ \text { Sept. } 12 \end{gathered}$	$461^{\prime \prime} \cdot 832$	$\alpha+0.698 \alpha^{\prime}+0.304 \alpha^{\prime \prime}$		77	1838. Sept. 23	$461^{\prime \prime} \cdot 638$	$\alpha+0.728 \alpha^{\prime}+0.138 \alpha^{\prime \prime}$	
68	13	1.599	+0.701	+0.289	78	24	$1 \cdot 505$	+0.731	+0.122
69	14	1.579	+0.704	$+0.273$	79	25	$1 \cdot 778$	+0.734	+0.106
70	15	$1 \cdot 620$	+0.707	$+0.259$	80	26	$1 \cdot 631$	+0.737	+0.090
71	16	1.748	+0.709	$+0 \cdot 244$	81	27	$1 \cdot 540$	+0.739	+0.075
72	17	$1 \cdot 552$	$+0.712$	$+0.229$	82	28	1.515	+0.742	+0.059
73	18	$1 \cdot 443$	$+0.715$	$+0.214$	83	29	1.675	+0.745	$+0.043$
74	20	$1 \cdot 519$	$+0.720$	+0.183	84	30	1.684	$+0.748$	$+0.027$
75	21	1.695	$+0.723$	$+0 \cdot 168$	85	Oct. 1	$1 \cdot 436$	$+0.750$	$+0.016$
76	22	$1 \cdot 744$	+0.726	$+0 \cdot 153$					

observations of the star b.

OBSERVATIONS OF THE STAR b (continued).

59	$\begin{aligned} & 1838 . \\ & \text { July } 10 \end{aligned}$	706'241	$\beta+0.524 \beta^{\prime}-0.106 \beta^{\prime \prime}$		79	$\begin{aligned} & \text { 1838. } \\ & \text { Sept. } 13 \end{aligned}$	$706 \cdot 831$	$\beta+0.701 \beta^{\prime}+0.744 \beta^{\prime \prime}$	
60	14	6.437	$+0.534$	-0.046	80	14	$6 \cdot 696$	+0.704	$+0.752$
61	17	$6 \cdot 391$	$+0.543$	-0.000	81	15	$6 \cdot 899$	$+0.707$	$+0.760$
62	29	6.610	$+0.575$	$+0 \cdot 179$	82	16	$6 \cdot 743$	$+0.709$	$+0.767$
63	Aug. 2	$6 \cdot 430$	$+0.586$	$+0.230$	83	17	6.784	+0.712	$+0.775$
64	4	$6 \cdot 444$	$+0.592$	$+0.268$	84	18	6.795	$+0.715$	+0.782
65	11	6.493	$+0.611$	$+0 \cdot 365$	85	19	$6 \cdot 814$	$+0.718$	$+0.789$
66	20	$6 \cdot 580$	$+0.636$	+0.485	86	20	6.783	$+0.720$	$+0.796$
67	21	6.671	$+0.638$	+0.496	87	21	$6 \cdot 463$	+0.723	$+0.803$
68	25	6.661	+0.649	$+0.549$	88	22	$6 \cdot 551$	$+0.726$	$+0.810$
69	26	6.587	$+0.652$	$+0 \cdot 560$	89	23	$6 \cdot 679$	+0.728	$+0.813$
70	29	$6 \cdot 536$	$+0.660$	$+0.598$	90	24	$6 \cdot 682$	$+0.731$	+0.822
71	Sept. 3	6.299	+0.674	$+0.650$	91.	25	6.611	+0.734	$+0.827$
72	4	$6 \cdot 391$	$+0.676$	$+0.660$	92	26	6.672	$+0.737$	+0.833
73	5	$6 \cdot 394$	+0.679	$+0.671$	93	27	6.849	+0.739	$+0.839$
74	6	6.645	+0.682	+0.681	94	28	$6 \cdot 762$	+0.742	+0.844
75	7	$6 \cdot 741$	$+0.685$	$+0.690$	95	29	$6 \cdot 696$	$+0.745$	+0.848
76	8	$6 \cdot 517$	+0.687	$+0.700$	$\dot{9} 6$	30	$6 \cdot 713$	+0.748	$+0.852$
77	12	$6 \cdot 475$	+0.698	+0.735	97	Oct. 1	6.717	+0.750	+0.857
78	-	$6 \cdot 500$	+0.698	$+0.735$	98	2	$6 \cdot 721$	$+0.753$	$+0.861$

If we compare both divisions of these tables, we shall perceive that the agreement of the observations with each other is considerably augmented by giving to $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ positive values; or, in other words, by admitting a sensible parallax. If we consider this parallax as vanishing, the sum of the squares of the remaining differences of the eighty-five observations of the star a can be diminished only to $4 \cdot 4487$; that of the ninety-eight observations of the star b to $4 \cdot 7108$. If, however, we determine $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$, so that the observations may be represented as exactly as possible, we can reduce these sums to $1 \cdot 4448$ and $2 \cdot 4469$. By this means we obtain the mean error of an observation of the star $a= \pm 0^{\prime \prime} \cdot 1327$, of the star $b= \pm 0^{\prime \prime} \cdot 1605$. That the observations of the second star are less accurate than those of the first, I consider to be owing to the difference of the directions of the two stars with respect to the direction of the double star. The way in which I conceive this difference to effect the result I shall here leave unexplained; but refer to the complete discussion, which I shall enter into at some future time, of the parallax of 61 Cygni.

I have employed the preceding list of the observations of the distances of the star 61 Cygni from a and b, in two different ways, in order to deduce from it results for the annual parallax of α Cyyni. I have first assumed $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ as independent of each other; or, in other words, considered it as not improbable that a and b themselves may possess sensible parallax. In this way I have found,

For the Star a.
Mean distance for the beginning of $1838 \ldots461^{\prime \prime} \cdot 6094 \ldots \ldots$. Mean Error.
Amnual variation $=+4^{\prime \prime} \cdot 3915-0^{\prime \prime} \cdot 0543 \ldots \ldots \ldots+4 \cdot 3372 \ldots \ldots \pm 0^{0^{\prime} \cdot 0398}$
Difference of annual parallax of 61 and $a \ldots \alpha^{\prime \prime}=+0 \cdot 3690 \ldots \ldots \pm 0 \cdot 0283$

For the Star b.
Mean distance for the beginning of 1838 706 -2909
Annual variation $=-2^{\prime \prime} \cdot 825+0^{\prime \prime} \cdot 2426 \ldots-2 \cdot 5824 \ldots \ldots . \pm 0 \cdot 0434$
Difference of annual parallax of 61 and $b \ldots \beta^{\prime \prime}=+0 \cdot 2605 \ldots \pm 0 \cdot 0278$
The observations seem also to indicate, that the difference of the parallaxes of 61 and b is smaller than that of 61 and a; which must be the case, indeed, if b itself have a sensible parallax greater than a. The difference of the computed values of $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$, in fact, exceeds the limits of the probable uncertainty of the observations; but it is to be observed that the probability of equal values of $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ is not so small that we should be inclined to consider the difference of the two as proved by the observations. Further observations will increase the weight of both results, and, at the same time, give more accurate values of the annual variations.

I have, therefore, deduced a second result from the observations, which rests on the supposition that the parallaxes of a and b are insensible; or that $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ are equal. For this purpose, since both series must now be brought into connexion with one another, it was necessary to deduce the weight of the observations contained in the second series, the weight of those in the first series being taken as unit. I have found it $=0 \cdot 6889$; and hence the most probable value of the annual parallax of 61 Cygni $=0^{\prime \prime} \cdot 3136$. On this hypothesis, I find the mean distances of both stars for the beginning of 1838 , to be $461^{\prime \prime} \cdot 6171$ and $706^{\prime \prime} \cdot 2791$; and the corrections of the assumed values of the annual variations, $=-0^{\prime \prime} \cdot 0293$ and $+0^{\prime \prime} \cdot 2395$. The mean error of an observation of the kind of which I have assumed the weight as unit, is $\pm 0^{\prime \prime} \cdot 1354$, and the mean error of the annual parallax of 61 Cygni, $= \pm 0^{\prime \prime} \cdot 0202$.

This hypothesis manifestly represents the observations somewhat less correctly than the first calculation which was instituted; but what we lose in this respect is not sufficient to outweigh the decided preference due to this last calculation. We can form a judgment upon this point by the following lists of errors of the observations, which contain their comparisons with two formulæ; namely, that of the first calculation and the present hypothesis. I have also added a third column, which contains the errors that arise when we assume the parallaxes $\alpha^{\prime \prime}$-and $\beta^{\prime \prime}$ in the first formula as vanishing. This column also shews immediately what differences were still to be explained by the annual parallax. It shews, in fact, that these differences are commonly positive or negative, according as the coefficient. of the annual parallax, which the foregoing tables give, is positive or negative.

OBSERVATIONS OF THE STAR a.

	I.	II.	III,		I.	II.	III.
1	$+0^{\prime \prime} \cdot 19$	$+0 \cdot 22$	$+0^{\prime \prime} 42$	35	$+0^{\prime \prime} 17$	+0'20	$+0^{\prime \prime} 43$
2	-0.24	-0.21	-0.01	36	-0.03	-0.01	+0.23
3	$-0 \cdot 16$	-0.13	$+0.06$	37	$+0.05$	$+0.07$	+0.31
4	-0.09	-0.06	$+0 \cdot 10$	38	-0.02	$0 \cdot 00$	+0.25
5	$+0 \cdot 13$	+0.16	$+0.31$	39	$+0.12$	$+0 \cdot 14$	+0.39
6	$+0 \cdot 13$	$+0 \cdot 16$	+0.28	40	-0.01	+0.02	$+0.29$
7	$+0.09$	+0.11	+0.22	41	$+0.21$	+0.24	$+0.51$
8	$-0 \cdot 16$	-0.14	-0.03	42	-0.04	-0.02	+0.28
9	-0.11	-0.09	$+0.01$	43	$+0.04$	$+0.07$	+0.37
10	$+0.05$	$+0.07$	$+0 \cdot 15$	44	-0.26	-0.23	+0.07
11	-0.19	-0.18	-0.12	45	-0.04	-0.01	+0.30
12	+0.14	$+0.15$	$+0 \cdot 19$	46	+0.01	$+0.05$	$+0 \cdot 36$
13	-0.08	-0.07	-0.03	47	$+0 \cdot 19$	$+0.22$	+0.53
14	-0.01	-0.01	-0.01	48	+0.21	$+0.24$	+0.55
15	+0.14	+0.14	+0.14	49	+0.24	+0.27	+0.59
16	$+0 \cdot 17$	+0.16	$+0.09$	50	-0.14	-0.10	+0.21
17	+0.04	+0.03	-0.11	51	-0.14	$-0 \cdot 11$	+0.20
18	+0.04	-0.01	-0.22	52	+0.01	+0.04	+0.35
19	0.00	-0.06	-0.29	53	-0.28	-0.26	+0.05
20	-0.05	-0.10	-0.38	54	-0.06	-0.03	+0.27
21	$+0.03$	-0.03	-0.30	55	$+0.09$	$+0.11$	+0.39
22	-0.11	-0.17	-0.44	56	-0.05	-0.03	+0.24
23	-0.06	-0.11	-0.38	57	-0.04	-0.02	+0.23
24	-0.12	-0.17	-0.43	58	-0.22	-0.21	+0.01
25	$+0 \cdot 19$	$+0 \cdot 14$	-0.12	59	$+0.04$	+0.05	+0.25
26	$-0 \cdot 19$	-0.24	-0.49	60	-0.07	-0.06	+0.13
27	+0.16	+0.11	-0.11	61	0.00	$0 \cdot 00$	+0.20
28	+0.28	$+0.23$	$+0.02$	62	+0.05	+0.06	+0.24
29	-0.31	-0.36	-0.55	63	+0.09	$+0.09$	+0.25
30	-0.10	-0.09	$+0.08$	64	-0.03	-0.03	+0.12
31	$+0 \cdot 10$	$+0.11$	$+0.30$	65	$+0.20$	+0.20	+0.34
32	+0.02	$+0.03$	+0.22	66	+0.07	$+0.06$	+0.20
33	-0.13	-0.12	$+0 \cdot 10$	67	+0.15	+0.14	$+0.26$
34	+0.08	$+0 \cdot 10$	+0.33	68	-0.08	-0.09	+0.03

observations of the star a (continued).

	I.	II.	III.		I.	II.	III.
69	$-0^{\prime \prime} .09$	$-0^{\prime \prime} 10$	$+0^{\prime \prime} .01$	78	$-0^{\prime \prime} \cdot 11$	$-0^{\prime \prime} 13$	-0.06
70	-0.05	-0.06	$+0.05$	79	$+0 \cdot 17$	$+0.15$	$+0.21$
71	$+0.09$	+0.08	$+0 \cdot 18$	80	$+0.03$	+0.01	$+0.06$
72	$-0 \cdot 10$	-0.12	-0.02	81	-0.06	-0.08	-0.03
73	-0.21	-0.22	-0.13	82	-0.08	$-0 \cdot 10$	-0.05
74	-0.12	-0.13	-0.05	83	$+0.09$	$+0.07$	$+0.11$
75	+0.06	+0.05	+0.12	84	$+0.11$	$+0.08$	$+0 \cdot 11$
76	$+0 \cdot 12$	$+0 \cdot 10$	$+0 \cdot 17$	85	$-0 \cdot 14$	$-0 \cdot 16$	-0.13
77	+0.02	$0 \cdot 00$	$+0.07$				

observations of the star b.

1	+0.26	+0.24	+0.37	27	-0.36	-0.35	-0.36
2	+0.11	+0.10	+0.23	28	-0.11	-0.10	-0.12
3	+0.46	+0.44	+0.58	29	+0.03	+0.05	+0.01
4	+0.35	+0.34	+0.48	30	-0.04	-0.02	-0.11
5	-0.21	-0.23	-0.06	31	-0.11	-0.08	-0.19
6	+0.04	+0.02	+0.20	32	-0.09	-0.05	-0.19
7	-0.01	-0.03	+0.16	33	-0.30	-0.26	-0.44
8	+0.25	+0.22	+0.43	34	+0.02	+0.08	-0.17
9	-0.11	-0.14	+0.08	35	-0.51	-0.45	-0.71
10	+0.15	+0.12	+0.35	36	-0.06	-0.01	-0.29
11	+0.16	+0.13	+0.37	37	-0.08	-0.02	-0.30
12	+0.08	+0.05	+0.29	38	+0.06	+0.12	-0.16
13	-0.09	-0.12	+0.13	39	+0.15	+0.21	-0.07
14	+0.09	+0.06	+0.32	40	+0.13	+0.19	-0.08
15	-0.01	-0.05	+0.21	41	+0.10	+0.15	-0.11
16	-0.01	-0.04	+0.23	42	-0.09	-0.03	-0.29
17	-0.27	-0.30	-0.04	43	+0.11	+0.16	-0.09
18	-0.27	-0.29	-0.08	44	-0.05	0.00	-0.24
19	-0.07	-0.09	+0.10	45	-0.04	+0.01	-0.23
20	-0.22	-0.23	-0.11	46	+0.14	+0.19	-0.05
21	+0.05	+0.05	+0.11	47	+0.07	+0.12	-0.09
22	-0.16	-0.17	-0.10	48	+0.14	+0.18	-0.03
23	-0.06	-0.06	-0.02	49	+0.07	+0.11	-0.05
24	-0.21	-0.21	-0.18	50	+0.10	+0.14	-0.02
25	-0.09	-0.08	-0.06	51	+0.33	+0.36	+0.23
26	-0.19	-0.18	-0.17	52	0.00	-0.03	+0.08

observations of the star b (continued).

	I.	II.	111.		I.	II.	1 II.
53	$-0^{\prime \prime} \cdot 06$	$-0^{\prime \prime} \cdot 04$	$-0^{\prime \prime} 14$	76	$-0^{\prime \prime} 12$	$-0^{\prime \prime} 15$	+ $0^{\prime \prime} .06$
54	$+0.12$	$+0 \cdot 15$	+0.05	77	-0.18	-0.20	+0.02
55	$+0 \cdot 10$	$+0 \cdot 13$	+0.03	78	-0.15	-0.18	+0.04
56	$+0.08$	$+0 \cdot 11$	+0.02	79	+0.18	$+0.15$	+0.37
57	+0.25	$+0.28$	+0.19	80	+0.04	+0.01	+0.23
58	+0.19	$+0.21$	+0.15	81	+0.24	$+0.21$	+0.43
59	$-0 \cdot 15$	-0.13	-0.18	82	+0.08	$+0.05$	+0.28
60	+0.03	$+0.04$	+0.02	83	+0.12	$+0.09$	+0.32
61	-0.03	-0.02	-0.03	84	+0.13	$+0 \cdot 10$	+0.33
62	+0.13	$+0 \cdot 14$	+0.18	85	+0.14	$+0 \cdot 11$	+0.35
63	-0.06	-0.06	$0 \cdot 00$	86	+0.11	$+0.03$	+0.32
64	$+0.06$	-0.06	+0.01	87	-0.21	-0.24	0.00
65	-0.04	-0.05	$+0.05$	88	-0.13	$-0 \cdot 16$	+0.08
66	$+0.01$	0.00	+0.13	89	0.00	-0.03	$+0.21$
67	$+0.09$	$+0.08$	$+0.23$	90	$0 \cdot 00$	-0.03	+0.21
68	$+0.07$	$+0.06$	$+0.21$	91	-0.07	-0.10	$+0 \cdot 14$
69	-0.01	-0.02	$+0 \cdot 14$	92	-0.02	-0.05	$+0.20$
70	-0.07	-0.09	$+0.09$	93	$+0 \cdot 16$	$+0.13$	$+0.38$
71	-0.32	-0.34	$-0 \cdot 16$	94	$+0.07$	$+0.04$	+0.29
72	-0.24	-0.26	-0.06	95	0.00	-0.03	+0.22
73	-0.24	-0.26	-0.06	96	$+0.02$	-0.01	+0.24
74	$+0.01$	-0.01	$+0.19$	97	+0.02	-0.01	+0.24
75	$+0.10$	$+0.08$	$+0.28$	98	+0.02	-0.01	+0.25

As the mean error of the annual parallax of $61 C_{y g n i}^{(=0 \prime \cdot 3136)}$ is only $\pm 0^{\prime \prime} \cdot 0202$, and consequently not $\frac{1}{15}$ of its value computed; and as these comparisons shew that the progress of the influence of the parallax, which the observations indicate, follows the theory as nearly as can be expected considering its smallness, we can no longer doubt that this parallax is sensible. Assuming it $0^{\prime \prime} \cdot 3136$, we find the distance of the star 61 Cygni from the sun 657700 mean distances of the earth from the sun: light employs 10.3 years to traverse this distance. As the annual proper motion of a Cygni amounts to $5^{\prime \prime} \cdot 123$ of a great circle, the relative motion of this star and the sun must be considerably more than sixteen semidiameters of the earth's orbit, and the star must have a constant aberration of more than $52^{\prime \prime}$. When we shall have succeeded in determining the elements of the motion of both the stars forming the double star, round their common centre of gravity, we shall be able also to determine the sum of their masses. I have
attentively considered the preceding observations of the relative positions; but I consider them as yet very inadequate to afford the elements of the orbit. I consider them sufficient only to shew that the annual angular motion is somewhere about $\frac{2}{3}$ of a degree; and that the distance, at the beginning of this century, had a minimum of about $15^{\prime \prime}$. We are enabled hence to conclude that the time of a revolution is more than 540 years, and that the semi-major axis of the orbit is seen under an angle of more than $1^{\prime \prime}$. If, however, we proceed from these numbers, which are merely limits, we find the sum of the masses of both stars less than half the sun's mass. But this point, which is deserving of attention, cannot be established until the observations shall be sufficient to determine the elements accurately. When long-continued observations of the places which the double star occupies amongst the small stars which surround it, shall have led to the knowledge of its centre of gravity, we shall be enabled to determine the two masses separately. But we cannot anticipate the time of these further researches.

I have here troubled you with many particulars; but I trust it is not necessary to offer any excuse for this, since a correct opinion as to whether the investigation of the parallax of 61 Cygni has already led to an approximate result, or must still be carried further before this can be affirmed of them, can only be formed from the knowledge of those particulars. Had I merely communicated to you the result, I could not have expected that you would attribute to it that certainty which, according to my own judgment, it possesses. I have the honour to be, esteemed Sir, yours,

F. W. Bessel.

[^0]
[^0]: J. Moyes, Castle Street, Leicester Square.

